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Abstract 10 

Quantifying the spatiotemporal variation of water scarcity is critical for identifying strategies 11 

to support sustainable management of water resources and associated food-energy systems. 12 

To this end, several assessments have attempted to provide a global mapping of water 13 

scarcity with a number of underlying methodological choices. Scarcity metrics vary in their 14 

definitions and thresholds for scarce conditions to prevail. We review these methodologies in 15 

the context of the biophysical and socio-economic setting of India. We suggest four avenues 16 

for improving metric assessments to increase policy relevance: incorporation of surface 17 

water- groundwater interactions along with non-renewable groundwater resources, 18 

accounting for minimum environmental flows, consideration of deep uncertainties, and 19 

addressing underlying socio-economic disparities in metric assessment.  20 
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1.      Introduction 24 

Water crisis continues to be a threat to India’s sustainable development goals. Increasing 25 

population and water intensive lifestyles coupled with deeply uncertain future climate change 26 

are likely to create significant uncertainty regarding future water availability across India. As 27 

of 2017, the total renewable water resources per capita in India is estimated at 1080 m3/year, 28 

which is lower than the global average of 5732 m3/person/year (FAO , 2017). Several 29 

assessments identify India as a water scarcity hot-spot (Vörösmarty et al., 2000; Alcamo et 30 

al., 2000; Kummu et al., 2010; Schewe et al., 2014; Gosling and Arnell, 2016). A recent 31 

study estimated nearly 1 billion people living under water scarcity in India (Mekonnen and 32 

Hoekstra, 2016). Recent analyses considering the impact of changing climate and increasing 33 

population on India’s future water availability also suggest increases in water scarcity as we 34 

transition from a 1.5°C warmer world to a 2.0°C warmer world (Singh and Kumar, 2019). 35 

 36 

Despite a large number of studies that attempt to map the spatiotemporal extent of India’s 37 

water scarcity, relatively few examples can be found of their use in policy making. We could 38 

identify a few issues that lead to this, beginning with the proliferation of available scarcity 39 

metrics (Hoekstra et al., 2012; Liu et al., 2017; Hanasaki et al. 2018; Vanham et al., 2018). 40 

Some focus on per capita water availability while others estimate the ratio of demand to 41 

supply of water (Liu et al., 2017). The definition of available water also varies across studies, 42 

along with the spatiotemporal resolution of underlying (observational or modeled) datasets 43 

used to arrive at estimates (Liu et al., 2017). Overall, this leads to large variations in the 44 

estimated population under risk of water scarcity. Second, scarcity assessments often assume 45 

critical thresholds of water scarcity metrics to identify vulnerable populations. While there is 46 

some evidence to show that commonly used thresholds (such as 1700 m3/year for per capita 47 

water availability) are probably linked with the sufficiency of locally renewable water 48 
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resources, there can be regional disparities in critical thresholds that need further 49 

investigation (Hanasaki et al. 2018). Third, most studies focus on certain future periods such 50 

as mid-century or end-of-century. The specific trajectory of socioeconomic development, tied 51 

closely to climate change signals, undertaken by a region is therefore not considered. This 52 

issue is crucial for India, where median projections for river runoff are greater for end-of-53 

century than mid-century under different projected scenarios, indicating that regions are 54 

likely to undergo greater water scarcity in near future than far future (Singh and Kumar, 55 

2019). Fourth, uncertainties due to climate and population change are included by identifying 56 

various scenarios of change (Haddeland et al., 2014; Schewe et al., 2014). However, further 57 

studies are needed to discern how such uncertainties should eventually guide policy making 58 

(see e.g., Poff et al., 2016). And finally, extremes such as droughts and floods are not 59 

generally considered, except a few very recent studies that show that when considering 60 

extremes, much more population can be at risk (Aadhar and Mishra, 2019; Kumar and 61 

