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 Abstract  

Recent advances in the study of extreme values, namely the Metastatistical Extreme Value (MEV) frame-7 

work, showed good performances for the estimation of extremes in several fields.  Here we adopt MEV for 8 

flood frequency analysis and leverage its intrinsic property of allowing for the choice of the distribution 9 

which best describes ordinary peaks to improve flood estimation. To this end, we develop a non-parametric 10 

approach to select ex ante the most suitable distribution of ordinary peaks between Gamma and Log-Nor-11 

mal. The method relies on the tail ratio, which we define as the ratio between the empirical 99th and 95th 12 

percentile of the ordinary peaks, and is tested by using daily streamflow time series from 182 gauges in 13 

Germany. Based on the value of the tail ratio index, we choose either the Gamma or the Log-Normal dis-14 

tributions to represent the ordinary peaks in each gauge. The approach correctly identifies the most suitable 15 

distribution of ordinary peaks in a large majority of the analyzed basins, and is robust to changes of the 16 

considered dataset. The preliminary selection of the ordinary distribution based on the tail ratio index im-17 

proves the estimation of frequent and rare floods with respect to MEV applied with a single distribution not 18 

tailored on the specific statistical properties of the ordinary peaks. Finally, by comparing the developed 19 

methodology with the standard Generalized Extreme Value (GEV) distribution, we show that we are able 20 

to reduce the estimation uncertainty of high flood quantiles. 21 

Keywords: flood frequency estimation, extreme events, flood hazard, Metastatistical Extreme Value 22 

distribution, tail properties  23 

1. Introduction  24 

Floods repeatedly cause severe property damages and loss of human lives across the world (UNISDR 2015). 25 

More than half a million deaths occurred due to these events and 2.8 billion people were affected globally 26 

between 1980 and 2009 (Doocy et al., 2013). Focusing on a more local scale, Germany has experienced 27 

several intense flood events in recent decades. In hydrological terms, the June 2013 flood can be regarded 28 

as the most severe flood over the last 60 years (Merz et al., 2014), with high flood peaks in the Elbe catch-29 

ment in eastern Germany, the Danube in the south, the Weser, and the Rhine in the western part of Germany. 30 

Most recently, in July 2021, heavy precipitation and severe thunderstorms induced flooding in western 31 

Germany, affecting more than 40,000 people and with at least 184 fatalities (Fekete and Sandholz 2021). 32 

From an economical viewpoint, whereas the August 2002 floods caused several billion euros losses 33 

(Thieken et al., 2005), floods in 2021 caused financial losses for more than 30 billion euros (‘DW News’, 34 

2021). A reliable assessment of natural hazards at the origin of such disasters is crucial to improve prepar-35 

edness of societies. In particular, accurate estimation of flood magnitude and frequency is key for the design 36 

and management of engineering and hydraulic structures, which are essential tools to reduce damages and 37 



thus protect a wide range of social and economic activities (Eash, 1997; Rosbjerg, 2013; Macdonald et al., 38 

2006). 39 

Flood frequency analysis is usually performed, according to the classical extreme value theory, by fitting a 40 

distribution on either annual maxima (e.g., Cunnane, 1973; Villarini and Smith, 2010; Seckin et al., 2011) 41 

or a few values over a high threshold (i.e., the Peak Over Threshold approach; Davison and Smith, 1990). 42 

Commonly used distributions are Gumbel, Log-Normal, Pearson Type III, Gamma, Log-Pearson and GEV 43 

(Bobée et al., 1993, Morrison and Smith, 2002; Haktinar et al., 2013). The possibility given by these ap-44 

proaches of inferring the upper tail of a distribution without knowing the whole stochastic underlying pro-45 

cess is appealing and was necessary in time periods when only annual maxima were recorded. However, 46 

these approaches discard most of the information contained in the bulk of runoff events (Tarasova et al., 47 

2020), thus typically providing estimations affected by large uncertainty (Miniussi et al., 2020). The limi-48 

tations of traditional extreme value approaches have been highlighted by several studies (e.g., Klemeš, 49 

1974; Iliopoulou and Koutsoyiannis, 2019; Lombardo et al., 2019). Among others, Hu et al. (2020) found 50 

that the estimation of the shape parameter of the GEV distribution (which chiefly controls its tail, i.e., the 51 

part of the distribution which describes rare events) is very sensitive to the sampling of flow data and highly 52 

affected by the length of the available time series. This problem can lead to huge uncertainty for the esti-53 

mation of low-frequency quantiles, thus prohibiting the GEV to be a competitive candidate for the calcula-54 

tion of at-site flood statistics when only short observational series are available (Renard et al., 2013), as it 55 

occurs in large parts of the world (Müller and Thompson, 2016).  56 

Recently, developments in extreme value statistics and novel theoretical approaches to appraise extreme 57 

discharges have proposed to estimate maxima by leveraging the information content of the full distribution 58 

of events (Marani and Ignaccolo, 2015; Basso et al., 2016), thus making more effective use of the available 59 

data. In particular, the Metastatistical Extreme Value (MEV) distribution (Marani and Ignaccolo, 2015; 60 

