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Abstract:

This study reports the 13C and 2H isotope fractionation associated with the oxidation 

of diethyl phthalate (DEP) by persulfate (PS) activated with zero-valent iron (ZVI) 

using three concentration levels (0.2, 0.5 and 1.0 g L-1) at different pH values, 3, 7 and 

11, respectively. The results showed that the degradation of DEP followed a pseudo 

first-order kinetics. The fastest degradation was found at neutral conditions (pH 7). 

Similar carbon and hydrogen isotope fractionation (εC and εH) was observed during 

the oxidation of DEP by ZVI activated PS at pH 3, 7 and 11. At ZVI concentration of 

0.5 g L-1, the correlation of 13C and 2H fractionation (Λ) were obtained to be 12.7 ± 

3.5, 11.1 ± 4.2 and 12.0 ± 2.9 at pH 3, 7 and 11, respectively. The concentration of 

ZVI has no effect on the correlation of 13C and 2H fractionation (Λ). In addition, 

radical quenching approach and electron paramagnetic resonance (EPR) were 

combined to explore the dominant radical species in the ZVI activated PS reaction, 

and hydroxyl radical (•OH) was found to be the predominant radical at all pH studied. 

The results of CSIA show the addition of •OH to the aromatic ring of DEP is the main 

reaction mechanism, which is consistent with the results of radical quenching 

experiment and EPR study. Carbon and hydrogen apparent kinetic isotope effects 

(AKIEs) obtained from •OH reactions with DEP supported the hypothesis of C-H 

bond cleavage. Thus, carbon and hydrogen isotope enrichment factors clearly 

distinguish the different reaction mechanisms and hence, are a promising approach to 

improve understanding of radical species reaction pathways for chemical oxidation of 

DEP.

Key words: Compound-specific stable isotope analysis; Diethyl phthalate; Persulfate; 

Carbon and hydrogen isotopic fractionation; Zero-valent iron
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1. Introduction

Phthalates (PAEs) are a class of hydrophobic organic substances with large 

production volume and wide application1, 2. They are widely applied in mineral 

processing as flotation agents, and used as plasticizers, pesticide carriers, cosmetics, 

coatings, and others 3, 4. The applications in China's non-ferrous metal mines are 

complex and difficult to address5. With the expansion of large-scale mining, poor ore 

has become the main source of mineral extraction, so large amounts of organic 

flotation reagents including PAEs have been used to extract the target metals6. 

Diethyl phthalate (DEP) has a good emulsification effect on hydrocarbon based 

oils. The long-lasting foaming property and good fluidity at low temperature make 

DEP beneficial to the recovery of molybdenum as well as copper-molybdenum ore 

and thus has been used as the main foaming agent for processing of these ores 7. Due 

to the lack of corresponding regulatory policies, a large amount of DEP is released 

into the environment6. DEP is classified as Substances of Very High Concern (SVHC) 

because of its carcinogenic and teratogenic effects and its high persistence in the 

environment. Metabolites and degradation products of DEP may have adverse effects 

on human health, especially the liver, kidneys and testes, and may also cause 

endocrine disorders8-11. At present, the hazards of DEP in mine tailings have not 

received widespread attention. However, the contamination may cause great damage 

to the ecological environment and pose a huge potential risk to human health12. In 

Europe, regulations prohibiting products containing certain phthalates have been 



4

implemented since 200013. According to the United States-Environmental Protection 

Agency (US-EPA) diethyl phthalate (DEP) has been included in the list of priority 

pollutant14 and the agency set the threshold limit values of DEP at 0.55 mg L-1 in 

drinking water 15.

In very recent, various methods including adsorption16-18, biodegradation19-25 and 

advanced oxidation processes (AOPs) such as Fenton oxidation, UV photolysis, 

photocatalytic and persulfate oxidation 26-35 have been used to treat PAEs based 

pollution. However, due to its ethyl groups and the lack of light adsorption at 

wavelengths >300 nm36, DEP is resistant to the biodegradation and photolytic 

degradation. In recent years, sulfate radicals based AOPs has been used for the 

abatement of persistent organic pollutants (POPs)32. The highly reactive  can SO• ―
4

be generated by activation of persulfate (PS) via heat, metal ions, and transition 

metals26. Zero-valent iron (ZVI) is one of the most promising transition metals, which 

has attracted more attention on PS activation to generate . Reactions involving SO• ―
4

in Fe(0)/PS process are illustrated in Eq. (1) and (2)37, 38. Hydroxyl radicals can be 

formed under alkaline conditions according to Eq. (4-5)39, S2O8
2-can reacted with H+ 

forming sulfate radical under acidic condition based on Eq. (6-7)40, which may also 

contribute to the oxidation of PAEs. In situ chemical oxidation (ISCO) is a promising 

technique for the removal of organic contaminants in soil, groundwater and aquifers41-

43. In addition, ZVI may present in beneficiation of wastewater and tailings6, 44 or can 

be added for example as micro/nanoparticle of low environmental concern. Therefore, 

ZVI is a reasonable activator of PS to remove DEP in ore dressing wastewater and 
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tailings, achieving the purpose of in-situ remediation. On the other hand, knowledge 

about the degradation processes is necessary to develop ZVI/PS remediation 

techniques for an efficient and economical removal of DEP in the environment. 

