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Abstract 26 

Background:  27 

The gut microbiome has become a hot topic in recent years with increasing reports on the 28 

positive role of a well-balanced gut microbiota composition for one's health and well-being. A 29 

number of dietary factors can modulate gut composition, although few publications have 30 

focused on common daily beverages impact on the gut microbiome. Coffee is a worldwide 31 

beverage consumed mostly as black coffee that is originally derived from green coffee beans 32 

post roasting. To enhance the taste and aroma, green coffee is typically roasted and to further 33 

affect its chemical composition and rationalize for the different health outcomes. Roasted seeds 34 

contain a high caffeine levels versus phenolic acids i.e., chlorogenic acid enrichment in green 35 

coffee suggestive that they interact differently with gut microbiota and to affect its metabolism.  36 

Scope and approach:  37 

The present review provides a mechanistic insight on the effects of black and green coffee 38 

chemicals on the gut microbiome. We present herein the first comprehensive review of how 39 

coffee natural bioactive such as caffeine and chlorogenic acid and its process derived chemicals 40 

i.e., melanoidins can specifically influence gut homeostasis, and likewise via gut microbiota-41 

mediated coffee chemicals metabolism.  42 

Key findings and conclusions: 43 

The role of gut microbiota in affecting coffee chemicals and the potential of mining 44 

metagenomics data to uncover gut microbiome community and carbohydrate active enzyme 45 

(CAZyme) profile associated with coffee consumption are presented for the first time. 46 

Moreover, our metagenomics analysis in silico showed a decrease in abundance in either 47 

Desulfofarcimen or Mycoplasma genera, confirmed the basic coffee-gut microbial enzymes 48 

repertoire found in the literature and highlights for the first time the coffee CAZyme 49 

biomarkers encoded by the human gut microbiome. 50 

Keywords: gut microbiota; coffee; probiotic bacteria; biotransformation; metagenomics 51 

analysis; microbial CAZyme 52 
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 53 

1. Introduction  54 

Coffee is one of the most frequently consumed beverages worldwide with a myriad of 55 

health benefits. Globally, almost 7 million tons of green coffee beans were produced in 2010, 56 

with 160 million packs produced in 2018 (Angeloni et al., 2020). Coffea arabica (Arabica 57 

coffee) and Coffea canephora (Robusta coffee) are the two main types of coffee, Arabica coffee 58 

is a high-altitude species native to Ethiopia, Sudan, and northern Kenya, whereas Robusta 59 

coffee is a lowland plant native to tropical Africa west of the Rift Valley (Davis et al., 2011). 60 

Green coffee beans i.e., the raw material used to make roasted coffee and coffee drinks 61 

are obtained from the seeds of coffee cherries following a series of operations to remove the 62 

outer layers (the skin, pulp, mucilage, and parchment), followed by drying to a final water 63 

content of 10.0-12.0 %. (de Melo Pereira et al., 2019). Roasted coffee accounts for 64 

approximately 80% of global coffee consumption, while the remaining 20% is unclear. For 65 

example, roasted Robusta is widely used for instant coffee production due to its high 66 

extractability of soluble solids, such as carbohydrates, followed by soluble proteins, 67 

melanoidins, caffeine, and chlorogenic acids. (Moeenfard & Alves, 2020), as evidenced by 68 

(Fig. 1). 69 
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Levels of nutrients and bioactive chemicals in green coffee range from (55.0-65.5%) in 70 

carbohydrates, lipids (10.0-18.0%), nitrogen-containing compounds (11.0-15.0%), purine 71 

alkaloids (0.8-4.0%), chlorogenic acids (6.7- 9.2%) and minerals (3.0-5.4%). Other compounds 72 

are found at low level include non-volatile aliphatic acids (citric, malic and quinic acids) and 73 

phenols (Mussatto, Machado, et al., 2011). The principle reason associated with the high coffee 74 

consumption rate lies in the different types of coffee preparation that satisfy the various 75 

customers need, with regards to its sensorial properties and moreover physiological effects 76 

(Higdon & Frei, 2006). Physiological effects in black and green coffee is mostly ascribed to its 77 

antioxidants and bioactive compounds such as caffeine, chlorogenic acids, nicotinic acid, 78 

tannic acid, trigonelline, and pyrogallic acid (Xu et al., 2019). Compared to black coffee, green 79 

coffee represents a rich source of chlorogenic acids (CGAs), with much higher CGAs levels 80 

than other resources as potatoes, apples, and chines parsley. The major antioxidants of CGAs 81 

in coffee beans may be classified into three categories based on their phytochemical properties: 82 

caffeoylquinic acids (CQA), feruloylquinic acids (FQA), and dicaffeoylquinic acids (diCQA) 83 

(Xu et al., 2019).  84 

 85 

   Fig. 1 Chemical structures of the major bioactive classes detected in green and black 86 

coffee. 87 

Roasting is one of the most complex and significant phases of the coffee production chain 88 

and to affect green coffee composition dramatically. During the roasting process, many 89 
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chemical reactions, such as hydrolysis, polymerization and pyrolysis contribute to changes in 90 

sensorial and biological effects (Leme et al., 2019).  Colorful compounds, such as melanoidins, 91 

which are dark and have a high molecular weight, are produced during the roasting process as 92 

a result of the complex chemical transformations of the Maillard and the caramelization 93 

reactions. Further, during roasting process chlolrogenic acids are partially hydrolyzed and then 94 

incorporated into coffee melanoidins through non-covalent or covalent bounds, and leading to 95 

reduced levels compared to green beans (Ludwig et al., 2012). 96 

Based on the level of coffee roasting and the extraction process, these antioxidants are 97 

known to be degraded and engaged in the chemical transformations to produce diverse CGAs 98 

derivatives to impart a distinct flavor, quality, and bioactivities of black coffee (Xu et al., 2019). 99 

Numerous investigations have demonstrated asides from coffee central nervous system (CNS) 100 

stimulant action, that increased coffee consumption has various favorable impacts on liver 101 

disorders, clinical type 2 diabetes, and Parkinson’s disease. Nevertheless, the impact of coffee 102 

chemicals on the gut microbiota has not been well investigated, and warrants for more future 103 

work to identify the true repertoire of coffee consumption gut microbiome interaction and how 104 

it mediates further for coffee systematic health effects.  105 

Metagenomics studies on the gut metagenome have provided key insights of commensal 106 

microbial communities and their functional catalogue that allow us knowing how to manipulate 107 

the structure and functions of our microbiota, how they affect the health and function of their 108 

hosts and how we could improve human health through prevention and treatment of diseases.  109 

High-throughput functional metagenomics screening is used to encode carbo-hydrate-active 110 

enzymes (CAZymes) through identifying genes in the human gut microbiome (Prakash & 111 

Taylor, 2012; Ufarté et al., 2016). Enzymes mining in silico from microbiome gut 112 

metagenomes has been employed widely to highlight the abundance and variety of microbial 113 

CAZymes associated to different diet consumptions such as yoghurt (Roy et al., 2020), milk 114 

and solid food (Ye et al., 2019). However, the relationship between coffee intake and the 115 

composition of the gut microbiota has yet to be studied in silico. This study presents a pipeline 116 

of four steps to gain more detailed information about gut microbial functional compositional 117 

changes and their associated impact related to coffee consumption. 118 

 119 
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2. Microbiota and gut homeostasis 120 

The gut microbiota of higher animals show large variation and exceedingly active, with 121 

approximately 10 trillion microbial cells and 1000 microbial strains (Sommer & Bäckhed, 122 

2013). Metagenomics studies have revealed that the human body encompasses genetic material 123 

is 90% of microbial origin and 10% human. The human gastrointestinal tract contains at least 124 

1012 microorganisms/ml of luminal content and ca. 15,000 bacterial species. This 125 

microorganisms are called gut microbiota, established during the first year of life and is 126 

strongly influenced by external factors, including the mode of birth (natural or caesarean), early 127 

postnatal nutrition (breastfeeding or nutritional formulas), GI infections (bacteria and 128 

parasites), the use of antibiotics, and diet (Pimentel et al., 2013). 129 

Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria are the four primary phyla 130 

of microorganisms that make up the human microbiota. Firmicutes and Bacteroidetes account 131 

for more than 90% of the relative abundance of the gut microbiome, and their connection is 132 

critical for gut homeostasis, whereas Actinobacteria and Proteobacteria account for the 133 

remaining 10%. (Binda et al., 2018).  Inside the human body, gut microbiota plays a pivotal 134 

role by competitive inhibition of pathogens, as it sustains good intestinal health, energy 135 

production from nutrient biotransformation (Bäckhed & Crawford, 2010), regulation of lipid 136 

metabolism, metabolism of vitamins and absorption (Younes et al., 2001). Asides gut 137 

microbiota improve the intestinal immune system from childbirths, and regulate the growth of 138 

the intestinal mucosa (Lee et al., 2015). 139 

Gut microbiota affects the physiology of the hosts ranging from energy metabolism to 140 

immunological responses. Growing evidence suggests that changes in gut microbiota 141 

composition, often known as gut dysbiosis, have a role in the development of metabolic 142 

syndrome, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis 143 

(NASH), and diabetes mellitus, particularly in terms of inflammation linked with obesity. 144 

(Nishitsuji et al., 2018).  Considering that, gut microbiota is very much influenced by dietary 145 

habits and environmental factors, alteration of the gut microbial community composition 146 

among humans occur leading to damage of the intestinal epithelial integrity and concurrent 147 

with many gastrointestinal diseases upon disruption. Recent research has linked coffee 148 

consumption to changes in gut microbiota composition. Additionally, an in vitro study found 149 

that CGAs significantly increased the number of beneficial bacteria such as Bifidobacterium 150 
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spp. and the Clostridium coccoides-Eubacterium rectale group (Younes et al., 2001; Bäckhed 151 

