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Abstract 

Stable water isotopes in ground level vapour are key to estimating water exchange 

between geospheres. Their sampling, however, is limited to laser-absorption 

spectrometers and satellite observations, having inherent shortcomings. This study 

investigates diffusive kinetic fractionation during liquid condensation under 

supersaturated environment, providing a cost-effective, reliable way of sampling 

ground level vapour isotopes (18O, 2H). Experiments were undertaken at three different 

climatic zones in India with ‘liquid’ samples collected from condensation of ambient 

air at 0 °C. Simultaneously, pristine ‘vapour’ was sampled via cryogenic-trapping using 

liquid nitrogen–alcohol slush at –78 °C. The ‘liquid’ condensed under supersaturation 

was progressively more depleted in 18O, and less enriched in 2H than expected under 

equilibrium fractionation, with increasing degree of supersaturation expressed as 

saturation index (Si). This study revealed: (1) Si, molecular density, Rh, T together 

control the extent of isotopic kinetic fractionation. (2) The presence of diffusive 

concentration gradient inhibits the flow of heavier isotopes during liquid condensation. 

(3) The non-linear stochastic nature of the process cannot be adequately explained 

using physics-based model alone. The artificial neural network model is hence 

deployed to sample δ18O (δ 2H) within –0.24 ± 1.79 ‰ (0.53 ± 11.23 ‰) of true value. 

(4) The approach can be extended to ground-validate isotope-enabled general 

circulation models and satellite observations. 
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1. Introduction 

Atmospheric water vapour is the most important component of the hydrological cycle and the 

global climate system, as water molecules transfer and redistribute solar energy through 

latent heat of fusion, vaporization and condensation during phase change and transport 

through hydrological cycle [1,2]. Oxygen and hydrogen isotopes are the most important 

tracers widely used to understand various hydrological processes concerning the atmospheric 

component of hydrology. However, a major knowledge gap and a prominent limitation is the 

non-availability of adequate ground-based isotope data of water vapour. The sampling of 

ground level water vapour, for subsequent measurement of isotopic composition using 

isotope ratio mass spectrometry (IRMS) or laser absorption-based spectroscopy, requires 

cryogenic (using liquid nitrogen or dry ice) trapping of water vapour from ambient air-stream 

and longer sampling duration for pumping at a slow rate (~ 450 cm3/min) in a laboratory set 

up to collect one sample [3]. On the other hand, direct isotope measurement of ambient 

atmospheric water vapour as well as its vertical profile can also be done continuously using 

either conventional cavity ringdown spectroscopy or off-axis integrated cavity output 

spectroscopy (OA-ICOS) [4–6]. However, both IRMS and laser spectroscopy measurements 

cannot be done simultaneously at a large number of places owing to their high cost, which is 

necessary to detect local variations and provide regional picture. Due to these limitations of 

ground-based measurements of isotopic composition of water vapour, there is tremendous 

dependence on satellite-based observations and model-based estimates. However, there are 

substantial inaccuracies in these estimates which are essentially required for computing the 

amount of continental recycling of precipitated water and upward transport of ground level 

water vapour to mix with tropospheric moisture [7–10]. 



The inaccuracies in the estimated isotopic composition of evaporated and transpired 

water vapour from different geographic regions in the world are carried forward into isotope-

based estimation of evapotranspiration component of hydrological cycle regionally. Due to 

limitations in correctly estimating the isotopic composition of ground level water vapour in 

vegetated area, the dynamics of water vapour exchange between vegetation and atmosphere, 

and the hydrological processes concerning formation of dew, fog, cave condensation water 

etc. are poorly understood. 

Inaccuracy in the estimated isotopic composition of ground level water vapour, which 

is also carried forward into the isotope based computational models, cannot be ignored 

anymore because the water vapour governs the water availability on earth and the global 

temperature, both of which affect the life on earth. The increasing surface air temperature 

increases the potential for evaporation, and consequent water vapour loading in atmosphere, 

the heat and water distribution over earth is expected to be affected, about which there is 

considerable uncertainty [11–13]. 

The deuterium isotopic composition (δ2H) of atmospheric water vapour estimated by 

the Tropospheric Emission Spectrometer on board the Aura spacecraft of NASA has provided 

insight into the mechanism governing the recycling of water vapour [8,14]. It has been 

estimated that around 20 % of rainfall typically gets evaporated and fed back to the source 

whereas the values can go up to 50 % in case of convective clouds [7]. The estimated isotopic 

composition of atmospheric water vapour, based on which above inferences are drawn, are 

average values of the 550–800 hPa mean layer. The isotope values in these layers are 

susceptible to the maximum variations and are extremely sensitive and the estimated δ2H 

values have a precision of around 10 ‰ in the tropics and 24 ‰ in case of the poles [8]. 

Moreover, the isotopic abundance ratio H2HO/H2O suffers due to spectral interference of 

H2O on H2HO due to pressure broadening. To add to this the space borne interferometers and 



spectrometers suffer from serious limitations in resolving thermal emissions in the short-

wave infrared range thus failing to provide much insight into the composition of lower 

tropospheric vapour where much of the dynamic processes within the hydrological cycle take 

place. In addition to above limitations, the variation in relative humidity and its 

corresponding effect on the isotopic composition of ground level water vapour is not yet well 

understood [15,16]. 

The water isotopes incorporated into the atmospheric general circulation models 

(AGCM) have provided valuable insights into surface evaporation, condensation, super 

saturation and vertical distribution of isotopes [17–19]. These AGCM numerically represent 

and interpret the physical processes that may affect isotopic variation in vapour but encounter 

certain limitations that stem from biases in temperature or precipitation simulation [20]. The 

AGCMs work based on numerical simulations using certain approximations which fail for 

example when a sharp boundary is encountered such as e.g. the Tibetan Plateau [21]. Most 

AGCM simulate water vapour transport pathways by simulating the convective updrafts and 

downdrafts which involves solving the cloud microphysics using numerical integration. Other 

than being computationally expensive, these methods cannot accurately represent 

instantaneous localised atmospheric phenomena such as cloud burst, land fall of cyclonic 

storms etc., which has tremendous societal relevance. 

Another possible option of estimating average monthly isotopic composition of 

ground level water vapour is from the monthly composite isotopic composition of rain, 

assuming that the ambient atmospheric water vapour is in isotopic equilibrium with rain 

[22,23]. Estimating isotopic composition of ground level vapour from that of average 

monthly rainfall has a serious drawback because it has been shown in a study in a semi-arid 

region that ground level water vapour tends to attain isotopic equilibrium with falling 

raindrops but is not necessarily in equilibrium. On cessation of rainfall, ground level vapour 



returns to its baseline isotopic composition [24]. It has also been observed in certain cases 

that the signature of tropospheric vapour differs significantly from that of precipitation in 

tropical areas indicating the significant role of evapotranspiration [7]. The biggest limitation 

of estimating vapour composition assuming it to be in isotopic equilibrium with rain is that 

this method is not applicable in the non-rainy season and hence creates a data gap. 

