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Abstract 25 

This study presents an assessment of a pre-operational soil moisture product at 1 𝑘𝑚 resolution 26 

derived from satellite data acquired by the European Radar Observatory Sentinel-1 (S-1), representing 27 

the first space component of the Copernicus program. The product consists of an estimate of surface 28 

soil volumetric water content Θ [𝑚3/𝑚3] and its uncertainty [𝑚3/𝑚3], both at 1 𝑘𝑚. The retrieval 29 

algorithm relies on a time series based Short Term Change Detection (STCD) approach, taking 30 

advantage of the frequent revisit of the S-1 constellation that performs C-band synthetic aperture 31 

radar imaging. The performance of the S-1 Θ product is estimated through a direct comparison 32 

between 1068 S-1 Θ images against in situ Θ measurements acquired by 167 ground stations located 33 
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mailto:anna.balenzano@cnr.it


 2 

in Europe, America and Australia, over 4 years between January 2015 and December 2020, depending 34 

on the site. The paper develops a method to estimate the spatial representativeness error (SRE) that 35 

arises from the mismatch between the S-1 Θ retrieved at 1 𝑘𝑚 resolution and the in situ point-scale 36 

Θ observations. The impact of SRE on standard validation metrics, i.e., root mean square error 37 

(RMSE), Pearson correlation (R) and linear regression, is quantified and experimentally assessed 38 

using S-1 and ground Θ data collected over a dense hydrologic network (4 − 5 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/ 𝑘𝑚2) 39 

located in the Apulian Tavoliere (Southern Italy). Results show that for the dense hydrological 40 

network the RMSE and correlation are ~0.06 𝑚3/𝑚3 and 0.71, respectively, whereas for the sparse 41 

hydrological networks, i.e., 1 𝑠𝑡𝑎𝑡𝑖𝑜𝑛/𝑘𝑚2, the SRE increases the RMSE by ~0.02 𝑚3/𝑚3 (70% 42 

Confidence Level). Globally, the S-1 Θ product is characterized by an intrinsic (i.e., with SRE 43 

removed) RMSE of ~0.07 𝑚3/𝑚3 over the Θ range [0.03, 0.60] 𝑚3/𝑚3  and R of 0.54. A breakdown 44 

of the RMSE per dry, medium and wet Θ ranges is also derived and its implications for setting realistic 45 

requirements for SAR-based Θ retrieval are discussed together with recommendations for the density 46 

of in situ Θ observations.  47 

Keywords 48 
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 51 

1 Introduction 52 

Measurements of Earth’s surface soil moisture (Θ) at global scales and at spatial resolutions 53 

of 20 × 20 𝑘𝑚2 or coarser are currently provided as products of the Soil Moisture and Ocean Salinity 54 

(SMOS) mission of the European Space Agency (ESA) (Kerr et al., 2010), the Soil Moisture Active 55 

Passive (SMAP) mission of the National Aeronautics and Space Administration (NASA) (Entekhabi 56 

et al., 2010), and the Advanced SCATterometer (ASCAT) system aboard the Meteorological 57 

Operational (MetOp) platform of the European Organisation for the Exploitation of Meteorological 58 

Satellites (EUMETSAT) (Wagner et al., 2013). Satellite-measured Θ has proved useful for improving 59 
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understanding of the global water and energy cycles (McColl et al., 2017; Seneviratne et al., 2010) 60 

and strengthening land applications such as large scale hydrological modelling (Heimhuber et al., 61 

2017; Lievens et al., 2016), numerical weather prediction (NWP) (Dharssi et al., 2011; Rodríguez-62 

Fernández et al., 2019), flood forecasting and drought monitoring and prediction (Mishra et al., 2017; 63 

Nicolai-Shaw et al., 2017; Wanders et al., 2014). Despite the usefulness of existing products, 64 

significant interest remains in improving the spatial resolution of Θ products to extend and facilitate 65 

applications such as mapping the impact of irrigation on local water budgets, assessing the impact of 66 

local Θ variability on atmospheric instability and improving NWP and hydrological modelling at 67 

regional scales (Dorigo et al., 2017; Peng et al., 2021). In response to these science and application 68 

needs,  a number of recent studies have proposed techniques to downscale microwave Θ products at 69 

low resolution using optical and thermal data (see Peng et al., 2017; Sabaghy et al., 2018 for review), 70 

although these approaches are subject to corruption by cloud cover that impacts the optical imagery. 71 