& Crawford, 2010). 152 

Most studies have focused on the effect of CGAs on gut microbial composition, while 153 

less is known regarding the synergistic response of intestinal epithelial integrity and  microbiota 154 

to CGAs.  Moreover, studies analyzed fecal samples, which might not reflect the full intestinal 155 

or cecal microbiome scenario (Younes et al., 2001; Bäckhed & Crawford, 2010). Microbiota 156 

dysbiosis has been linked to metabolic dysregulation (e.g., obesity, inflammatory bowel 157 

disease (IBD)), disease risk factors (e.g., coronary heart disease), and even the etiology of 158 

various diseases (e.g., autism, cancer) (Moco et al., 2012). It is still unclear whether these 159 

etiologies cause differences in coffee gut microbiota interaction compared to normal 160 

individuals. 161 

3. Coffee brews and bioactive impact on gut microbiota composition through in vitro162 

and in vivo studies163 

The influence of coffee compounds on gut microbiota has been studied using a variety 164 

of techniques, including quantitative PCR with particular gene primers (qPCR), 16S rRNA 165 

gene sequencing with a universal 16S rRNA bacterial primer, and genome sequencing. Various 166 

experimental approaches have been used, including in vitro fecal fermentation, mice, mice 167 

inoculated with human microbiota, and humans. (Mansour et al., 2020). 168 

Different studies have examined changes in the makeup of gut bacteria following coffee 169 

ingestion. These changes can occur by several mechanisms to include: the direct effect of 170 

caffeine that promotes gastroesophageal reflux, stimulation of the gall bladder contraction and 171 

colonic motor activity (Preda et al., 2019),  or  through an indirect action of various coffee 172 

metabolites on the intestinal habitat  such as CGAs as well as other metabolites (Umemura et 173 

al., 2004; Wei et al., 2021).   The influence of coffee chemicals on gut microbiota composition 174 

was revealed mostly based on in vitro studies or mechanistic studies using static batch 175 

fermentations with fecal slurries or less from clinical trials as illustrated in the next subsections. 176 

3.1. Evidence from mechanistic studies 177 

Due to the presence of oral bacteria within gut microbiota, changes in the oral microbiota 178 

may lead to a shift in the gut microbiota. (Pérez-Burillo, Mehta, et al., 2019). Based on the 179 
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similarities between tea and coffee, as both are caffeinated beverages, studies have shown that 180 

the intake of tea polyphenol compounds leads to gut dysbiosis. Inside the colon, Clostridium 181 

perfringens were found to be inhibited, while Bifidobacterium spp. showed increase based on 182 

counting the bacterial colonies from the fecal sample after tea polyphenol treatment, and further 183 

translated by in the production of SCFAs i.e., acetic and propionic acids (Delgado-Andrade et 184 

al., 2017).   In contrast, no significant effect on the overall microbiota was observed with 185 

roasted or green coffee consumption (Pérez-Burillo, Mehta, et al., 2019) suggestive that 186 

phenolics account for such differential response as caffeine is abundant in both plants.. 187 

More recently, green coffee consumption was reported to lead to an increase in 188 

Firmicutes and Actinobacteria relative abundance, while a decrease in Bacteroidetes was 189 

detected at the phylum level (Table 1). In addition, SCFAs producing bacteria, i.e., Roseburia, 190 

Faecalibacterium, Eubacterium rectale group, Blautia, Coprococcus, and Bifidobacterium 191 

longum showed an increase concurrent with a decrease in Prevotella that overall accounted for 192 

the increase in SCFA levels (Preda et al., 2019) Delgado-Andrade et al., 2017). Likewise, 193 

moderate consumption of coffee for 3 weeks in a healthy population was reported to increase 194 

Bifidobacterium (Sales et al., 2020), occasionally likewise linked to a decrease of pathogenic 195 

Clostridium and Escherichia coli (Vollmer et al., 2017; Benitez et al., 2019).   196 

Consumption of coffee was associated with a decrease of Clostridium Cluster XI and 197 

Bacteroides/Prevotella, whereas other studies revealed increase of Enterobacteriaceae. For 198 

instance, coffee and galacto-oligosaccharide (GOS) consumption effect on human gut 199 

microbiota suggest for an antibiotic effect, with GOS content to significantly decrease E. coli 200 

and Clostridium spp. population, whereas increase in Bifidobacterium spp., was evident 201 

(Nakayama & Oishi, 2013) and in accordance with results of (Sales et al., 2020). Coffee may 202 

have a more significant role in human health through influencing the growth of some colon 203 

bacteria types. For instance, the increase of Bifidobacterium spp. growth may be involved in 204 

preventing colon cancer via inhibiting the growth of some colon cancer cells (Mills et al., 205 

2015),  as illustrated in (Table 1). 206 
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Table 1. The effects of coffee or coffee chemicals on microbiota in human studies 207 

No. Study design, treatment Phylum Genus Detection methods References 

1 Human fecal samples, 

Nescafe ´Green Blend (80·8 mg CGAs) 

Nescafe´ Gold Blend (33·9 mg CGAs) 

Nescafe´ Original (33·8 mg CGAs) 

 

Actinobacteria  

Firmicutes 

Bifidobacterium spp. 

Clostridium coccoides–

Eubacterium rectale 

 

   LC–MS, HPLC 

 

(Mills et al., 

2015) 

2 Human fecal samples, chlorogenic acid, 

caffeic acid, rutin and quercetin 

Actinobacteria  

 Bacteroides 

 Firmicutes 

Bifidobacterium longum     

  Bacteroides  

thetaiotamicron  

Lactobacillus rhamnosus 

 

LC-MS, RT-PCR 

 

(Stalmach 

et al., 2010) 

3 Human fecal samples, green coffee  Non identified bacteria HPLC- HR-MS/MS (Farag, 

Hegazi, et 

al., 2020)  

4 Human,  coffee and CGAs Actinobacteria 

Firmicutes 

Bifidobacterium sp. 

Clostridium coccoides 

 Eubacterium rectale 

 

   LC-MS, HPLC 

(Tomas-

Barberan et 

al., 2014) 

5 Human fecal samples, coffee fibre (0.5 

g), and inulin 

Bacteroides Coffee fibre & inulin 

Prevotella group,  

          

       FISH-FC 

(Gniechwitz 

et al., 2007) 
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B. Fragilis  

Coffee fibre 

B. Vulgatus 

6 Human fecal samples,  MOS (0.5 g/ 

cup) 

Actinobacteria 

Firmicutes 

Bifidobacterium sp. 

 Lactobacillus sp. 

Anaerobic culture (Umemura 

et al., 2004) 

7 Human fecal samples, coffee, 3 

cup/day for 3 weeks 

    Bacteroidetes               

Firmicutes 

Actinobacteria 

Bifidobacterium sp.,  

Lachnospira   

 Roseburia     

  Prevotella 

 

RT-PCR DGGE, 

FISH 

 

 (Jaquet et 

al., 2009) 

8 Human fecal samples, 200 μM of  

C-QA 

Bacteroidetes 

Firmicutes 

Actinobacteria 

Bifidobacterium spp. 

 Bacteroides-Prevotella 

 Lactobacillus spp 

HS-SPME,  (GC–

MS 

 (de Cosío-

Barrón et 

al., 2020) 

9 Human fecal samples, C. arabica 

aqueous extracts and C. canephora, 

probiotic bacteria, 

Firmicutes 

Actinobacteria 

Proteobacteria 

Lactobacillus rhamnosus 

    Lactobacillus acidophilus 

     Bifidobacterium animalis            

subsp. lactis 

     Bifidobacterium animalis  

   Escherichia coli 

 

HPLC-DAD 

 

(Benitez et 

al., 2019) 
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10  

 

 

Human fecal samples, spent coffee 

Bacteroidetes 

Firmicutes 

Actinobacteria 

F/B 

Barnesiella                   

Odoribacter  

Coprococcus 

Butyricicoccus        

Intestinimonas 

Pseudoflavonifractor 

Veillonella 

Faecalibacterium 

Ruminococcus 

Blautia 

Butyricimonas 

Dialister 

Collinsella 

Anaerostipes 

 

 

 

          

 

 

            HPLC 

 

 

 

 

 

 

(Pérez-

Burillo, 

Pastoriza, et 

al., 2019)  

LC–MS : (Liquid chromatography–mass spectrometry, HPLC: (High performance liquid chromatography), RT-PCR: (Reverse Transcription 

Polymerase Chain Reaction), HR-MS/MS: (High Resolution Mass Spectrometry), FISH-FC: (fluorescence in situ hybridization combined with flow 

cytometry),  DGGE: Denaturing Gradient Gel Electrophoresis), HS-SPME: (Headspace-solid phase microextraction),  GC–MS: (Gas 

chromatography–mass spectrometry) and HPLC-DAD: (High-performance liquid chromatography (HPLC) with a diode-array detector). F/B: the 

ratio of Firmicutes over Bacteroidete 

The arrows represent the change in the microbial population:     (increase in the microbial population)      (decrease in the microbial population)                

                           (no change )                 

208 
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3.2. Evidence from animal trials 209 

Studies have typically used a high-fat diet (HFD) to induce obesity/diabetes to determine 210 

the effect of coffee chemicals on gut microbiota especially considering green coffee known 211 

slimming effect, with different types of constituent’s preparations, dosages, and durations 212 

treatment (Table 2). Coffee compounds have been found to have an effect on the gut flora 213 

without changing its overall count (Cowan et al., 2014).  Compared to the group of mice to 214 

have consumed water instead of coffee, the number of bacteria was equal although the 215 

composition was entirely different (Nakayama & Oishi, 2013). 216 

Chronic coffee consumption has been shown to modify gut microbiota in high fat diet-217 

fed rats, as well as to reduce the growth in the ratio of Firmicutes to Bacteroidetes (Cowan et 218 

al., 2014). In mice, the effects of coffee and coffee galacto-oligosaccharide (GOS) on gut 219 

microbiota and host responses were explored, and it was shown that after drinking coffee and 220 