Zorzetto et al., 2016) postulates that extremes emerge from the set of ordinary peaks (i.e., all the independ-61 

ent values, not annual maxima or peak over threshold values), which are characterized by means of suitably 62 

selected probability distributions. The flexibility of MEV for the choice of the underlying distribution of 63 

ordinary events expressly allows for selecting the statistical model which better represents the upper tail of 64 

the distribution, a pivotal feature for achieving a correct characterization of extreme events.   65 

The importance of the upper tail behavior of a distribution for the description of extremes is further high-66 

lighted by the number of past and recent studies dealing with the subject (e.g., Smith et al., 2018; Wietzke 67 

et al., 2020). To investigate the tail properties, previous studies employed different graphical methods, in-68 

cluding the generalized Hill ratio plot, log-log plot (also called tail probability plot), and the mean excess 69 



function (Resnick 2007; El Adlouni et al., 2008). These graphical methods, being based on visual interpre-70 

tation, lack objectivity and cannot be easily implemented when analyzing large datasets. These drawbacks 71 

call for the development of robust and objective methods (Cook et al., 2004). Recent attempts towards this 72 

direction have been done. For example, Nerantzaki and Papalexiou (2019) developed an automated proce-73 

dure for the application of the mean excess function to investigate the tail properties of precipitation at the 74 

global scale. Wietzke et al. (2020) made a detailed inter-comparison of different upper tail indicators with 75 

the aim of indicating the most appropriate method. They considered the shape parameter of the GEV dis-76 

tribution, the Gini Index (Eliazar and Sokolova, 2010), the obesity index (Cooke and Nieboer, 2011) and 77 

the upper tail ratio (Smith et al., 2018). Their findings eventually suggest that the GEV shape parameter is 78 

the most suitable indicator for distinguishing between different tail behaviors. This indicator has however 79 

the drawback of being parametric, i.e., it requires the prior assumption of a distribution and it’s fitting to 80 

the sample of maxima, which entails notable uncertainties (Basso et al., 2021).  81 

In this work, we leverage the flexibility of MEV in seeking for the optimal distribution of ordinary events, 82 

and develop a methodology that enables selection ex ante of the best fitting ordinary peaks distribution. 83 

Related benefits for the estimation of flood quantiles are then evaluated. We thus intend to provide indica-84 

tions on how to suitably apply the MEV framework for the prediction of hydrologic extremes. The article 85 

is organized as follows: in Section 2, we describe the data and the methodology used in this study; Section 86 

3 displays and discusses the results, which are finally summarized in Section 4. 87 

2.  Materials and Methods  88 

2.1 Study Area and Data 89 

We analyzed daily streamflow records from 182 gauges in Germany (Tarasova et al., 2018) which have 90 

time series longer than 30 years and less than 10% missing observations in each year. We utilized hydro-91 

logical years, spanning from October to September. The catchment sizes range from 30 to 23,842 km2 92 

(median value: 581 km2) and the lengths of the time series are comprised between 37 and 64 years (median 93 

value: 61 years). Catchments in the dataset cover the whole of Germany and its diverse climatic and phys-94 

iographic conditions (Figure 1a). Germany is influenced by its specific position between continental climate 95 

in the east and maritime climate in the west of the country. The northwestern region of the country is dom-96 

inated by circulation patterns linked to mid-latitude cyclone rainfall that can cause river flooding. Rainfall 97 

varies from North to South and reach its maximum in the Alpine Forelands and Southern Scarplands, with 98 

annual rainfall more than 2000 mm (Schädler et al., 2012) in the Alps. Annual rainfall amounts decrease 99 

from west to east (Figure 1b). Catchments in Germany exhibit different flood regimes that dominate during 100 

particular seasons: the central and western parts are dominated by winter floods, the north and east areas 101 



experience spring and summer floods, and the southern part of Germany is dominated by summer floods 102 

(Beurton and Thieken, 2009).  The study area includes small to medium sized catchments which react faster 103 

than large catchments to heavy precipitation and are thus characterized by a more intense flood hazard 104 

(Schädler et al., 2012). 105 

 

Figure 1 –Locations within Germany of the 182 streamflow gauges analyzed in the present work (blue and orange dots). The two 106 
colors refer to the subdivision of catchments into two groups for which either Gamma or Log-Normal are the most suitable distri-107 
butions of ordinary peaks, which is proposed in this study according to the methods explained in Section 2.3 and later discussed 108 
in Section 3. The map background indicates the river network and (a) the country elevation (m a.s.l.) and (b) the mean annual 109 
rainfall (mm) in Germany. 110 

2.2. The Metastatistical Extreme Value (MEV) distribution 111 

2.2.1. Theoretical framework 112 

In the present work we adopt a recently developed extreme value approach, the Metastatistical Extreme 113 

Value (MEV) distribution (Marani and Ignaccolo, 2015; Zorzetto et al., 2016; Marra et al., 2018) for the 114 

study of peak flows. This method postulates that extremes emerge from ordinary events (i.e., all the inde-115 

pendent values, not annual maxima or peak over threshold values) and treats as random variables both the 116 

parameters of the ordinary distributions and the number of event occurrences in each year. This approach 117 

therefore leverages all the information content of the bulk of the events distribution, i.e., not only of its tail 118 

as done in traditional extreme value distribution methods (Gnedenko, 1943; Coles, 2001; the reader is re-119 

ferred to Serinaldi et al. (2020) for a systematic explanation of the underlying theory and the differences 120 



between traditional extreme value theory and MEV). Moreover, the MEV framework allows for flexibility 121 

in the choice of the distribution of ordinary values, by enabling the selection of the distribution that de-122 

scribes them best (further details on this point are provided in the following sections). 123 