However, the degradation mechanism of DEP by ZVI activated PS (ZVI/PS) at 

different pH is still unclear.

                  (1)𝐹𝑒(0) + 𝑆2𝑂2 ―
8 →𝐹𝑒2 + +2𝑆𝑂2 ―

4

         (2)𝐹𝑒(0) + 2𝑆2𝑂2 ―
8 →𝐹𝑒2 + +2𝑆𝑂2 ―

4 + 2𝑆𝑂• ―
4

                 (3)𝐹𝑒2 + + 𝑆2𝑂2 ―
8 →𝐹𝑒3 + + 𝑆𝑂2 ―

4 + 𝑆𝑂• ―
4

All pHs:            (4)𝑆𝑂• ―
4 + 𝐻2𝑂↔ ∙ 𝑂𝐻 + 𝐻 + + 𝑆𝑂2 ―

4

Alkaline pH:             (5)𝑆𝑂• ―
4 + 𝑂𝐻 ― →𝑆𝑂2 ―

4 + ∙ 𝑂𝐻

Acidic pH:                   (6)S2𝑂2 ―
8 + 𝐻 + →𝐻𝑆2𝑂 ―

8

         HS2O8
– + e–→ SO4

•– + SO4
2– + H+              (7)    

                                 (8)𝐹𝑒2 + + 𝑂2 = 𝐹𝑒3 + + 𝑂• ‒
2

Compound-specific stable isotope analysis (CSIA) is one of the powerful 

techniques that can be used to study the transformation of organic contaminants based 

on isotope fractionation approach45. The measurement of stable isotope ratios of 

carbon, hydrogen, and other elements has proven to be useful in the evaluation of 

environmental processes46, 47. The isotope fractionation of individual compounds can 

often be rationalized in terms of bonding changes in the first irreversible reaction step 

and is therefore a valuable approach for determining the type of reaction that initiates 

contaminant degradation48, 49. Hitherto, the carbon and hydrogen isotope fractionation 

of DEP has been studied for characterizing its abiotic hydrolysis, aerobic 
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biodegradation and oxidation by heat activated PS36, 50. However, there are few 

reports related to the isotope fractionation associated with the activation of PS by 

ZVI. In addition, ZVI existing in iron ore can be used as an efficient activator to 

promote the elimination of DEP, which gives a new possibility to the treatment 

technology of phthalate esters in tailings environment. It should be also mentioned 

that there are some reports on the degradation mechanism of DBP by PS activated 

with heat, UV and transition metal. But the reports did not apply CSIA to thoroughly 

discuss the degradation mechanism and characterize the chemical bond breakage 

during the reaction processes (Table S1). Hence, we believe that the current work is a 

novel contribution to enhance our knowledge on the reaction mechanisms. This may 

be essential for the application of stable isotope techniques to identify and quantify 

the removal of DEP by AOPs in remediation applications.

Therefore, the objectives of this study were: (i) to quantify the degradation 

kinetics of DEP in ZVI/PS system at different initial pHs (3, 7 and 11), (ii) to identify 

the DEP degradation intermediates in ZVI/PS system using GC-MS, (iii) to 

characterize the 13C and 2H isotope fractionation associated with DEP oxidation by 

ZVI/PS in order to explore the potential to monitor the progress of degradation using 

isotope fractionation in field studies and (iv) to calculate the apparent kinetic isotope 

effects (AKIEs) of DEP in order to explore the potential of CSIA for characterizing 

the radical reactions with DEP. Furthermore, isotope enrichment factors, εC and εH, 

for all reactions have to be determined for the characterization of degradation 

pathways and subsequent quantification of degradation reaction in field studies.
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2. Materials and methods

2.1. Chemicals

Analytical grade DEP (purity, 99.5%), sodium persulfate (Na2S2O8, purity, 

99.9%), nano zero-valent iron (purity, 99.9%), 5,5-dimethyl-1-pyrrolinen-oxide, 

starch indicator (I2, AR), potassium iodide (KI, 99.5%), sodium thiosulfate (Na2S2O3, 

99.5%), 1,10-phenanthroline monohydrate (C12H8N2, 99%), sodium acetate solution 

(CH3COONa, 99.8%), sulfuric acid (H2SO4, 95–98%) and sodium hydroxide (NaOH, 

98%) were obtained from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). 

HPLC grade dichloromethane, methanol, ethanol (EtOH) and tert-butyl alcohol 

(TBA) were supplied by Beijing MREDA Technology Co., Ltd. (Beijing, China). 

Deionized water produced by a Milli-Q system (Millipore, Billerica, MA, USA) was 

used to prepare all experimental solutions.

2.2. Experimental procedures

Batch experimentation was conducted in triplicate to analyse the sodium 

persulfate oxidation reactions in a series of 500 mL flasks. Na2S2O8 was used to 

generate  at pH 3, 7 and 11. The pH value was adjusted using H2SO4 and SO• ―
4

NaOH solutions, and all experiments were carried out at room temperature (20±1 ℃). 