GOS, there was a considerable increase in total bacteria counts in the proximal colon. Although 221 

E. coli and Clostridium spp. decreased in the proximal colon, Bifidobacterium spp. Showed an 222 

increased (Nakayama & Oishi, 2013). 223 

In a recent study, daily coffee consumption for 16 weeks protected non-alcoholic 224 

steatohepatitis (NASH) without altering obesity in Tsumura Suzuki obese diabetic (TSOD) 225 

mice, a model of metabolic syndrome with evident gut dysbiosis and consequent modification 226 

of the type and amount of SCFAs. The impact of coffee was not able though to restore the gut 227 

microbial equilibrium, but it induced shift in other bacterial genera. Caffeine and chlorogenic 228 

acid, on the other hand, enhanced the profile of SCFAs in inactivated plasma in TSOD mice, 229 

whereas coffee itself had no impact (Nishitsuji et al., 2018). 230 
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Table 2. The effects of coffee brews and chemicals on microbiota in mice. 231 

No. Study design, treatment Phylum Genus Detection methods References 

1 7 Pathogen-free A/J mice, 8 weeks of 

age, one week rodent diet CE-2, 

23C, coffee (500 µL day-1)+GOS 

(2000 mg kg-1 day-1) 

 

Proteobacteria 

Firmicutes 

Actinobacteria 

 

Escherichia coli 

Clostridium spp. 

Enterococcus faecalis 

Bifidobacterium spp. 

 

RT-PCR 

 

(Nakayama 

& Oishi, 

2013) 

 

 

2 Mice, HFD, 12 weeks, 50 mg/kg of 

caffeic acid 

    Actinobacteria             

Bacteroidetes 

Muribaculaceae 

Lachnospiraceae 

 

16S rRNA-PCR 

 

(J. Xu et al., 

2020) 

3 Rat, HFD, 10 weeks, caffeinated 

coffee at 20g/L 

Firmicutes 

Bacteroidetes 

F/B 

Enterobacteriaceae 

Clostridium leptum 

Bifidobacterium spp. 

Bacteroides/Prevotella 

 

qPCR 

 

(Cowan et 

al., 2014) 
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4 TSOD mice, MF, 16 weeks,  coffee 

0.5%, chlorogenic acid 0.5, caffeine 

0.5% 

Firmicutes 

Bacteroidetes     

F/B 

Blautia   

Coprococcus 

  

    16S rRNA-PCR 

 

(Nishitsuji 

et al., 2018)  

5 Rat, HFD, 8 weeks, 5% spent coffee 

ground 

Firmicutes 

Bacteroidetes 

F/B 

Lachnospiraceae 

Clostridium 

 

16S rRNA- qPCR 

       

(Bhandarkar 

et al., 2020) 

6 Mice, HFD, 12 weeks, 4-hydroxy-3-

methoxycinnamic acid (HMCA) 

Bacteroidetes 

Firmicutes 

Coriobacteriaceae 

Lactobacillaceae 

Lachnospiraceae 

16S rRNA- RT-

PCR 

(Ohue-

Kitano et 

al., 2019) 

GOS: (galacto-oligosaccharide), HFD: (high-fat diet), qPCR: (quantitative real-time polymerase chain reaction), TSOD: (Tsumura Suzuki 

obese diabetes) and MF: (moderate or basal diet). 

 232 
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4. Human gut microbiota-mediated coffee components biotransformation 233 

A wide range of biological processes have been demonstrated to be influenced by the gut 234 

microbial population, including gut maturation and angiogenesis, (Stappenbeck et al., 2002), 235 

innate immunity development (Singh et al., 2019; Moco et al., 2012), production of vitamins 236 

i.e. vitamin K and B (LeBlanc et al., 2013), biotransformation of endogenous and exogenous 237 

chemicals xenobiotic (Blaut & Clavel, 2007), dietary energy harvest, and recently, regulation 238 

of the host fat storage (Mokkala et al., 2020). Interaction of gut microbiota with food 239 

metabolism is well-documented (Farag, et al., 2020). The gut microbiota complements the 240 

function of the liver and gut mucosal enzymes participating in nutrients digestion and 241 

metabolism (LeBlanc et al., 2013; Huang et al., 2020).  242 

Increasing attention has been directed towards determining how a diet can influence both 243 

the composition and metabolism of the gut microbiota though scarce data are available 244 

concerning the mechanisms involved in coffee chemicals metabolism by gut microbiota. 245 

Carbohydrate-rich diets have a significant effect on the numbers of viable butyrate-producing 246 

bacteria in the gut, i.e., clostridia clusters IV and Xi’an (Ruminococcus/Faecalibacterium and 247 

Roseburia/Eubacterium respectively, which comprise over 50% of the bacteria in the human 248 

colon). Butyrate is the preferred energy source for colonic epithelial cells and is thought to play 249 

an important role in maintaining colon health in humans by activating apoptosis and cell cycle 250 

arrest as well as inhibits aberrant colonic epithelial cell proliferation in diabetics (Blaut & 251 

Clavel, 2007; Mokkala et al., 2020).  252 

Coffee chemicals biotransformation is achieved via the diverse microbial community 253 

residing in the human colon i.e., formation of theophylline which further metabolized into 254 

xanthine from transformation of caffeine by Pseudomonas putida affecting the abundance of 255 

Firmicutes, Cyanobacteria, Bacteroides and Lactobacillus. Likewise, modulating the growth 256 

of Bifidobacterium spp, Actinobacteria as results of biotransformation of caffeic acid to 257 

dihydrocaffeic acid by Peptostreptococciis sp., and Clostridium perfringens. Similarly, 258 

changing the F/B ratio and increasing the frequency of Bifidobacterium spp., Lactobacillus, 259 

and Enterococcus following Lactobacillus transformation of monooligosaccharides (MOS) 260 

into short-chain fatty acids (SCFAs). Furthermore, Bifidobacterium spp. fermented 261 

melanoidins into pyrogallol, 2-(3,4-dihydroxyphenyl) acetic acid, and 3-(3,4-262 
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dihydroxyphenyl) propionic acid, increasing the proliferation of Bifidobacterium and 263 

Faecalibacterium as demonstrated in (Fig. 2). 264 
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Fig. 2. An overview of the different coffee chemicals biotransformation with gut microbiota.  Caffeine is converted by Pseudomonas putida 

into theophylline, which is then converted into xanthine, affecting Firmicutes, Cyanobacteria, Bacteroides, and Lactobacillus. Peptostreptococciis 

sp. Clostridium perfringens transform caffeic acid to dihydrocaffeic acid, which is further dehydroxylated to m-HPPA via a mixed culture of 

Escherichia coli and Streptococcus fecalis var. liqiiifaciens, modulating the growth of Bifidobacterium spp, Actinobacteria and altering the F/B 

ratio. MOS are catabolized by Lactobacilli into SCFA, CO2, H2 and NH4, which increase abundance of Bifidobacterium spp., Lactobacillus, 

Enterococcus and altering the F/B ratio. Bifidobacterium spp also ferment melanoidins into pyrogallol, 2-(3, 4-dihydroxyphenyl) acetic acid and 3-

(3, 4-dihydroxyphenyl) propionic acid), resulting in promoting the growth of Bifidobacterium and Faecalibacterium. 
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Due to the complexity of coffee molecules, minor absorption only occurs in the small 1 

intestine, and it reaches the large intestine to be digested by gut microbiota. For instance, 2 

chlorogenic acids isomers that have been inadequately absorbed in the upper gastrointestinal 3 

tract i.e., around 1/3 absorbed in the small intestine, while the rest entering the large bowel un 4 

metabolized (Stalmach et al., 2010). Indeed, gut microbiota encompass a complex machinery 5 

of chemical reactions to include; demethylation, dehydroxylation, ester cleavage, reduction, 6 

isomerization, ring fission, decarboxylation and other reactions (Cuervo et al., 2016).  7 

Secondary by-products that are generated from these biotransformation reactions may further 8 

alter the composition of gut microbiota. It has been reported that significant increase in the 9 

growth of Bifidobacterium spp., (Actinobacteria phylum) occurred after ingestion of 80 mg 10 

CGAs enriched in green coffee.  Such increase has long been linked to improved gut health via 11 

an increase in saccharolytic metabolism as well as the generation of short chain fatty acids 12 

(SCFAs) i.e., acetate and lactate, which have anti-pathogenic properties (Parkar et al., 2013).  13 

Roasted coffee, on the other hand, has the ability to affect gut microbiota differently than 14 

green coffee due to the high presence of melanoidins, which can act as fiber-like molecules in 15 

the gut, i.e., prebiotics. (Jiménez-Zamora et al., 2015). Given that, chemical reactions that 16 

occurs by gut microbiota may vary in context to the chemical structure of coffee constitutions. 17 

In the next subsections, we will address the reaction of each coffee bioactive class inside the 18 

gut and its ultimate effect on gut homeostasis and further systemic health outcomes. 19 

