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Abstract 17 

Land surface temperature (LST), retrieved from thermal infrared (TIR) bands of 18 

remote sensing satellites, is an important parameter for various climate and 19 

environmental models. TIR bands detect a range of low-energy wavelengths, resulting 20 

in a coarser spatial resolution than other multispectral bands, and limiting applicability 21 

in heterogeneous urban regions. In this study, a new nonlinear method for LST 22 

downscaling, called Three Layers Composition (TLC), was proposed. The TLC 23 

integrates large-scale temperature variations, re-constructed detailed characteristics of 24 

LSTs, and strong boundary information. The performance of TLC is compared with 25 

disaggregation of radiometric surface temperature (DisTrad), thermal imagery 26 

sharpening (TsHARP), and random forest (RF) for a complex landscape in Beijing city, 27 

which has agriculture, forest, and massive impervious surfaces. The scale effects on the 28 

downscaled LSTs (DLST) were analyzed from the aspects of spatial resolution and 29 

spatial contexts. The experimental results indicate that the nonlinear algorithms (TLC 30 

and RF) perform better than linear methods (DisTrad and TsHARP). Indicated by 31 

coefficient of determination (R2),  centered root-mean-square error (CRMSE), and 32 

correlation coefficient (CC), TLC (R2 = 0.901, CRMSE = 0.319, CC = 0.951) was the 33 

most effective and workable technique for predicting LSTs, followed by RF (0.768, 34 

0.502, 0.874), TsHARP (0.544, 0.652, 0.734), and DisTrad (0.518, 0.751, 0.719). Larger 35 

experimental regions and larger ratios between initial and target resolution weaken the 36 

accuracy of DLST. TLC indicated a stronger ability to resist the influence of such scale 37 

effects. Traditional downscaling methods (DisTrad, TsHARP, and RF) are trained with 38 

global LST-predictor relationships and predict the DLST point by point, which can 39 

result in significantly biased estimates for very high or very low temperatures. 40 

Addressing this issue, TLC advantageously preserves the texture similarity between 41 
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LST and its predictors, and yields more precise DLST, which showed higher 42 

consistency with the reference LST. Considering high accuracy and low computation 43 

time, TLC may be a safe technique for LST downscaling in other regions and different 44 

remote sensing sensors.  45 

Keywords: Downscaling land surface temperature; Landsat 8; Linear regression; 46 

Random Forest; Scale effect; Three Layers Composition method  47 
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1. Introduction 48 

Land surface temperature (LST) is the skin temperature of the Earth’s surface; it is 49 

required to properly study urban moisture and drought (Wan et al., 2004), to monitor 50 

spatiotemporal dynamics of urban heat islands (Nichol, 2005; Huang and Wang, 2019), 51 

and to describe the growth status of vegetation (Julien and Sobrino, 2009). Remote 52 

sensing (RS) satellites can supply up to date, highly covered and spatially explicit LSTs, 53 

but hardly get LSTs at both high spatial and high temporal resolution (Hutengs and 54 

Vohland, 2016; Pu, 2021). The LST products retrieved from Moderate Resolution 55 

Imaging Spectroradiometer (MODIS), for example, are available daily but the spatial 56 

resolution is only 1km, while Landsat thermal infrared data have a finer resolution (100 57 

m), but a 16-days revisit cycle. A high spatiotemporal resolution of LST would be 58 

desirable for the assessment of thermal performance over multiple landscape 59 

configurations at local and block scale (Xu et al., 2020; Zawadzka et al., 2020). One 60 

solution would be an improvement of hardware and detector instruments, particularly 61 

the capacity of data transfer in orbit, however, this has high production costs and is time 62 

consuming (Wang et al., 2021). Another solution is to develop downscaling models 63 

based on the correlations between LST and ancillary biophysical parameters (e.g., 64 

surface reflectance ratio, land use and land cover types, and vegetation indices), which 65 

can be extracted from visible and near infrared bands of high-resolution RS data (Kustas 66 

et al., 2003; Hutengs and Vohland, 2016). 67 

LST downscaling has attracted more and more interest during the past two decades, 68 

and techniques utilize image fusion, kernel-driven approaches and the combination of 69 

both (Gao et al., 2006; Weng, 2009; Wang et al., 2021). Kernel-driven statistical models 70 

are frequently used due to their simplicity and effectiveness in multiple natural 71 

conditions. Disaggregation of radiometric surface temperature (DisTrad) and thermal 72 
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imagery sharpening (TsHARP) are two classical linear models (Kustas et al., 2003; 73 

Agam et al., 2007; Jeganathan et al., 2011), which apply least square regression between 74 

LST and normalized difference vegetation index (NDVI). These linear models are well 75 

suited and workable for relatively uniform landscapes, while they may be less 76 

appropriate for urban areas with high heterogeneity (Hutengs and Vohland, 2016; Xu et 77 

al., 2020). LSTs, representing thermal performance over complex Earth surfaces, are 78 

affected by multiple factors (e.g., wind, topography, and surface material), and applying 79 

only NDVI as predictor for LST is insufficient. Random forest (RF), as a nonlinear 80 

statistical ensemble algorithm, can solve these problems by building sequentially 81 

randomised and de-correlated decision trees for multi-factorial regression (Hutengs and 82 

Vohland, 2016; Xu et al., 2020). Compared with linear models, RF avoids over-fitting, 83 

handles multi-collinearity, and can model complex relationships between LST and 84 

multiple influencing factors. Applying the RF algorithm, Hutengs and Vohland (2016) 85 

re-constructed the LSTs at high resolution in Jordan for varied geographical 86 

environments with improved performance in comparison to TsHARP.  87 

A commonality of RF and linear methods is that all these models are trained with 88 

global LST-predictor relationships, and then predict the LST point by point (Wu and Li, 89 

2019; Pu, 2021). It is unquestioned that the underlying surface attributes are highly 90 

correlated with LSTs, but this association varies with the locations. Therefore, a global 91 

relationship might be not suitable for local LST downscaling, particularly in urban 92 

regions (Wang et al., 2021). Moreover, a point-by-point procedure is likely to result in 93 

a disruption of the spatial texture characteristics of LST, and generate a significant bias 94 

for very high or very low temperatures in the downscaled LST (DLST). The differences 95 

of LST between initial (low) resolution and target (high) resolution mainly suggest that 96 

lots of detailed information in sub-pixels at initial resolution is missing and the 97 
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boundaries at which temperatures greatly change are inaccurate (Fig. 1). Therefore, it 98 

is important to develop a new downscaling model that can simultaneously consider the 99 

temperature value and its spatial neighborhood relationships.  100 

 101 

Fig. 1. Visual differences between LST at low (a) and high resolution (b). 102 

Common methods for LST downscaling assume that the relationship between LSTs 103 

and predictors is scale-invariant, which has been questioned and needs more in-depth 104 

examination (Jeganathan et al., 2011; Chen et al., 2012; Pu, 2021). Previous researchers 105 

demonstrated the occurrence of scale effects when downscaling LST, which is usually 106 

caused by varied probability distributions of LST and different influencing factors 107 

between the initial and target resolution (Zhou et al., 2016; Pu, 2021). The spatial 108 

context, i.e. the region covered by the LST map, is another variable affecting the 109 

accuracy of DLST. Generally, the accuracy of DLST tends to decrease with an increase 110 

of the ratio from initial to target resolution, and an increase of the spatial context (Chen 111 

et al., 2012). At low resolution, the thermal performance of a pixel results from the 112 

within-pixel mixture of land cover and is constrained by the dominant land cover type. 113 