An additional approach has become possible following the launch of the European Radar Observatory 72 

Sentinel-1 (S-1), developed in the framework of the Copernicus programme (www.copernicus.eu). 73 

S-1 systematically provides C-band Synthetic Aperture Radar (SAR) imagery from two identical 74 

spacecraft, (S-1 A & S-1 B), at high spatial and moderate temporal (6-day exact repeat cycle) 75 

resolutions with a sustained observation strategy for the next decades which foresees first the S-1 C 76 

& S-1 D satellites from 2022 onwards and then the S-1 Next Generation satellites from 2028 onwards 77 

(Torres et al., 2020, 2012). Spaceborne SAR sensors are currently the most suitable systems to 78 

retrieve Θ at high spatial resolution at spatial scales ranging from local to regional and continental. 79 

In the past, the use of SAR systems - such as the Advanced Synthetic Aperture Radar (ASAR) aboard 80 

the ENVIronmental SATellite (ENVISAT) - for Θ retrieval has been hampered by their inappropriate 81 

observational characteristics, particularly their long revisit times. Also, the validation of past SAR 82 

retrieval algorithms has been limited to relatively short campaigns often adopting different strategies 83 
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for the in situ sampling of Θ, although other validation approaches have been also used (e.g. Das et 84 

al., 2014; Tomer et al., 2015). 85 

This paper presents a pre-operational Θ product, derived from VV&VH S-1 observations at 1 𝑘𝑚 86 

resolution and its validation status. The retrieval uses a time series method introduced in Balenzano 87 

et al., (2011), further developed in Balenzano et al., (2013) and applied in consecutive papers (e.g., 88 

Al-khaldi et al., 2019; Iacobellis et al., 2013; Ouellette et al., 2017). In this study, the algorithm has 89 

been consolidated and extensively validated, and technical challenges for optimized processing of a 90 

product at regional/continental scales, 1 𝑘𝑚 resolution and 6-12 day revisit, have been addressed. In 91 

this respect, the algorithm is considered mature for testing in an operational environment. The 92 

technique exploits the frequent revisit of S-1 to realize a time series based Short Term Change 93 

Detection (STCD) algorithm applicable for bare and vegetated areas dominated by soil attenuated 94 

scattering. The code implementing the algorithm is referred to as SMOSAR (“Soil MOisture retrieval 95 

from multi-temporal SAR data”). There are two main differences compared to previous papers 96 

addressing Θ retrieval from S-1 data (e.g., Bauer-Marschallinger et al., 2019, 2018; Hajj et al., 2017; 97 

Paloscia et al., 2013; Pulvirenti et al., 2018). The first is that the developed S-1 Θ  product includes 98 

uncertainty information in terms of the Θ standard deviation provided as a coregistered layer at the 99 

same resolution and unit. It is noted that, unlike previous studies that used the propagation of 100 

uncertainties from SAR observations to Θ retrieved values - see Gruber et al., (2020) for a critical 101 

review -, SMOSAR provides the observed standard deviation of Θ at 1 km as measure of the 102 

uncertainty. Such information allows the imaged areas to be discriminated into different levels of 103 

uncertainty (Merchant et al., 2017) that responds to the needs of data assimilation (Pan and Wood, 104 

2006). Second, an extensive validation study of the product was also conducted. The study adopts 105 

procedures and metrics recommended by the Committee on Earth Observation Satellites (CEOS) 106 

Working Group on Calibration and Validation (WGCV) (Montzka et al., 2020). In particular, the 107 

implemented multi-scale validation activity consists of a comparison of S-1 Θ estimates with in situ 108 
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observations collected over seven cal/val sites located in the USA, Canada, Australia and Europe. Per 109 

each site, the objective has been to analyse S-1 time series in a timeframe of 4 years between January 110 

2015 and December 2020.  111 

A crucial aspect in the time series comparison of satellite estimated Θ against in situ Θ observations 112 

is the spatial mismatch between the point-scale (~0.1 𝑚) in situ measurements and the satellite 113 

estimates retrieved at resolutions ranging from tens of kilometres (e.g., SMAP, SMOS, ASCAT) to 114 

hundreds of meters (e.g., S-1 Θ), which generates the so-called spatial representativeness error (SRE). 115 