The technological and practical constraints behind inaccuracies in satellite-based and 

model estimates, and limited ground measurements of vapour described above clearly 

highlight the urgent need of an alternative approach for accurate estimates of ground level 

water vapour. 

One such initiative of isotopically characterizing the ground level water vapour was 

made under the aegis of a multi-institutional collaborative National Programme on Isotope 

Fingerprinting of Waters of India (IWIN National Programme) aimed at understanding 

hydrological processes concerning India which houses over 1391 million people (17.6 % of 

the world population). With a view to understand vapour source variation and rain–vapour 

interaction, ambient water vapour was sampled simultaneously using complete cryogenic 

trapping and liquid condensation on ice-cooled surface, for subsequent isotope analyses 

[24,25]. The liquid condensation of ambient vapour on ice cooled surface (see Section 2) is a 

simple, cost effective and easily replicable method for sampling ambient vapour for isotope 

analyses. The condensation method was, however, found to involve a kinetic fractionation 

due to molecular diffusion through a supersaturated layer just over the ice-cooled surface 

[25], similar to that involved in vapour deposition over ice [26]. The kinetic fractionation due 

to diffusion through supersaturated microenvironment generated during liquid condensation 

results in the isotopic composition of liquid condensate which is different from the true 

isotopic composition of vapour. Since the effective degree of supersaturation expressed as 

saturation index (Si) during liquid condensation cannot be ascertained experimentally, and 



owing to the stochastic nature of the diffusive process, a simple linear regression-based 

approach [27] could not correct the vapour data. Thus, due to non-availability of any better 

correction method, even the un-corrected vapour data has been used in some of the studies 

[28,29]. 

In this study we have used an innovative approach of an artificial neural network 

(ANN) based machine learning (ML) model to estimate the isotopic composition of ground 

level vapour from liquid condensate collected on ice-cooled surface. We have also explained 

why the concept of saturation index expounded earlier by Jouzel and Merlivat [26] to explain 

the kinetic fractionation for vapour to solid phase change, and by Deshpande et al. [25] for 

vapour to liquid phase change, is not enough to estimate the unfractionated true values of 

vapour. We have also noticed that there can be different values of molecular densities for a 

given value of saturation index (Si). Hence, temperature, relative humidity as well as the 

extent of supersaturation – all three are important in correcting the fractionating effects. The 

ANN and ML approach used in this study provides more accurate values of ground level 

vapour than possible through simple linear regression. 

2. Materials and methods 

The samples of ambient atmospheric water vapour were collected simultaneously by two 

different methods, namely, (1) complete cryogenic trapping; and (2) liquid condensation on 

ice-cooled surface. 

2.1. Complete cryogenic trapping 

In this method (Figure 1a), water vapour from a stream of ambient atmospheric air is 

cryogenically trapped in a glass condenser maintained at –78 °C by immersing in liquid 

nitrogen + alcohol slush. A stream of ambient air is diverted into a glass condenser immersed 

in a liquid nitrogen/alcohol slush maintained at –78 °C. The slush temperature of –78 °C is 



chosen so that the CO2 from ambient air does not condense along with the water vapour. The 

air-flow rate is also maintained at around 450 cm3/min to ensure that there is no isotopic 

fractionation due to preferential loss of lighter isotopic molecular species of water vapour. 

Since the entire vapour in the air stream is completely condensed, this method provides true 

isotopic composition of ambient water vapour without any isotope fractionation. Depending 

on the Rh and temperature of ambient air, it takes from 2 to 5 hours to collect about 2 ml of 

the unfractionated liquefied vapour by this method. Isotopic composition of this liquid 

sample represents the true isotopic composition of ambient vapour, and is now on referred to 

as ‘vapour’ in this paper. Detailed sampling procedure and sampling devices for complete 

cryogenic trapping is discussed by Deshpande et al. [25]. 

2.2. Liquid condensation on ice-cooled surface 

In this method (Figure 1b), water vapour from the ambient atmospheric air is sampled by 

condensing it at 0 °C on a conical ice-cooled surface. An aluminium cone (diameter 15 cm, 

height 18 cm) is filled with ice cubes and covered with a PVC lid so that its external conical 

surface cools down to 0 °C and ambient water vapour condenses on it. This condensation is 

faster compared to cryogenic trapping. Depending on the Rh and temperature of ambient air 

it takes from a few tens of minutes to just less than an hour to collect as much as 15 ml of 

liquid condensate. The liquid condensation in this method takes place at ≈ 0 °C throughout 

the experiment, and involves kinetic fractionation related to diffusion through supersaturated 

layer and preferential condensation of isotopically lighter water molecule due to their higher 

diffusive velocities [25,26]. The liquid condensate obtained in this method is always 

isotopically fractionated and does not represent the true isotopic composition of ambient 

water vapour. This liquid condensate is referred to as ‘liquid’ in this study. Detailed sampling 

procedure and sampling devices for liquid condensation method is discussed by 



Deshpande et al. [25]. 

The sampling for both ‘liquid’ as well as ‘vapour’ samples was performed 

simultaneously and for the same time duration. Moreover, the vapour sampling by complete 

cryogenic trapping and the liquid sampling by condensation on ice-cooled surface are done in 

the open environment, at ambient temperature, pressure and Rh conditions. Therefore, it is 

representative of the ambient environment without any laboratory artefact. 

2.3. Sampling locations 

The sampling was done at three stations (Ahmedabad: 23.02°N, 72.57°E; Hyderabad: 

17.38°N, 78.49°E; and Roorkee: 29.85°N, 77.89°E;) located far away from each other in 

different parts of India and having different weather regimes and hydrometeorological 

aspects. The sampling at Ahmedabad, Hyderabad and Roorkee was carried out respectively 

by the Physical Research Laboratory (PRL), the National Geophysical Research Institute 

(NGRI) and the National Institute of Hydrology (NIH) under the aegis of IWIN National 

Programme [24,25,30] using the two procedures as described above. 

The samples from Ahmedabad were collected mostly during May to September of 

2005–2008 followed by from May 2013 to October 2014. Few samples were collected in the 

years 2009, 2010 and 2012 as well. At Hyderabad, the samples were collected mostly from 

July 2008 to October 2009. At Roorkee, the collection was done mostly during May to 

October 2009 and then again in January 2010. 

Ahmedabad is a city in warm semi-arid western India with annual average rainfall of 

800 mm received on ~ 35 rainy days during rainy season of southwest (SW) summer monsoon 

in the months of June to September [31]. Hyderabad is a city in south-eastern India and has 

predominantly a tropical wet and dry climate with average annual rainfall of 766 mm. It 

receives its 76 % of annual rain during southwest summer monsoon and the remaining 24 % 



during northeast (NE) winter monsoon. Roorkee is in north India and has a warm and 

temperate climate. It receives annual rainfall of 1170 mm of which 59–84 % is received in 

SW monsoon and the remainder in NE winter monsoon. 

A total of 538 pairs of vapour and liquid samples collected by above two methods 

have been used in this study. 