Mishra, 2020).  62 

 63 

In a recent analysis, Singh and Kumar (2019) assessed the relative importance of population 64 

and climate changes on determining future water availability across India. The analysis 65 

identified regional differences in dominant factors driving water scarcity, indicating that 66 

policy approaches may have to differ depending upon the main driver of scarcity. For 67 

example, in regions where physical water scarcity is likely the main driver behind classifying 68 

a region as water scarce, augmenting supplies and reducing demands would be required. On 69 

the other hand, in regions with plentiful water resources such as north-eastern India, the rapid 70 

urbanization is likely to drive water scarcity in the future. In such conditions, capacity 71 

building and focusing on infrastructure development would be the key to cope with water 72 

scarcity. While this analysis provided interesting insights, further studies that explore such 73 
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connections between climate and demographic changes are needed to realistically model the 74 

time evolving nature of water scarcity in India.  75 

 76 

The goal of this article is to understand the likely causes that stigmatize the quick adoption of 77 

existing scarcity quantification in decision making related to water resources. We discuss two 78 

main issues in this article: the issue of multiple metrics and the quantification of underlying 79 

uncertainty. Thereafter, we showcase the likely difference in perceptions of water scarcity 80 

that arise due to different (methodological) choices of water scarcity metrics. We conclude by 81 

discussing possible improvements in data collection or methodologies considering the 82 

requirement of planning agencies. Section 2 presents an overview of water scarcity metrics 83 

for global water scarcity assessments used in recent literature. This is followed by Section 3 84 

that provides a summary of uncertainty quantification methods. Section 4 presents a 85 

comparative analysis of the metrics for India. Section 5 synthesizes these concepts in the 86 

context of India.  87 

 88 

2.      Water scarcity metrics: a review of global studies 89 

Mapping the spatiotemporal variation of global water scarcity, in line with the 2030 Agenda 90 

for Sustainable Development target 6.4.2, has become fundamental to identify strategies for 91 

sustainable management of global water resources and associated water-food-energy nexus 92 

(D’Odorico et al., 2018). Several attempts have been made in the past three decades to assess 93 

the spatio-temporal variations of global water scarcity (Table 1). These assessments have led 94 

to an evolving picture of water scarcity and its relation to human water use. While our 95 

understanding of water scarcity grew, so did the methodological choices in quantifying this 96 

metric, resulting in a proliferation of indicators with different approaches to estimate water 97 

scarcity (Liu et al., 2017).  98 
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 99 

<Table 1 approximately here>  100 

 101 

2.1 Methodological choices in quantification of water scarcity metrics 102 

Methodological choices related to quantifying water available in a region range from using 103 

river discharge (blue water; including surface water and near-surface shallow groundwater 104 

storages), mined deeper groundwater (blue water), green water (soil moisture fed by direct 105 

precipitation), or a combination of these. Estimates of river discharge can be naturalized or 106 

impacted depending on whether human impacts are accounted for or not. Human impacts are 107 

diverse ranging from direct interventions like building of dams and reservoirs to groundwater 108 

abstractions for meeting water demands like humans drinking facilities or growing foods 109 

(irrigations) (Wiedmann and Lenzen, 2018; Felfelani et al., 2021). The latter has led to 110 

unsustainable depletion of groundwater across several regions throughout the Globe (Rodell 111 

et al., 2009; Wada et al., 2010; Gleeson et al., 2012; Famiglietti, 2014; Dalin et al., 2017; 112 

Greve et al., 2018; Rodell et al., 2018; Bierkens and Wada, 2019; de Graaf et al., 2019). 113 

 114 

Blue water is not the only available water to humans. A significant portion of incoming 115 

precipitation may be used for evapotranspiration by food crops either directly from 116 

precipitation as soil moisture or interception supplemented by irrigation with surface or 117 

shallow ground water sources. This green water over agricultural lands is eventually 118 

embedded in food (Kampman et al., 2008; Dalin et al., 2017). Thus, inter-regional trade of 119 

water can also alter the water availability in a region. Food grain export out of a region 120 

indicates loss of available water resources (as virtual water) and vice-versa. Green water 121 

stress can emerge in agriculture areas where less water is available due to historically low 122 

rainfalls, when high proportion of precipitation is lost as blue water, or irrigation facilities are 123 
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poorly developed. Thus, considerations of water quality (grey water), interactions between 124 

blue-green water sources, and virtual water trade impacts water available in a region (Siebert 125 

and Doll, 2010; Dalin et al., 2017; van Vliet et al., 2017; Vanham et al., 2018). 126 