4.1. Alkaloids  20 

Coffee contains two types of alkaloids: purine alkaloids such as caffeine (1, 3, 7-N-21 

trimethylxanthine) and theobromine (3, 7-N-dimethylxanthine); and pyridine alkaloids such as 22 

trigonelline (1-N-methylnicotinic acid) (Eckman et al., 2010). Purine alkaloid caffeine occurs 23 

naturally in coffee seed and is documented at significant levels in more than 60 plants i.e., kola 24 

nut (Cola acuminate), cacao bean (Theobroma cacao), yerba mate (Ilex paraguariensis), and 25 

guarana berries (Paullinia cupana). However, roasted coffee seeds (Coffea arabica and Coffea 26 

robusta), and tea leaves (Camelia siniensis) are considered the world's primary sources of 27 

dietary caffeine (Eckman et al., 2010). 28 

Caffeine is a water-soluble alkaloid that belongs to the xanthine family and has a variety 29 

of biological functions, including a psychoactive stimulant action of the central nervous system 30 
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(de Melo Pereira et al., 2020).  Caffeine as a major alkaloid in green coffee appeared to undergo 31 

mostly demethylation type reactions in response to the incubation with ex vivo gut microbiome 32 

culture. Nevertheless, it degrades slowly due to the removal of the three methyl groups, which 33 

leads ultimately to the formation of xanthine (Jasiewicz & Sierakowska, 2020). 34 

Caffeine catabolism normally starts with its conversion to theophylline, which is 35 

catalysed by N7-demethylase through demethylation reaction via Pseudomonas putida, by 36 

breaking down caffeine into carbon dioxide and ammonia to harvest energy and cellular 37 

building blocks (Kim et al., 2019).  Theophylline, a caffeine analogue found at lower levels it’s 38 

also further catalysed into different steps ending with formation of xanthine, which is converted 39 

to CO2 and NH3 via uric acid, allantoin and allantoate through the traditional purine catabolism 40 

route. Pseudomonas, Serratia, Rhodococcus, and Klebsiella spp., are the most common 41 

bacterial genera involved in caffeine degradation (Jasiewicz & Sierakowska, 2020; Kim et al., 42 

2019), as illustrated in (Fig. 3). 43 

44 

Fig. 3. Caffeine biotransformation by Pseudomonas putida and its underlying enzyme 45 

mechanisms 46 
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Caffeine can likewise modify the microbiome composition, it was reported that caffeine 47 

intake decreases the abundance of Lactobacillus in rats as well as the growth of Bacteroidetes 48 

versus enhancement of Cyanobacteria multiplication (Kleber Silveira et al., 2018). Also, 49 

xanthine metabolism was found to affect gut microbiota in resistance to high-fat diet induced 50 

obesity rat with decrease in Bacteroida versus an increase in Clostridia, Oscillospira and 51 

Ruminococcus phyla (Wei et al., 2021).   52 

4.2. Phenolic acids  53 

Phenolics are the main determinant of antioxidant potential found at high levels in plant-54 

derived foods.  The recovery of phenolic compounds from coffee industry by-products and 55 

their antioxidant activity has been investigated recently (Campos-Vega et al., 2015). With 56 

regards to coffee metabolism inside the human body, phenolic acids that are not completely 57 

digested in the small intestine are subjected to the action of human gut microbiota in the colon 58 

to afford catabolic by-products that are absorbed systemically (Vollmer et al., 2017). Such bio-59 

transformed metabolites play a role in dietary phenolics biological effects and/or fate (Marín 60 

et al., 2015). The major phenolic acids present in coffee are chlorogenic acids (CGAs) which 61 

are a family of non-flavonoid molecules composed of quinic acid esterified with cinnamates. 62 

The key classes of CGAs in coffee are caffeoylquinic acids (CQAs), feruloylquinic acids 63 

(FQA), p-coumaroylquinic acids (pCoQA), dicaffeoylquinic acids (diCQA), and 64 

caffeoylferuloylquinic acids (CFQA) (González et al., 2020), illustrated in (Fig. 1). The gut 65 

microbiota acts as a powerful bioreactor able to break the complex structures of polyphenols 66 

into different low-molecular-weight molecules, which are then readily absorbed and to exert 67 

diverse biological functions. Catabolism typically start with a hydrolysis step into aglycones 68 

and extensively metabolizes the aglycones into various aromatic acids that are well absorbed 69 

through the colon wall barrier (Santhakumar et al., 2018). 70 

The fraction of CGAs that reach the small bowel and the colon is subjected to hydrolysis 71 

and extensive metabolism by gut microbiota. Based on its vast gene pool within gut bacteria, 72 

the intestinal microbiota has a large metabolic potential and to catalyze many reactions in the 73 

course of chlorogenic acid conversion such as; demethylation, dehydroxylation, ester cleavage, 74 

reduction, isomerization, ring fission, decarboxylation, etc… (Cuervo et al., 2016). For 75 

example, cleavage of the ester linkage between quinic and caffeic acid occurs, with released 76 
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caffeic acid may be absorbed intact or, more probably further metabolized to O-methylated, 77 

sulphated and glucuronidated derivatives (Stalmach et al., 2010; Neielsn et al., 2018).  Gut 78 

bacteria, that mediates for the C-ring fission in chlorogenic acid include Eubacterium 79 

oxidoreducens, E. ramulus, E. casseli avus, Clostridium orbiscidens, and others belonging to 80 

the Butyrivibrio genus (Marín et al., 2015).  81 

Eubacterium, Enterococcus, Micrococcus, Fusobacterium, Streptococcus, 82 

Peptostreptococcus, and Chrostridium are the most well-known bacterial genera involved in 83 

the metabolism of CGAs and other polyphenols (Farah & Duarte, 2015).  Chlorogenic acid and 84 

other phenolic compounds entering the colon can be used as additional growth substrates by 85 

obligate or facultative anaerobic bacteria, and aaccording to the type of bacterial genus 86 

involved in the biotransformation processes, different by-products are formed.  For example, 87 

bacterial esterases from Escherichia coli, Bifidobacterium lactis, and Lactobacillus gasseri,  88 

may liberate cinnamic acid moiety from chlorogenic acid molecules, resulting in caffeic and 89 

ferulic acids that can be absorbed or subsequently converted to other metabolites (Parkar et al., 90 

2013). 91 

Gut microbiota has been found to transform caffeic acid via a number of different bacteria 92 

to other phenolic derivatives.  Peptostreptococciis sp., and Clostridium perfringens isolated 93 

from human feces were found capable of reducing caffeic acid to dihydrocaffeic acid, which is 94 

further dehydroxylated into m-HPPA via a mixed culture of Escherichia coli and Streptococcus 95 

fecalis. In contrast, Streptococcus fecitim decarboxylates caffeic acid to 4-vinylcatechol 96 

(Vollmer et al., 2017), as illustrated in (Fig.4). 97 
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      98 

    Fig. 4. Biotransformation reaction products of chlorogenic acid via various gut microbiota 99 

and underlying reaction mechanisms 100 

The hydroxycinnamtes (caffeic and ferulic acids) released via the deesterification of 101 

CGAs or present freely in coffee brews can be further catabolized via gut microbiota into 102 

dihdroxyphenyl-ethanol methyl ether and methylenedioxy cinnamic acid methyl esters (Farag, 103 

Hegazi, et al., 2020). Additionally, hydroxybenzoic acid was identified as the main 104 

biotransformed product of hydroxycinnamtes in espresso and green coffee post incubation with 105 

human gut microbiome (Ludwig et al., 2013).  Studies have also revealed that Escherichia coli, 106 
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Bifdobacterium lactis, Lactobacillus gasser have the ability to yield vanillin from ferulic acid 107 

moiety in cinnamates (Marín et al., 2015). 108 

An in vitro study in which espresso coffee was incubated with human fecal and CGAs 109 

breakdown products were monitored using high-performance liquid chromatography-mass 110 

spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed that 111 

CGAs were rapidly degraded by the colonic microflora over the 6-h incubation period.  11 112 

Catabolites were identified including caffeic and ferulic acids, with a transient maximal 113 

response at 1 h. In contrast, dihydrocaffeic acid, dihydroferulic acid, and 3-(3-hydroxyphenyl) 114 

propionic acid were the major end products, comprising 75–83% of the total catabolites, 115 

whereas the remaining 17–25% consisted of 6 minor catabolites. The biotransformation of 116 

coffee cinnamates i.e., CGAs is typically catabolized by the action of bacterial esterase’s such 117 

as Escherichia coli, Bifidobacterium lactis, and Lactobacillus gasser (Ludwig et al., 2013). 118 

The bacteria metabolize caffeic acid to yield 3-hydroxyphenylpropionic acid through a series 119 

of reactions starting from de-esterification, double bond reduction, and dihydroxylation 120 

following that, 𝛽-oxidation shortens the side-chain, resulting in the production of benzoic acid. 121 

Coffee bio-transformed products showed a substantial influence on enhancing the 122 

proliferation of Bifidobacterium spp. and modifying or decreasing the Firmicutes to 123 

Bacteroidetes ratio in the gut microbiota. Bifidobacteria defend the gut mucosa against 124 

bacterial invasion by inhibiting pathogens such as Salmonella through lumen acidification and 125 

competitive exclusion by preventing pathogenic occupancy of epithelial colonization sites 126 

through nutritional competition which present an added value for coffee phenolics (Stalmach 127 

et al., 2010; de Melo Pereira et al., 2020). 128 

4.3. Spent coffee i.e., mannooligosaccharides  129 

Spent coffee ground (SCG) is the waste that accumulates after coffee consumption, or it 130 

can be defined as the residue obtained during the brewing process (Campos-Vega et al., 2015). 131 

The accumulation of SCG as a result of increasing coffee consumption across the world is of 132 

increasing attention, with ca. 6 million tons of SCG produced yearly (Vítězová et al., 2019). 133 

Given the massive amounts of SCG, there is debate about whether it exert nutritional value and 134 

can be utilized or to be exploited for industrial uses. SCG contains high levels of organic 135 

components (fatty acids, cellulose, hemicellulose, lignin, and other polysaccharides) that may 136 
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be used as a source of value-added products. SCG has been used for various application 137 

including waste water treatment (Vítězová et al., 2019), biodiesel production (Caetano et al., 138 