This issue has previously not been considered consistently in the validation of satellite Θ products at 116 

high resolution, e.g.,  ≤ 1 𝑘𝑚. Little effort has been dedicated both to quantify the corresponding 117 

SRE and to set up cal/val sites dedicated to high-resolution Θ retrieval. In this study, an emphasis is 118 

placed on addressing the SRE for S-1 Θ retrievals at 1 𝑘𝑚. Two measures were developed. The first 119 

consists of setting up a core validation site, located in the Apulian Tavoliere (Italy), that is 120 

characterized by a dense network of ground stations, i.e., ~4 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/𝑘𝑚2 (Balenzano et al., 2014). 121 

Such a dense network allows upscaling of the in situ Θ observations at ~1 𝑘𝑚 with a relatively low 122 

SRE (e.g., SRE <  0.03 𝑚3/𝑚3). The second measure develops a method for modelling the SRE 123 

across scales and the evaluation of its impact on the standard metrics at ~1 𝑘𝑚 resolution. 124 

The paper is organized as follows. In Section 2, the test sites and ground data are described.  125 

Section 3 then summarizes the S-1 data and the low-resolution satellite Θ products analysed in the 126 

study. In Section 4, the Θ retrieval algorithm and the S-1 Θ product at 1 𝑘𝑚 are presented. Sections 127 

5 and 6 illustrate the validation approach and results. Finally, conclusions are drawn in Section 7, 128 

including recommendations on SAR-derived Θ product validation requirements. 129 

2 Test sites and ground data 130 

The SMOSAR performance assessment was carried out over the following seven sites: Apulian 131 

Tavoliere (Italy), Red de Estaciones de Medición de Humedad del Suelo - REMEDHUS (Spain), 132 
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Hydrological OBservatory and Exploratorium - HOBE (Denmark), Yanco (New South Wales, 133 

Australia), Little Washita (Oklahoma, USA), Texas Soil Observation Network - TxSON (Texas, 134 

USA) and Elm Creek (Manitoba, Canada). The sites cover a broad range of agronomic, hydrologic 135 

and climatic conditions, are instrumented with a network of calibrated ground stations continuously 136 

measuring surface soil moisture (0.05 𝑚 depth), and are routinely observed with S-1 data. The 137 

REMEDHUS, Elm Creek and HOBE data sets were collected from the International Soil Moisture 138 

Network (ISMN) (Dorigo et al., 2011), while Little Washita and Yanco data were downloaded from 139 

the Agricultural Research Service Micronet (Starks et al., 2014) (ars.mesonet.org), and the OzNet 140 

hydrological monitoring network (www.oznet.org.au), respectively; TxSON 141 

(www.beg.utexas.edu/research/programs/txson) data were shared through scientific collaborations. 142 

TxSON and Yanco use a nested design, replicating the soil moisture measurements at 3 𝑘𝑚 and 9 𝑘𝑚 143 

inside their extent in support of the SMAP’s Cal/Val Program (Caldwell et al., 2019; Yee et al., 2016). 144 

The Apulian Tavoliere network is hosted by Consiglio per la Ricerca in Agricoltura (CREA) in the 145 

experimental farm of Segezia and operated and maintained by the Italian National Research Council 146 

(CNR).   147 

Table 1 summarizes the main features of the hydrological networks in terms of spatial extent, 148 

number of stations (S), spatial density (S/𝑘𝑚2) and analyzed period. At the Apulian Tavoliere site, 149 

the Segezia experimental farm is mostly cropped with cereals (i.e., wheat, barley and oat). The area 150 

is quite homogeneous apart from one station deployed in a pasture field and one station located in an 151 

olive grove with cover crops, usually wheat. The 11 stations are situated in 10 S-1 Θ pixels of 520 m 152 

(i.e., the pixel spacing is approximately half the resolution) and cover a total area of ~1.6 × 1.6 𝑘𝑚2 153 

(Fig. 1). This site features the only high-density network available in this study, i.e., 4.3 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/154 