Their influence on the spatial variations of LST are relatively uniform and the scale 114 

remains relatively stable. At high resolution, each pixel is relatively pure, and the 115 

influence of varied land cover types on LST might be not scale-invariant, but multiscale 116 

(Pu, 2021): particularly when the target resolution is in a range of 20-30 m, downscaling 117 
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processes proved to be not safe and results were not reliable.  118 

This study proposes a new downscaling method called Three Layers Composition 119 

(TLC) based on image processing, and aims to demonstrate its suitability and 120 

advantages by 1) evaluating the downscaled LST over different land use and land cover 121 

types, estimated with a machine learning model (RF) and two linear methods (DisTrad 122 

and TsHARP); and 2) discussing the performance of different methods at varied target 123 

resolutions and contexts, and assessing the ability of TLC to reduce the influence of 124 

scale effects on DLST maps. For applicability in operational LST downscaling, we 125 

clarify which method works safely at which scale requirements (resolution and context). 126 

2. Study area and Data 127 

2.1. Study area 128 

Beijing (39˚54ʹN, 116˚23ʹE), covering a total area of about 16000 km2, is the 129 

political and cultural center of China. The terrain of Beijing gradually decreases from 130 

northwest to southeast, and the main urban region is located in the south plain (Fig. 2d). 131 

Beijing has a humid continental monsoon climate with severe, dry winters, hot summers 132 

and strong seasonality with an annual mean temperature ranging from 10 ℃ to 12 ℃ 133 

and mean precipitation ranging from 450 mm to 550 mm. The study area is located in 134 

the center of Beijing, with a spatial extension of 60 ൈ 60 km, and the main land cover 135 

types include impervious surface distributed in the south, agriculture land distributed 136 

in the center and east, and forest distributed in the northeast mountain region (Fig. 2b). 137 

Since the 1980s, Beijing has witnessed a rapid urbanization and the urbanization level 138 

has reached 86% in 2010, having a significant influence on the urban thermal 139 

environment (Xiao et al., 2008; Peng et al., 2016).  140 
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 141 

Fig. 2. Beijing region (black square marks the experimental area). (a) Landsat 8 band composite 142 

(RGB-band 213); (b) map of land use and land cover; (c) spatial distribution of LST; (d) elevation 143 

a.s.l.  144 

2.2. Data 145 

Landsat 8 OLI/TIRS data of September 12, 2017, obtained from the USGS website 146 

(https://earthexplorer.usgs.gov/), has been systematically processed with radiometric 147 

and geometric correction. Most of Landsat 8 bands have a resolution of 30 m except 148 

thermal infrared bands (100 m) and panchromatic band (15 m). Landsat 8 supplies LST 149 

products retrieved using the atmospheric correction method with 30 m spatial resolution 150 

(Yu et al., 2020), and provides auxiliary parameters for LST downscaling. NASA’s 151 
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Shuttle Radar Topography Mission (SRTM) data were downloaded to extract the terrain 152 

factors (elevation, slope and aspect), which have a spatial resolution of 90 m.  153 

The resampling method of nearest-neighbor interpolation was applied in this study 154 

to upscale Landsat 8 LST and auxiliary parameters to coarser resolutions of 60 m, 90 155 

m, 120 m, 150 m and 300 m. SRTM data was resampled to 30 m and 60 m, and 156 

aggregated to 120 m, 150 m, and 300 m using spatial averaging. The LST map with 300 157 

m resolution was taken as the initial resolution LST for downscaling, while others were 158 

taken as reference LST (RLST). The purpose of the RLST is to evaluate the accuracy 159 

of DLST at different target resolutions. All the data were geometrically corrected to 160 

WGS84/UTM Zone 50 N. 161 

3. Methods 162 

3.1. Three Layers Composition (TLC) method 163 

Land use and land cover (LULC) types affect the spatial variations of LST 164 

significantly (Berger et al., 2017; Yu et al., 2020). Similar land covers at large scale 165 

form relatively smooth temperature variations with small gradients. Long stripes of land 166 

cover (e.g., rivers) and the junction of different land covers form a boundary texture in 167 

the temperature pattern, while tiny land patches shape detailed features. Both boundary 168 

and detailed features have large gradients. In an LST map with low resolution, texture 169 

boundaries and detailed features are severely missing. Therefore, for downscaling LST, 170 

we propose a new nonlinear approach TLC, which takes into account large-scale 171 

temperature variations, detailed LST characteristics, and boundary information. Using 172 

(1) a cubic convolution model, (2) a Gaussian low-pass filtering, and (3) a guided 173 

filtering, the TLC can properly extract the above mentioned three features from the low-174 

resolution temperature image ሺ𝑇௟௢௪ሻ and the high-resolution predictors (𝑃) (see flow 175 

chart in Fig. 3).  176 
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 177 

Fig. 3. Flow chart of the TLC method downscaling a low-resolution LST map. 178 

3.1.1. Extraction of a large-scale temperature layer 179 

The large-scale temperature layer (𝑇௖௨) represents the regional variations of LSTs 180 

at high spatial resolution, and is extracted from the low-resolution LST product (𝑇௟௢௪). 181 

Remote sensing images describe LST maps as continuous surfaces with high spatial 182 

autocorrelation (Hutengs and Vohland, 2016). Although a low-resolution LST map 183 

𝑇௟௢௪ሺ𝑥, 𝑦ሻ misses temperature characteristics at sub-pixel scale, it can well describe the 184 
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large-scale temperature fluctuation in the study area. The two-dimensional cubic 185 

convolution interpolation function (1) was applied to obtain the large-scale temperature 186 

characteristics 𝑇௖௨ሺ𝑖௫, 𝑗௬ሻ at pixel ሺ𝑖௫, 𝑗௬ሻ of high resolution that is located inside pixel 187 