The discrete formulation of the MEV cumulative distribution function, expressed as an average over the M 124 

observational years, is (Zorzetto et al., 2016): 125 

                            𝜁(𝑥) =  
1

𝑀
∑[𝐹(𝑥; 𝜽)]𝑛𝑗                                              (1)       

𝑀

𝑗=1

 126 

where 𝐹(𝑥;  𝜃) is the ordinary distribution of peak flows, 𝜽 is a vector of parameters of this distribution 127 

(notice that in the above formulation we adopt time invariant parameters of the ordinary distribution, as the 128 

subscript j does not appear in 𝜽) and 𝑛𝑗 is the number of events within each year (here considered variable 129 

across years). 130 

Theoretically, MEV can account for the inter-annual variability of the ordinary distribution as well (for a 131 

detailed discussion on the topic we refer to Miniussi and Marani, 2020). However, as the number of inde-132 

pendent ordinary events (peaks) available in observed streamflow series is typically limited, the advantages 133 

(robust parameter estimation and uncertainty reduction) of considering the whole sample for fitting the 134 

parameters of the ordinary distribution overcome those obtained from the use of yearly varying parameters 135 

(Miniussi et al., 2020). 136 

In order to identify a set of independent ordinary events from daily streamflow records, which are typically 137 

highly correlated, we use the decorrelation procedure recommended by the guidelines of the US Water 138 

Resources Council (USWRC, 1976). This is a well-established method which has been adopted in many 139 

studies in different regions of the world (see, e.g., Lang et al. (1999) and Miniussi et al. (2020)). At first, 140 

we identify one peak within each time block of length T =  5 days +  log(A), where A is the basin area in 141 

square miles and the value of T is rounded off to the nearest integer number. This would result for German 142 

catchment sizes of one event peak each 6th to 9th day. The second step consists in checking that the magni-143 

tude of the minimum flow between two consecutive peaks is lower than 75% of the lowest one, to enable 144 

discarding secondary peaks which occur during recession events. If this requirement is not fulfilled, the 145 

smallest peak in the pair is eliminated. The set of all peak discharge values obtained from this procedure 146 

constitutes the sample of ordinary events, on which the ordinary distribution (𝐹(𝑥; 𝜽) in Eq. (1)) is then 147 

fitted. In our dataset, the average number of flood peaks per year resulting from this selection process ranges 148 

from 8 to 24 (median value: 17) and their mean inter-arrival time is 23 days, which is much larger than the 149 

required minimum lag time of 6 to 9 days for event independence (USWRC, 1976). 150 



 

 

2.2.2. Ordinary distributions 151 

Once the ordinary peaks are selected, we must choose a distribution to describe their statistical properties. 152 

Miniussi et al. (2020) identified the Gamma distribution as the best performing distribution to model flood 153 

peaks in the conterminous United States. Yet, they also suggested that the statistical properties of the ordi-154 

nary peaks must be investigated before choosing the distribution that describes them best. As mentioned, 155 

MEV allows for handling diverse ordinary distributions. Thus, we leverage this flexibility of MEV and 156 

examine as potential candidates for the set of German river basins the two parameters Gamma and Log-157 

Normal distributions. Both these distributions are widely used for flood frequency analysis (Stedinger, 158 

1980; Chen et al., 2004) while exhibiting different characteristics especially for what concerns their tail 159 

properties, being Gamma a light-tailed distribution (El Adlouni et al., 2008) and the Log-normal akin to a 160 

heavy-tailed one (Koutsoyiannis, 2020). Although Gamma and Log-Normal are used in this study, as in a 161 

preliminary scrutiny they were found to be the most suitable distributions for the considered dataset, the 162 

proposed approach applies to any other choice for the distributions of ordinary events. 163 

The cumulative distribution function of the Gamma distribution is (Davis, 1959; Lancaster, 1966; Hosking, 164 

1990): 165 

                                     𝐹(𝑥;  𝛼, 𝛽) =  
𝛽−𝛼  ∫ 𝑡𝛼−1 

𝑥

0
𝑒

(−
𝑡
𝛽

)
𝑑𝑡

Г(𝛼)     
                                                    (2)      166 

where α and β are respectively the shape and scale parameters, and Г is the gamma function. 167 

The cumulative distribution function of the Log-Normal distribution is instead (McAlister, 1879; Bobée et 168 

al., 1993):   169 

                                                 𝐹(𝑥; 𝜇, 𝜎) =  
Ф(𝑙𝑜𝑔𝑥−𝜇)

𝜎
                                                 (3)    170 

where µ and σ are respectively the scale and shape parameters of the Log-Normal distribution, and Ф is the 171 

standard normal distribution function.   172 

We estimate parameters of the Gamma and Log-Normal distributions by fitting them on the sample of 173 

ordinary peaks (selected as explained in section 2.2) by means of L-Moments (Greenwood et al., 1979; 174 

Hosking, 1990). The choice of L-moments is motivated by their lower sensitivity to outliers and to limited 175 

sizes of the calibration samples when compared to Maximum Likelihood (Hosking and Wallis, 1997). 176 