 127 

Scarcity metrics have similar methodological choices regarding their definitions and 128 

thresholds for scarce conditions to prevail. Scarcity can be due to the tension between 129 

available water and water requirements for various uses in a region including human and 130 

environmental needs (Vanham et al., 2018). In this interpretation, it is quantified by 131 

combining information on available water and consumption or withdrawal patterns. 132 

Alternatively, scarcity can be also quantified using water shortage indicators that estimate 133 

water available per person, sometimes after discounting for environmental needs. Typically, 134 

minimum environmental flows (MEFs) requirements are not explicitly considered in the 135 

quantification of water scarcity metrics. When the metric value falls below a selected 136 

threshold, it indicates a possibility of conflicts between human and environmental needs. 137 

Some analyses, however, assume MEF requirements and deducted the same from natural 138 

runoff prior to calculation of water availability. For example, Mekonnen and Hoekstra (2016) 139 

allocate 80% of natural runoff as MEFs, leaving only 20% of runoff for human use which is 140 

considered as blue water available.  141 

 142 

The choice of spatio-temporal dimensions also affects the perception of scarcity. Assessments 143 

range from grid scale to basin scale, and from daily to decadal scales. The most common 144 

approach is to conduct a grid level analysis for long-term water availability, from which 145 

results can be aggregated to coarser spatial resolution. Mekonnen and Hoekstra (2016) has 146 

shown that the temporal resolution of analysis can significantly alter the estimates of 147 
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population living under water stressed conditions. Similarly, coarser spatial resolution may 148 

mask the underlying spatial disparities in water availability.  149 

 150 

Finally, the social dimensions of water availability are rarely explored in model driven 151 

studies. Often modelling studies provide an estimate of physical water scarcity but the 152 

prevailing socio-political context truly determines the availability of water at the scale of 153 

households (Wolters, 2014; Lund, 2015). For example, while the coastal city of Mumbai 154 

(India) falls in a region of plentiful water resources, a high percentage of slum population 155 

have limited access to clean drinking water (Satapathy, 2014). This indicates that gross level 156 

analysis needs to be complemented by associated socio-economic analysis that quantifies 157 

level of access. Similar challenges for basin wide planning of water resources have been 158 

highlighted by Akhter (2017). 159 

 160 

2.2 Role of uncertainties in future climatic and socio-economic conditions 161 

The seminal study by Vorosmarty et al. (2000) provides one of the first global maps of water 162 

scarcity, focusing on likely impacts of long-term climate and population changes. Since then, 163 

incorporating changing socio-economic and climate conditions has been a part of water 164 

scarcity assessments. Recent studies include many possible socio-economic change pathways 165 

so that potential uncertainties in exposed population living under water scarcity can be 166 

highlighted. However, climate change projections (especially for precipitation) remain highly 167 

uncertain (Knutti and Sedláček, 2013). Similarly, evolution of the coupled human-natural 168 

system places limitations on our ability to project prevailing socio-economic conditions 169 

decades into the future. The challenge is that many natural and human systems can exhibit 170 

threshold-based behaviour, transitioning to new stable regimes within a short period of time 171 

(Singh et al., 2018).  172 
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 173 

Such uncertainties regarding the system when experts cannot agree on the system model or its 174 

characterizing parameterizations are termed as deep uncertainties (Brown et al., 2012). 175 

Planning under deep uncertainties requires a paradigm shift in modelling philosophy. Instead 176 

of focusing on likely changes in a variable of interest, the safe limits of operation of a policy 177 

need to be explored. There is a growing body of literature in this area addressing the issue of 178 

deep uncertainties in management of ecological and hydrological systems (Singh et al., 2015; 179 

Poff et al., 2016). However, these studies are generally carried out for specific study regions. 180 

It may be prudent to explore the utility of these approaches in estimating the safe operating 181 

climates and socio-economic conditions from the perspective of water security at varying 182 

spatial scales. This approach is likely to shift the focus from projection specific insights to 183 

system level insights. 184 

 185 

3. Comparative analysis for India 186 

We quantify a commonly used water scarcity metric, water available per person, using 187 

various water availability definitions. Although we test a limited number of possibilities, our 188 

goal here is to highlight the critical role of these (methodological) choices in estimates of the 189 

number of people exposed to water scarce conditions across India. Water availability is 190 

quantified using a probabilistic Budyko framework (insert Box 1). We consider different 191 

combinations of blue water, green water, in addition to accounting for inter-regional trade of 192 

water and minimum environmental flow requirements. The six definitions of water 193 

availability that emerge from these are: (i) blue water only, (ii) blue water after accounting 194 

for minimum environmental flows, (iii) green water, (iv) green water after accounting for 195 

virtual water embedded in food products, (v) sum of blue--green water resources estimated 196 
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from (i) and (iii), and (vi) sum of blue-green water resources estimated from (ii) and (iv), thus 197 

including considerations of minimum environmental flows and virtual water trade.  198 