Considering low solubility of DEP in water and to achieve adequate signal intensity 

for isotope measurements, initial concentration of DEP was set 0.8 mM. The molar 

ratio of PS and DEP was 100:1, and the concentrations of ZVI were 0.2, 0.5 and 1 g 

L-1, respectively. Control experiments were conducted without the addition of PS or 
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ZVI, and without the addition of both PS and ZVI under identical conditions (pH 3, 

pH 7 and pH 11), simultaneously. To investigate the degradation kinetics of DEP, 0.5 

mL reaction solution was transferred at different time intervals into 2 mL brown glass 

vials for HPLC analysis of the remaining DEP concentration. As a free radical 

quencher, 0.5 mL methanol was added to the brown glass vials in order to stop the 

radical oxidation reaction after sampling. 

To estimate the main radical species generated in ZVI/PS system at the 

considered pH, radical quenching experiments were separately carried out in the 

presence of EtOH and TBA. EtOH and TBA, which act as radical scavengers, were 

added to obtain a concentration of 400 mM, which corresponded to a 500:1 molar 

ratio compared to the DEP. The second order rate constant value of •OH with TBA is 

6 × 108 M−1s−1, which is almost 3 orders of magnitude faster than that of SO4
•‒ with 

TBA (4× 105 M−1s−1)42. Therefore, TBA is usually used as a chemical probe to 

completely quench •OH but only some amount of SO4
•‒. EtOH can quench SO4

•‒ and 

•OH, simultaneously. In addition, electron paramagnetic resonance (ESR) 

experiments were conducted to identify the radical species using 5,5-dimethyl-1-

pyrrolinen-oxide (DMPO) as a spin-trapping agent. In brief, a suspension containing 1 

mL of 0.1 M DMPO solution was spiked into the reaction solutions at different time 

intervals and further shaked for 1 min 51. Then, the suspension was filtered through a 

0.22 μm MCE syringe filter and analyzed on a Bruker EMS Plus X-band ESR 

spectrometer at room temperature 52.
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To evaluate the isotope fractionation pattern of DEP in the ZVI/PS system, the 

remaining DEP fraction at different time intervals was extracted from the aqueous 

solution with 5 mL of dichloromethane. The extracts were concentrated to 2 mL for 

carbon isotope analysis, and then were concentrated to 200 µL for hydrogen isotope 

analysis.

2.3. Concentrations, intermediate products and isotope analysis

The concentrations of DEP in all experiments were measured by an UltiMate 

3000 HPLC system (Thermo Fisher Scientific, USA) equipped with a UV detector at 

253 nm. A reversed-phase C18 column (250 mm length x 4.6 mm internal diameter, 

5.0 µm particle size) was used for separation and the temperature was maintained at 

30 ℃. The mobile phase was a mixture of methanol and ultrapure water (65:35, v:v) 

with a flow-rate at 1 mL min-1. The DEP concentrations were calculated using an 

external calibration curve obtained from the HPLC measurements at identified 

retention time (tR = 6.59 min) (Fig. S1).

An Agilent GC-MS (7890B-5977B) system (Agilent, USA) was used to 

investigate reaction products of the DEP. A DB-5 column (30 m x 0.25 mm x 0.25 

µm) (Agilent, USA) was used to separate the compounds. The oven temperature 

program was 60 ℃ (held 1 min) followed by a ramp of 8 ℃/min to 295 ℃ (held 3 

min). The carrier gas was helium (1 mL min-1) and each 1 µL sample was injected in 

split mode with a split ratio of 20:1 and the injector temperature was set at 280 ℃. 

The GC-MS spectrum of DEP and reaction product are shown in Fig. S2 and the mass 

spectrum of the identified degradation product is given in Fig. S3.
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Carbon and hydrogen isotope compositions of DEP were measured by a DELTA 

V gas chromatography-isotope ratio mass spectrometer (GC-IRMS, Agilent, USA). 

Samples were injected in split mode (20:1, 1 μL) for carbon isotope measurement, 

and splitless mode was applied for hydrogen isotope analysis to obtain optimum 

signal intensity. Good peak shape of DEP was achieved using a DB-5MS column (30 

m x 0.25 mm x 0.25 µm) (Agilent, USA). The GC oven temperature program and 

other GC parameters were identical to the ones as in GC-MS (see above GC-MS 

procedure). Reproducibility of δ13C and δ2H values was monitored by triplicate 

injections for each sample. The uncertainties of isotope analysis were within the 

typical range of analytical uncertainties (δ13C: ± 0.5‰, δ2H: ± 5‰). The GC-IRMS 

spectrum of DEP were shown in Fig. S4.

2.4. Persulfate and Fe2+ determination 

Colorimetric method was used to determine the PS concentration using iodide as 

reported elsewhere53. The concentration of Fe2+ in the studied system was determined 

by o-phenanthroline spectrophotometry. Briefly, 10 mL o-phenanthroline aqueous 

(0.2 %) solution and 5 mL sodium acetate solution (10 %) were added to a 25 mL 

colorimetric tube and shaken. Then 1 mL of samples was added to the colorimetric 

tube and dilute to 25 mL. The concentration of Fe (II) in the sample was analyzed by 

spectrophotometer at 512 nm. And the stability of the Fe2+ o-phenanthroline complex 

in the presents of persulfate was analyzed under similar conditions as used for 

concentration measurement in the experiments. 
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2.5. Isotope data evaluation

2.5.1. Evaluation of isotope fractionation

The carbon and hydrogen isotope enrichment factors (εC and εH) of DEP were 

determined using the Rayleigh equation, Eq. (9)54,

                                                       (9)
 δt + 1
δ0 + 1 = (𝑓)ε

where δt and δ0 are the isotope compositions of substrate at time t and zero,  is the 𝑓

remaining fraction of substrate at time t (  = Ct /C0), and ε was obtained as the bulk 𝑓

isotope enrichment factor.