ሺ𝑥, 𝑦ሻ of low resolution as follows (Keys, 1981): 188 

𝑇௖௨൫𝑖௫, 𝑗௬൯ ൌ ෍ ෍ 𝑇௟௢௪ሺ𝑥 ൅ 𝑟𝑜𝑤, 𝑦 ൅ 𝑐𝑜𝑙ሻ𝑆ሺ
𝑖௫ െ 𝑖௫ା௥௢௪

𝑙
ሻ𝑆ሺ

𝑗௬ െ 𝑗௬ା௖௢௟

𝑙
ሻ

ଶ

௖௢௟ୀିଵ

ଶ

௥௢௪ୀିଵ

(1)

where ሺ𝑥, 𝑦ሻ represents the interpolation node location, and 𝑙 represents the sampling 189 

increment. The convolution kernel 𝑆ሺ𝑥ଵሻ is composed of piecewise cubic polynomials 190 

defined on the subintervals (-2, -1), (-1, 0), (0, 1), and (1, 2); this symmetric kernel 191 

vanishes outside the interval (-2, 2) (Keys, 1981): 192 

𝑆ሺ𝑥ଵሻ ൌ ൜
ሺ𝑎ଵ ൅ 2ሻ|𝑥ଵ|ଷ െ ሺ𝑎ଵ ൅ 3ሻ|𝑥ଵ|ଶ ൅ 1, 0 ൑ |𝑥ଵ| ൑ 1

𝑎ଵ|𝑥ଵ|ଷ െ 5𝑎ଵ|𝑥ଵ|ଶ ൅ 8𝑎ଵ|𝑥ଵ| െ 4𝑎ଵ, 1 ൏ |𝑥ଵ| ൑ 2
 (2)

𝑆ሺ𝑥ଵሻ ൌ 0  when |𝑥ଵ| ൐ 2 . Parameter 𝑎ଵ  can be used to approximate different spline 193 

functions, specifically the interpolation error approaches 0 at a rate proportional to the 194 

third power of the sampling interval when 𝑎ଵ ൌ െ0.5 (Keys, 1981; Reichenbach and 195 

Geng, 2003). Cubic convolution interpolation is theoretically an optimal approximation 196 

of the 𝑠𝑖𝑛𝑐 function (Meijering et al., 1999), which is effective for edge enhancement 197 

and the preservation of subtle features in comparison to nearest-neighbor and bilinear 198 

interpolation.  199 

3.1.2. Extraction of boundary layer and detailed layer  200 

Boundary and detailed layers are the key to reconstruct high-resolution LST using 201 

TLC, because they supply detailed information at sub-pixel scale. In contrast to the 202 

large-scale temperature layer (𝑇௖௨) obtained from low-resolution LST (section 3.1.1), 203 

the boundary and detailed layers are extracted from high-resolution predictors in two 204 

steps: Firstly, predictors (𝑃 ), such as NDVI, ranging from െ1  to 1 , are linked to 205 
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temperatures (𝑇௟௢௪) by means of histogram matching, which preserves mean value and 206 

standard deviation of low-resolution LST (Zhang et al., 2019). This procedure ensures 207 

that the spatial locations and patterns of matched predictors (𝑃௠௔௧) are highly correlated 208 

with LSTs. The second step is to separate the boundary layer from the detailed layer. 209 

While both involve large gradients, the features of the latter are isotropic, i.e. in all 210 

directions. In contrast, boundary features have large gradients only in the normal 211 

direction and smaller gradients in the tangential direction. Based on this difference, this 212 

study applied a guided filtering to obtain the detailed layer, and a combination of 213 

Gaussian low-pass filtering and guided filtering to obtain the boundary layer. 214 

The guided filtering (eq. 3) acts on a local square window 𝜔௞ centered at pixel 𝑘, 215 

and is a linear function between the guided map (𝑇௖௨) and the output (𝑀), retaining the 216 

information which parts are boundaries and which are regions (He et al., 2012): 217 

𝑀ሺ𝑖, 𝑗ሻ ൌ 𝑐௞ 𝑇௖௨ሺ𝑖, 𝑗ሻ ൅ 𝑑௞, ∀ሺ𝑖, 𝑗ሻ ∈ 𝜔௞ (3)

𝑛ሺ𝑖, 𝑗ሻ ൌ 𝑃௠௔௧ሺ𝑖, 𝑗ሻ െ 𝑀ሺ𝑖, 𝑗ሻ ; 𝐸𝑥ሾ𝑛ሿ ൌ 𝑚𝑒𝑎𝑛ሺ𝑛ሻ
௖ೖ ,ௗೖ
ሱ⎯⎯ሮ 𝑀𝑖𝑛 (4)

where 𝑐௞  and 𝑑௞  represent linear coefficients assumed to be constant in the local 218 

window 𝜔௞. To determine these coefficients, we include the constraint (eq. 4) that the 219 

output 𝑀  results from the input image 𝑃௠௔௧  subtracting some unwanted components 220 

like noise/textures (𝑛). 𝐸𝑥 represents the mathematical expectation, and a linear ridge 221 

regression with regular terms was applied to minimizes the difference between input 222 

𝑃௠௔௧ and output 𝑀 (He et al., 2012). In result of guided filtering, the linear relationship 223 

(eq. 3) ensures that the spatial texture of M is as similar as possible to that of 𝑇௖௨ (Fig. 224 

4). Finally, the detailed layer D representing features of small land patches in the natural 225 

world, is calculated from subtracting the guided output from the predictor map, which 226 

provides important detailed information on the DLST (eq. 5). 227 



13 
 

𝐷ሺ𝑖, 𝑗ሻ ൌ 𝑃௠௔௧ሺ𝑖, 𝑗ሻ െ 𝑀ሺ𝑖, 𝑗ሻ (5)

 228 

Fig. 4. (a) map of the predictor after matching; (b) guided map (𝑇௖௨); (c) result of guided filtering 229 

with window size 11; (d) result of Gaussian low-pass filtering with cut-off frequency 3. 230 

To extract the boundary layer, a Gaussian low-pass filter (𝑔ሻ was applied to the 231 

predictor (eq. 6). It utilizes a Gaussian distribution kernel, removes high-frequency 232 

noise and preserves the low-frequency components (Haddad and Akansu, 1991).  233 

𝑵 ൌ 𝒈 ∗ 𝑷𝒎𝒂𝒕 (6)

Unlike guided filtering, the Gaussian low-pass acts isotropic and both the details and 234 

the boundaries in 𝑃௠௔௧  are weakened or even disappeared after filtering (Fig. 4d). 235 

Considering that the output M of guided filtering retains the boundary and regional 236 

features, the boundary layer can be described as (eq. 7): 237 

𝑬 ൌ 𝑴 െ 𝑵 (7)
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To properly merge all layers, the boundary and detailed layer obtained from high-238 

resolution predictors were then transferred into the 𝑇𝑐𝑢 space by weighing (𝒘𝒆𝒊𝒈𝒉𝒕 ൌ239 