2.4. Isotope analyses 

The oxygen and hydrogen isotope analyses were carried out by standard gas equilibration 

method using an isotope ratio mass spectrometer in continuous flow mode of gas bench [32]. 

Based on analyses of multiple aliquots of secondary laboratory standards the precision of 

measurement was better than 0.10 ‰ for δ18O and 1.00 ‰ for δ2H. 

The oxygen and hydrogen isotopic composition is expressed in terms of per mil (‰) 

deviation of abundance ratio of heavier to lighter isotopes with reference to international 

standard reference material. Isotopic composition is defined in terms of δ (‰) notations as: 

[δ18O or δ2H = (Rsample/Rstd  – 1)]. Rsample refers to the abundance ratio (18O/16O or 2H /1H) for 

the sample, and Rstd refers to similar ratio for international standard reference material Vienna 

Standard Mean Ocean Water (VSMOW) [33,34]. 

2.5. Artificial neural network model 

ANNs are a class of computational models which aim to mimic the biological working of 

neurons in brain by using a complex and dense network of artificial neurons, which can be 

perceived as a transfer function with a set of input being mapped to a particular output 

depending on the problem statement [35,36]. Inside the network, we have interconnected 

networks of hidden layers and neurons, which are sequentially inter-connected and produce 

output based on the input from the previous layer and the activation function, with which it 

assigns weights to each neural synapse, not unlike the coefficients in a fitting problem. The 



usage of an interconnected web coupled with use of specific transfer function helps in 

achieving higher degree of non-linearity and hence can capture more complex and stochastic 

processes. 

In our case, we have a regression problem where capturing the underlying physics is 

of utmost significance. The variation of the vapour isotope values was previously modelled 

based on the equation provided by Jouzel and Merlivat [26] as follows: 

 1 + 𝛿𝛿𝑙𝑙 =
𝐷𝐷′×(𝑒𝑒𝑣𝑣×(1+𝛿𝛿𝑣𝑣)−𝑒𝑒𝑖𝑖×

�1+𝛿𝛿𝑙𝑙�
𝛼𝛼𝑒𝑒𝑒𝑒

)

𝐷𝐷×(𝑒𝑒𝑣𝑣−𝑒𝑒𝑖𝑖)
, (1) 

where 𝛿𝛿𝑙𝑙 and 𝛿𝛿𝑣𝑣 stand for the liquid and vapour δ values respectively, ev and ei denote the 

partial vapour pressure and saturated vapour pressure over water. The D and D’ stand for the 

diffusivity coefficients for lighter and heavier isotopologues for oxygen. 

To overcome the limitations in the Si based models (Equation (1)), arising from the 

non-linearity between Si values and molecular densities, which govern the fractionation, we 

have designed a simple ML model. A schematic diagram for the ANN model for the case of 

18O is shown in Figure 2. We incorporate this non-linearity in the physical system by 

inputting T, Rh, saturation and isotopic composition of liquid into the input layer of the 

neural network, in the form of Rh, T, 1
Si

 , 𝛿𝛿𝑙𝑙
Si

 and 𝛿𝛿𝑙𝑙 instead of simply as Rh, T, 𝛿𝛿𝑙𝑙 and Si. The 

reason for using these specific terms in the ML model is explained in the Section 3. 

3. Theory: Signatures of kinetic fractionation and theoretical consideration 

In case of complete cryogenic trapping of water vapour from a stream of ambient air, all the 

H2O molecules are converted from vapour to liquid phase and hence isotopic composition of 

liquefied water vapour is the same as that of ambient water vapour. In case of the isotope 

equilibrium between liquid and vapour phases, the condensed liquid is isotopically enriched 

in heavier isotopes (18O and 2H) compared to the vapour from which it is condensed. Isotope 



enrichment in liquid under equilibrium with vapour phase can be estimated using the 

equilibrium fractionation factor. In contrast, it is observed in our experiments that the liquid 

condensate is depleted in 18O and less enriched in 2H compared to vapour phase, than that 

expected under equilibrium condition. Consequently, the resultant liquid condensate has high 

d-excess, due to kinetic isotope fractionation involved in it. 

Under the equilibrium condition ambient water vapour pressure equals the saturation 

vapour pressure and the rate of forward and backward reaction is similar. However, in the 

liquid condensation method of this study, in which condensation occurs on ice-cooled 

aluminium surface at 0 °C, the actual vapour pressure at ice-cooled surface is far more than 

the saturated vapour pressure at 0 °C. This is because the unsaturated ambient air at ambient 

temperature (~ 30 °C) becomes supersaturated with water vapour when it cools down to 0 °C. 

Thus, on the ice-cooled metallic surface there is a micron-thick boundary layer of air 

supersaturated with water vapour, and hence condensation of liquid from ambient air takes 

place under supersaturated environment. We wish to clarify that the micron-thick 

supersaturated boundary layer that we are referring to in this study is primarily governed by 

ground level T and Rh. This is different from the atmospheric boundary layer in which the 

isotopic composition is governed by soil moisture, transpiration and advected vapour isotopic 

signature. The atmospheric boundary layer dynamics may perturb the vapour isotopic 

signature at higher altitude in short time duration, but we are sampling ground level water 

vapour which does not change drastically at a short time (unless it starts raining). 

Furthermore, even if there is a significant impact in ground level vapour isotopic makeup in 

short time span, the dynamic processes will equally influence both the liquid and vapour 

samples. Since we are interested in studying the difference between isotopic compositions of 

vapour and liquid, and not their absolute isotopic composition, the sanctity of our 

experimental observations is still preserved. 



The theory of kinetic effect associated with liquid condensation under supersaturated 

environment is discussed in detail by Deshpande et al. [25], similar to the theory for the solid 

condensation discussed by Jouzel and Merlivat [26]. It is noteworthy that both these studies 

explain why condensate formed under supersaturated environment has different isotopic 

composition compared to that expected under equilibrium condition. These two studies have 

also shown that the isotopic difference between vapour and the condensate formed under 

supersaturated condition strongly depends on the degree of supersaturation given by the 

saturation index (Si): 

 Si = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑜𝑜𝑜𝑜 𝑤𝑤𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑎𝑎𝑝𝑝 𝑝𝑝𝑒𝑒𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑝𝑝𝑎𝑎𝑎𝑎 𝑝𝑝𝑒𝑒𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑒𝑒 ℎ𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑢𝑢
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎 𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑝𝑝𝑝𝑝 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎 𝑝𝑝𝑒𝑒𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 (0℃)

 (2) 

In spite of the works of Jouzel and Merlivat [26] and Deshpande et al. [25] it has not been 

possible to calculate back the true isotopic composition of vapour from the measured isotopic 

composition of condensate. Simple linear regression between isotopic composition of 

condensed liquid and cryogenically trapped vapour [27] can only provide seasonally variable 

empirical relationships between isotopic composition of liquid and vapour, with large 

deviations of regression based on predicted isotopic composition of vapour from its true 

value. 

The scientific factors behind failure in estimating the true isotopic composition of 

vapour from liquid condensed from ambient vapour under supersaturation environment is that 

only the maximum possible value of the saturation index (Si) can be computed from the 

measured values of ambient temperature, Rh and the condensation temperature (~ 0 °C). 