The correlation of the shift of the hydrogen isotope (Δδ2H) at time t and zero and 

the shift of the carbon isotope (Δδ13C) during the experiment were calculated as 

shown in Eq. (10). The slope (Λ) was used to discriminate the reaction mechanism of 

the same compound.

                                                     (10)Λ =
Δδ2H
Δδ13C ≈

ε𝐻

ε𝐶

2.5.2. Apparent kinetic isotope effect (AKIE) calculation

The ε values were calculated by Rayleigh equation (Eq. 9) using bulk isotope 

data, which was used to calculate the position-specific intrinsic isotope effect 

associated with the particular bond change reaction55. Conversion of the observable ε 

value to AKIE (Eq. (11)) is needed to characterize the chemical bond breaking 

mechanism and degradation pathway56.

                                           (11)𝐴𝐾𝐼𝐸 =
1

1 +
𝑛
𝑥𝑧 ∙ 𝜀𝑏𝑢𝑙𝑘((‰)/1000
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Where ε bulk is the bulk isotope enrichment factor, n is the number of atoms of the 

element in the molecule, x is the number of atoms at reactive positions and z is the 

number of indistinguishable reactive positions.

3. Results and discussion

3.1. Degradation kinetics of DEP at different pHs 

The chemical oxidation processes of DEP although a second order reaction 

followed first order kinetics at all pHs (pH 3, 7 and 11) (R2 ≥ 0.9337, Table 1), which 

is consistent with the previous studies. Along with the increasing ZVI concentration 

of 0.2, 0.5 and 1 g L-1, rate constants (k) of DEP degradation in the ZVI/PS system 

increase from 0.0035, 0.0095, and 0.0301 h–1 at pH 3, to 0.0059, 0.0115 and 0.0306 h-

1 at pH 7, and to 0.0034, 0.0044 and 0.0204 h−1 at pH 11, respectively (Fig. 1). 

Control experiments (without ZVI and PS) showed negligible decrease of DEP, and 

no carbon and hydrogen isotope fractionation was observed at pH 3 and 7 (Fig. S5), 

thus showing that ZVI concentration is the predominant factor for activation. Under 

alkaline conditions the control experiment at pH 11 without persulfate show that 

hydrolysis take place with a rate constant of 0.0028.

In addition, at pH 11 carbon fractionation has been detected with an enrichment 

factor of -5.90±0.71, indicating isotope fractionation upon alkaline hydrolysis of DEP 

is consistent with previous studies 56, 57 (Fig. S6, Table S2). This shows that at pH 11 

in addition to radical oxidation hydrolysis need to be taken into account.
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Control experiment (with PS and without ZVI) at pH =3 and pH =7 showed 

slight decrease in concentration of DEP in the first 30 minutes, but remained stable 

in the DEP/PS system after 30 minutes. The main reason may be that PS initially 

produces free radicals, and due to lack of activator, the free radicals in the 

experiment get consumed, and the concentration of DEP become stable (Fig. S7).

Table 1 here

Figure 1 here

The results also showed that under acidic, neutral and alkaline conditions, the 

degradation rate of DEP increased with the increase of ZVI concentration. In addition, 

the degradation rate of DEP in ZVI/PS system at pH 7 is faster compared to acidic 

(pH 3) and alkaline (pH 11) conditions, and the lowest degradation rate was observed 

under the acidic condition. 

3.2. Decomposition of persulfate and the concentration of Fe2+ 

3.2.1. The concentration of PS in the presence of ZVI but without DEP

In order to understand the effect of ZVI on the decomposition of PS under 

different pH conditions, the PS concentration in the presence of ZVI but without DEP 

was monitored and the results are presented (Fig. 2). 

Figure 2 here



14

The results showed that the decomposition trend of PS gradually slowed down 

after 60 minutes at pH = 11 (25%). However, the decomposition rate of PS in acidic 

(30%) and neutral conditions (29%) was higher than that in alkaline conditions, which 

may be the reason why the degradation rate of DEP in acidic and neutral conditions 

was significantly higher than in alkaline conditions.

3.2.2. Decomposition of persulfate in studied conditions

Since the main source of the free radicals in the DEP/PS/ZVI system is PS, the 

concentration of PS during the reaction process at different pHs have been monitored. 

As shown in Fig. 3, PS is gradually consumed under all pH conditions (at pH 3, 7, 11, 

PS consumption was about 46.5%, 48.8% and 45.2%, respectively). Similar to the 

trend of PS consumption, the degradation rate of DEP was highest in neutral followed 

by in acidic and alkaline conditions. The results show the reaction of radicals with 

DEP improve the consumption rate of PS. 

Figure 3 here

3.2.3. The concentration of Fe(II) in studied conditions

The concentration of Fe2+ in the DEP/PS/ZVI system was determined by o-

phenanthroline spectrophotometry (Fig. 4) to investigate the reaction of ZVI to Fe(II) 

in the reaction system. The results indicated that the concentration of Fe(II) gradually 

increased as the reaction proceed which indicate that ZVI was oxidised to Fe(II), 
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according to Eq. (1) and Eq. (2). With the progress of the reaction, the Fe(II) may be 

gradually transformed into Fe(III) (Eq. 3).