𝑻𝒄𝒖/𝑷𝒎𝒂𝒕), and the downscaled LST is (eq. 8): 240 

𝑫𝑳𝑺𝑻 ൌ 𝑻𝒄𝒖 ൅ 𝒘𝒆𝒊𝒈𝒉𝒕 ∙ ሺ𝑎 ∙ 𝑫 ൅ 𝑏 ∙ 𝑬ሻ (8)

a and b are constants adjusting the weight and integrating the detailed and boundary 241 

layers; the cut-off frequency of the Gaussian low-pass filtering and the window size of 242 

the guided filtering are another two parameters that need to be optimized. In this study, 243 

we set the cut-off frequency to 3, 𝜔௞ ൌ 11, 𝑎 ൌ 0.3, 𝑏 ൌ 0.6 (for detailed parameter 244 

specifications see supplementary material).  245 

To predict urban LST, it is insufficient to use only one single predictor for different 246 

land cover types. In this study, NDVI was applied to predict the temperature in 247 

vegetated regions, NDBI was applied to predict the temperature in urban impervious 248 

regions, and NDWI was applied to predict the temperature in water bodies.  249 

3.2. Additional methods for comparison with TLC 250 

To assess the performance of the suggested TLC approach, three alternative models 251 

were applied (see Table 1 for input variables): DisTrad, TsHARP and RF. The first two 252 

are classical methods for LST downscaling based on its linear correlation to NDVI, 253 

while the nonlinear machine learning algorithm RF can model complex relationships 254 

between LST and predictors, accounts for both multicollinearity and nonlinearity, and 255 

avoids overfitting by averaging a large number of de-correlated individual trees 256 

(Hutengs and Vohland, 2016). The RF model parameters for the regression trees set-up 257 

include: 1) the number of regression trees (600); 2) minimum number of observations 258 

per tree leaf (5).  259 

Table 1. Variables selected for downscaling methods in this study 260 
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Index Name Functions and characteristics Application 

NDVI Normalized 

difference 

vegetation index 

Well-documented negative relationship 

with LST, and positive relationship with soil 

moisture. 

DisTrad; 

TsHARP; 

RF; 

TLC 

NDBI Normalized 

difference 

building index 

High correlation with impervious surface 

area and less sensitive to seasonal change 

than NDVI. 

RF; 

TLC 

NDWI Normalized 

difference water 

index 

High linear correlation with LST, 

particularly over the water. 

RF; 

TLC 

SAVI Soil-adjusted 

vegetation index 

Interaction of soil properties and vegetation 

systems. 

RF; 

TLC 

BSI Bare soil index High correlation with bare soil. RF 

LULC Land use and 

land cover types 

Influence of underlying surface attributes 

on LST. 

RF 

Elevation Terrain factors High negative correlation with LST in 

mountain area. 

RF 

Slope RF 

Aspect RF 

DisTrad, TsHARP and RF for DLST calculation include following steps (Fig. 5): 261 

(1) Assessment of the association between LST map and predictors at initial (lower) 262 

resolution: 263 

𝑇௟௢௪෪ ൌ 𝑓ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠௟௢௪ሻ (9)

For DisTrad, the prediction variable is NDVI, and a linear regression (eq. 10) is 264 

performed:  265 

𝑇௟௢௪෪ ൌ 𝑎଴ ൅ 𝑎ଵ ∗ 𝑁𝐷𝑉𝐼௟௢௪ (10)

For TsHARP, the vegetation cover (FVC) was calculated and taken as predictor (eq. 266 

11 and 12).   267 
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𝐹𝑉𝐶 ൌ ሺ1 െ 𝑁𝐷𝑉𝐼ሻ଴.଺ଶହ (11)

𝑇௟௢௪෪ ൌ 𝑏଴ ൅ 𝑏ଵ ∗ 𝐹𝑉𝐶௟௢௪ (12)

For RF, sequential randomised and de-correlated decision trees represent the 268 

complex relationship between multiple predictors and low-resolution LST:  269 

𝑇௟௢௪෪ ൌ 𝑓ோிሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠௟௢௪ሻ (13)

(2) Prediction of LSTs at high resolution (𝑇௛ప௚௛෫  ) utilizing the downscaling models 270 

trained in Step (1): 271 

𝑇௛ప௚௛෫ ൌ 𝑓ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠௛௜௚௛ሻ (14)

(3) Improvement of the accuracy of high-resolution LST maps 𝑇௛ప௚௛෫  calculated in Step 272 

(2) by help of error calibration. The error ∆𝑇௟௢௪෪  was calculated as the difference 273 

between the LST product and the estimated LST at low resolution (eq. 15), and then 274 

downscaled into high resolution ∆𝑇௛ప௚௛෫  by Kriging interpolation. Then the final 275 

DLST map at high resolution 𝑇௛ప௚௛തതതതതതത  was calculated (eq. 16): 276 

∆𝑇௟௢௪෪ ൌ 𝑇௟௢௪ െ 𝑇௟௢௪෪  (15)

𝑇௛ప௚௛തതതതതതത ൌ 𝑇௛ప௚௛෫ ൅ ∆𝑇௛ప௚௛෫  (16)
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 277 

Fig. 5. Flow chart of traditional methods (DisTrad, TsHARP, and RF) for downscaling. 278 

3.3. Descriptive statistics and error analyses 279 

For the DLST and RLST maps, histograms and scatter density plots were created 280 

to evaluate the consistency of their spatial distributions, and the coefficient of 281 

determination (𝑅ଶ) for their association. Taylor Diagrams were used to comparatively 282 

assess the different downscaling methods. Three statistics: standard deviation (𝑆𝑇𝐷), 283 

centered root-mean-square error (𝐶𝑅𝑀𝑆𝐸), and correlation coefficient (𝐶𝐶) satisfy the 284 

cosine theorem utilized for the Taylor Diagram (Taylor, 2001): 285 

𝐶𝑅𝑀𝑆𝐸ଶ ൌ 𝑆𝑇𝐷஽௅ௌ்
ଶ ൅ 𝑆𝑇𝐷ோ௅ௌ்

ଶ െ 2 ∗ 𝑆𝑇𝐷஽௅ௌ் ∗ 𝑆𝑇𝐷ோ௅ௌ் ∗ 𝐶𝐶 (17)
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4. Results 286 

4.1. Comparison between TLC and other methods for LST downscaling 287 

TLC, DisTrad, TsHARP and RF were applied to downscale LST from initial 288 

resolution (300 m) to target resolution (30 m), respectively, and the LST map inversed 289 

from Landsat 8 was taken as reference LST (RLST, see Fig. 6b). All four DLST maps 290 

were similar to the RLST, and the best result was achieved by TLC, followed by RF, 291 

DisTrad and TsHARP based on visual inspection of spatial distribution locations and 292 

patterns.  293 

 294 

Fig. 6. (a) Downscaled LST maps and (b) Landsat 8 RLST. 295 

Comparing paired histograms between DLST and RLST (Fig. 7a), the DLST 296 

downscaled by TLC were in closer agreement with the reference than the other methods. 297 

For DisTrad and TsHARP, there was significant bias, especially in the very low 298 

temperature range. Overestimates arise from RF around moderate temperatures (near 299 

28 ℃ ). Most residual errors between DLST and RLST were around zero (Fig. 7b). 300 

Residual errors of TLC were in the range from -1 ℃ to 1 ℃, whereas the linear methods 301 

were most prone to residual errors exceeding 5 ℃. At points of large noise the DLST 302 
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calculated by linear methods was considerably deviating from the corresponding RLST 303 