However, the actual effective degree of supersaturation prevalent at the condensing surface 

cannot be estimated due to uncertainties about prevalent condensation temperature. The 

actual temperature of condensation at condensing surface can be slightly more than the ice 

temperature (~ 0 °C) due to latent heat of condensation added to the ice-cooled condensation 



surface. Moreover, the ice inside the cone also melts slowly during experiment period which 

may slightly increase its temperature. Thus, temperature of condensation is expected to be 

slightly more than 0 °C, though the measured values of temperature inside the condensing 

cone were found to be between 0 to 0.5 °C in our experiments. Further, at molecular scale, 

removal of water molecules from vapour to liquid phase due to condensation would reduce 

the effective degree of supersaturation. Also, the effective diffusive velocities at prevalent 

degree of supersaturation cannot be estimated accurately. These are the scientific reasons 

why it has not been possible to calculate back theoretically the true isotopic composition of 

ambient vapour from its liquid condensate, in spite of the fact that this phenomenon is known 

to isotope geochemists [25,26]. 

Despite these uncertainties in precisely estimating degree of supersaturation, we have 

observed that the δ18O and δ2H values of liquid condensate collected on different days have a 

strong inverse relationship with saturation index (Si). A plot of isotopic difference 

(∆ = δliquid – δvapour) between liquid and vapour phases versus Si shows that the isotopic 

difference between liquid and vapour increases with increasing values of Si (Figure 3a,b). The 

liquid condensed under supersaturation was progressively more depleted in 18O, and less 

enriched in 2H than expected under equilibrium fractionation. A progressive trend of 

increasing d-excess in liquid when compared to vapour with increasing values of saturation 

index was also observed (Figure 3c). 

In order to explain the underlying physics involved in the kinetic fractionation, the 

saturation index Si (Equation (2)) can also be expressed as a ratio of the partial pressure of the 

vapour (ev) in ambient air to the saturation vapour pressure (ei) over water at condensing 

surface. For the sake of understanding this process, the immediate surrounding of the conical 

condensing surface can be schematically divided into three discrete zones A, B and C 

(Figure 4). At time t = to, the ice cubes were introduced into the cone hence reducing 



condensation temperature of condensing surface to ~ 0 °C, which in turn reduces saturation 

vapour pressure over water from ei to ei3. The magnitude of reduction in saturation vapour 

pressure (ei) after introducing ice cubes depends on the difference between ambient and the 

condensation temperature (~ 0 °C). When saturation vapour pressure (ei) drops below actual 

vapour pressure (ev), the value of Si increases to values greater than 1, which means that 

supersaturated condition (ev3>ei3, i.e., Si = ev3/ei3
 > 1) is generated on the condensing surface 

(layer S in Figure 4). It is noteworthy that supersaturated condition generated at the 

condensation surface does not mean increase in the absolute humidity. It only means that 

there are more water molecules present in the air than it can hold at condensing temperature 

(~ 0 °C). Since the air cannot hold any more water vapour, H2O molecules condense from 

vapour to liquid and tend to reduce the degree of supersaturation in zone A. Consequently, 

the actual water vapour content (absolute humidity) reduces just on the condensing surface 

because H2O molecules condense from vapour to liquid and are removed from the 

environment. To compensate for this removal of water molecules from zone A, there is a 

mass flow from zone B to A and zone C to B, such that actual vapour pressure reduces from 

C to B to A (ev3 > ev2 > ev1). Thus, we have a concentration gradient from zone C to zone A 

which drives vapour to come and condense on the ice cooled surface. In this process, isotopic 

water molecules (H2
16O, H2HO and H2

18O) must diffuse from zone C to B to A to S. 

Isotopically lighter molecules have higher diffusivities and consequently, lighter molecules 

reach faster at condensing surface and get removed in liquid faster than heavier molecules. 

This diffusivity-based discrimination of molecules in favour of lighter mass becomes more 

prominent with increasing degree of supersaturation. This conceptual framework (Figure 4) 

explains the observation (Figure 3) of progressively increasing isotopic difference between 

liquid and vapour with increasing Si. 



Jouzel and Merlivat [26] provided a model to explain the kinetic isotope effect in 

terms of the diffusive velocities of the various isotopologues through air. According to their 

formulation, the kinetic fractionation is related to ratio of diffusion coefficients of lighter to 

heavier isotopologues, the equilibrium fractionation factor, and the saturation index as: 

 αkin=
𝑆𝑆𝑖𝑖

[𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙×
𝐷𝐷
𝐷𝐷′

×(𝑆𝑆𝑖𝑖−1)]+1
, (3) 

where αequil is the equilibrium fractionation factor, αkin is the kinetic fractionation factor, D/D’ 

represents the ratio of diffusivities for the lighter (16O) to the heavier (18O) isotope of oxygen 

or hydrogen (2H, 1H). For a given condensation temperature, αequil and D/D’ are both 

constants; therefore, the value of kinetic fractionation αkin strongly depends on the value of Si. 

Using this model, Deshpande et al. [25] have tried to explain the observed isotopic difference 

between vapour and liquid condensate using extrapolated D/D’ values at 0° C. 

The values of αequil can be computed from the regression equation given by Horita and 

Wesolowski [37]. It is to be noted from Equation (1) above that the value of αkin for any 

supersaturated condition (i.e. Si>1) is always less than unity; therefore, total fractionation 

(α = Rl/Rv = αkin ∙ αequil) involved in the liquid condensation works out to be less than 

equilibrium fractionation as explained in Deshpande et al. [25]. Consequently, liquid 

condensate is less enriched in heavy isotopes compared to ambient vapour than that expected 

under equilibrium condition. In highly supersaturated condition, beyond a certain critical 

value of Sic, when αkin < 1/αequil, the liquid condensate will become isotopically depleted in 

heavier isotopes compared to ambient vapour. Since the values of αequil and D/D’ at 0 °C are 

close to 1 [25], the value of αkin very strongly depends on Si values. However, we observe the 

isotopic depletion of liquid is far more noticeable in 18O than for 2H, with more depleted 

values of liquid observed in 18O even for lower values of Si, while for 2H this depletion is 

observed for higher values of Si (~ >3). This behaviour can be attributed to the peculiar 



variation of diffusivity ratios D/D’ for the different isotopologues (H2
16O/ H2

18O, H2
16O/ 

H2HO) at 0 °C. The computation of αkin requires these diffusivity ratios for both molecular as 

well as turbulent diffusion. Several studies have experimentally and theoretically arrived at 

diffusivity ratios for molecular diffusion [38,39]. Luz et al. [39] and Merlivat [38] found that 

the diffusivity ratios for 18O/16O remain steady in the temperature range of 10–40 °C, whereas 

for 2H/1H there is a marked decrease in the diffusivity ratio with decreasing temperature 

hence resulting in a wider range of αkin with variations in temperature. However, to the best of 

the authors’ knowledge, few studies have attempted to investigate such kinetic fractionation 

processes occurring under supersaturated conditions for condensation of liquid from ambient 

vapour [25]. 