 

 

2.3. Tail ratio method and sensitivity analysis 177 

We propose and apply in this study a methodology that enables the choice of the best ordinary distribution 178 

to be used in Eq. (1) ex ante, based on the statistical properties of the ordinary peaks. This non-parametric 179 

approach avoids the need to evaluate every time the goodness-of-fit of different distributions on randomly 180 

extracted samples of ordinary peaks. Rather, it allows for appraising the behavior of the upper tail of the 181 

ordinary peaks (a crucial step for the selection of the best ordinary distribution) and thus choose a priori, 182 

between Gamma and Log-Normal, the most suitable distribution to characterize them.  183 

The method relies on the calculation of the tail ratio index, which is defined as the ratio between the em-184 

pirical 99th and 95th percentiles of ordinary peaks, similarly to the procedure suggested by Nerantzaki and 185 

Papalexiou (2019) to evaluate the tail behavior of daily precipitation. In the present study, we tested differ-186 

ent ratios (99th to 90th, as in Nerantzaki and Papalexiou (2019), 99th to 95th and intermediate ratios) with 187 

similar results.  In the end, we found that in the case of flood peaks considering the ratio between the 99th 188 

and 95th percentile allows to describe best the upper tail of the distribution in our dataset. The method is 189 

inspired by the upper tail ratio of Smith et al. (2018), although pursuing a different aim and with clear 190 

advantages when compared to it. The upper tail ratio is defined as the ratio between the maximum event in 191 

the record and the empirical 10-years return level. It is computed from annual maxima and is therefore 192 

sensitive to the observational sample size. Conversely, our proposed method (the tail ratio index) is calcu-193 

lated accounting for the whole distribution of ordinary peaks. First, its definition is consistent with the 194 

rationale underlying the MEV framework, which considers extremes emerging from ordinary events. Sec-195 

ond, the whole set of ordinary peaks (a median number of 1184 in the considered catchments) is used in the 196 

tail ratio index instead of annual maxima, which results in more robust calculations. 197 

Therefore, we believe that the proposed method is transferrable to other areas, with potential limitations in 198 

catchments characterized by drier conditions, in which the low number of ordinary peaks might impair the 199 

robustness of its computation.  200 

 The steps involved in the establishment and evaluation of the proposed tail ratio method are the following: 201 

1) we select the best ordinary distribution for each station evaluating the goodness-of-fit of Gamma and 202 

Log-Normal distributions on the complete series of ordinary peaks, by means of the skill score metric 203 

(Murphy and Winkler, 1992; Hashino et al., 2006); 2) we calculate the tail ratio index of each series and 204 

seek a threshold to distinguish relatively lighter and heavier tailed distributions. We choose to this purpose 205 

the threshold of the tail ratio index that allows maximizing the number of catchments for which the optimal 206 



(i.e., the one with the highest skill score value) distribution is selected; 3) in order to evaluate the robustness 207 

of the threshold identified on the whole German dataset and the possibility to apply it to different datasets 208 

(i.e., subsamples of the original one), we randomly select for 100 times 50% of the basins and calculate 209 

again the threshold value obtained from each resampling; 4) we check the capability of this threshold to 210 

correctly distinguish between catchments for which either the Gamma or the Log-Normal distributions are 211 

optimal (as in step 2), by using the remaining 50% of the basins in the dataset as test catchments. 212 

 

2.4. Cross-validation and benchmarking  213 

In order to evaluate the predicting capabilities of the tested flood estimation approaches, we perform a 214 

Monte-Carlo experiment through which we extract (1000 times) from the available data record 10 random 215 

years of observations, which we use as calibration sample. The remaining data are each time used as vali-216 

dation sample. By means of this procedure, any potential systematic variability in the time series is disre-217 

garded (Vogel et al., 1993; Haktanir et al., 2013; Zorzetto et al., 2016) and the estimation uncertainty can 218 

be evaluated. 219 

The length of the calibration sample was chosen as to have enough ordinary events to enable a robust 220 

estimation of the ordinary distributions parameters and at the same time to allow for the assessment of the 221 

estimation uncertainty of the different approaches. In fact, being the minimum length of the analyzed 222 

streamflow records equals to 30 years, with a calibration sample longer than 10 (e.g., 20) years we could 223 

not evaluate the estimation accuracy in a predictive fashion, as no observed maximum would be associated 224 

with an empirical return period greater than 20 years in the validation sample. Moreover, we stress that we 225 

aim at quantifying errors with respect to the empirical values, as the performance (e.g., in terms of accuracy 226 

improvement) of an extreme value approach cannot be evaluated when quantiles with return periods higher 227 

than the empirical ones are taken into account. Furthermore, assessing the accuracy of extreme value meth-228 

ods constrained on short calibration samples is pivotal for, e.g., data scarce areas, where only short time 229 

series are available.  230 

We also benchmark MEV estimations with the traditional GEV approach, which constitutes the suggested 231 

distribution for flood frequency analysis in Germany (Petrow et al., 2007). GEV parameters are estimated 232 

by fitting the distribution through L-moments (Greenwood et al., 1979; Hosking, 1990) on yearly maxima 233 

in the calibration sample. In order to evaluate the estimation accuracy of both MEV and GEV, we use the 234 

non-dimensional error (Zorzetto et al., 2016), which quantifies the performance of different models. For 235 

each random extraction in the Monte-Carlo experiment, we calculate the non-dimensional error ϵ =236 

xest−xobs

xobs
 between estimated and observed maxima in the validation sample which have a return period 237 



longer than the calibration sample size. We finally pool together the non-dimensional error values obtained 238 

for different ranges of the ratio T/S between return period T and calibration sample size S. 239 