(e.g. in the northern and western areas, where reverse temperature characteristics 304 

occurred). The best downscaling results were achieved for TLC (R2 = 0.901), followed 305 

by RF (R2 = 0.768), TsHARP (R2 = 0.544) and DisTrad (R2 = 0.518).  306 

 307 

Fig. 7. (a) Histograms of DLST compared to Landsat 8 RLST. (b) Error distribution between 308 

Landsat 8 RLST and downscaled LSTs. (c) Scatter density plots of DLST (y-axis) versus RLST (x-309 

axis) downscaling from initial resolution 300 m to target resolution 30 m. From left to right: DisTrad, 310 

TsHARP, RF and TLC. 311 

In the Taylor Diagram (Fig. 8), the downscaling models were represented by solid 312 
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dots of different colors, and the distance between each model and the reference point 313 

labelled ‘XEF’ is a measure of the performance of the downscaling method. A closer 314 

distance to the reference point means higher accuracy of the method. The Taylor 315 

diagram directly indicated that DLST accuracy was best for TLC (shortest distance to 316 

XEF, Fig. 8). TLC had lowest CRMSE (0.319) and highest CC (0.951), followed by RF 317 

(CRMSE = 0.502, CC = 0.874), TsHARP (CRMSE = 0.652, CC = 0.734) and DisTrad 318 

(CRMSE = 0.751, CC = 0.719). The STDs of DLST using DisTrad, RF and TLC were 319 

generally consistent with RLST, while TsHARP had much less variability in 320 

downscaled temperatures. 321 

 322 

Fig. 8. Taylor diagram evaluating the accuracy of DLST using different downscaling methods. ‘XEF’ 323 

represents the reference data, the CC is related to the azimuthal angle (yellow lines), the CRMSE of 324 

the downscaled results is proportional to the distance to the reference point XEF (blue lines), and 325 

the STD is proportional to the radial distance to the origin (black lines).  326 

Fig. 9 illustrated the accuracy of the downscaling methods in terms of different 327 

land cover types. Compared with TLC, RF was less accurate, but still outperformed 328 

TsHARP and DisTrad. For linear methods, the accuracy of DLST maps for forest was 329 

much lower than that of imperious surface land and agriculture land, because the terrain 330 

of imperious surface and agriculture land is relatively flat, while forest is mainly 331 
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distributed in the mountain area. The linear methods do not consider any changes of the 332 

terrain and involve just the association with NDVI, which leads to a significant 333 

misrepresentation of forest temperature. RF and TLC predicted forest temperatures 334 

more accurately than the impervious surface and cultivated land temperatures. For the 335 

RF, terrain fluctuation is an important variable for LST prediction, and the influence of 336 

terrain on the temperature is well considered during the model training process. The 337 

higher spatial aggregation level and less heterogeneity of forest landscape cause a 338 

relatively higher prediction accuracy than the impervious surface with high spatial 339 

heterogeneity. Differently from the other methods, TLC takes the texture similarity 340 

between land cover and LSTs into consideration, which can well capture local 341 

temperature fluctuations and avoid massive noise in the DLST map.  342 

 343 

Fig. 9. Taylor diagram evaluating the accuracy of DLST maps for different land cover types (marked 344 

by symbol shapes: for example, the blue rectangular box marks the accuracy of forest LST obtained 345 

from DisTrad). 346 

4.2. The influence of scale effects on DLST calculated by different methods 347 

4.2.1. Accuracy depending on spatial resolution  348 

To study the influence of spatial resolution on LST downscaling for all considered 349 

methods, we firstly downscaled LST from 300 m spatial resolution to 30 m, 60 m, 90 350 
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m, 120 m, and 150 m within a spatial context 60 ൈ 60 km (Fig. s1 in supplementary 351 

material). Generally, the spatial distribution and patterns of DLST were consistent to 352 

RLST, but the DLST maps using nonlinear methods were visually much smoother and 353 

more similar to RLST than those using linear methods.  354 

With increasing ratio from initial to target resolution, R2 tended to decrease (Fig. 355 

10), because a higher ratio means that more detailed information needs to be added to 356 

DLST maps and more errors might be introduced. The drop of R2 using TLC was only 357 

0.038, much lower than that using RF (0.272), TsHARP (0.249) and DisTrad (0.326), 358 

which indicated that the TLC method might be more reliable than other methods.  359 

 360 
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Fig. 10. Scatter density plots of DLST (y-axis) versus RLST (x-axis) extracted from Landsat 8 30 361 

m LST products (from left to right: target resolution from 30 m to 150 m; from top to bottom: 362 

DisTrad, TsHARP, RF, and TLC). 363 

An increase of spatial resolution clearly weakened the quality of DLST maps, but 364 

in different amounts (Fig. 11): The CRMSE of TLC decreased by around 0.07, much 365 

lower than for RF (0.224), TsHARP (0.231), and DisTrad (0.178). The CC showed 366 

similar changes, which indicated that the TLC might better resist the influence of scale 367 

effects.  368 

 369 

Fig. 11. Taylor diagram evaluating the accuracy of DLST maps for varied target resolutions. 370 

4.2.2. Accuracy depending on spatial context 371 

The LST at 300 m resolution was downscaled into 30 m resolution for different 372 

spatial contexts: 15 ൈ 15 km, 30 ൈ 30 km, 45 ൈ 45 km, and 60 ൈ 60 km. For varied 373 

regions, the smaller region was included in the larger region, for example, the region 374 

15 ൈ 15 km was located in the center of the region 30 ൈ 30 km. In results (Fig. s2, 375 

supplementary material), for extreme temperatures, the smoothness in DLST maps 376 

from DisTrad and TsHARP was significant, and there was an obvious overestimation 377 

of low temperatures compared with nonlinear methods.  378 

Downscaling performance of TLC and RF was reasonable, while the results of 379 
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DisTrad and TsHARP were relatively poor (Fig. 12). With increasing spatial context,  380 

the R2 of TsHARP, RF and TLC showed similar variations that the values increased first 381 

from 15 ൈ 15 km to 30 ൈ 30 km, and then decreased gradually. A smaller area has less 382 

pixel samples, that is why the model accuracy is relatively lower, particularly for the 383 

linear models, suggested by the R2 of DisTrad (0.359) and TsHARP (0.445). For study 384 

regions of very large size, the trained models can hardly capture each detailed 385 

characteristics between LST and its predictors, which might lead to a decrease of DLST 386 

accuracy. Compared with traditional methods, the R2 of TLC stayed at a relatively high 387 

level, and its detoriation was much lower with increasing spatial context (similar 388 

conclusions result from the Taylor diagram (Fig. 13). We find that the main reason for 389 

the high performance of TLC is that traditional methods downscale LST with global 390 

LST-predictor relationships, which might be not suitable for local temperature 391 

prediction. TLC relied on the texture similarity between LST and predictors, which can 392 

well consider the autocorrelation of LST, and can preserve the local variations of actual 393 