 199 

<Figure 1 approximately here>  200 

 201 

The resulting estimates of per capita water availability across India for 1983-2000 using the 202 

six definitions present interesting patterns (Fig. 1a-f). When only blue water is considered, as 203 

in many previous analyses (Vorosmarty et al., 2000; Alcamo et al., 2000; Arnell et al., 2004, 204 

2014; Schewe et al., 2014; Kummu et al., 2016), large parts of the Indo-Gangetic plains and 205 

southern India emerge as extremely water scarce (per capita water availability < 500 206 

m3/year). On further accounting for instream environmental requirements, regions under 207 

extreme water scarcity increases from 16% to 31% and the number of people under extreme 208 

water scarcity increase from 209 to 397 million (Fig. 1b). Instream environmental 209 

requirements combined with more conservative stress thresholds increase the number of 210 

people under water stress from 481 million to 615 million for a threshold of 1000 211 

m3/year/person. Overall, if only blue water is considered, water scarcity hotspots emerge in 212 

an alarmingly large part of northern and southern India. Note that the employed framework 213 

estimates blue after accounting for the evapotranspiration losses from agricultural and non-214 

agricultural land, thus the blue water estimates include human abstractions and cannot be 215 

considered as naturalized values. 216 

 217 

On considering green water as a proxy for water availability, we find low per capita water 218 

availability in the Indo-Gangetic plains, southern coastal districts, and parts of mid-western 219 

India (Fig. 1b,e). Also note the change in patterns of water scarcity hotspots, particularly the 220 

emergence of mid-western districts as water stressed ($<$ 1000 $m^3/person/year$). Farmers 221 
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in these districts have historically witnessed significant crises (Mishra, 2006) but considering 222 

blue water alone does not highlight them as highly water stressed regions. The population 223 

under low green water availability (< 500 m3/year) in Northern India increases from 28 to 99 224 

million after accounting for the virtual water trade across India (Fig. 1e). Thus, surprisingly, 225 

the trade of virtual water trade may increase green water stress in some areas. This may 226 

happen as regions become centers of agricultural production and export water embedded in 227 

products at the cost of local green water stress.  228 

 229 

We demonstrate that the choice of water scarcity thresholds and methodological definitions 230 

can have large uncertainty in perception of water scarcity and the resulting exposed 231 

population across India (Fig. 1g). Overall, anywhere between 46 million to 778 million 232 

people across India may be classified as under water stress based on choice of definitions and 233 

stress thresholds. Both sources of uncertainties, i.e., choice of definitions and thresholds, 234 

impart similar uncertainties to the output estimates of people under stress. On an average, 235 

across definitions of water availability, the number of people across India under water stress 236 

are 191, 434, and 636 million for thresholds of 500, 1000, and 1700 m3/year/person, 237 

respectively. On the other hand, across different stress thresholds, the mean number of people 238 

under water stress are 447, 492, 194, 597, 504, 288 for definitions (i) to (vi), respectively. To 239 

put these numbers into perspective of projected climate scenarios, we also estimated the 240 

uncertainty in per capita water availability using projections of future climate and population 241 

and found that the uncertainties due to future changes in climate-alone are smaller than those 242 

arising out of varying definitions of water availability (Box insert 2).   243 
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244 
  245 

Box insert 1 

A Probabilistic Budyo framework to estimate water scarcity metrics 

We estimate long--term water availability using only observed long--term climate 

(precipitation and temperature) data and satellite based actual evapotranspiration using the 

Budyko function (Singh and Kumar, 2015). The function relates a climate indicator, the 

aridity index (ratio of long--term potential evapotranspiration to long--term precipitation) 

to a water availability indicator, the evaporation ratio (ratio of long--term actual 

evapotranspiration to long--term precipitation). We employ a form of the Budyko curve 

with a firm physical basis (Fu, 1981): 