𝑘𝑚2. For this reason, it is considered as a core validation site as compared to the “low density” 155 

validation sites characterized by 1 𝑠𝑡𝑎𝑡𝑖𝑜𝑛/𝑘𝑚2 (i.e. maximum 1 station is available for the 156 

comparison against the S-1 Θ at 1 𝑘𝑚). The climate zone, the land cover classification, and the mean 157 
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soil texture are also reported in Table 1. The agronomic, hydrologic and climatic conditions of the 158 

various sites range from semi-arid croplands/grasslands areas in Australia, Spain and Italy, to humid-159 

subtropical grassland/shrubland areas in Texas, rangelands/croplands in Oklahoma and wet-all-160 

seasons croplands in Denmark and Canada. Regarding the soil texture, there is an important sand 161 

component over the HOBE site as well as over REMEDHUS and Yanco. The soil texture with a 162 

250 m pixel spacing over the experimental areas was obtained from the International Soil Reference 163 

Information Centre (ISRIC) (Hengl et al., 2017). The sites are mostly flat or gently undulating, with 164 

REMEDHUS and TxSON having the highest topography variability (mean and standard deviation of 165 

topography are shown in Table 1).  166 

The extent of the validation dataset differs from site to site based on the number of the stations per 167 

network and the availability of the S-1 time series coverage. A minimum number of one hundred                   168 

S-1 images per site was required. For the European and Australian sites, it was achieved in the time 169 

frame between 2015 and 2018; whereas for the remaining non-European sites the time series extend 170 

up to 2020. Quality control on the ground data consisted of excluding Θ values that showed 171 

anomalously low variations over the entire study period: four stations over REMEDHUS that 172 

recorded mean Θ values of ~0.026 𝑚3/𝑚3 and standard deviation  0.024 𝑚3/𝑚3;  two stations over 173 

HOBE that recorded mean Θ values of ~0.524 𝑚3/𝑚3 and standard deviation ~0.048 𝑚3/𝑚3 . 174 

Furthermore, Θ measures lower than 0.03 𝑚3/𝑚3  were removed from the data sets because this is 175 

the typical level of the calibration error of ground stations (Rowlandson et al., 2013). The number of 176 

measurements excluded is 191 out of 2389 for the REMEDHUS site, 198 out of 3515 for the Yanco 177 

site and 61 out of 2045 for the Little Washita. The maximum threshold for Θ was established at 178 

0.60 𝑚3/𝑚3 as proposed in (Dorigo et al., 2013), and Θ values >  0.60 𝑚3/𝑚3 (16 in total over the 179 

entire dataset) were excluded. Finally, Θ values measured during frozen soil conditions were 180 

excluded. The selection was carried out by the quality flag provided in the ISMN dataset, which 181 

identified the frozen soils using the soil temperature information. In particular, it resulted that the 182 



 8 

Canadian site was severely affected, and therefore the Θ values between October/November and 183 

March were discarded. 184 

Table 1. Spatial extent (L), number of stations (S) available and spatial density (i.e., S/km2), Koeppen and Geiger 185 
climate classification (Rubel et al., 2017), land cover (LC), mean soil texture and topography variability (Digital 186 
Elevation Model (DEM) from Shuttle Radar Topography Mission, 30m) of the test sites. The climate labels are: 187 
BSk (arid, steppe, cold arid), Cfa (warm temperature, fully humid, hot summer), Dfb (Snow, fully humid, warm 188 
summer). For the soil texture and DEM both the mean and standard deviation at a site scale are reported.  189 

Site Apulian 

Tavoliere 

(Italy) 

(Balenzano et 

al., 2014) 

Elm Creek  

 

(Canada) 

(McNairn et al., 

2015) 

Little 

Washita 

(Oklahoma) 

(Cosh et al., 

2006) 

HOBE 

 

(Denmark) 

(Bircher et 

al., 2012) 

REMEDHUS 

 

(Spain) 

(Martinez F. and 

Ceballos, 2005) 

TxSON 

 

(Texas) 

(Caldwell et 

al., 2019) 

Yanco 

 

(Australia) 

(Smith et al., 

2012) 

 

L 

[km2] 

1.6 ∗ 1.6 17 ∗ 17 25 ∗ 25 30 ∗ 30 35 ∗ 35 36 ∗ 36 60 ∗ 60 

S  11 9 20 30 20 40 37 

Spatial 

density 

[S/km2]  