Figure 4 here

3.3. Carbon and hydrogen isotope fractionation during the chemical oxidation

Both carbon and hydrogen isotope fractionation were detected during the DEP 

oxidation in the ZVI/PS system. The values of carbon and hydrogen isotope 

compositions became less negative along with the reaction progresses, showing a 

normal isotope effect (Fig. S8). The carbon and hydrogen isotope enrichment factors 

of DEP were quantified (Fig. 5). The Rayleigh regression of DEP showed high 

correlation with a high coefficient of determination (R2 ≥ 0.9205) for δ2H and δ13C, 

and the uncertainty was within the 95% confidence interval (C.I.). The carbon and 

hydrogen isotope fractionation of control experiment (with PS and without ZVI) 

showed the carbon and hydrogen isotopes gradually enriched in the first 30 minutes, 

and the carbon and hydrogen isotope enrichment factors were -1.43±0.97, -1.61±0.65, 

-32.96±1.2 and -26.45±1.4, respectively, which is consistent with that of degradation 

kinetics and the previous studies (Table 3). After 30 minutes, the carbon and 

hydrogen isotope values remained stable. The reason may be that with the 

consumption of free radicals which are limited in amount due to absence of ZVI, and 

the DEP concentration remained stable (Fig. S9)

Figure 5 here
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The εC values at different concentrations of ZVI were calculated to be -

1.1±0.21‰, -0.8±0.20‰, and -0.6±0.36 ‰ at pH 3, -1.10±0.01 ‰, -1.11±0.01 ‰, -

1.00±0.01 ‰ at pH 7, and -1.48±0.21 ‰ , -1.18±0.20 ‰, -0.77±0.16 ‰ at pH 11, 

respectively (Table 2). Similarly, the εH values were calculated to be 10.2±3.6 ‰, 

8.7±5.1, and 8.5±3.3 ‰ at pH 3, -14.0±4.1 ‰, -11.6±5.5 ‰, -13.7±3.2 ‰ at pH 7, 

and -23.0±3.2 ‰, -19.2±4.6 ‰, -14.0±2.1 ‰ at pH 11, respectively. The ε values 

obtained at different ZVI concentration at the same pH were statistically identical 

when considering the 95% CI, revealing an average εC and εH values of 0.79±0.45 ‰ 

and 8.97±4.87 ‰ at pH 3, 1.10±0.45 ‰ and 13.10±5.60 ‰ at pH 7, and 3.10±0.60 ‰ 

and 18.02±5.01 ‰ at pH 11, respectively.

Table 2 here

Results also showed that high concentration of ZVI (0.2 g L-1 to 1.0 g L-1) lead to 

slightly low carbon and higher hydrogen fractionation compared isotope fractionation 

of •OH and  radical reaction observed in previous study (Table 3). Whereas SO• ―
4

the 13C fractionation is in the same order, experiments in which persulfate is activated 

by heat the hydrogen fractionation is statistically lower. In contrast the pure reaction 

with •OH radicals give a higher 13C fractionation whereas the trend for 2H 

fractionation is lower than in most experiments with ZVI activation. This already 

indicate that the persulfate/ZVI system show specific fractionation pattern not 

identical to pure sulfate and hydroxyl radical reactions. 
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This may be an indicator that at high radical concentration the relative 

contribution of one of the radical species become more dominant. A previous study 

shows that •OH results in lower hydrogen enrichment factors and larger carbon 

enrichment factors compared (Table 3). We speculate that at high radical SO• ―
4

concentration the contribution of •OH reaction become more dominant leading to a 

reduction of the 2H fractionation and an increase of 13C fractionation due to the 

existence of  in the ZVI/PS system. SO• ―
4

At pH 3 and pH 7 the carbon and hydrogen isotope fractionation is statistically 

almost identical showing that a very similar mechanism is predominating. At pH 11 

with the increase of ZVI concentration the 13C fractionation decrease. The same trend 

is observed for 2H fractionation (although less pronounced). This may show that at pH 

11 reaction mechanism may change which might be reasonable because a contribution 

hydrolysis even not prominent on the overall reaction need to be take into account.     

Table 3 here

The correlation of carbon and hydrogen isotopic value of DEP in ZVI/PS system 

were compared in dual isotope plots. In all case, εC values of DEP with different 

concentrations of ZVI showed a similar trend of carbon isotope fractionation. εH 

values of DEP showed a trend to a larger hydrogen isotope fractionation at pH 11 

compared to the ones at pH 3 and pH 7. Thus, the difference of hydrogen enrichment 

factors may be used to identify different reaction processes. In addition, similar slope 

(Λ=Δδ2H/Δδ13C) were observed in all studied conditions (Fig. 6) (Λ = 15.1±4.2, 

12.7±3.5 and 11.7±2.6 at pH 3, Λ = 10.9±2.9, 11.1±4.2 and 11.6±3.6 at pH 7 and Λ = 
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15.0±3.1, 12.0±2.9 and 12.8±2.8 at pH 11). This result suggests that the dominant 

radicals, which are recognized as •OH, are all the same at the studied pHs (pH=3, 7 

and 11) ZVI (0.2, 0.5 and 1.0 g L -1).