In our study, we have already highlighted the role played by a concentration gradient 

as well as a gradient in temperature starting from 0 °C at the surface of metallic cone ranging 

to ambient temperature the further away we go in causing preferential condensation of lighter 

isotopes in the collected liquid sample. Due to the unique difference in diffusivity 

characteristics between 2H and 18O, we can expect a wider variation in range of diffusivity 

ratios, αkin and in turn the Sic for 2H when compared to 18O, even by just assuming pure 

molecular diffusion due to variations in ambient temperature on different days as well as 

seasonally. Moreover, we also need to consider the possible impact of turbulent diffusion 

around the metallic cone. However, values of diffusivity ratios for turbulent diffusion are not 

readily available in literature. Deshpande et al. [25] have theoretically computed these ratios 

for the full spectrum (molecular to turbulent diffusion), and those ratios along with values 

obtained from sparse available literature have been considered for the purpose of this study 

[40]. The estimated range of Sic for 18O and 2H are 1.24–1.42 and 3.27–31.50, respectively, 

thus implying a wide range of Sic for 2H [25]. Hence, a small change in trend from molecular 

diffusion towards turbulent transport is expected to have a far more pronounced effect on 2H 



as compared to 18O. Moreover, 2H has a higher value for the lower threshold of Sic. This can 

explain why in the case of 2H, we observe relatively more enriched isotopic signature in 

liquid for some samples even for higher values of Si (Figure 3b). 

In spite of past work [25,26], there has been an experimental limitation that the 

prevalent degree of supersaturation at the point of condensation in the micron thick boundary 

layer (layer S in Figure 4) formed during liquid condensation cannot be experimentally 

captured or accurately estimated. Moreover, the stochastic nature of diffusivity ratios makes 

it difficult for conventional physics-based model to explain the underlying processes or offer 

accurate predictions hence necessitating a simple ANN model. 

To overcome the limitations in the Si based models (Equation (1)), arising from the 

non-linearity between Si values and molecular densities, which govern the fractionation, we 

have designed a simple ML model. We incorporate this non-linearity in the physical system 

by inputting the T, Rh, saturation and isotopic composition of liquid into the input layer of 

the neural network, in the form of Rh, T, 1
Si

 , 𝛿𝛿𝑙𝑙
Si

 and 𝛿𝛿𝑙𝑙 instead of simply as Rh, T, 𝛿𝛿𝑙𝑙 and Si. 

The reason for using these specific terms in the ML model is explained in the following. We 

must understand that the aim of the ML model is to mimic the physical process happening in 

the natural system. Hence, inputting the parameters as Rh, T, 𝛿𝛿𝑙𝑙 and Si directly may not 

represent the natural system well. To demonstrate this, we shall expand Equation (1) as: 

Say, D/D’ = A,  

then Equation (1) reduces to [since 𝑒𝑒𝑣𝑣
𝑒𝑒𝑖𝑖

= Si ]  

 𝛿𝛿𝑙𝑙 + 1 = 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙×𝑆𝑆𝑖𝑖×(𝛿𝛿𝑣𝑣+1)
𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙×A×(𝑆𝑆𝑖𝑖−1)+1

  

Solving for Y we get:  



 𝛿𝛿𝑣𝑣 = 𝐴𝐴 × 𝛿𝛿𝑙𝑙 + 𝛿𝛿𝑙𝑙
𝑆𝑆𝑖𝑖

× � 1
𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙

− 𝐴𝐴� + 1
𝑆𝑆𝑖𝑖

× � 1
𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑙𝑙

− 𝐴𝐴� + 𝐴𝐴 − 1  

In the above equation, A (= D/D’) and αequil are both constants for a given temperature. 

Solving for 𝛿𝛿𝑣𝑣 in terms of 𝛿𝛿𝑙𝑙 and Si, we get: 

 𝛿𝛿𝑣𝑣 = 𝐴𝐴 × 𝛿𝛿𝑙𝑙 + 𝐵𝐵 × �𝛿𝛿𝑙𝑙
𝑆𝑆𝑖𝑖
� + 𝐶𝐶 × �1

𝑆𝑆𝑖𝑖
� + 𝐾𝐾, (4) 

where A, B, C are terms made up of D/D’ and αequil and can be replaced with constants, and 

where K is a dimensionless constant. Hence, it is intuitive to use terms of the form 1
Si

 , 𝛿𝛿𝑙𝑙
Si

 and 

𝛿𝛿𝑙𝑙 as they will better mimic the natural processes happening in the system. The physical 

interpretation for this is explained below: 

There can be possible two extreme scenarios of fractionation during liquid 

condensation from vapour: (1) pure equilibrium fractionation, and (2) purely diffusive 

fractionation involving turbulent exchange. 

(1) In case of equilibrium fractionation, the actual vapour pressure equals saturation 

vapour pressure i.e., Si = 1, hence kinetic fractionation, α kin = 1 (Equation (3)). 

Therefore, the total fractionation is just the equilibrium fractionation 

(α total = α kin x α equil = α equil). In this case, Equation (1) can be simplified to a linear 

form connecting both 𝛿𝛿𝑙𝑙 and 𝛿𝛿𝑣𝑣 as: 

 1+𝛿𝛿𝑙𝑙 = α equil (1+𝛿𝛿𝑣𝑣) (5) 

This explains the need for the 𝛿𝛿𝑙𝑙 term as one of the input parameters. 

(2) In case of purely diffusive fractionation in highly supersaturated condition, Si >> 1 

and ev >> ei. In this situation, Equation (1) can be reduced to: 

 1 + 𝛿𝛿𝑙𝑙 ≈
𝐷𝐷′×(1+𝛿𝛿𝑣𝑣)

𝐷𝐷
 (6) 



Here, the dependence of the isotopic makeup of resultant liquid is completely 

independent of Si. Hence, this explains the term of the form of 1
Si

 in Equation (4), 

since when Si >> 1, this term will tend to vanish. 

In our experiment, samples lie between the above two extreme cases which explains the 

term 𝛿𝛿𝑙𝑙
Si

 should be included in the formulation to compute true isotopic composition of vapour 

(𝛿𝛿𝑣𝑣) from that of liquid condensate (𝛿𝛿𝑙𝑙).As discussed earlier, Si is a function of both T and 

Rh, although accurate measurement of Si is subject to certain limitations. Moreover, even 

small pressure variations can lead to significant variation in environmental conditions, 

especially in humid areas. However, these pressure variations are mostly hydrostatic in nature 

and associated with temperature variation in the air column. Thus, temperature is the most 

important parameter, representing the corresponding minute pressure variations in the air 

column. Therefore, both T and Rh are inputted along with 1
Si

 , 𝛿𝛿𝑙𝑙
Si

 and 𝛿𝛿𝑙𝑙 in their respective 

form into the input layer of the neural network to help train the model to predict 𝛿𝛿𝑣𝑣. Inputting 

data into the model in this form yielded much better model performance and convergence. 