3. Results and Discussion 240 

We first apply the MEV approach by using either a Gamma or a Log-Normal distribution for each of the 241 

182 German gauges. We then evaluate the capabilities of MEV-Gamma (Figure 2a) and MEV-Log-Normal 242 

(Figure 2b) to estimate observed maxima in the validation sample. We find that high quantiles are frequently 243 

underestimated by MEV-Gamma (see blue dots below the 45 degree line in Figure 2a). Although this issue 244 

is addressed by using MEV-Log-Normal, overestimation prevails in the latter case. 245 

The contrasting behavior of the two distributions suggests that the ordinary peaks are in some catchments 246 

characterized by lighter tails, for which the Gamma is a suitable distribution and the Log-Normal has a too 247 

heavy tail, and vice versa in other basins. These results are consistent with previous findings highlighting 248 

that flood records may exhibit both light and heavy-tail behaviors (Katz et al., 2002; Bernardara et al., 249 

2008). An example of this instance is provided in Figure 3. The blue lines in Figure 3a show that using a 250 

Gamma distribution to fit the empirical distribution of ordinary peaks (grey dots) would lead to an under-251 

estimation of the exceedance probability of the largest flows. This results into a significant underestimation 252 

of the largest annual maxima as shown in Figure 3c. The underestimation issues of the Gamma distribution 253 

that we highlight here are in line with previous findings (Papalexiou et al., 2013). The flood frequency 254 

curve is instead correctly estimated by using MEV-Log-Normal (Figure 3d) because the underlying Log-255 

Normal distribution is capable to correctly represent the empirical exceedance probability of the largest 256 

ordinary flows, as represented in Figure 3b.    257 

 

Figure 2 - Quantile-quantile plots of streamflow maxima with return period longer than the length of the calibration sample (10 258 
years) for MEV-Gamma (blue dots in panel a) and MEV-Log-Normal (orange dots in panel b). Observed annual maxima and 259 



return periods are empirically estimated by using the validation samples. Light and dark colors indicate respectively the 1000 260 
resamples of the Monte-Carlo approach and their median values, for all basins. 261 

 

Figure 3 - (a-b) Exceedance probability of ordinary peaks plotted as a function of streamflow values (in double logarithmic scale) 262 
for an exemplary case study indicated with a triangle in Figure 1 (the Neckar River at Rockenau, Area = 70 km2). Gamma (panel 263 
a, blue solid lines) and Log-Normal (panel b, orange solid lines) probability distributions are fitted on observed ordinary peaks 264 
obtained from 1000 resamples of 10 years long calibration samples (grey dots). (c-d) Resulting flood frequency curves for the same 265 
catchment: grey dots represent the median values of the 1000 validation samples obtained from the cross-validation procedure, 266 
whose empirical frequencies (and thus return periods, defined as the inverse of the exceedance probability) have been estimated 267 
by means of Weibull plotting position; blue (panel c) and orange (panel d) lines show the median MEV estimates for the corre-268 
sponding quantiles by respectively using Gamma and Log-Normal distributions to fit the ordinary peaks. Matching shaded areas 269 
indicate 90% confidence intervals (5th-95th percentiles). 270 

This explanatory case highlights how the choice of a suboptimal distribution of ordinary peaks largely 271 

affects the estimation of maxima, as also signaled by previous studies (Cunnane, 1985; Haddad and Rah-272 

man, 2011; Hu et al., 2020) which indicated the importance of selection of distribution for the estimation 273 

of high quantiles. In fact, when MEV-Gamma is applied, maxima are generally underestimated to a more 274 

or less large extent, while the application of the Log-Normal distribution allows for an accurate appraisal 275 

of high flood magnitudes. Hence the need of understanding, ideally a priori, what is the best distribution 276 

that should be used to describe the tail behavior of ordinary peaks an issue highlighted in past studies (El 277 

Adlouni et al., 2008). 278 

To reach this goal, we calculate the tail ratio index introduced in Section 2.3 to evaluate the relative tail 279 

behavior of the distribution of ordinary peaks ex ante and independently from the MEV procedure. 280 

Figure 4 visualizes the results of the procedure detailed in Section 2.3. The blue line shows the fraction of 281 

cases for which the tail ratio index of the catchments in which the Gamma distribution is identified as the 282 



best fitting one is lower than the corresponding value of the tail ratio index reported on the x-axis. For 283 

increasing values of the tail ratio index we are able to correctly match the best ordinary distribution for an 284 

increasing fraction of cases for the Gamma distribution. A symmetric and opposite comment can be done 285 

in the case of catchments where the Log-Normal distribution is the most suitable one (orange line in Figure 286 

4). Ordinary peaks for which the Log-Normal distribution is the best fit tend indeed to have higher values 287 

of tail ratio index, and consequently the lower the threshold the most likely it is to correctly classify them. 288 