Figure 6 here

The Λ values fall statistically is the similar range which is clearly different from 

pure •OH radical reaction36 and most similar to heat induced persulfate sulfate 

catalyzed reaction reactions where •OH and radicals are competing36. This may  SO• ―
4

reinforce the assumption that the ZVI/PS system show a specific reaction mode with 

DEP not identical to previous studies. 

3.4 Identification of predominant radical species 

     Previous studies have shown that in the ZVI/PS system, various free radicals 

such as •OH58, 59, 60, 61 and O2
•‒(Eq (8)) 42 may be generated and responsible for SO• ―

4

the degradation of DEP at different pHs. SO4
•‒ can react with hydroxyl ion and water 

to generate •OH as shown in Eq. (4) and (5) 62, 63. It is reasonable to infer that •OH 

presents in the reaction ZVI/PS system. To explore the main types of free radicals 

under different pH conditions, two alcoholic radical scavengers, TBA and EtOH, were 

added into the reaction system64. Previous studies36, 42 show that both and •OH SO• ―
4

could be quenched by EtOH. The second-order rate constant in •OH/EtOH (1.2–2.8 × 

109 M−1s−1) system is near that of / EtOH (1.6–7.7 × 107 M−1s−1). TBA SO• ―
4

preferentially quenches •OH due to the second-order rate constant of •OH reacting 

with TBA (3.8–7.6 × 108 M−1s−1) is nearly a factor of 103 greater than the rate 

constant of  with TBA (4–9.1 × 105 M−1s−1). The results obtained from the SO• ―
4
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quenching experiments (Fig. 7) indicate that TBA and EtOH exert a strong inhibiting 

effect on DEP degradation at all pHs65-67. Besides, EPR was applied to verify the 

types of free radicals in the system. DMPO can capture the two free radicals to 

generate the corresponding secondary products, DMPO-OH and DMPO-SO4, which 

can be detected by the EPR spectrometer 68-70. The results (Fig. 8) demonstrate that 

 and •OH coexist at pH 3 and 7, and •OH is the predominant species at these SO• ―
4

pH values. DMPO−SO4 signal was not observed at pH 11, which show that •OH is 

the dominant free radicals in this condition (pH=11). The main reason may be that 

DMPO−SO4 reacts with hydroxyl to form •OH.

Figure 7 here

Figure 8 here

The first-order kinetic constants of DEP in ZVI/PS/EtOH and ZVI/PS/TBA 

system decreased by 80.1% and 77.9% at pH 3, 86.1% and 85.4% at pH 7 and 90.9% 

and 90.6% at pH 11 (Table 4), respectively, indicating that the •OH and  may SO• ―
4

coexist at the pH 3 and 7, and •OH may be the predominant at pH 11. Our results 

particularly at pH 11 are inconsistent with the previous reports, which shown •OH 

and O2
•‒ as predominant radicals in the ZVI/PS system at pH 1142. Considering that 

there is also a reduction in phthalate concentration in the ZVI/PS/EtOH and ZVI/PS/ 

TBA system, the possible reason is the adsorption of DEP by ZVI (Fig. S10). As the 

isotope composition is almost stable no bond cleavage reactions are indicated.

Table 4 here
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3.5. Apparent kinetic isotope effects of DEP at different pHs

The intermediate products of DEP in the ZVI/PS and control (with PS and 

without ZVI) system were investigated using GC-MS analysis. Based on the 

molecular ion, mass fragment peak, the main possible transformation product was 

identified as diethyl 3-hydroxyphthalate at all studied pHs (Fig. S3)71. 

Hydroxyl radicals potentially react with dimethylphthalate in aqueous solutions 

by the following three pathways72. (i) The •OH addition leading to the radical adducts 

formation (RAF pathway). (ii) Hydrogen atom can be abstracted and transfer by •OH 

(HAT pathway). (iii) Single electron transfer to the substrate catalyzed by •OH (SET 

pathway)73. The SET pathway is endothermic and unlikely to occur due to its high 

energy demand (27.91 kcal / mol). However, the RAF and HAT pathways are 

exothermic processes (-19.41 kcal/mol to -4.97 kcal/mol), which were relatively easy 

to occur with an energetically preference for RAF pathway, in contrast to the addition 

pathway of •OH radical to the DMP ester bond carbonyl carbon (8.52 kcal/mol) 

which is endothermic. In this study, the hydroxyl phthalate detected in the 

ZVI/PS/DEP reaction system indicates the addition of •OH to the ortho-position 

aromatic ring of DEP. RAF is assumed to be the main reaction mechanism, which is 

consistent with the Gauss computational results on •OH initiated degradation of 

PAEs8. According to Eq. (11), specific apparent kinetic isotope effects (13C-AKIE and 

2H-AKIE) were calculated according to the reactive sites in the molecule (Table 5). 

Experimentally determined kinetic isotope effect (AKIE) values for oxidation 
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reactions involving C-H bond cleavage are in the range of 1.01–1.03 for carbon 

isotopes and 2–8 for hydrogen isotopes56. 