LST as much as possible.  394 
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 395 

Fig. 12. Scatter density plots of DLST (y-axis) versus RLST (x-axis) extracted from Landsat 8 30 396 

m LST products (from left to right: varied spatial context from 15 ൈ 15 km to 60 ൈ 60 km; from 397 

top to bottom: DisTrad, TsHARP, RF, and TLC). 398 
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 399 

Fig. 13. Taylor diagram evaluating the accuracy of DLST maps over varied spatial context. 400 

5. Discussions and Conclusions 401 

5.1. Advantages of TLC in LST downscaling  402 

One of the main goals in this study was to evaluate the suitability and effectiveness 403 

of the new TLC method for downscaling LST in highly heterogeneous regions, and the 404 

results, particularly the Taylor Diagram indicated that TLC outperforms traditional 405 

methods. The accuracy of DLST obtained from RF was much higher than that using 406 

linear methods, similar to the findings of Hutengs and Vohland (2016). In the urban 407 

region, the relationship between LST and its influencing factors is not linear (Peng et 408 

al., 2016; Wang et al., 2021), and the complexity of landscape composition and 409 

configuration is likely to result in significant variations of temperature (Berger et al., 410 

2017; Yu et al., 2020). Among the nonlinear methods, TLC was superior for 411 

downscaling LST than RF, because the decision trees used in the RF regression were 412 

carried out based on the global LST-predictor relationships, which lack of the 413 

consideration of spatial autocorrelation and local correlation. This insufficiency might 414 

disrupt the spatial neighborhood relationships, and lead to massive noise compared to 415 

RLST. Unlike global LST-predictor relationships, the Gaussian low-pass filtering and 416 
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guided filtering applied in TLC both act in a local window, ensuring that the local DLST 417 

variations are only affected by the local predictors and can effectively avoid 418 

interferences from other pixels. TLC has the advantage of being able to reconstruct the 419 

missing local information at target resolution based on texture similarity between LST 420 

and multiple predictors, and the combination of detailed information and large-scale 421 

temperature variations help maintain the continuity and consistency of DLST.  422 

Among different land cover types, the predicted temperature at forest regions using 423 

linear methods showed lower accuracy and weak consistency with RLST than that at 424 

impervious surface land. However, this relationship was reverse for nonlinear methods, 425 

supporting findings of Wu and Li (2019) who also applied TsHARP and RF models to 426 

downscale LST in Beijing city. The differences over varied land cover types are mainly 427 

caused by terrain factors. In Beijing, forests are mostly distributed in the northern and 428 

western mountain region with a stronger variability of the terrain. For linear models, 429 

the influence of terrain on the DLST was not included during the model training process. 430 

The nonlinear methods (RF and TLC) avoid this insufficiency, particularly the latter 431 

suggested better performance in forested regions than for sealed surfaces. In the urban 432 

region highly covered with impervious surfaces, the spatial heterogeneity exceeds that 433 

of other areas significantly, and temperature patterns change greatly, leading to 434 

difficulties and errors in LST downscaling. However, the DLST using TLC showed 435 

significant over-smoothed characteristics in comparison to other methods (Fig. 14). The 436 

reason for this might be related to the selection of predictors. For each land cover type, 437 

TLC applied a single predictor for downscaling, while RF allows multiple indices to 438 

complement each other with detailed information. Despite different combinations of 439 

predictors in TLC, the correlation between NDBI and NDVI in the study region exceeds 440 

0.93, indicating that NDVI is unlikely to provide more detailed information compared 441 
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to NDBI. In addition, the quality of predictors, particularly the systematic error brought 442 

by the sensors in the remote sensing images also has a great influence on DLST. In 443 

future studies, the TLC algorithm should consider combinations of multiple predictors 444 

to deal with this insufficiency. 445 

 446 

Fig. 14. Comparison of Landsat 8 RLST and downscaled LST maps for different land cover types 447 

(from left to right: Landsat 8, DisTrad, TsHARP, RF, and TLC; from top to bottom: water, agriculture 448 

land, forest, impervious surface land). 449 

For the extreme temperature range, the DLST tended to be biased with an 450 

overestimation of low temperatures and an underestimation of high temperatures. A 451 

similar phenomenon was previously noted by Hutengs and Vohland (2016), and Xu et 452 

al. (2020). Compared to TLC, this bias was much more pronounced for DisTrad, 453 

TsHARP and RF. The inability of traditional downscaling methods to predict very high 454 

or very low temperatures might be caused by an insufficient number of training samples. 455 

Models trained with global variables must represent the entire LST map, which can 456 
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make conventional models insensitive to local temperature extremes. TLC can 457 

overcome this shortcoming and achieved both a local as well as a global optimal 458 

solution for DLST by adding detailed information and strong boundary information into 459 

the large-scale temperature layer.  The local optimal solution helps to control the 460 

dispersion and bias for extreme LST values, while the global optimal solution 461 

contributes to preserve the spatial texture and control the deviation of DLST relative to 462 

RLST. 463 

5.2. Advantages of TLC for reducing scale effects in LST downscaling  464 

The experimental results of scale effects indicated that the accuracy of downscaling 465 

LST was affected by the complexity of surface coverage significantly, and it is 466 

recommended that a range of spatial resolutions and contexts should be pre-calculated 467 

before conducting an LST downscaling project (Chen et al., 2012; Zhou et al., 2016). 468 

In this study, the accuracy of DLST maps was directly related to the ratio from initial 469 

to target resolution. With the increase of target resolution, the ‘pureness’ of pixels tends 470 

to be stronger and the thermal conditions over a surface are usually controlled by a 471 

specific land cover or land use type, different from ‘mixed’ pixels at coarser resolution 472 

with similar scaling factor pixel values. This effect leads to scale dependence in LST 473 

downscaling: the larger the ratio between initial and target resolution is, the more 474 

detailed information needs to be determined and added into the downscaling models 475 

(Jeganathan et al., 2011; Wu and Li, 2019), which potentially can increase the errors 476 

and decrease the accuracy of DLST maps.  477 

To analyze the impact of the spatial context, this study considered regions of 478 

different size.  As the size increases, the complexity of the surface coverage changes. 479 

The R2 and Taylor Diagrams indicated that a region of 30 ൈ 30 km might be most useful 480 

for RF and TLC downscaling. For linear methods, a larger experimental region means 481 
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more training samples, for which the accuracy tended to increase, but was still much 482 

lower than for nonlinear methods. Considering both spatial resolution and spatial 483 

context, nonlinear methods, particularly TLC, indicated a better performance to resist 484 

scale effects on DLST. However, these implications arose only from applying our 485 

approach to the selected urban hotspot. The conclusion may be different for other 486 

regions depending on the location's peculiarities of terrain, climate and LULC types, 487 

and an increase of the study area size does not always result in an increased surface 488 

complexity of the considered area. 489 

In addition to accuracy requirements, computation time is another key parameter 490 

for downscaling in a larger region. The ideal method should be highly accurate and less 491 

time consuming. RF is a widely used model for LST downscaling due to its high 492 

accuracy. However, many prediction parameters have to be pre-calculated and much 493 

time is consumed to train the regression model. In this study, RF took 100.4 seconds to 494 

downscale LST from 300 m to 30 m resolution within a spatial context of 60 ൈ 60 km, 495 

nearly 10 times longer than DisTrad and TsHARP, while TLC took only 6.3 seconds. 496 