!"#
$ = 1 + $"#

$ − %1 + %$"#$ &
%
&
&/%

, 

where, AET is the long--term actual evapotranspiration, P is the long--term precipitation, 

PET is the long--term potential evapotranspiration estimated from temperature data 

(Hargreaves and Samani, 1985), and ω is a parameter inferred using historical data. A 

probabilistic approach groups ω inferred from smaller regions to obtain uncertainty ranges 

for larger regions (Greve et al., 2015). Regions are defined based on earlier virtual water 

analysis (Kampman, 2008). Blue water is estimated as the difference between long--term 

precipitation and actual evapotranspiration, assuming changes in storage over multi-

decadal time scales are zero. For green water (AET_AG) estimation, we overlay satellite-

based AET data with the land use map of India extracted from the Global Land Cover 

dataset for the year 2000 (Bartholome and Belward, 2005). AET estimates from cropland 

areas are considered as green water embedded in crops. The analysis was carried out at 

district level, which are fine scale political divisions in India. An earlier analysis 

quantified inter-regional trade of virtual water embedded in crops by dividing India into 

four main zones and estimating the water transferred between these zones by employing 

data on water budget and crop imports/exports (See Supplementary Material for more 

details).  

To estimate per capita water availability, 2001 census of India's district wise population 

data is used. Remote sensing based monthly AET product with a spatial resolution of 

0.073°(~8 Km) available from 1983--2006 is used (Zhang et al., 2009). Monthly 

precipitation data from 1901-2000 for each district is obtained from the Indian 

Meteorological Department, Pune (India). Daily maximum and minimum temperature data 

at a spatial resolution of (1x1)° for the period 1951-2000 is available from the same 

source. An overlapping period of 1983-2000 was used to derive the long--term estimates 

of climatic variables. Districts with less than ten years of overlapping data or in violation 

of the physical constrains of atmospheric water supply (AET<=P) and demand 

(AET<=PET) were removed from the analysis. We use a least-squares fit to obtain ω. 
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 246 

 247 

4. Enhancing scarcity metrics for policy relevance 248 

Due to its complex socio-economic setting and large variability in physio-climatic 249 

characteristics, the driving forces behind water scarcity are complex and evolving in India. 250 

Considerable resources are being allocated to prepare water budgets at a fine spatial 251 

resolution. Examples of advances include the launch of a national level information portal for 252 

water resources information (WRIS, https://indiawris.gov.in/wris/), and the continuation of  253 

National Hydrology Project (http://mowr.gov.in/schemes-projects-254 

programmes/schemes/national-hydrology-project). Concurrently, efforts to understand and 255 

mitigate the impact of climate change are also underway (https://cckpindia.nic.in/). Similarly, 256 

groundwater departments exist at central and state level to monitor and manage groundwater 257 

resources (http://cgwb.gov.in/gwresource.html). An integrated assessment of water scarcity 258 

would require synthesis of information across these resources. While the commonly available 259 

water scarcity metrics provide useful information, their adoption by policy makers may be 260 

strengthened by further improving in the following aspects: 261 

  262 

1. Integrating surface and groundwater estimates:  According to recent reports and 263 

published research, nearly 23% of administrative units in India have already 264 

exhausted their groundwater resources as pumping exceeds natural recharge rates 265 

(CGWB, 2019; Rodell et al., 2009, 2018; Wada et al., 2010; Graaf et al., 2019). In 266 

these regions, non-renewable groundwater resources are being pumped to supply 267 

Box Insert 2 

Uncertainties shape the perception of water scarcity 

<Figure 2 approximately here> 
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irrigation water (Dalin et al., 2017). However, a majority of regions are still classified 268 

as ‘safe’ in terms of groundwater resource development (CGWB, 2019). Thus, 269 

avenues for conjunctive use of surface water and groundwater resources exist and 270 

may ease the pressure on surface sources. However, this is challenging given the 271 

heterogeneity of the aquifer systems in India that result in varied stream-aquifer 272 

interactions, as well as responses to pumping. Few studies have proposed ways 273 

manage the regional aquifer systems underlying the Gangetic plains (Foster and van 274 