2012), sorbent for removal of metal ions (Fiol et al., 2008), renewable energy source (Tun et 139 

al., 2020), and as a reducing agent (Han et al., 2021). 140 

In contrast, the discharge of wasted coffee grounds into the environment as a result of 141 

rising coffee consumption pollutes the ecosystem since its breakdown requires a huge amount 142 

of oxygen (Hardgrove & Livesley, 2016).  Because of the inclusion of phenols, caffeine, and 143 

tannins, which are very hazardous to numerous biological processes, SCG use and management 144 

presents a major issue. Warm treatment, microbial biodegradation, and aerobic fermentation 145 

have all been used to decrease the toxicity of SCG (Hao et al., 2018; Brachi et al., 2021). Spent 146 

coffee grounds are particularly rich in polysaccharides, with galactomannans amounting for ca. 147 

half of their overall composition, while arabinogalactans and cellulose account for the other 148 

half (Mussatto, Carneiro, et al., 2011). Mannans are the main polysaccharide component of 149 

SCG, and to account for its high viscosity, which has a detrimental impact on the technical 150 

processes involved in instant coffee production (Campos-Vega et al., 2015). 151 

Galactomannans from roasted coffee infusions are composed of a backbone of - (1→4)-152 

linked mannopyranosyl units, which are partially substituted with single galactopyranosyl 153 

residues at the O-6-position. While arabinogalactans are composed of a - (1→3)-linked 154 

galactose backbone substituted at the O-6 position with arabinose and/or galactose residues 155 

and have a 0.4/1  arabinose/ galactose ratio (Campos-Vega et al., 2015). Galactomannans and 156 

arabinogalactans ingested with coffee beverages include polysaccharides, 157 

mannooligosaccharides, oligosaccharides, and associated dietary substances that are not 158 

degraded by human digestive enzymes. Consequently, they reach the colon and potentially 159 

serve as substrates for the colonic microbiota to function as prebiotic (Pérez-Burillo, Mehta, et 160 

al., 2019).  161 

Colonic microbiota performs a key function in the degradation of polysaccharides via its 162 

fermentable activity into short-chain fatty acids (SCFAs) i.e., acetate, propionate, and butyrate, 163 

as well as gases such as H2, CH4, and CO2 (Benitez et al., 2019). Production of SCFAs lowers 164 

the colonic pH, impeding the growth of certain pathogenic species and supporting the growth 165 
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of Bifidobacteria and other lactic acid bacteria that are considered to be beneficial for human 166 

health (Gniechwitz et al., 2007).  167 

Short-chain carbohydrates called mannooligosaccharides (MOS) are formed from coffee 168 

galactomannans by acid, alkaline, or enzyme hydrolysis. (Ludwig et al., 2013; Pérez-Burillo, 169 

Mehta, et al., 2019). MOS are categorized as prebiotic non-digestible short chain 170 

oligosaccharides because of their selective fermentation by gut microbes, especially 171 

Lactobacilli, Bifidobacteria etc. and beneficial short chain fatty acid (SCFAa) production. 172 

Prebiotic effects of MOS detected for a subset of bacterial phyla of the human gut microbiota 173 

may also be explained by the utilization of the attached sugar moieties. The growth 174 

enhancement of Bifidobacterium, Lactobacillus and Enterococcus species by MOS may serve 175 

as such example (gen Suryawanshi & Kango, 2021). 176 

MOS obtained from spent coffee grounds was incubated with human faecal samples in 177 

an in vitro study, which proved its prebiotic action by promoting the proliferation of beneficial 178 

genera such Barnesiella, Odoribacter, Coprococcus, Butyricoccus, Intestinimonas, 179 

Pseudoflavonifractor, and Veillonella. Furthermore, SCFAs has shown a rise in 5-180 

(hydroxymethyl) and polyphenols in a dose-dependent manner (which are either produced or 181 

released from the spent coffee grounds matrix during hydrolysis).  In contrast, the quantity of 182 

other beneficial genera, such as Faecalibacterium, Ruminococcus, Blautia, Butyricimonas, 183 

Dialister, Collinsella, and Anaerostipes was reduced, which might adversely influence MOS 184 

prebiotic activity (Pérez-Burillo, Pastoriza, et al., 2019).  185 

In a similar research, the effect of a coffee mix drink containing MOS on defecation 186 

circumstances and fecal microbiota composition in healthy human volunteers was investigated. 187 

Results proved that the ingestion of two cups of coffee mix drink containing MOS substantially 188 

enhanced the number of days of defecation and frequency of defecation per week compared to 189 

the placebo drink, suggesting that coffee mix containing MOS might be useful for improving 190 

defecation conditions and or bowel functions (Santhakumar et al., 2018; Pérez-Burillo, 191 

Pastoriza, et al., 2019).  192 

 193 

 194 
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4.4. Maillard products i.e., melanoidins  195 

Although coffee brews include significant amounts of structurally complicated 196 

compounds resulting from Maillard process (melanoidins), it is impossible to distinguish 197 

between melanoidins and poly- or oligosaccharides since carbohydrates are assumed to be 198 

important components of coffee melanoidins. Melanoidins and dietary fibers have comparable 199 

physiological features in that they are both indigestible, have high water holding capacities, 200 

and may adsorb organic compounds such as bile acids (Pérez-Burillo et al., 2020). Melanoidins 201 

are colorful polymers that occur during the later stages of the Maillard reaction (MR) and are 202 

found in a variety of thermally processed foods, including black coffee. Basically, MR occurs 203 

in heat-treated foodstuffs by an irreversible combination of sugar and amino acids or proteins 204 

(Goya et al., 2015), as typical to occur during coffee roasting. 205 

Formation of melanoidins occurs from the covalent linkage between galactomannans and 206 

arabinogalactans, polyphenols, proteins and free amino acids during roasting of coffee green 207 

seeds (Vitaglione et al., 2012). Inside the GIT, dietary melanoidins escape gastrointestinal 208 

digestion (similar to fiber) and to reach the colon where they become substrates for the gut 209 

microbiota (Gniechwitz et al., 2007; Farah & Duarte, 2015). High level of melanoidins were 210 

found in roasted coffee, and fermented by gut microbiota, possibly to likewise affect the gut 211 

microbial consortium composition.  SCFAs are produced as a result of melanoidins 212 

fermentation by gut bacteria (mainly as acetate and lactate) which can inhibit harmful bacteria 213 

development. (Kumar & Chandra, 2006). 214 

The impact of coffee species, roasting degree and decaffeination on the in vitro probiotic 215 

bacterial growth was studied with aqueous extracts of both C. arabica and C. canephora. 216 

Results revealed enhanced growth of all tested probiotic bacteria (Lactobacillus rhamnosus 217 

GG ATCC 53103, Lactobacillus acidophilus LA-5 DSM 13241, Bifidobacterium animalis 218 

subsp. lactis BB12 DSM 15954 and Bifidobacterium animalis CNCM-I 2494), whereas growth 219 

of E. coli ATCC 25922 showed inhibition (Sales et al., 2020). CGAs alongside with 220 

polysaccharides appeared as the major components responsible for the coffee prebiotic action 221 

for Lactobacillus rhamnosus GG ATCC 53103, Lactobacillus acidophilus LA-5 DSM 13241, 222 

and Bifidobacterium animalis CNCM-I 2494. In contrast, Bifidobacterium animalis subsp. 223 

lactis BB12 DSM 15954, preferred melanoidins as their primary substrate (Sales et al., 2020). 224 
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Melanoidins have been reported to enhance prebiotic activities to encourage the 225 

formation of beneficial genera such as Bifidobacterium and Faecalibacterium concurrent with 226 

the production of SCFAs (Pérez-Burillo et al., 2020).  Additionally, melanoidins encompass 227 

different phenolic compounds depending on the food source, consequently identification of 228 

phenolic compound from melanoidin biotransformation could aid in the identification of 229 

potential antioxidant and prebiotic activity (Pérez-Burillo et al., 2020). Coffee melanoidins 230 

reduce Streptococcus mutans' adherence to the tooth surface, which leads to reduced biofilm 231 

production and prevents dental plaque growth.  The antibacterial action of coffee melanoidins 232 

was shown to be stronger against Gram-positive bacteria, such as Staphylococcus aureus, than 233 

Gram-negative bacteria, such as Escherichia coli, which is likely related to the fragility of the 234 

Gram-positive bacterial cell wall (Rufián-Henares & Pastoriza, 2015).  Whether incorporation 235 

of coffee melanoidins in oral care products could present potential health benefits has yet to be 236 

determined. 237 

The specific mechanism underlying melanoidins' antimicrobial activity is unknown, 238 

however other theories have been proposed, including a reduction in glucose and oxygen 239 

absorption or inhibition of microbe carbohydrates catabolizing enzymes. The major 240 

metabolites resulting from the fermentation of coffee melanoidins by gut microbiota are acetate 241 

and propionate, likely derived from their polysaccharides backbone (Reichardt et al., 2009). 242 

An in vitro study investigated melanoidins bioavailability from different dietary sources 243 

including coffee post in vitro fermentation led to the detection of pyrogallol, 2-(3,4-244 

dihydroxyphenyl) acetic and 3-(3,4-dihydroxyphenyl) propionic acids as biotransformed 245 

metabolites of melanoidins entrapped phenolics. Results further showed that melanoidin's 246 

antioxidant activity was similarly impacted favorably by gut microbiota fermentation (Pérez-247 

Burillo et al., 2020). 248 

5. Coffee consumption and diseases prevention mediated via gut microbiota interaction 249 

The effect of diet and dietary habits on the host gut microbiota is increasingly recognized, 250 

and with such interaction found to affect both coffee chemicals and gut homeostasis (Harakeh 251 

et al., 2020).  Several studies have reported that both black and green coffee extracts can affect 252 

gut microbiota activities via the modulation of different metabolic pathways (Farag, et al., 253 