As the spatial context increases, the time requirement of RF increases sharply due to 497 

the larger number of training samples. Guided filtering assumes linearity between 498 

guided output and guided image in a local window, thus the computational speed of 499 

TLC benefits from this linearity. We conclude that the TLC is more accurate and less 500 

time-consuming, compared with traditional downscaling methods, which provides a 501 

good basis for obtaining regional or even global LST with high spatial resolution.  502 

5.3. Limitations of this study and potential applications of TLC  503 

TLC performed better than traditional methods for LST downscaling, however, it 504 

has a stronger dependence on the quality of predictors. TLC is guided by techniques of 505 

image processing, which requires that the predictors for LST downscaling should well 506 
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reflect the land surface at one single day. Accuracy might be affected if the predictors 507 

are poor or multiday composites. RF is more flexible than TLC in selecting predictors 508 

and even multiday composite products can be included. In the future, the TLC algorithm 509 

should be tested with the inclusion of different types of predictors, as these can provide 510 

detailed information and constraints for downscaling, and expand the applicability of 511 

TLC. 512 

The experimental design of this study had limitations. Firstly, downscaling 513 

accuracy was not analyzed for target resolutions greater than 30 m, due to limited spatial 514 

resolution of the thermal infrared sensors. Some literature, for example, Pu (2021) 515 

found significant differences between DLST and RLST within a target resolution range 516 

of 15-20 m. Secondly, the accuracy of DLST as well as Landsat 8 LST product was not 517 

verified using ground measured temperature. The latter is only based on existing 518 

literature (Berger et al., 2017). In the future, unmanned aerial vehicles with thermal 519 

infrared cameras and ground measured data might be used to demonstrate the 520 

superiority of the TCL method as well as the influence of scale effects on the DLST. In 521 

addition, this study proposed a new nonlinear method for LST downscaling, but tested 522 

only on LST products from Landsat 8. In future studies, TLC could be applied to other 523 

remote sensing sensors with coarser spatial resolution, such as MODIS, Advanced Very 524 

High Resolution Radiometer (AVHRR), and Infrared Spectrograph (IRS).  525 

Author Contributions 526 

Conceptualization, FG; Data processing, FG and DH; Formal analysis, FG and US; 527 

Methodology, FG; Writing—original draft, FG; Manuscript modification, FG, DH and 528 

US. 529 

Declaration of Competing Interest 530 

The authors declare that they have no known competing financial interests or personal 531 



32 
 

relationships that could have appeared to influence the work reported in this paper. 532 

Acknowledgement  533 

The first author would like to express his gratitude for the research support from China 534 

Scholarship Council under Grant No. 202008080124.  535 



33 
 

References 536 

Agam, N., Kustas, W. P., Anderson, M. C., Li, F., & Neale, C. M. (2007). A vegetation 537 

index based technique for spatial sharpening of thermal imagery. Remote Sensing 538 

of Environment, 107(4), 545-558. DOI: 10.1016/j.rse.2006.10.006 539 

Berger, C., Rosentreter, J., Voltersen, M., Baumgart, C., Schmullius, C., & Hese, S. 540 

(2017). Spatio-temporal analysis of the relationship between 2D/3D urban site 541 

characteristics and land surface temperature. Remote sensing of environment, 193, 542 

225-243. DOI: 10.1016/j.rse.2017.02.020 543 

Chen, X., Yamaguchi, Y., Chen, J., & Shi, Y. (2012). Scale effect of vegetation-index-544 

based spatial sharpening for thermal imagery: A simulation study by ASTER 545 

data. IEEE Geoscience and Remote Sensing Letters, 9(4), 549-553. DOI: 546 

10.1109/LGRS.2011.2174453. 547 

Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat 548 

and MODIS surface reflectance: Predicting daily Landsat surface 549 

reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-550 

2218. DOI: 10.1109/TGRS.2006.872081 551 

Haddad, R. A., & Akansu, A. N. (1991). A class of fast Gaussian binomial filters for 552 

speech and image processing. IEEE Transactions on Signal Processing, 39(3), 553 

723-727. DOI: 10.1109/78.80892 554 

He, K., Sun, J., & Tang, X. (2012). Guided image filtering. IEEE transactions on 555 

pattern analysis and machine intelligence, 35(6), 1397-1409. DOI: 556 

10.1109/TPAMI.2012.213 557 

Huang, X., & Wang, Y. (2019). Investigating the effects of 3D urban morphology on 558 

the surface urban heat island effect in urban functional zones by using high-559 

resolution remote sensing data: A case study of Wuhan, Central China. ISPRS 560 



34 
 

Journal of Photogrammetry and Remote Sensing, 152, 119-131. DOI: 561 

10.1016/j.isprsjprs.2019.04.010 562 

Hutengs, C., & Vohland, M. (2016). Downscaling land surface temperatures at regional 563 

scales with random forest regression. Remote Sensing of Environment, 178, 127-564 

141. DOI: 10.1016/j.rse.2016.03.006 565 

Jeganathan, C., Hamm, N. A., Mukherjee, S., Atkinson, P. M., Raju, P. L. N., & 566 

Dadhwal, V. K. (2011). Evaluating a thermal image sharpening model over a 567 

mixed agricultural landscape in India. International Journal of Applied Earth 568 

Observation and Geoinformation, 13(2), 178-191. DOI: 569 

10.1016/j.jag.2010.11.001 570 

Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: 571 

An analysis of global vegetation from NDVI and LST parameters. Remote sensing 572 

of environment, 113(2), 329-334. DOI: 10.1016/j.rse.2008.09.016. 573 

Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE 574 

transactions on acoustics, speech, and signal processing, 29(6), 1153-1160. DOI: 575 

10.1109/TASSP.1981.1163711. 576 

Kustas, W. P., Norman, J. M., Anderson, M. C., & French, A. N. (2003). Estimating 577 

subpixel surface temperatures and energy fluxes from the vegetation index–578 

radiometric temperature relationship. Remote sensing of environment, 85(4), 429-579 