Steenbergen, 2011; Khan et al., 2014). Estimating water scarcity by considering these 275 

aspects would provide a better picture for policy makers, but would require inclusion 276 

of recent advancements in global scale surface-groundwater modeling to regional 277 

assessments (Wada et al. 2014).  278 

Several scarcity metrics consider shallow groundwater which interacts with river 279 

discharge. New perspectives are needed to ascertain whether a combined metric that 280 

considers both renewable and non-renewable water resources are needed to gain a 281 

clearer picture of water scarcity in such regions. The main issue is that inclusion of 282 

non-renewable groundwater in water availability estimates would present a false 283 

picture of water sufficiency. In principle, such resources should be omitted from 284 

availability calculations and included only in water use estimates with a greater 285 

penalty when compared to renewable sources. However, no clear guideline has 286 

emerged from literature on this critical issue. In addition, such resources are also hard 287 

to quantify. For example, the unique setting of hard rock aquifers in Southern India 288 

necessitates development of local models and integration with existing surface water 289 

estimates.  290 

 291 
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2. Explicit consideration of MEFs: Satisfying human needs often comes into direct 292 

conflict with maintenance of aquatic ecosystems. This is particularly relevant for 293 

India where freshwater resources are already over committed (Soni et al. 2014). 294 

Future water scarcity assessments can become more policy relevant if they explicitly 295 

account for impact on MEFs. It would be useful to explore different approaches for 296 

MEF estimation (Paster et al. 2014) and evaluate the impact of choices around MEFs 297 

on resultant scarcity estimates. A few studies provide global assessments of MEFs or 298 

their impacts on water and food availability (Paster et al., 2014, 2019; Gerten et al. 299 

2013). Gerten et al. (2013), for example, showed that considering aquatic ecosystem 300 

needs resulted in lower boundaries for planetary freshwater consumption for humans. 301 

More recently, Paster et al. (2019) in their study on extensively agriculture-dominated 302 

areas have shown that maintenance of MEFs would require substantial reduction in 303 

irrigated areas with a concurrent increase in rain-fed regions to meet global food 304 

requirements. These studies provide a way forward to include MEFs in water scarcity 305 

assessments, though the uncertainty in these estimates warrant further investigations. 306 

 307 

3. Expanding observational networks and improving uncertainty estimation methods: 308 

Almost all the global studies reviewed used a grid with spatial resolution of 0.5°x0.5° 309 

or used large river basins for computation of water scarcity indicators (Table 1). At 310 

this resolution, river routing processes may not be adequately represented and could 311 

introduce errors in runoff computations. A more critical issue is that gridded runoff 312 

estimates are generally based on water balance models and their parametrization is 313 

often based on observed runoff data. The density of runoff gages varies considerably; 314 

in poorly gauged and ungauged parts of the globe the simplification of extrapolating 315 

model parametrizations from gauged to ungauged locations results in high degree of 316 
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uncertainties in runoff simulations. Ruhi et al. (2018) show that gage density across 317 

the globe has in fact declined in the last decade. Finally, many future estimates of 318 

water scarcity ultimately rest on our ability to project the impact of climate change on 319 

water availability. This procedure is itself fraught with uncertainties arising from 320 

different sources including climate model parametrizations and specification of 321 

emission scenarios as well as the choice of downscaling and bias correction 322 

approaches. Singh and Biswal (2019) provide a comprehensive review of available 323 

approaches and challenges. Overall, these issues point towards the need for expansion 324 

of existing runoff gage networks in India and elsewhere as well as the need for better 325 

characterization of uncertainty in contemporary and future runoff simulations. 326 

Focused approaches like prioritizing regions with sensitive ecosystems may help 327 

balance economic considerations with prediction accuracy (Ruhi et al., 2018). 328 

 329 

4. Consideration of deep uncertainties: often, estimates of water scarcity are employed 330 

for long-term water resources planning. For example, large scale public investments 331 

such as inter-basin water transfers require an understanding of time evolution of water 332 

scarcity in participating basins. Deep uncertainties regarding the nature of coupled 333 

human-natural systems implies that policy makers would need a paradigm shift away 334 

from scenario specific information. Instead, the robustness of various policy options 335 

should be tested against a large number of possible future scenarios (Lempert et al., 336 