It is important to note that the fraction of cases represented by the y-axis in Figure 4 refers to the number 289 

of catchments for which either distribution is the best, not to the whole dataset.  290 

 291 

Figure 4- Identification of the threshold of the tail ratio index optimizing the number of catchments for which the most suitable 292 
distribution of ordinary peaks is selected ex ante based on the value of the tail ratio index itself. The most suitable distribution of 293 
ordinary peaks is identified on the basis of the skill score of the fitted ordinary distributions. The blue line (for the Gamma distri-294 
bution) and the orange line (in the case of the Log-Normal distribution) show the fraction of cases for which the Gamma or Log-295 
Normal is the most suitable distribution. The crossing point of these two curves represents the  tail ratio index value that optimizes 296 
the correct assignment of catchments to two groups for which Gamma and Log-Normal are respectively the most suitable distri-297 
butions of ordinary peaks (black dashed line, named threshold in the following).To evaluate the robustness of the identified thresh-298 
old and its uncertainty when applied to different sets of catchments, we recalculate it by randomly selecting 50% of the catchments 299 
from the whole dataset . We repeat the random selection 100 times and each time validate the threshold capability to correctly 300 
identify the most suitable distribution for the remaining 50% of catchments. The resulting range of thresholds over 100 random 301 
extractions and their median value are respectively displayed with a grey shaded area and a red dashed line. 302 

The crossing point of these two curves, identified with a black dashed line in Figure 4, represents the thresh-303 

old on the tail ratio index which allows for maximizing the number of catchments where the correct iden-304 

tification of the best fitting distribution of ordinary peaks can be obtained ex ante by means of the tail ratio  305 



index. The identified threshold, equals to 1.58 for the whole set of German basins, allows for correctly 306 

identifying 74% of the catchments in each distribution group. Approximately 30% of the catchments for 307 

which the correct distribution of ordinary peaks is not identified based on the tail ratio index (i.e., 14 out of 308 

48) display values of the tail ratio index close to the threshold (within the shaded region of Figure 4). For 309 

the remaining cases, the distribution of ordinary peaks indicates the possibility of a heavier tail than the one 310 

exhibited by most of the flood frequency curves generated in the Monte Carlo procedure. 311 

In order to check the robustness of the selected threshold, with the aim to apply it to different subsets of 312 

river basins, we follow the procedure detailed in Section 2.3.  313 

The thresholds obtained with this procedure span a narrow range between 1.51 and 1.62 (grey shaded area 314 

in Figure 4), with a median value of 1.57 (red dashed line in Figure 4). The identified threshold exhibits 315 

weak dependence on the subset of selected basins, proving its capability to correctly distinguish ex ante 316 

between basins where either the Gamma or the Log-Normal distributions best fit the ordinary peaks. These 317 

results show that the identified threshold is robust, appropriate for German catchments and can thus be 318 

applied to different datasets other than the one used in this study. 319 

Following up on the previous analyses, we hence split the whole set of case studies into two groups. Group 320 

1 (76 basins; blue dots in Figure 1) includes catchments with a tail ratio index lower than 1.58, for which 321 

we apply the MEV-Gamma, whereas Group 2 (106 basins; yellow dots in Figure 1) comprises catchments 322 

with values of the tail ratio index greater than 1.58, for which the MEV-Log-Normal is used. The perfor-323 

mance of the MEV approach after this a priori selection of the most suitable distribution of ordinary peaks 324 

by means of the tail ratio index is illustrated in Figure 5a,b. Quantile-Quantile (QQ) plots in Figure 5 show 325 

an improvement of the performance of MEV when the distribution of ordinary peaks is chosen by consid-326 

ering the tail features of the underlying data versus neglecting them (i.e., the performance increases between 327 

Figure 2a,b and Figure 5a,b). These results agree to those of Papalexiou et al. (2013), who emphasized the 328 

importance of the upper part (i.e., the tail) of the probability distribution. In particular, the under and over-329 

estimation issues resulting from the application of MEV-Gamma and MEV-Log-Normal to the whole set 330 

of German case studies (Figure 2) largely decrease compared to the two classified groups. We observe that 331 

errors reduce of a median value of 57% and 58% across all quantiles and 56% and 40% for high quantiles 332 

(i.e., with ratio between the return period T and the calibration sample size S greater than 3) when these 333 

distributions are separately applied to Group 1 and 2. This indicates that the preliminary selection of catch-334 

ments (exhibiting relatively lighter and heavier tails) based on the tail ratio index is effective and allows for 335 

improving the estimation of floods in the MEV framework.  336 



 337 

Figure 5 – Quantile-quantile plots of flood magnitudes estimated for two subsets of river basins that have been separated ex ante 338 
based on the tail ratio index of the ordinary peaks. When the tail ratio index is lower than 1.58 we apply the MEV-Gamma (panel 339 
a, blue and light-blue dots), whereas when the tail ratio index is greater than this threshold we use the MEV-Log Nor8mal (panel 340 
b, orange and light orange dots). Results are compared with GEV estimates in the two groups (panels c and d, dark pink and light 341 
pink dots). The median results among all the Monte-Carlo realizations for quantiles corresponding to return periods longer than 342 
the calibration samples (10 years) are shown in darker color dots, while all the resampling values (1000 for each catchment) are 343 
shown with lighter colors. 344 

We also compare these results with estimates obtained by means of the traditional GEV distribution (Figure 345 