4. Results and discussions 

4.1. Data cleaning 

To ensure that ML algorithm is not adversely affected by any artefact from sampling, storage, 

or isotope analyses in mass spectrometer, it is essential to clean and filter out any spurious 

data from the 538 pairs of measured isotopic composition of vapour and liquid. In order to 

achieve this data quality, a unique criterion of data acceptance was defined for both vapour 

and liquid. If any of the vapour–liquid pair did not meet the required threshold of data 

acceptance, then the concerned pair was discarded to ensure the consistency of data. One of 

the parameters used is the d-excess (d-excess = δ2H – 8 ∙ δ18O). The vapour samples collected 



from the Indian subcontinent are reported to have d-excess within an approximate range of 

0-25 ‰ for vapour samples [25,41–44]. But some studies have reported even slightly higher 

d-excess values of vapour in rare cases. Hence, considering relaxation of 5 ‰ on either side 

of reported range (0–25 ‰) of d-excess, the range of –5 to 30 ‰ is considered as acceptable 

range for vapour samples. A total of 26 samples outside this range were detected and hence 

discarded. 

Due to lack of sufficient published experimental data on isotope fractionation during 

liquid condensation occurring under supersaturated conditions, it is not possible to decide an 

appropriate range of acceptable d-excess values for filtering out spurious liquid samples 

based on experimental data. Therefore, we have used the theoretically estimated critical 

saturation index (Si,c) as a limiting value beyond which the liquid condensate is expected to 

be depleted compared to the vapour [25]. The range of Si,c for stable oxygen and hydrogen 

isotopes has been theoretically estimated using diffusivity ratios considering both turbulent 

and molecular diffusion extremes and intermediate scenarios. The theoretically computed 

values of Si,c for oxygen isotope (18O) have a narrow range from 1.24–1.42, whereas those for 

hydrogen range from 3.27–31.50 [25]. This implies that oxygen isotope fractionation under 

supersaturation condition is more consistent under different diffusive regimes (turbulent and 

molecular). Therefore, we have used the Si,c values for oxygen to reliably filter out spurious 

data points for liquid condensate. Those liquid samples were filtered out which were depleted 

in δ18O compared to vapour even though the saturation index (Si) was less than the lower 

threshold of its critical value (Si,c = 1.24) for 18O. Similarly, those liquid samples were also 

filtered out, which were enriched in δ18O even though saturation index (Si) was more than the 

higher threshold of its critical value for 18O (Si,c = 1.42). A total of 31 liquid samples were 

filtered out based on above consideration. After filtering out possibly spurious data of vapour 



and liquid as per above considerations, a total of 481 out of 538 data pairs were used to train 

and validate our ML model. 

4.2. Model architecture, performance and new insights 

Two separate ML algorithms, one each for 18O and 2H, have been used since the molecular 

weights of respective species and hence diffusivity ratios for heavier to lighter isotopes vary 

significantly for each one. Since the input features have varying ranges and standard 

deviations, variables having larger magnitude may affect the architecture of the model while 

updating weights, hence a standard scaler was used to standardize input data to have mean 0 

and standard deviation of 1. 

The whole dataset was split randomly into 70–30 % with 70 % data for training the 

model and 30 % for model testing and validation. Furthermore, while training the model, 

5-fold cross validation was used in order to ensure model generalisation and stability and 

prevent overfitting [45,46]. GridSearchCV was employed for hyperparameter tuning by 

running maximum permutations and combinations of different model architecture with 

different number of hidden layers and varying activation functions [47–49]. The model with 

most robust and stable performance was chosen at the end. Root mean squared error as well 

as mean absolute error were used as metrics for model validation whereas mean squared error 

was chosen as the loss function. Adaptive momentum optimization (Adam) optimizer was 

chosen for this study [50]. The detailed model architecture and results are explained in 

Supplementary section, Table 1. 

The input layer dimensions (5 nodes) represent the number of feature vectors used for 

training while the final layer in case of a regression problem always has just 1 layer with a 

linear activation function. Rectified linear unit (RELU) was chosen for the hidden layers 

since it gave best convergence [51,52]. We trained the model with small batch size with the 



number of iterations optimized using GridSearchCV. Since the non-linearity demonstrated 

for the oxygen isotope (18O) with respect to variation in diffusivity and other experimental 

limitations or constraints was less, a shallower neural network was chosen and additional 

regularization was not deemed necessary (Supplementary section, Table 1). 

For the case of hydrogen isotopes, due to the intrinsic non-linearity in the problem 

statement owing to large range in Si,c , a denser more complex network gave the best 

performance. Additionally, we used Dropout regularization for the hidden layers [53,54]. We 

chose Dropout = 0.1 for purpose of regularization for the hidden layers. 

The ML model was found to be robust when trained and validated on data from three 

stations with varying climatic regime. The tendency of mean error to lie near 0 indicates the 

absence of a strong negative or positive bias in either case. Hence, the mean error coupled 

with its standard deviation can effectively be used to get a general estimate of uncertainty in 

predicting vapour isotopic composition given the required input variables. Hence given a 

liquid sample, Rh and T, we can arrive at vapour isotope values within –0.24 ± 1.69 ‰ for 

δ18O and 0.53 ± 10.19 ‰ for δ2H which describe the mean of error distribution with 

1 standard deviation (See Table 1 in Supplementary section). It must be noted that this 

uncertainty mentioned is only that of the ANN model and does not include the analytical 

uncertainty arising out of IRMS measurements. Hence accounting for the analytical 

uncertainty of 0.10 ‰ for δ18O and 1.00 ‰ for δ2H, we can arrive at vapour isotope values 

within -0.24 ± 1.79 ‰ for δ18O and 0.53 ± 11.23 ‰ for δ2H (See Table 1 in Supplementary 

section). This level of accuracy of ground level water vapour provides significant 

improvements over satellite-based measurements. 

Furthermore, the relatively comparable values of both RMSE (root mean squared 

error) and mean of absolute error for both models hint at a robust fit without overfitting. The 

RMSE for δ18O is almost an order of magnitude lower than that for δ2H, but we must realise 



RMSE is not robust to outliers and is also dependent on the range of the target variable. For 

δ18O, we have a range of 19.16 ‰ for vapour, for which RMSE around 1.7 ‰ is quite 

reliable. For δ2H, we have a range in vapour of 147.73 ‰, for which an RMSE score of 

≈ 10 ‰ is still quite reasonable. 

The predicted isotopic composition of vapour based on ANN models and the 

measured isotopic composition of vapour has been compared (Figure 8) for 145 data pairs 

(30 % of data set) used for testing and validation of models, which shows closeness of 

modelled and true values confirming the robustness of model performance and validity of this 

approach. The results confirm that the ML algorithms have fairly captured the stochastic non-

linear processes. More than this, it is important to recognize the fact that the pair of ANN 

models used in this study have provided isotope values of ground level vapour which is an 

improvement over the available satellite-based measurements. This approach provides a 

solution for a long pending search of a suitable method to tag isotopically the ground level 

water vapour. 