2008; Singh et al., 2015; Poff et al., 2016). Although robustness has gained traction in 337 

long-term policy analysis in regional water resources management, national to global 338 

scale analyses still heavily rely on scenario specific projections. Greve et al. (2018) 339 

provide an assessment of uncertainty in global water scarcity estimate and indicate the 340 

need for robust decision making in regions that are likely to witness large 341 
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uncertainties in future estimates of the metric. This promising analysis illustrates the 342 

essential need to quantify uncertainties in metric values. Our quantitative analysis 343 

indicates a similarly high uncertainty in assessment of population under water stress 344 

across India. In regions where water scarcity is hard to quantify either due to 345 

disparities emerging from methodological choices or due to deeply uncertain futures, 346 

decision makers should resort to robust decision-making frameworks to design 347 

management strategies in lieu of cost-benefit analyses (Lempert et al., 2010; Poff et 348 

al., 2016). 349 

 350 

5. Translating water scarcity metrics for a diverse socio-economic group: the water 351 

scarcity metrics aggregated at any spatial resolution (city or state or national) would 352 

always fail to capture the reality that some individuals or communities are inherently 353 

more exposed to water risks due to their socio-economic disposition. Only a 354 

philosophical transformation in the understanding of water scarcity would address this 355 

issue. Scarcity metrics need to undergo a bottom-up transformation: water scarcity for 356 

whom? The possibility to provide a distribution of water scarcity for a spatial unit, 357 

instead of a single deterministic estimate needs to be explored. Some regions are 358 

likely to show a great variance in water scarcity exposure due to underlying socio-359 

economic gaps. Such regions are likely to need much different policy structures than 360 

those where a fairly uniform sharing of scarcity risk is envisioned.  361 

 362 

5. Concluding remarks  363 

 364 

Our analysis highlights the value of uncertainty communication and presents various 365 

interpretations of water scarcity indicators that are crucial for the 2030 Sustainable 366 
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Development target 6.4.2 of water scarcity. Despite not considering other dimensions of 367 

water scarcity such as water quality, temporal variability of water availability, climate 368 

uncertainties, demographic changes, etc.; we still find a very large uncertainty in estimated 369 

number of people under water stress in India, varying somewhere between 5% to 74% of the 370 

country's population. The large uncertainties in estimates of the number of people exposed to 371 

water scarcity indicates that analyses of water stress should aim to present each of these 372 

multiple dimensions of water scarcity to provide policy relevant information. In addition, we 373 

suggest three important ways in which scarcity metrics can be tailored to provide decision 374 

relevant information: 375 

1. Consideration of surface water -groundwater interactions and MEFs: Water scarcity 376 

metrics should explicitly consider the contribution of surface water and groundwater 377 

resources to blue water assessment. They also need to account for ecosystem water 378 

needs by adjusting blue water estimates based on MEFs.  379 

2. Accounting for deep uncertainties in metric assessment: Long-term planning is 380 

fraught with deep uncertainties regarding the future trajectories of the coupled human-381 

natural systems. Thus, scarcity metrics and associated quantifications of people under 382 

stress need to be re-designed to suggest whether the estimates are robust against the 383 

various underlying choices in metric assessment.  384 

3. Physical water scarcity vs. socio-economic water scarcity: Metrics need to consider 385 

the underlying heterogeneities in access to water resources, especially in countries 386 

with large economic disparities. These assessments would require active collaboration 387 

of social scientists with water resource managers to provide novel and reliable metric 388 

definitions.  389 

 390 
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Table 1. Selected studies on global water scarcity highlighting key methodological choices, 579 

arranged in chronological order. Q: mean annual surface and subsurface (shallow aquifer) 580 

runoff accumulated as river discharge, AET: actual evapotranspiration from agricultural 581 

areas, MEF: minimum environmental flows 582 

SNo. Reference 

 