Table 5 here

According to the above discussion, RAF is considered to be the main reaction 

pathway of DEP in ZVI/PS. For carbon isotopes, the number of carbon atoms in the 

molecule (n) is 12, there are two identical reaction sites of carbon atoms on the 

benzene ring, and there is a competitive relationship, x = 2, z = 2. For hydrogen 

isotopes, the total number of hydrogen atoms in the molecule (n) is 14. There are two 

hydrogen atoms at the benzene ring in reactive position competing for reaction (x = 2, 

z = 2). The 13C-AKIE values of DEP in the ZVI/PS system at all pHs (pH=3, 7, and 

11) were all within the expected KIE range of C-H bond oxidation (KIEC: 1.01 - 

1.03), which suggest that the C-H bond cleavage is the initial reaction step. Due to the 

expected hybridization change in the transition state of the benzene ring hybridization 

orbital, the value of AKIEH is also lower than the expected KIEH range of the C-H 

bond (2-8). The AKIEH obtained in this study fell in the range of 1.14 to 1.40 (Table 

3), which is consistent with the observation of Zhang et al. in which the obtained 

AKIEH ranged from 0.77 to 1.40 48. 
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4. Conclusions

This study reports the degradation of DEP by ZVI activated PS at ambient 

temperature in different conditions (pH, 3, 7 and 11). The results showed that the 

concentration of the activator (ZVI) can affect the reaction rate but the reaction type 

does not change with the ZVI concentration. The radical quenching analysis and 

electron paramagnetic resonance (ESR) experiments indicates that •OH and  SO• ―
4

are all exist in ZVI/PS/DEP system at pH 3 and 7, and the proportion of •OH is 

relatively large. The •OH was found to be the dominant free radical in ZVI/PS/DEP 

system at pH 11. According to the products, diethyl 3-hydroxyphthalate, detected in 

the ZVI/PS/DEP reaction system, the addition of HO• on the aromatic ring of DEP is 

assumed to be the main reaction mechanism. In addition, CSIA was used to evaluate 

the free radical degradation of DEP, the 13C-AKIE and 2H-AKIE values of DEP in the 

ZVI /PS system at all pHs (pH=3, 7, and 11) are all within the expected KIE range of 

C-H bond oxidation (KIEC: 1.01 - 1.03; KIEH: 0.77 - 1.40), which prove the C-H bond 

cleavage. Combining the intermediate products and carbon hydrogen isotope 

fractionation, the possible degradation mechanisms in studied systems have been 

discussed. CSIA also suggests that •OH plays a major role to oxidize DEP at all 

studied pH values in the ZVI/PS system. Additionally, carbon and hydrogen isotope 

fractionation patterns are of fundamental importance to evaluate the removal of DEP. 

The results of this study are an important step forward in understanding degradation 

mechanisms of organic compounds in the ZVI/PS system. Furthermore, the stable 

carbon and hydrogen isotope fractionation under different pH conditions in the 
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ZVI/PS/EDP system obtained in our research can, thereby, be used as a reference for 

evaluating field data to determine the characteristic assessment of chemical DEP 

conversion in the real environment. The method promises great potential for future 

investigations regarding the fate of DEP and can be easily applied and has great 

potential to analyze chemical degradation reactions in the environment using a 

combination of carbon and hydrogen isotope analysis.
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Table 1: Degradation kinetic parameters of DEP during chemical oxidation.

pH Concentration 
of ZVI (g L-1)

Dominant 
radical/s

k (h–1) Half-life 
(h)

R2

0.2 •OH 0.0035 285.71 0.9587
0.5 •OH 0.0095 105.26 0.95743
1 •OH 0.0301 33.22 0.947

0.2 •OH 0.0057 175.44 0.9639
0.5 •OH 0.0115 86.96 0.97217
1 •OH 0.0306 32.68 0.9895

0.2 •OH 0.0034 294.12 0.976
0.5 •OH 0.0044 227.27 0.974811
1 •OH 0.0204 49.02 0.9337

11 - - 0.0028 357.14 0.9600
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Table 2 Isotope fractionation parameters of DEP during chemical oxidation.

pH Concentration of 
ZVI (g/l)

εC (‰) R2 Average
(εC (‰))

εH (‰) R2 Average
(εH (‰))

Λ Average
(Λ)

0.2 -1.1±0.21 0.9673 -10.2±3.6 0.9283 15.1±4.2
0.5 -0.8±0.20 0.9800 - 8.7±5.1 0.9314 12.7±3.53
1.0 -0.6±0.36 0.9698

0.79±0.45 
-8.5±3.3 0.9731

8.97±4.87
11.7±2.6

13.3±3.4

0.2 -1.10±0.01 0.9808 -14.0±4.1 0.9352 10.9±2.9
0.5 -1.11±0.01 0.9810 -11.6±5.5 0.9598 11.1±4.27
1.0 -1.00±0.01 0.9853

1.10±0.45
-13.7±3.2 0.9258

13.10±5.60
11.6±3.6

11.2±3.6

0.2 -1.48±0.21 0.9813 -23.0±3.2 0.9612 15.0±3.1
0.5 -1.18±0.20 0.9715 -19.2±4.6 0.9651 12.0±2.911
1.0 -0.77±0.16 0.9623

3.10±0.60
-14.0±2.1 0.9205

18.02±5.01
12.8±2.8

13.3±2.9

11 Hydrolysis 
experiment

-5.90±0.71 0.9600 n.d. n.d.

a Uncertainty given as 95% confidence interval, n.d. no fractionation detected.
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Table 3 Comparison of the current results with others 