It is important to note that the saturation index Si is a measure of degree of vapour 

saturation for a given T and Rh combination, but it does not represent the absolute abundance 

of H2O molecules in the boundary layer. The molecular density within concentration gradient 

decides the degree of molecular resistance exerted on diffusing molecules. Although 

dependence of kinetic fractionation on saturation index is proven in this study (Figure 3), as 

also reported in earlier studies, its dependence on molecular density has not been studied so 

far. Therefore, it is necessary to understand the relationship between the kinetic fractionation, 

molecular density, and the saturation index Si. 

Figure 5 shows the progressive increase in the number density of H2O molecules with 

increasing value of saturation index Si ranging from 1 to 13 for different T–Rh combinations, 

with temperature ranges from 15 to 40 °C at an interval of 5 °C. For each of these 



temperature values, the number density of H2O molecules increases with increasing values of 

Si, and the values of Si increases with increasing temperature and increasing Rh (Figure 5). It 

is very important to notice now, since it was not explicitly shown in earlier studies, that for 

the same value of Si (for example, Si = 4.5 in Figure 5b), the lower temperature and higher 

Rh conditions can generate higher molecular density and higher concentration gradient, 

offering higher resistance to diffusing molecules, which can result in a higher degree of 

diffusive kinetic fractionation under supersaturated environment. 

With a view to demonstrate the higher degree of kinetic fractionation under low 

temperature and high Rh conditions for a given range of Si, the dataset with Si values ranging 

from 3.5 to 5.5 (316 liquid–vapour pairs, the highest density of samples in Si wise 

distribution) was chosen. Furthermore, a still narrow bin of Si from 3.5 to 4.5 was also 

constructed to study kinetic fractionation for samples having similar degree of 

supersaturation and hence identify other contributing factors. The isotopic difference 

(∆ = δliquid – δvapour) between liquid and vapour for each pair of samples is plotted against its 

temperature and Rh for Si range of 3.5 to 4.5 in Figure 6. The similar plot for the broader 

Si range of 3.5 to 5.5 is provided in the Supplementary material. It is obvious from Figure 6 

that, even within a narrow range of Si, the isotopic difference (∆ = δliquid – δvapour) is more 

pronounced under low temperature and high Rh conditions. This confirms higher degree of 

kinetic fractionation under low temperature and high Rh combinations for a given narrow 

range of Si. It is also noteworthy that the degree of supersaturation may be similar but the 

number density of molecules could be quite different (Figure 5). 

To further confirm that the observed increased isotopic difference (∆ = δliquid – δvapour) 

under low temperature–high Rh conditions (Figure 6) is due to pronounced kinetic 

fractionation, and not due to change in vapour composition, the isotopic difference is plotted 

against the isotopic composition of liquid for Si ranges of 3.5 to 4.5 (Figure 7), and of 3.5 to 



5.5 (Supplementary material). Both cases show a positive correlation between the isotopic 

difference and the isotopic composition of liquid. A similar plot for isotopic difference versus 

vapour isotopic composition (Supplementary material) shows no correlation thus indicating 

that the initial isotopic composition of vapour plays no role in determining extent of kinetic 

fractionation. This proves that even for similar degree of supersaturation, we observe varying 

degree of kinetic fractionation, which is governed by the gradient of absolute molecular 

abundance in the diffusive layers. 

Several past studies have attempted to study kinetic diffusion-based fractionation 

occurring during phase change from vapour to snow, liquid to ice and liquid to vapour 

[26,40,55–62]. However, to the best of the authors’ knowledge, few studies have tried to 

observe and understand such processes occurring in liquid condensation from vapour under 

supersaturated conditions. Jouzel and Merlivat [26] noticed conspicuous effect of kinetic 

fractionation during deposition of snow from vapour under supersaturated conditions. Similar 

kinetic fractionation during freezing of water to ice owing to differences in diffusivity ratios 

has also been reported [61,62]. Several studies have attempted to explain the diffusion based 

kinetic fractionation during evaporation from liquid to vapour while emphasising the role 

played by a concentration gradient as well as turbulent diffusion [57,63–65]. Recent studies 

involving state-of-the-art quantum mechanical calculations have also made significant 

breakthrough in bridging the gap between theoretical understanding and experimental 

observations for the case of molecular diffusion [66]. While the role of molecular diffusion 

has been studied in detail, the role of turbulent diffusion transport is not yet well understood 

and is usually assumed to not impart any isotopic fractionation in the turbulent sublayer [67]. 

However, the experimental results from this study cannot be arrived at by assuming only 

equilibrium and molecular diffusion-based isotopic fractionation, hence implying a strong 

role played by turbulent diffusion under supersaturated conditions, in imparting isotopic 



fractionation. The turbulent diffusive processes are very difficult to characterize and are 

extremely stochastic in nature, which is probably why the physical based models used in past 

studies have failed to accurately predict the extent of such kinetic fractionation. Various 

studies have attempted to address the issue of isotope fractionation in clouds under 

supersaturated conditions either by using physics-based models or trying a linear fit to 

address the non-linear deviations in isotopes. This study does not only highlight the 

limitations of earlier approach [68–71] but demonstrates the robustness of the ML model 

approach in capturing a non-linear stochastic process, with accurate predictions on data taken 

from three sites having vastly differing climate and geographical setup. 

Thus, it must be noted that the processes driving isotopic composition of the liquid are 

dependent only on the degree of supersaturation and the consequent molecular density 

generated in the micron thin boundary layer over the ice-cooled surface. They are 

independent of regional characteristics and weather conditions. In other words, independent 

of the geographical location, whenever a particular degree of supersaturation is generated on 

the condensing surface, there will be corresponding kinetic fractionation. It is important to 

note that the physical basis for the kinetic fractionation, even in the Jouzel and Merlivat [26] 

model, is also the same, i.e. the degree of supersaturation (saturation index Si). They have 

explained the observed kinetic fractionation during vapour deposition in terms of the degree 

of supersaturation in the environment over the ice. In our study, it is the degree of 

supersaturation over the ice-cooled surface. In addition, we have also introduced the concept 

of number density of H2O molecules, which was not previously considered by Jouzel and 

Merlivat [26]. Figures 5 to 7 provide new insights about specific aspects such as molecular 

density, concentration gradient, temperature–Rh combination and liquid–vapour isotopic 

differences associated with the kinetic fractionation under supersaturated environment. The 

important new insight emerging from our experiments is that the kinetic fractionation under 



supersaturated environment is primarily governed by the molecular density and the 

concentration gradient that develops on the condensing surface. The magnitude of molecular 

density and the concentration gradient depends on the combination of T and Rh (Figure 5) 

which turns out to behave in a non-linear and stochastic way which cannot be captured 

accurately by models dependent on Si alone. It is precisely for this reason that so far it has not 

been possible to estimate accurately the true isotopic composition of vapour from the liquid 

condensate. 

To overcome the above problem a simple machine learning algorithm based on ANN 

with backpropagation was deployed to map water vapour values to liquid condensate values 

systematically and incorporate the non-linearities, which a simple physics-driven model or 

multi-regression statistical models are unable to achieve. 