5c,d). Despite acknowledging the limitations of fitting a three-parameter distribution on a relatively small 346 

sample, this situation is not uncommon in hydrological practice (e.g., Kobierska et al., 2018). The compar-347 

ison between Figure 5a,b and Figure 5c,d shows that the preliminary selection of the distribution of ordinary 348 

peaks in the MEV approach enables improved MEV versus GEV estimates, especially in Group 1. Here, 349 

MEV-Gamma guarantees an average performance similar to GEV (dark blue and pink dots in Figure 5a,c) 350 

and a remarkable decrease of the uncertainty of the estimate (light blue and pink dots in Figure 5a,c).     351 

These results are supported by previous findings (Basso et al., 2021), who showed that MEV exhibits lower 352 



uncertainty than GEV. A similar result is obtained for Group 2, although in this case the uncertainty of 353 

MEV-Log-Normal is comparable to that of GEV, especially for the largest flood values. However, GEV is 354 

affected by larger uncertainty than MEV-Log-Normal in cases where the magnitude of streamflow maxima 355 

for a same return period is smaller, as highlighted by the following analysis. 356 

Table 1. Median (Med) and maximum negative (i.e., underestimation, Max-) and positive (i.e., overestimation, Max+) 

values of non-dimensional error for all distributions and catchment groups and for different ranges of the ratio (T/S)    

between return period (T) and calibration sample size (S). 

 MEV-Gamma MEV-Log-Normal GEV 

All Basins Group 1 All Basins Group 2 Group 1 Group 2 

Max-   Max+ Med Max- Max+ Med Max- Max+       Med   Max-  Max+  Med  Max-   Max+    Med  Max-  Max+   Med 

1< T/S<=2 -0.81 0.90 -0.2 -0.61 0.66 -0.08 -0.78 2.28 0.08 -0.78 2.28 0.02 -0.6 1.39 -0.04 -0.78 3.12 -0.07 

2< T/S<=3 -0.81 0.96 -0.23 -0.64 0.71 -0.1 -0.77 2.71 0.12 -0.77 2.71 0.06 -0.63 1.63 -0.05 -0.82 3.88 -0.09 

3< T/S<=6 -0.90 1.17 -0.28 -0.73 0.86 -0.12 -0.82 3.93 0.15 -0.82 3.91 0.09 -0.78 2.12 -0.08 -0.91 5.86 -0.12 

 

In order to provide a more complete overview of the estimation accuracy of the three extreme value distri-357 

butions we complement the QQ-plots in Figure 5a-d with Figure 6, which shows the non-dimensional error 358 

between observed and estimated quantiles for all random extractions in the Monte Carlo procedure and all 359 

the gauges (Zorzetto et al., 2016). These results are also summarized in Table 1. In both cases, we pool the 360 

non-dimensional error values in different ranges of the ratio T/S between return period and calibration 361 

sample, each of which includes at least 10,000 values.  362 

 363 

Figure 6 – Non-dimensional error between observations and quantiles of the analyzed statistical distributions computed in the 364 
Monte Carlo simulation procedure (1000 realizations), plotted as a function of different ranges of the ratio between the return 365 
period and the calibration sample size (T/S). Results for quantiles corresponding to return periods longer than the calibration 366 
sample size are displayed in order to evaluate the performance in a predictive way. The figures are plotted by pooling values of 367 
non-dimensional error from all stations which are included in specified ranges (bins) of T/S. Dots represent the median values of 368 



T/S bins that include at least 10,000 values; shaded regions encompass the minimum and maximum values of each respective bin. 369 
Panels (a, d) show the non-dimensional error of MEV-Gamma and MEV-Log-Normal applied to the whole dataset regardless of 370 
the tail features of the distributions. Panels (b,e) show the non-dimensional error of MEV-Gamma and MEV-Log-Normal respec-371 
tively applied to Group 1 and Group 2, and  panels (c,f) show the non-dimensional error of GEV applied to the same groups.  372 

MEV-Gamma (Figure 6a) and MEV-Log-Normal (Figure 6d) respectively under and overestimates when 373 

applied to the whole dataset. Figure 6a once again highlights that MEV-Gamma, if applied without ac-374 

counting for the statistical properties of the ordinary peaks, is affected by underestimation (notice that dark 375 

blue dots in Figure 6a tend to stay under the dashed black line, which represents the unbiased result with a 376 

relative error equal to zero). These results are in line with the findings of Papalexiou et al. (2013). When 377 

comparing the relative error of MEV-Gamma (Figure 6b) and GEV (Figure 6c) for the basins in group 1 378 

(or, likewise, the relative error of MEV-Log-Normal (Figure 6e) and GEV (Figure 6f) for the basins in 379 

group 2), we highlight that despite similar performances of MEV and GEV in terms of median values, the 380 

latter is affected by much larger uncertainty. These results agree with the findings of, e.g., Odry and Arnaud 381 

(2017), who stressed the importance of a reduced uncertainty when estimating high flow values. Notably, 382 

in group 1 the overestimation magnitude of MEV-Gamma is the half of GEV across all T/S (Figure 6b-c). 383 

Differences between the relative performance of MEV Log-Normal and GEV are less pronounced in group 384 