2020).  Coffee metabolites alteration by gut microbiota can in turn affect the host metabolism. 254 
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Changes in gut microbiota composition, for example, might have an impact on the gut 255 

microbiome-brain axis and the host's inflammatory responses (Farag, et al., 2020).  256 

While coffee extract inhibited some beneficial microbiome, it stimulated other genera 257 

appearing to exert a somewhat prebiotic effect.  For example, it was found to increase the levels 258 

of butyrate producer bacterium i.e., Anaerostipes, Butyricimonas, and Faecalibacterium. The 259 

produced butyrates in turn exhibit a protective role against inflammatory diseases like 260 

ulcerative colitis. It is also known that coffee demonstrates protective effect against many 261 

certain diseases i.e., obesity, immunity disorders, inflammatory bowel syndrome (Zafar & 262 

Yaddanapudi, 2020).  In the next subsections, (Fig. 5), illustrations on how coffee consumption 263 

could affect the gut microbiota composition to mediate for coffee health effects in different 264 

diseases will be presented with focus on gut-liver axis and gut-brain axis. 265 

 266 

Fig. 5. The influence of coffee consumption and its implications in multiple diseases, 267 

where letters resemble the effect of coffee chemical composition in each disease. Where a 268 
denotes for Parkinson disease (PD); b for metabolic syndrome (MetS); c for diabetes mellitus 269 

type 2 (T2DM); d for colon rectal cancer (CRC) and e for non-alcoholic fatty liver disease 270 
(NAFLD).   271 

 272 

 273 

Coffee intake & gut micobiota
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5.1. Parkinson disease 274 

Parkinson's disease (PD) is a persistent disease condition in which neurodegeneration 275 

occur resulting in movement disorders, mainly slowness of movement and other non-motor 276 

symptoms (Zafar & Yaddanapudi, 2020). PD affects 0.1% of the people worldwide at any time 277 

including 1% of people above sixty years old (Zafar & Yaddanapudi, 2020).  Several studies 278 

have shown that PD is linked to intestinal microbiome changes, and that coffee drinking 279 

reduces PD risk (Delgado-Andrade et al., 2017; Pérez-Burillo, Mehta, et al., 2019a). 280 

Coffee intake can change the composition of the intestinal microbiota resulting in gut 281 

dysbiosis associated with decrease in intestinal inflammation, which may contribute to less 282 

misfolding of -synuclein in the enteric nervous system, decreasing the risk of PD by limiting 283 

the distribution of protein to the central nervous system (CNS).  Coffee consumption in both 284 

mice and humans has also been associated with substantial increase in Bifidobacteria, to exert 285 

anti-inflammatory properties. For instance, daily consumption of 3 cups of coffee for 3 weeks 286 

by 16 healthy adult volunteers showed increase in the metabolic activity of Bifidobacteria spp., 287 

(Jaquet et al., 2009) as illustrated in (Table 1). Similarly, increase in the abundance of 288 

Bifidobacteria spp., in mice post consumption of 500 µL of coffee and 2000 mg kg GOS per 289 

day has also been reported (Nakayama & Oishi, 2013) as illustrated in (Table 2). This is 290 

attributed to the GOS content in coffee found to stimulate Bifidobacteria that would convert 291 

this oligosaccharide to lactic acid and form ATP.  Coffee can also promote bacteria connected 292 

to an increased risk for PD in some forms of chronic GI illnesses such as those caused by 293 

Helicobacter pylori (Mulak & Bonaz, 2015). 294 

Reduced abundance of Prevotellaceae family bacteria concurrent with an increased 295 

abundance of Enterobacteriaceae bacteria was observed in Parkinson’s patients. Coffee- 296 

enriched dietary fiber was found to exhibit significant effect on intestinal microbiota mostly 297 

via its metabolized SCFAs that alter Bacteroides and Prevotella species abundance. In 298 

conjunction with and reduction in Clostridium and Escherichia coli in the intestinal mucosa of 299 

the PD, the use of coffee led to an increase in anti-inflammatory Bifidobacteria. Such gut 300 

microbiota dynamic changes suggest for several action mechanisms for the protective role of 301 

coffee against PD (Scheperjans et al., 2015). 302 

 303 
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5.2. Metabolic syndrome 304 

Metabolic syndrome is an accumulation of many conditions that altogether increase the 305 

risk of a person experiencing insulin resistance and diabetes mellitus, atherosclerotic 306 

cardiovascular disease, neurological and vascular complications such as a stroke. Coffee was 307 

reported in several meta-analysis studies to exert beneficial effects on both visceral fats and 308 

diabetes mellitus.  It was also reported to enhance the overall metabolic status by improving 309 

glucose level, liver triglycerides, insulin resistance thus reducing weight gain (Caro-Gómez et 310 

al., 2019), and to support that daily coffee consumption is linked with a lower risk of  metabolic 311 

syndrome (Xu et al., 2020; Bhandarkar et al., 2020). 312 

One of the possible mechanisms of coffee protective effects against metabolic syndrome 313 

is mediated via affecting gut microbiota composition i.e., 6 genus level that are protective 314 

against metabolic syndrome.  Human gut microbiota composition is much altered in metabolic 315 

syndrome patients as exemplified by a reduction of Bacteroidetes population concurrent with 316 

the abundance of Firmicutes (Binda et al., 2018; Ohue-Kitano et al., 2019). It is stated that 317 

ingestion of coffee grounds reverses these alterations in intestinal microbiosis by reducing the 318 

fraction of Firmicutes to Bacteroidetes (Bhandarkar et al., 2020). 319 

Coffee melanoidins and polyphenols readily reach the colon acting as prebiotic and to 320 

further interact with gut microbiota increasing the abundance of Alcaligenaceae which suggest 321 

for higher reabsorption of intestinal cholesterol and a reduction in serum cholesterol levels 322 

(Vitaglione et al., 2019).  Another prebiotic function in coffee seeds includes mannan sugars 323 

modulating the microbiota resulting in enhanced immunity and better health effects. Degrading 324 

enzymes in mannans contribute to intestinal microbiota metabolism through the generation of 325 

simple monosaccharides/oligosaccharides fractions, which are the oxidation products of 326 

mannans. Their significance may be contributed to their effects on regulating the body weight 327 

and lowering blood pressure, glucose and cholesterol levels (Singh et al., 2018). 328 

Chlorogenic acid, which is another major coffee component, improved the diversity of 329 

intestinal microbiota that ultimately boost total body metabolism. Chronic chlorogenic acid 330 

consumption in dietary foods therefore may have beneficial effects in case of inflammation and 331 

metabolic changes. About a third of the chlorogenic acid in the coffee is transmitted through 332 

the intestine and metabolized through microbiota (as mentioned in section 4.2. and (Fig.4), 333 
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which has an effect on the in vivo and in vitro composition of microbiota, and which reverse 334 

the changes in obesity and metabolic syndrome that may occur (Cowan et al., 2014; Yang et 335 

al., 2020). 336 

5.3. Type II diabetes 337 

Diabetes mellitus (DM) is a metabolic disease in which the patient suffers from 338 

polydipsia, polyuria, and weight loss as a result of elevated blood glucose level above normal 339 

ranges; with the main two subtypes are type 1 and type 2. Type 1 is caused by defective insulin 340 

secretion and is more common in elderly, while type 2 is caused by defective insulin action and 341 

is believed to be more abundant at younger ages (Sapra & Bhandari, 2020). Due to the 342 

significant morbidity and mortality related with type 2 diabetes, numerous measures are being 343 

made to reduce the risk of acquiring the disease, one of which is nutrition-based therapies. The 344 

consumption of coffee has been shown to lower the risk of type 2 diabetes. A dose response 345 

meta-analysis of 30 prospective trials with a total of 53018 individuals found that increasing 346 

daily coffee consumption by one cup reduced the incidence of type 2 diabetes by 6% (Carlström 347 

& Larsson, 2018).  One of the proposed explanations for coffee's health benefits on type 2 348 

diabetes is the influence of coffee polyphenols, such as chlorogenic acid and flavanols, as well 349 

as their metabolites, on the gut microbiota, which affects the glycemic response and exerts anti-350 

diabetic activity (Williamson, 2020; Márquez Campos et al., 2020; Walker et al., 2020). 351 

Intestinal microbial communities can influence the rate of fat deposition and utilization, 352 

insulin resistance and diabetes. It is widely perceived that gut microbiota contributes to the 353 

overall body metabolism through energy balance, carbohydrate consumption, and low-grade 354 

inflammation in obesity and associated metabolic disorders, such as type 2 DM. Consequently, 355 

any change in intestinal microbiota has been shown to modify insulin resistance for patients 356 

with metabolic syndrome (Fagherazzi et al., 2016; Kerimi et al., 2020). 357 

Coffee polyphenols are reported to stimulate the growth of certain phyla i.e., 358 

Akkermansia muciniphila and Bifidobacterium spp, which in turn alter endogenous and 359 

exogenous substances metabolism and to exert  a protective role against DM (Cornelis et al., 360 

2018; Xu et al., 2020; Le et al., 2015).  Chlorogenic acid, on the other hand, has been shown 361 

to promote the growth of Bifidobacterium spp., Clostridium coccoides, and Eubacterium 362 

rectale. Both bacterial species are well known to negatively correlate with DM (Singh et al., 363 

2018; Vitaglione et al., 2019). 364 
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A pilot randomized study determining the short-term effect of regular coffee 365 

consumption for 12 weeks showed noticeable direct effect on metabolic state and diabetes 366 

mellitus. It was reported that the daily consumption of 200 mg caffeine and chlorogenic acid 367 

resulted in 3.6 kg weight reduction in diabetic patients partially mediated via increasing the gut 368 