Water 

availabilit

y  

Scarcity metric Spatio-

temporal 

variation 

Threshold 

1 Vorosmarty et al., 

2000 

Q (natural) Demand/Q 30’x30’ grid/ 

Annual  

20% and 

40% 

2 Alcamo et al., 2000 Q (natural) Withdrawal/Q Large river 

basins/ annual 

40% 

3 Arnell, 2000 Q (natural) Q per capita 0.5°x0.5° grid/ 

Daily 

1000 

4 Rockstrom et al. 

2009 

Q +AET Q + AET per 

capita 

0.5°x0.5° grid/ 

Daily 

- 

5 Gerten et al., 2011 Q (natural) 

+ AET 

Q + AET per 

capita 

0.5°x0.5° 

grid/Daily100

0 

- 

6 Arnell and Lloyd-

Hughes, 2014 

Q (natural) Q per capita 0.5°x0.5° 

grid/30-year 

average 

1000 

7 Haddeland et al., 

2014 

Q 

(impacted) 

Consumption/Q 0.5°x0.5° 

grid/Annual 

- 

8 Schewe et al., 2014 Q (natural) Q per capita 0.5°x0.5° 

grid/31-year 

500, 1000 
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average 

9 Kummu et al. 2016 Q (natural) Multiple 

metrics 

Sub-national/ 

decadal 

Multiple 

thresholds 

10 Mekonnen and 

Hoekstra, 2016 

Q 

(impacted) 

Withdrawal/Q 30’x30’ 

grid/monthly 

MEF 

 583 

  584 
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Figure Captions 585 

Figure 1. (a-f) Long term (1983-2000 average) per capita water availability across India at a 586 

spatial resolution of fine political units using various definitions of water availability. Q 587 

refers to mean annual runoff including shallow groundwater; AET_AG is the 588 

evapotranspiration from agricultural areas; MEF refers to minimum environmental flows. 589 

Case (e) accounts for impact of virtual water trade on net AET_AG. (g) Percentage of 590 

districts under water scarcity as a function of choice of water availability definition and 591 

threshold of scarcity.  592 

 593 

Figure 2. Uncertainty in future water availability due to (a) multiple definitions of water 594 

availability, and (b) due to future projections of climate from different global climate models 595 

(GCMs) and representative concentration pathways (RCPs). Panel (a) shows the range of 596 

uncertainty in projected per capita water availability across six different definitions of water 597 

availability for each GCM-RCP combination. Panel (b) shows the range of per capita water 598 

availability across GCM-RCPs for each definition of water availability. All values are 599 

aggregated across India. The ranges are shown as boxplots, which show median values by 600 

solid black horizontal lines. The box boundaries show the 25th and 75th percentile of the data. 601 

The whiskers extend to data values that are up to 1.5 times the interquartile range from either 602 

ends of the box. Any data points outside these ranges are shown by empty circles and 603 

classified as outliers. See Supplementary Text S2 for details on GCMs and RCPs. 604 
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associated socio-economic analysis that quantifies level of access. 
Similar challenges for basin wide planning of water resources have been 
highlighted by Akhter [2]. 

2.2. Role of uncertainties in future climatic and socio-economic 
conditions 

The seminal study by Vorosmarty et al. [53] provides one of the first 
global maps of water scarcity, focusing on likely impacts of long-term 
climate and population changes. Since then, incorporating changing 
socio-economic and climate conditions has been a part of water scarcity 
assessments. Recent studies include many possible socio-economic 
change pathways so that potential uncertainties in exposed population 

living under water scarcity can be highlighted. However, climate change 
projections (especially for precipitation) remain highly uncertain [26]. 
Similarly, evolution of the coupled human-natural system places limi-
tations on our ability to project prevailing socio-economic conditions 
decades into the future. The challenge is that many natural and human 
systems can exhibit threshold-based behaviour, transitioning to new 
stable regimes within a short period of time [48]. 

Such uncertainties regarding the system when experts cannot agree 
on the system model or its characterizing parameterizations are termed 
as deep uncertainties [8]. Planning under deep uncertainties requires a 
paradigm shift in modelling philosophy. Instead of focusing on likely 
changes in a variable of interest, the safe limits of operation of a policy 
need to be explored. There is a growing body of literature in this area 

Fig. 1. (a-f) Long term (1983–2000 average) per capita water availability across India at a spatial resolution of fine political units using various definitions of water 
availability. Q refers to mean annual runoff including shallow groundwater; AET_AG is the evapotranspiration from agricultural areas; MEF refers to minimum 
environmental flows. Case (e) accounts for impact of virtual water trade on net AET_AG. (g) Percentage of districts under water scarcity as a function of choice of 
water availability definition and threshold of scarcity. 
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