440. DOI: 10.1016/S0034-4257(03)00036-1 580 

Meijering, E. H., Zuiderveld, K. J., & Viergever, M. A. (1999). Image reconstruction 581 

by convolution with symmetrical piecewise nth-order polynomial kernels. IEEE 582 

transactions on image processing, 8(2), 192-201. DOI: 10.1109/83.743854 583 

Nichol, J. (2005). Remote sensing of urban heat islands by day and night. 584 

Photogrammetric Engineering & Remote Sensing, 71(5), 613-621. DOI: 585 



35 
 

10.14358/PERS.71.5.613 586 

Peng, J., Xie, P., Liu, Y., & Ma, J. (2016). Urban thermal environment dynamics and 587 

associated landscape pattern factors: A case study in the Beijing metropolitan 588 

region. Remote Sensing of Environment, 173, 145-155. DOI: 589 

10.1016/j.rse.2015.11.027 590 

Pu, R. (2021). Assessing scaling effect in downscaling land surface temperature in a 591 

heterogenous urban environment. International Journal of Applied Earth 592 

Observation and Geoinformation, 96, 102256. DOI: 10.1016/j.jag.2020.102256 593 

Reichenbach, S. E., & Geng, F. (2003). Two-dimensional cubic convolution. IEEE 594 

Transactions on Image Processing, 12(8), 857-865. DOI:  595 

10.1109/TIP.2003.814248 596 

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single 597 

diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. 598 

DOI: 10.1029/2000JD900719 599 

Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and 600 

normalized difference vegetation index products for monitoring drought in the 601 

southern Great Plains, USA. International journal of remote sensing, 25(1), 61-72. 602 

DOI: 10. 1080/0143116031000115328. 603 

Wang, S., Luo, Y., Li, X., Yang, K., Liu, Q., Luo, X., & Li, X. (2021). Downscaling 604 

Land Surface Temperature Based on Non-Linear Geographically Weighted 605 

Regressive Model over Urban Areas. Remote Sensing, 13(8), 1580. DOI: 606 

10.3390/rs13081580 607 

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental 608 

studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and 609 

Remote Sensing, 64(4), 335-344. DOI: 10.1016/j.isprsjprs.2009.03.007 610 



36 
 

Wu, H., & Li, W. (2019). Downscaling land surface temperatures using a random forest 611 

regression model with multitype predictor variables. IEEE Access, 7, 21904-612 

21916. DOI: 10.1109/ACCESS.2019.2896241 613 

Xiao, R., Weng, Q., Ouyang, Z., Li, W., Schienke, E. W., & Zhang, Z. (2008). Land 614 

Surface Temperature Variation and Major Factors in Beijing, China. 615 

Photogrammetric Engineering and Remote Sensing, 74(4), 451-461. DOI: 616 

10.14358/PERS.74.4.451 617 

Xu, J., Zhang, F., Jiang, H., Hu, H., Zhong, K., Jing, W., ... & Jia, B. (2020). 618 

Downscaling ASTER land surface temperature over urban areas with machine 619 

learning-based area-to-point regression Kriging. Remote Sensing, 12(7), 1082. 620 

DOI: 10.3390/rs12071082 621 

Yu, S., Chen, Z., Yu, B., Wang, L., Wu, B., Wu, J., & Zhao, F. (2020). Exploring the 622 

relationship between 2D/3D landscape pattern and land surface temperature based 623 

on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China. 624 

Science of The Total Environment, 138229. DOI: 10.1016/j.scitotenv.2020.138229 625 

Zawadzka, J., Corstanje, R., Harris, J., & Truckell, I. (2020). Downscaling Landsat-8 626 

land surface temperature maps in diverse urban landscapes using multivariate 627 

adaptive regression splines and very high resolution auxiliary data. International 628 

Journal of Digital Earth, 13(8), 899-914. DOI: 10.1080/17538947.2019.1593527 629 

Zhang, W, Gong C, Hu Y, Song W, & Kuang D. (2019). A Research on spatial 630 

downscaling of thermal infrared image based on improved three-layer 631 

decomposition model. J. Infrared Millim. Waves, 38(2), 203-209. DOI: 632 

10.11972/j.issn.1001-9014.2019.02.013 633 

Zhou, J., Liu, S., Li, M., Zhan, W., Xu, Z., & Xu, T. (2016). Quantification of the scale 634 

effect in downscaling remotely sensed land surface temperature. Remote 635 



37 
 

Sensing, 8(12), 975. DOI: 10.3390/rs8120975. 636 

  637 



38 
 

List of Figure Captions 638 

Fig. 1. Visual differences between LST at low (a) and high resolution (b). 639 

Fig. 2. Beijing region (black square marks the experimental area). (a) Landsat 8 band 640 

composite (RGB-band 213); (b) map of land use and land cover; (c) spatial distribution 641 

of LST; (d) elevation a.s.l.  642 

Fig. 3. Flow chart of the TLC method downscaling a low-resolution LST map. 643 

Fig. 4. (a) map of the predictor after matching; (b) guided map (𝑇௖௨); (c) result of guided 644 

filtering with window size 11; (d) result of Gaussian low-pass filtering with cut-off 645 

frequency 3. 646 

Fig. 5. Flow chart of traditional methods (DisTrad, TsHARP, and RF) for downscaling. 647 

Fig. 6. (a) Downscaled LST maps and (b) Landsat 8 RLST. 648 

Fig. 7. (a) Histograms of DLST compared to Landsat 8 RLST. (b) Error distribution 649 

between Landsat 8 RLST and downscaled LSTs. (c) Scatter density plots of DLST (y-650 

axis) versus RLST (x-axis) downscaling from initial resolution 300 m to target 651 

resolution 30 m. From left to right: DisTrad, TsHARP, RF and TLC. 652 

Fig. 8. Taylor diagram evaluating the accuracy of DLST using different downscaling 653 

methods. ‘XEF’ represents the reference data, the CC is related to the azimuthal angle 654 

(yellow lines), the CRMSE of the downscaled results is proportional to the distance to 655 

the reference point XEF (blue lines), and the STD is proportional to the radial distance 656 

to the origin (black lines).  657 

Fig. 9. Taylor diagram evaluating the accuracy of DLST maps for different land cover 658 

types (marked by symbol shapes: for example, the blue rectangular box marks the 659 

accuracy of forest LST obtained from DisTrad). 660 



39 
 

Fig. 10. Scatter density plots of DLST (y-axis) versus RLST (x-axis) extracted from 661 

Landsat 8 30 m LST products (from left to right: target resolution from 30 m to 150 m; 662 

from top to bottom: DisTrad, TsHARP, RF, and TLC). 663 

Fig. 11. Taylor diagram evaluating the accuracy of DLST maps for varied target 664 

resolutions. 665 

Fig. 12. Scatter density plots of DLST (y-axis) versus RLST (x-axis) extracted from 666 

Landsat 8 30 m LST products (from left to right: varied spatial context from 15 ൈ 15 667 

km to 60 ൈ 60 km; from top to bottom: DisTrad, TsHARP, RF, and TLC). 668 

Fig. 13. Taylor diagram evaluating the accuracy of DLST maps over varied spatial 669 

context. 670 

Fig. 14. Comparison of Landsat 8 RLST and downscaled LST maps for different land 671 

cover types (from left to right: Landsat 8, DisTrad, TsHARP, RF, and TLC; from top to 672 

bottom: water, agriculture land, forest, impervious surface land). 673 