Bifidobacteria (Mansour et al., 2020). Also, daily coffee consumption for 10 weeks decreased 369 

Firmicutes/Bacteroidetes ratio and to increase the levels of Enterobacteriaceae and 370 

Clostridium phylla, concurrent with  50% lower triglycerides level, lower body weight and  an 371 

improved lipid profile (Cowan et al., 2014). 372 

5.4. Cancer and Inflammation 373 

Inflammation is a type of immunological response to a certain toxic compound or a 374 

pathogen that leads to the response of inflammation that may finally lead to cancer if untreated 375 

(Carlström & Larsson, 2018; Sapra & Bhandari, 2020). Coffee drinking was reported to 376 

decrease inflammatory markers and consequently associated with lower cancer risk (Loftfield 377 

et al., 2015).  One of the possible mechanisms for this relationship is the well-known effect of 378 

coffee on gut microbiome. For example, in case of colorectal cancer there is a strong evidence 379 

that gut microbiota has a strong role in shaping the inflammatory response and controlling 380 

cancer occurrence and further metastasis (Brennan & Garrett, 2016). 381 

Colon microbiota ferment the dietary fibers in the coffee producing SCFAs to modulate 382 

cytokines production and to further exert a protective role against inflammation, with such 383 

action found more evident in case of spent coffee grounds more enriched in dietary fibers than 384 

instant coffee (López-Barrera et al., 2016). Diet is closely linked to colon cancer risks through 385 

several pathways, including dietary effects on gut microbiome. Coffee or/and its components 386 

are linked to changes in intestinal microbiota i.e., increasing Bifidobacterium, reducing 387 

Bacteroidaceae and other effects which results in better colonic motility and further anti-388 

carcinogenic effects via apoptosis induction of HT-29 colon cancer cells (Le et al., 2015; 389 

Cornelis et al., 2018). 390 

5.5. Fatty liver disease 391 

Fatty liver disease is defined by the presence of more than 5% hepatic steatosis either 392 

without secondary cause such as non-alcoholic fatty liver disease or with the presence of other 393 
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cause like chronic use of medication or heavy alcohol consumption (Budryn et al., 2017; 394 

Adeshirlarijaney & Gewirtz, 2020). 395 

Caffeine is reported in many meta-analyses to lessen the risk of liver fibrosis, cirrhosis 396 

and fatty liver disease (Chen et al., 2017; Singh et al., 2019).  One of the possible mechanisms 397 

is through modulation of gut-liver access (Feng et al., 2019). For example, coffee intake 398 

increases Alcaligenaceae which in turn have a role in lipids metabolism and is negatively 399 

associated with lower cholesterol levels (Vitaglione et al., 2019). Chlorogenic acid improves 400 

gut microbiota diversity and subsequently improve the overall body metabolism which in turn 401 

is reflected on lowering fat accumulation and improving the liver health (Bhandarkar et al., 402 

2019). 403 

High coffee intake of around 45–500 ml daily is found to increase levels of Prevotella, 404 

Porphyromonas and Bacteroides reflected with less lipoperoxidation and incidence of fatty 405 

liver in these heavy coffee consumers. It was found that the modulation of gut microbiota 406 

accompanied with coffee intake is strongly associated with an antioxidant and less lipogenesis 407 

effect (Binda et al., 2018; Kim et al., 2019).   408 

Hydroxy methoxycinnamic acid that is present in coffee was found to be metabolized by 409 

gut microbiome to hydroxy methoxyphenyl propionic acid as illustrated in (Fig.4), which 410 

modulates gut microbes responsible for metabolic status in the host and to ultimately regulate 411 

lipid metabolism in the liver as manifested by increase in  Bacteroidetes versus a decrease in 412 

Firmicutes (Ohue-Kitano et al., 2019). In addition, coffee in general and certain processed 413 

coffee products such as coffee silverskin extract enriched in dietary fibers demonstrated 414 

beneficial effects on lipid metabolism likely due to the generated SCFAs (Iriondo-Dehond et 415 

al., 2019).   416 

6. Mining the alteration in Gut microbiome and CAZymes profile with coffee through 417 

comparative metagenomics analysis 418 

The CAZymes’ repertoire represents the key protagonist in defining the nutritional status 419 

of the individuals. Malnutrition and improper nutrition are associated to gut microbiota 420 

dysbiosis, which might contribute to the development of many food-diseases. Little is known 421 

about which microbial communities and CAZymes related to coffee consumption are present 422 

in the human gut, therefore we follow a methodology of four steps to identify the microbial 423 
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CAZYme’s signature that helps to discriminate between coffee consumer and non-consumer 424 

(control) metagenome samples.  425 

     6.1. Human gut metagenomics data selection 426 

Publicly available reference metagenomics data on stool samples were downloaded from 427 

NCBI BioProject PRJNA289586 (Heintz-Buschart et al., 2016), as .fastq files using the 428 

‘fasterqdump’ command in the NCBI SRA-Toolkit v2.10.8 software. The samples are 429 

SRS1369966, SRS1369963, SRS1369964 and SRS1369954 with accession numbers 430 

SRR3313057, SRR3313090, SRR3313079 and SRR3313102, respectively. Our samples 431 

belonged to four adults whose ages ranged from 57 to 60, where the first two samples concern 432 

two people whose last meal consisted of coffee, while the remaining two samples were 433 

considered as controls for our comparative analysis. 434 

   6.2. Raw data quality assessment and trimming 435 

The raw sequence data was first quality checked with the objective to have an idea 436 

whether it has any problems of which we should be aware before doing any further analysis. 437 

The raw reads were then trimmed to exclude host sequences and all those sequences that could 438 

exist in bad orientation and do not meet the standard quality scores. Quality of reads was 439 

checked by FastQC, version 0.11.9, while paired-end reads were trimmed using Trimmomatic, 440 

version 0.40 (Bolger et al., 2014).  441 

 6.3. Metagenome Assembly 442 

Metagenome assembly is the process of constructing microbiomes’ genomes by 443 

transforming noisy DNA segments found in sequence data into accurate, longer, contiguous 444 

sequence fragments. Our samples were assembled using MetaSPAdes, version 3.13.0, with 445 

default parameters (Nurk et al., 2017). 446 

6.4. Gene prediction and CAZymes annotation 447 

The four assembled sequences were first submitted to Prodigal (PROkaryotic DYnamic 448 

Programming Genefinding ALgorithm), version 2.6.3, to anticipate protein-coding genes 449 

associated with bacterial and archaeal genomes in GFF3 (General Feature Format) file format 450 

(Hyatt et al., 2010). CAZymes annotation was then done using dbCAN2 tool, which integrates 451 

three state-of-the-art tools; (i) HMMER searches against the dbCAN HMM (hidden Markov 452 

model) database; (ii) DIAMOND searches against the CAZy pre-annotated CAZyme sequence 453 
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database and (iii) Hotpep searches against the conserved CAZyme short peptide database 454 

(Zhang et al., 2018). The predicted CAZymes are divided into five classes: carbohydrate-455 

binding modules (CBMs), carbohydrate esterases (CEs), glycoside hydrolases (GHs), 456 

glycosyltransferases (GTs) and polysaccharide lyases (PLs). In our study, we only considered 457 

those CAZymes that were anticipated by the three tools for the same gene. The results of this 458 

step are threefold: 459 

6.4.1. Microbial community abundance 460 

(Fig. 6) reveals the microbiome relative abundance profile per genus in coffee 461 

consumer’s vs controls. We can note that Bacteroides and Ignisphaera represent the most 462 

abundant genus for Bacteria and Archaea, respectively. No clear association between archaea 463 

and human disease has been described to date (Eckburg et al., 2003), therefore and from here, 464 

we only discuss results related to Bacteria.  465 

Compared to the group of non- coffee consumers, there are remarkable decrease in 466 

abundance of many genera such as; Bacteroides, Desulfofarcimen and Mycoplasma. 467 

Decreasing in the relative abundance of Bacteroides was indeed reported in literature 468 

(Stalmach et al., 2010) and in (Table 3). The fact that coffee causes a decrease in abundance 469 

in either Desulfofarcimen or Mycoplasma is our new finding, which is not reported before in 470 

the literature and suggestive that our metagenomics in identifying novel hits. Sulfate-reducing 471 

bacteria (SRB) plays an important role in intestinal hydrogen and sulfur metabolism. IBD is 472 

linked to the increase of intestinal H2S. Desulfofarcimen is a SRB and decrease in its abundance 473 

led to an obvious reduction of sulfate (Watanabe et al., 2018). Mycoplasma species were found 474 

in patients with neurodegenerative diseases and behavioral disorders (Garth, 2007) and they 475 

also cause inflammatory diseases, including IBD (Chen et al., 2001). As a result, these findings 476 

confirm once more that coffee consumption helps in decreasing the risk of PD (Moco et al., 477 

2012) and IBS (Singh et al., 2019), as previously discussed in sections 5.1 and 5.4.   478 

On the other hand, there is a slight increase in the abundance of Ralstonia and 479 

Trichormus. The Ralstonia solanacearum produces extracellular polysaccharide (EPS) 480 

(Milling et al., 2011) that can increase certain host immune responses in mammalian gut 481 

(Makino et al., 2006), while the Anabaena azollae bacteria (Trichormus) was used as a 482 

biofertilizer in coffee plantation (Anand, et al 2006).  Further studies should be conducted to 483 

determine the relationship between Ralstonia and Trichormus with the human gut. 484 
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 485 

Fig. 6. Microbial relative abundance per kingdom, genus and class (coffee vs control) 486 

6.4.2. Microbial CAZymes abundance 487 

Fig.7 depicts the presence and absence of CAZymes’ composition per class group. As 488 

can be noted that GH (71.05%) and GT (17.15%) are the most abundant CAZyme families 489 

overall. The relative abundance of the CBM, CE, GH, GT and PL families differed significantly 490 

between the coffee and control samples. The 6 most abundant CAZyme subfamilies (GH2, 491 