4.30 0.03 0.03 0.03 0.02 0.03 0.01 

Climate 

zone 

BSk Dfb Cfa Dfb  BSk  Cfa  BSk  

LC Croplands Croplands Rangelands 

Croplands  

Croplands 

 

Croplands 

 

Grasslands 

Shrublands 

Croplands 

Grasslands 

Clay  

Sand 

[%] 

10.32±2.84 

44.73±8.59 

29.59±7.59 

41.41±13.52 

 

17.97±1.65 

41.18±4.35 

 

8.14±1.85 

75.35±4.12 

 

19.65±2.06 

50.50±3.78 

25.76±2.25 

41.12±4.38 

35.32±4.70 

53.37±4.62 

DEM 

[m] 

152.3±12.6 229.1±6.5 366.9±27.9 99.9±20.0 821.2±61.2 503.0±58.4 140.1±10.2 

period Jan15-  

Dec18 

Jun16- 

 Dec20 

Apr16- 

Dec20 

Jan15-    

Dec18 

Jan15- 

Dec18 

Apr16- 

May20 

Jan15 - 

Dec18 

 190 

Fig. 2 shows 𝜇𝑜𝑏𝑠 = 𝐸(Θ𝑜𝑏𝑠) (plain bars), where 𝐸(∙) is the spatio-temporal sample mean 191 

operator, and standard deviation, 𝛿Θ𝑜𝑏𝑠
, (striped bars) of the Θ distribution (0.03 𝑚3/𝑚3 ≤  Θ ≤192 

0.60 𝑚3/𝑚3) for each site (hereafter identified by AT=Apulian Tavoliere, EC=Elm Creek, 193 

T=TxSON, H= HOBE; Y=Yanco, LW=Little Washita, R=REMEDHUS). The yellow and black lines 194 

display the 75th (Q75) and 25th (Q25) percentiles of Θ values. The total number of the Θ measurements 195 

(M) over each test site available for the comparison after the quality selection is also reported in the 196 

legend. Although the sites were selected with different climatic conditions to cover as much as 197 

possible the Θ variability, the validation Θ data set is not equally-distributed over the Θ range, i.e., 198 
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75% of Θ measurements are approximately within 0.30 𝑚3/𝑚3. In particular, the lowest Q75 was 199 

observed over REMEDHUS and Yanco, i.e., approximately 0.20 𝑚3/𝑚3 . This may be due to a 200 

combination of the semi-arid climate and the high sand component of soil texture, which reduces the 201 

water retention capacity of the soil (Montzka et al., 2018). Also for the fully-humid sites, such as 202 

HOBE, the high percentage of sandy soil likely explains the limited Θ values observed, as compared, 203 

for example, to Elm Creek. Additionally, HOBE shows the lowest 𝛿Θ𝑜𝑏𝑠
, which is conversely the 204 

highest over Yanco. 205 

 206 

Fig. 1. Left panel: Location of the hydrological network (in red) at the Apulian Tavoliere site (Apulia region, 207 
Southern Italy). Right panel: distribution of the stations (red points) at the Segezia experimental farm (black line) 208 
over the S-1 soil moisture product grid with 520 m grid spacing (yellow lines). 209 
 210 

 211 
Fig. 2. Mean (solid line bars), 𝝁𝒐𝒃𝒔, and standard deviation, 𝛅𝚯𝒐𝒃𝒔

, (dashed line bars) of the Θ distribution per site 212 
(AT=Apulian Tavoliere, EC=Elm Creek, T=TxSON, H= HOBE; Y=Yanco, LW=Little Washita, R=REMEDHUS).  213 
The yellow and black diamonds display the 75th (Q75) and 25th (Q75) percentiles. M is the total number of Θ 214 
measurements per site.    215 
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3 Sentinel-1 data collection 216 

Time series of S-1 A & S-1 B Interferometric Wide (IW) Ground Range Detected (GRD) High 217 