5. Summary and conclusions 

Isotope tagging of ground level water vapour is very important to understand hydrological 

processes in different geographical regions having varied eco-hydrological, agro-climatic and 

water resource situations. In particular, the current level of understanding about the recycling 

of precipitated water, and transport and addition of ground level water vapour into rain-

forming cloud systems, is restricted because isotopic composition of ground level water 

vapour is not accurately represented in the isotope based AGCM. 

There are technological and infrastructural limitations in obtaining reliable isotopic 

signatures of ground level water vapour from ground based or remotely sensed observations. 

In this study a simple, cost efficient and reliable methodology is discussed, in which ambient 

water vapour is collected by liquid condensation on ice-cooled metallic surface and cryogenic 

trapping, and using an ANN based ML model for computing the true isotopic composition of 

ground level water vapour from measured isotopic composition of liquid condensate. 



This study has significant implications in improving the scientific understanding of 

several natural processes like cloud bursts, dew formation, water in ecological pool, recycling 

of ground level moisture through evaporation and transpiration, which requires accurate 

tagging of outgoing ground level flux as well as precipitation resultant from condensation 

under supersaturated environment. The isotope fractionation under supersaturated 

environment, for example during cloud burst or thunder storm, or dew formation where prior 

studies have used either physics-based models or tried to account for the observed excess 

depletion in isotopes using simple linear fits could not account for the stochastic nature of the 

variation in the natural system. 

Isotopically tagging the ground level water vapour near the soil level (dominated by 

the soil moisture) and within vegetation canopy (dominated by the transpired vapour) has 

been a challenge because ambient moisture is a mixture of soil moisture, transpired vapour 

and the advected vapour. To be able to isotopically tag these vapour sources it is necessary to 

sample the vapour from appropriate heights above the ground so that vapour dominated by 

the three different sources is isotopically characterised. It may be noted that at present such 

studies sample soil water, twig xylem water and rainwater to study soil–plant–atmosphere 

continuum [72,73]. This study offers an approach in which the experimental setup can be 

placed at different heights to sample the vapour for isotope analyses, which is very important 

in advancing the current understanding about the soil–plant–atmosphere continuum. 

The robustness of the ML model in predicting vapour isotope values in three regions 

with different climatic conditions demonstrated in this study offers an extremely simple and 

cost-effective method of sampling ground level water vapour isotopes, which was difficult 

earlier due to high cost and laboratory infrastructural requirement especially in remote areas, 

and particularly for developing countries. The present study offers a solution to these 

limitations since it only involves recording Rh, T and collecting water samples using a simple 



metal cone and ice. Further, the sampling method coupled with the ANN-based method 

developed in this study could have a wide variety of applicability, ranging from ground-

validation of AGCM and understanding of the underlying hydrological cycle, to modelling of 

supersaturated fractionation of clouds under supersaturated conditions. 

This approach could also help validate satellite-based observations of water vapour 

isotopes and also help overcome the limited network of δ18O measurements in vapour since 

satellite-derived measurements are unable to sample oxygen isotopes. However, owing to the 

limitations in satellite-based techniques in measuring lower tropospheric stable water isotopes 

in vapour, this method can only be employed in regions of high elevation where the satellite 

measurements are viable (between 500–800 hPa). Moreover, the uncertainties reported can be 

further improved upon by addition of more data points from future continued experiments. 
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Figure captions 

Figure 1. (a) Experimental setup for sampling vapour from ambient atmospheric air by 

complete cryogenic trapping. (i) Dewar flask containing slush (liquid nitrogen + ethyl 

alcohol) maintained at –78 °C; (ii) thermometer for monitoring slush temperature; (iii) glass 

condenser bulb; (iv) digital thermo–hygrometer to monitor temperature and Rh of ambient 

air; (v) aquarium pump to push the ambient air through the glass condenser; (vi) absolute 

alcohol for preparing the slush. (b) Experimental setup for collecting liquid condensate from 

the ambient air. (1) aluminum cone which contains ice at 0 °C to cool the outer surface; (2) 

thick PVC lid to cover the cone when filled with ice; (3) aluminum stand with adjustable 

screws to hold the cone such that the condensed liquid drops directly into small plastic vial 

placed in the groove on the base-plate; (4) coarse wire-mesh protective cover enclosing the 

sample vial and the cone; (5) the assembled condensation system. 

Figure 2. Schematic representation of the ANN model architecture to reconstruct δ18O in 

vapour with the help of Rh, T, δ18O in liquid and Si. The use of feature engineering for input 

parameters is done to better mimic the physical processes. We use 2 hidden layers with 

10 nodes each in this network. 

Figure 3. (a) Difference between liquid and vapour (Δ = δliquid – δvapour) for δ18O plotted 

against the saturation index Si showing the progressive depleting trend of liquid isotopic 

signature with increase in Si. (b) Similar plot for δ2H. (c) Difference between d-excess of 

liquid and vapour highlighting the progressive increasing trend of d-excess in liquid with 

increase in Si. 

Figure 4. Schematic diagram explaining the development of the concentration gradient from 

initial time t = to to final time t = tf. The layer S denotes the microns thin supersaturated 



boundary layer near the outer wall of conical surface. Here we have ev3 > ev2 >ev1 and 

ei3 > ei2 >ei1, where ev denotes the partial pressure of water vapour at ambient temperature and 

relative humidity and ei denotes the corresponding saturation vapour pressure for that layer or 

zone. The quantities ev3, ev2, ev1 and ei3, ei2, ei1 denote the evolution of partial vapour pressure 

as well as saturation vapour with time for the corresponding layer. 

Figure 5. (a) Number density of H2O molecules/m3 of air for different Si values ranging from 

1 to 13, for different T–Rh combinations. The temperatures range from 15 to 40 °C at an 5 °C 

interval. The Rh range from 20 to 100 % at an interval of 20 %. (b) For narrow range of Si 

values from 3.5 to 5.5. For a given value of Si, for example 4.5, the highest number density is 

found for low T-high Rh combinations. 

Figure 6. (a) Isotopic difference (Δ = δliquid – δvapour) in δ18O between each pair of liquid and 

vapour samples is plotted against its T and Rh, within a narrow range of Si (3.5 to 4.5). The 

greater extent of isotope depletion due to more kinetic fractionation is observed under higher 

Rh condition, even within this narrow range of supersaturation. (b) Similar plot for δ2H. The 

darker shade represents more depleted liquid compared to vapour, representing more 

fractionation. 

Figure 7. (a) Isotopic difference (Δ = δliquid – δvapour) in δ18O between each pair of liquid and 

vapour samples is plotted against δ18O of liquid, for a narrow range of Si (3.5 to 4.5) showing 

positive correlation between the two which confirms that isotope depletion varies even under 

similar extent of supersaturation. (b) Similar plot for δ2H. 

Figure 8. ANN model predicted δ2H and δ18O vapour isotopic values plotted against the 

observed values of δ2H and δ18O showcasing the closeness of predicted values to the true 

values. 
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