GT2, GH3, GH13, GH43 and GH92) are present in both groups. However, coffee presents only 492 

enrichment of the GH92 subfamily and reduction of the remaining subfamilies in comparison 493 

to the control group.  It was also clear that coffee samples lack of CBM3, CBM50, CBM61, 494 

CBM78, GH11, GH44, GH87 and GH128 subfamilies (green boxes), and the CBM76, GT1, 495 

GT10, GT25, GT38, GT107, GH121 and PL6 subfamilies are absent33 in control samples (red 496 
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boxes) and only present in coffee samples. Theses CAZyome profiles represent the gut 497 

microbiome signatures that help to discriminate between coffee and control samples. 498 

6.4.3. Prediction of enzymatic functions related to coffee 499 

Our experiments reported that there were 11 CAZyme subfamily-groups encountered 500 

only in coffee samples to include: GH5_17, CBM76_1, GH13_3, GH13_17, GH3_32, 501 

GH13_74, GH121_1, GT25_8, GT38_1, GT107_1 and PL6_1. These functionally relevant 502 

groups of proteins and their corresponding enzymatic functions (EC numbers) are detailed in 503 

(Table 3). The colon in the “EC Number” column refers to the sum of the number of conserved 504 

peptides in each characterized protein in the group. The higher the value, the more proteins in 505 

the group have the enzymatic activity represented by the EC number (Busk et al., 2017). In 506 

family GH5 group 17 there are 191 conserved peptide matches to enzymes characterized as 507 

mannan endo-β-1, 4-mannosidase (EC 3.2.1.78). GH5_17 were found in the two samples 508 

SRR3313057 (57) and SRR3313090 (90). Mannan benefits to the human health were discussed 509 

in section 5.2. 510 

Cellulase (3.2.1.4) performs hydrolysis of cellulose during drying of coffee beans and it 511 

is used as a treatment for phytobezoars (Kramer & Pochapin, 2012).  A xyloglucan-specific 512 

endo--1, 4-glucanase (EC 3.2.1.151) is an enzyme that catalyses the chemical reaction and it 513 

is used in feed applications with the objective to digest substrates that cannot be hydrolysed by 514 

endogenous enzymes. α-1,4-glucan: phosphate α-maltosyltransferase (EC 2.4.99.16) is the 515 

defining enzyme of a bacterial α-glucan biosynthetic pathway and is a genetically validated 516 

anti-tuberculosis drug target (Syson et al., 2011). 517 

Pullulanase (EC 3.2.1.41) belongs to α-amylase class of enzymes and it is used in the 518 

starch processing industries and the production of ethanol and sweeteners (Print et al., 2015). 519 

Starches contribute, in the upper human gut, in the transport of probiotic organisms thus 520 

encouraging the immune response and suppressing potential pathogens (Murillo et al., 2015). 521 

α-Amylase (EC 3.2.1.1) is a digestive and anti-diabetes (Proença et al., 2019) enzyme that has 522 

the responsibility of helping human body process carbohydrates into simple sugars, providing 523 

it with more energy. 524 

The GH13_18 matches sucrose phosphorylase enzyme (EC 2.4.1.7). The majority of 525 

GH13 18 is found in the lactic acid bacteria group, which is well-known for its numerous health 526 



38 
 
 

 

benefits (e.g. probiotic, oral health, etc.) (Tauzin et al., 2019). Coffee produces glycosidases 527 

(EC 3.2.1.-) enzymes, which contribute to solve many health problems. Deficiency of 528 

glycosidases can result in lactose intolerance or lysosomal storage diseases. The most common 529 

lysosomal storage disease is called Gaucher’s disease. This disorder is characterized by 530 

anaemia, liver/spleen enlargements, progressive brain damage, and seizures (Ngo, 2012). 531 

Uridine diphosphate galactose (UDP-galactose) (EC 2.4.1) is an intermediate in the production 532 

of polysaccharides, which is the main compound responsible for coffees’ prebiotic effect as 533 

detailed in section 4.3. 534 

Alpha3-sialyltransferase 3 (EC 2.4.99.-) is a group of enzymes that degrade sialic acids, 535 

which are involved in variety of human diseases, including atherosclerosis (Varki, 2008). A 536 

poly (-L-guluronate) lyase (EC 4.2.2.11) is an enzyme that catalyses the chemical reaction 537 

and it is produced by several organisms, including bacteria, fungi, viruses, and algae. Some 538 

bacteria are industrially essential enzymes used in food, biofuel, and biomedical industries. 539 

Dietary alginate has many beneficial health effects as its inclusion in food reduces the rate of 540 

nutrient absorption, and potentially lowers risks associated with the glycemic response and/or 541 

cardiovascular disease. In general, alginates have shown immunomodulatory, antimicrobial, 542 

antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, anticoagulant, and other 543 

activities (Ngo, 2012; Tauzin et al., 2019). 544 
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Table 3. Predicted enzymes detected as markers in coffee samples 545 

CAZyme 

Subfamily 
Group File Species Genus Kingdom EC Number Enzyme Name 

GH5 17 57 Thermoplasma volcanium GSS1 Thermoplasma Archaea 3.2.1.78:191 
mannan endo-β-1,4-

mannosidase 

GH5 17 90 Thermoplasma volcanium GSS1 Thermoplasma Archaea 3.2.1.78:191 
mannan endo-β-1,4-

mannosidase 

CBM76 1 90 Escherichia coli UMN026 Escherichia Bacteria 
3.2.1.151:133; 

3.2.1.4:128 

Xyloglucan-specific endo-beta-

1,4-glucanase; Cellulase 

GH13 3 57 Erythrobacter litoralis HTCC2594 Erythrobacter Bacteria 2.4.99.16:130 
α-1,4-glucan: phosphate α-

maltosyltransferase 

GH13 17 57 Anaplasma phagocytophilum HZ Anaplasma Bacteria 
3.2.1.41:150; 

3.2.1.-:70 
Pullulanase 

GH13 32 57 Chlorobium tepidum TLS Chlorobaculum Bacteria 3.2.1.1 α-Amylase 

GH13 18 57 Escherichia coli UMN026 Escherichia Bacteria 2.4.1.7:70 Sucrose phosphorylase 

GH121 1 57 Chlorobium tepidum TLS Chlorobaculum Bacteria 3.2.1.-:24 Glycosidases 

GT25 8 57 Nostoc azollae 0708 Trichormus Bacteria 2.4.1.-:12 

glucosylceramide β-1,4-

galactosyltransferase (UDP-

galactose) 

GT38 1 57 Orientia tsutsugamushi Boryong Orientia Bacteria 2.4.99.-:280 α-3-sialyltransferase 3 

GT107 1 57 Escherichia coli UMN026 Escherichia Bacteria 
2.4.99.-2:39; 

2.4.99.-:25 
α-3-sialyltransferase 3 
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 546 

PL6 1 57 Bacteroides fragilis NCTC 9343 Bacteroides Bacteria 4.2.2.11 
poly(α-L-guluronate) lyase / G-

specific alginate lyase 
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 547 

Fig. 7. Microbial CAZymes abundance per class (Coffee vs Control). 548 
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6. Conclusion & future directions 549 

Coffee is consumed as a universal beverage due to its nutritional value and positive 550 

physiological effects. Coffee is an important source of many nutritive chemicals including fats, 551 

carbohydrates, minerals, vitamins, along with phytonutrients such as caffeine and chlorogenic 552 

acid (CGAs). Processing of coffee further extend its chemical composition by providing other 553 

new chemicals such as melanoidins of potential health benefit i.e., antioxidant and prebiotic 554 

actions though concurrent by a reduction in coffee native CGAs levels. Coffee consumption 555 

has also been linked to beneficial effects on the gastrointestinal system and gut microbiota 556 

through increasing beneficial bacteria population such as Bifidobacterium as mediated via its 557 

bioactive constituents. Further studies need to be performed to clarify this results being limited 558 

by small donor number and to be confirmed for which exact coffee type and or brewing 559 

methods. Large-scale comparison regarding coffee different sources and brewing methods on 560 

gut homeostasis is still lacking in literature. A complete colonic model, containing pre-561 

digestion of the coffee, would ensure the validity of the results and provide a rapid screening 562 

tool for identifying best preparations. Both black and green coffee extracts affect gut 563 

microbiota activities via the gut microbiome brain axis which in turn affect the host metabolism 564 

and to exert protective role against Parkinson’s disease, metabolic syndrome, diabetes mellitus 565 

Type II, fatty liver, colon cancer and inflammation. Further studies need to be done to explore 566 

how to achieve the maximum benefits of these coffee protective actions and what is the 567 

recommended daily consumption to achieve such level. 568 

Metagenomics analysis is an important tool for the investigation of the complex 569 

microbial communities associated with the human gut. In this study, we present a better 570 

understanding of the abundance and diversity of microbial genus in samples of coffee 571 

consumers. Our in silico results showed that coffee led to a decrease in the abundance of 572 

Desulfofarcimen or Mycoplasma genus, which helped to sustain a healthier human gut. In 573 

addition, CAZyme’s biomarkers were further annotated to distinguish between coffee and 574 

controls samples. For example, a mannan-metabolising enzyme that helps regulating the body 575 

weight and lowering blood pressure, glucose levels and cholesterol levels appeared as marker 576 

for coffee group. Another avenue for future work is to focus on adaptive diet based on coffee 577 

consumption that takes in consideration, genes, sex, age, ethnic, geographical origin and 578 
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lifestyle factors with the objective to develop effective and safe nutrition plans that could be 579 

tailored to individual variations. 580 
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