K R2 13C R2 2H R2  reference

pH 2_PS 0.0057 0.999 −1.39± 0.13 0.995 −41.8 ± 2.4 0.998 25.7 ± 2.6 [36]

pH 7 PS 0.0025 0.973 −1.57± 0.18 0.993 −28.3 ± 3.3 0.993 14.9 ±3.0 [36]

pH 7_UV/H2O2 0.0541 0.993 −2.30± 0.42 0.990 −6.8 ± 1.3 0.989 2.4 ± 0.2 [36]

pH 3_PS/ZVI(0.2) 0.0035 0.9587 -1.1±0.21 0.9673 -10.2±3.6 0.9283 15.1±4.2 This study 

pH 3_PS/ZVI(0.5) 0.0095 0.9574 -0.8±0.20 0.9800 - 8.7±5.1 0.9314 12.7±3.5 This study

pH 3_PS/ZVI(1.0) 0.0301 0.947 -0.6±0.36 0.9698 -8.5±3.3 0.9731 11.7±2.6 This study

pH 7_PS/ZVI(0.2) 0.0057 0.9639 -1.10±0.01 0.9808 -14.0±4.1 0.9352 10.9±2.9 This study

pH 7_PS/ZVI(0.5) 0.0115 0.9721 -1.11±0.01 0.9810 -11.6±5.5 0.9598 11.1±4.2 This study

pH 7_PS/ZVI(1.0) 0.0306 0.9895 -1.00±0.01 0.9853 -13.7±3.2 0.9258 11.6±3.6 This study

pH 11_PS/ZVI(0.2) 0.0034 0.976 -1.48±0.21 0.9813 -23.0±3.2 0.9612 15.0±3.1 This study
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pH 11_PS/ZVI(0.5) 0.0044 0.9748 -1.18±0.20 0.9715 -19.2±4.6 0.9651 12.0±2.9 This study

pH 11_PS/ZVI(1.0) 0.0204 0.9337 -0.77±0.16 0.9623 -14.0±2.1 0.9205 12.8±2.8 This study

a Uncertainty given as 95% confidence interval
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Table 4. Summary of results from DEP degradation by PS activated with ZVI: 

identification of primary radical species

inhibition on the kobs with 
addition of

Major free radical 
speciespH

Reaction rate of 
DEP degradation

EtOH TBA
3 0.0095 0.0018  0.0021            •OH             
7 0.0115     0.0016  0.0018    •OH
11 0.0044     0.0004  0.0005         •OH

Table 5 Carbon and hydrogen AKIEs of DEP for investigated experimental systems.

pH εC (‰) 13C- AKIE εH (‰) 2H- AKIE
-1.1±0.21 1.02 -10.2±3.6 1.16
-0.8±0.20 1.01 - 8.7±5.1 1.143
-0.6±0.36 1.01 -8.5±3.3 1.14
-1.10±0.01 1.02 -14.0±4.1 1.24
-1.11±0.01 1.01 -11.6±5.5 1.147
-1.00±0.01 1.01 -13.7±3.2 1.20
-1.48±0.21 1.02 -23.0±3.2 1.40
-1.18±0.20 1.02 -19.2±4.6 1.3711
-0.77±0.16 1.01 -14.0±2.1 1.24

a Uncertainty given as 95% confidence interval
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[Fe]0=0.2/0.5/1 g L-1
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Fig. 2. The concentration of persulfate in the presence of nZVI but without DEP 

present [PS]0 = 80 mM; [Fe]0=0.5 g L-1

Fig. 3. The concentration of persulfate in the studied conditions (pH=3, pH=7 and 

pH=11). [DEP]0=0.8 Mm; [PS]0 = 80 mM; [Fe]0=0.5 g L-1
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Fig. 4. The concentration of Fe2+ in the studied conditions (pH=3, pH=7 and pH=11). 

[DEP]0=0.8 Mm; [PS]0 = 80 mM; [Fe]0=0.5 g L-1
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Fig. 5. Rayleigh regression of carbon (left panels, A, C, E) and hydrogen (right 

panels, B, D, F) isotope data during DEP oxidation in ZVI/PS system with different 

amount of ZVI (0.2,0.5 and 1.0 g L -1).
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Fig. 6. Correlation of 2H and 13C isotope fractionation for DEP during DEP oxidation 

in ZVI/PS system with different amount of ZVI at different pH value. The Λ values 

are shown in Table. 2. 
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Fig. 7. Degradation kinetic curves of DEP during the study of radical quenching at pH 

3, pH 7 and pH 11. Experiment condition: DEP = 0. 8 mM; PS = 80 mM; ZVI =0.5 g 

L-1; EtOH = 400 mM; TBA = 400 mM.
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Fig. 8. Electron paramagnetic resonance (EPR) spectra of pH=3, pH=7, pH=11 

ZVI/PS/DEP system. Experiment condition: DEP = 0. 8 mM; PS = 80 mM; ZVI =0.5 

g L-1; 

Research Highlights

 Degradation of DEP in the PS/ZVI was studied at different pHs.

 Isotope fractionation was used to understand the DEP oxidation pathway.

 •OH was found to be the main functioning radical species at pH=3 and 7. 

 •OH was the predominant species for PS/ZVI oxidation of DEP at pH=11.
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 •OH addition to the DEP ring is assumed to be the main reaction mechanism.