2, but substantially larger overestimation (i.e., non-dimensional error reaching a value of 6) can occur when 385 

employing GEV. 386 

We finally present the comparison between the non-dimensional errors of MEV applied on the whole da-387 

taset (i.e., regardless of the observed tail of the distribution of ordinary peaks; Figure 6a,d) and of both 388 

MEV-Gamma (Figure 6b) and MEV-Log-Normal (Figure 6e) applied to their respective groups. In this 389 

way, we want to underline the benefits deriving from the flexibility of MEV in the choice of a suitable 390 

distribution of ordinary peaks when the catchments within a dataset exhibit different tail properties. Re-391 

markably, we are able to significantly decrease both the underestimation by which MEV-Gamma is affected 392 

when blindly applied to the whole dataset (blue dots in Figure 6b are closer to the dashed line than in Figure 393 

6a) and its uncertainty range (blue shaded area is narrower in Figure 6b than in Figure 6a), and to slightly 394 

reduce on average the overestimation issues of MEV-Log-Normal (Figure 6e). These results are highly 395 

relevant, as both underestimation and overestimation issues are drawbacks when estimating high return 396 

levels of hydrological variables: in the first case because of the underestimation of risks (Papalexiou et al., 397 

2013), in the latter because of the enormous economic costs that can derive from applying design values 398 

which are larger than needed (Cho et al., 2004). 399 

Finally, the subdivision into two groups of the set of German catchments by means of the tail ratio index, 400 

here proposed to select the most suitable distribution of ordinary events in the MEV approach, exhibits a 401 

clear geographical organization (Figure 1). Catchments for which a Gamma distribution (lighter tail) is the 402 



most suitable are primarily located in the Western part of Germany (Figure 1, blue dots), where winter 403 

floods triggered by precipitation on wet soils are dominant (Tarasova et al., 2020), with some catchments 404 

also gathered in the Alpine Forelands. Catchments for which a Log-Normal distribution (which has a rela-405 

tively heavier tail) is the best choice are instead mostly located in the Eastern and Southern areas of the 406 

country (Figure 1, orange dots), regions affected by the occurrence of Vb-cyclones (Hofstätter et al., 2016) 407 

causing rare but intense rainfall on dry soils which produces large floods. The geographical clustering we 408 

identified recalls the spatial pattern recently showed by Tarasova et al. (2020) for the differences among 409 

processes triggering ordinary, frequent and upper tail floods in Germany. Our results suggest that their 410 

postulated outcomes in terms of distinct distributions of ordinary events is well-founded, and confirm the 411 

possibility to improve estimation of upper tail floods in this context by means of a Metastatistical Extreme 412 

Value approach. Although beyond the scope of this work, a quantitative investigation of the consistency 413 

between the identified spatial patterns and of the mix of hydrological processes giving rise to distributions 414 

of floods and ordinary peaks with relatively lighter (Gamma) and heavier (Log-Normal) tails in specific 415 

areas of Germany is a noteworthy research direction which is the subject of current work. 416 

4. Conclusion: 417 

In this study we adopted the Metastatistical Extreme Value (MEV) distribution for flood frequency analysis 418 

in a set of 182 catchments in Germany. Our goal was to optimize this novel framework based on the statis-419 

tical properties of the ordinary peaks. 420 

To this end, we developed a non-parametric approach to select ex ante the ordinary distribution of stream-421 

flow peaks, which allows for accurately estimating high flow quantiles. The proposed method (tail ratio 422 

index) makes a step forward in the evaluation of the tail behavior. In particular, it leverages the information 423 

content of ordinary events and avoids any graphical evaluation, hence allowing for the analysis of large 424 

datasets. It enables a binary classification of ordinary distributions characterized by lighter versus heavier 425 

tails. We identified a threshold that discriminates between these two categories and used it to choose ex 426 

ante if either a Gamma or a Log-Normal distribution is the most suitable for describing the ordinary events. 427 

Our approach correctly identifies the ordinary distribution in 74% of the basins in the dataset. We proved 428 

that the proposed value of the threshold is robust to random resampling of the catchments used to determine 429 

it, and can thus be reliably employed. We deem the proposed tail ratio index to be applicable to select the 430 

most suitable distribution of ordinary peaks in other regions of the world. 431 

Selecting the distribution of ordinary peaks by means of this approach allows for reducing underestimation 432 

and overestimation issues compared to a blind (i.e., without investigating the tail features of the ordinary 433 

peaks) application of MEV to the whole dataset. Namely, we reduce MEV-Gamma underestimation and 434 

Log-Normal overestimation issues of a median 57% and 58% respectively. Finally, we benchmarked our 435 



results against the standard distribution used in flood frequency analysis, i.e., the Generalized Extreme 436 

Value (GEV) distribution. In 135 out of the 182 analyzed basins, the use of a tailored ordinary distribution 437 

in the MEV framework decreases the uncertainty and improves the estimation for return periods greater 438 

than the calibration sample. These are both relevant features to achieve a reliable estimation of extreme 439 

floods. 440 

By proposing and verifying an easy-to-use method to leverage knowledge on tail properties, the study sup-441 

ports selection of the appropriate model to analyze ordinary peaks and floods in the MEV framework. It 442 

thus contributes to reduce under and overestimation of rarer floods, improving our capability to reliably 443 

assess the hazard posed by infrequent hydrological events. 444 
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