Resolution (HR) data (Bourbigot et al., 2016) were collected. These data were pre-processed to obtain 218 

time series of calibrated, co-registered, geocoded and temporally filtered (Quegan and Yu, 2001) 219 

stacks of VV and VH backscatter coefficients at 40 𝑚 pixel size (roughly corresponding to ~100 𝑚 220 

resolution) and with an equivalent number of looks (which is the ratio of the square of the backscatter 221 

spatial mean to the corresponding variance) ≈100. 222 

Table 2 summarizes the S-1 acquisition pass and time, Relative Orbit Number (RON), number (N) 223 

of S-1 images and mean incidence angle (𝜗). The TxSON and Yanco sites were imaged at lower 𝜗 224 

than Little Washita and Elm Creek. The Apulian Tavoliere site was covered by both descending and 225 

ascending S-1 tracks at different 𝜗. To derive a robust calibration curve of the STCD algorithm over 226 

the entire S-1 swath (see Section 4.3.1), the S-1 tracks were selected to cover as much as possible the 227 

S-1 𝜗 range, i.e., ~29° − 46°. It is noted that the S-1 time series over the non-European sites are 228 

characterized by 12-day revisit time, while for the European sites, S-1 A & S-1 B time series with 6-229 

day revisit are available from the end-September 2016. However, a limited number of gaps in the S-230 

1 time series occurred. Finally, it is worth noting that in case of Elm Creek, despite the availability of 231 

84 S-1 images, only 64 were considered, excluding dates with frozen soils. 232 

Table 2. Number (N) of the S-1 Interferometric Wide Swath (IW) Ground Range Detected (GRD) acquired over 233 
the experimental sites and for which also the ground data are available (AT=Apulian Tavoliere, EC=Elm Creek, 234 
T=TxSON, H= HOBE; Y=Yanco, LW=Little Washita, R=REMEDHUS). A, D, RON and UTC indicate the 235 
ascending or descending S-1 acquisition pass, Relative Number Orbit and the Coordinated Universal Time, 236 
respectively.  237 

Site AT T  Y AT H R LW EC  

PASS 

RON 

(UTC) 

A 

146 

(16:48:45) 

A 

107 

(00:34:43) 

D 

118 

(19:31:51) 

D  

124 

(05:02:53) 

D  

139 

(05:40:08) 

D 

154 

(06:24:48) 

A  

107 

(00:36:46) 

A 

136 

(00:23:25) 

N 183 97 112 173 165 161 113 
64 out of 

85 

𝜗 33.4° 35.5° 37.2° 38.4° 38.8° 39.6° 41.4° 44.0° 
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4 Sentinel-1 Θ product 238 

4.1 The Concept of the Algorithm 239 

The implemented S-1 Θ retrieval algorithm transforms a dense or quasi-dense time series (i.e., 6- 240 

or 12-day revisit) of 𝑁 dual-polarized S-1 IW images at 40 𝑚 pixel size (~100 𝑚 resolution) into 𝑁-241 

Θ maps (Balenzano et al., 2011; Balenzano et al., 2013; Ouellette et al., 2017) at 520 𝑚 pixel size 242 

(~1 𝑘𝑚 resolution). The premise for the algorithm is that Θ changes take place at relatively short 243 

temporal scales (i.e., a few days or less), whereas changes associated with other surface parameters 244 

affecting the radar backscatter, such as soil roughness, canopy structure and vegetation biomass, are 245 

typically characterized by significantly longer temporal scales (e.g., a few weeks). Consequently, a 246 

SAR change detection approach (e.g., Rignot and Van Zyl, 1993) is expected to track changes in Θ 247 

only, since other parameters affecting the radar backscatter can be considered constant. Of course, 248 

the shorter the SAR revisit, the better the assumptions of the algorithm. This is a key difference over, 249 

for instance, the approach developed at the Vienna University of Technology (TU WIEN) (i.e., Bauer-250 

Marschallinger et al., 2018, 2019), which in contrast requires a very long time series to estimate 251 

extreme values of Θ. The name of the algorithm - short term change detection (STCD) – reflects the 252 

importance of working on a dense time series of SAR data. To this regard, it is noted that  Θ retrieval 253 

by the STCD algorithm will benefit from the launch of S-1 C, which will jointly operate with  S-1 A 254 

& S-1 B (Torres et al., 2020) at least initially. Moreover, the development of new concepts of 255 

geostationary SAR platforms with a hyper-temporal resolution (e.g., Hobbs et al., 2019) will allow in 256 

the near future the full exploitation of the potential of time series retrieval approaches like STCD.  257 

A second pillar of the algorithm is acknowledgment that the SAR signal at C-band does not always 258 

penetrate the vegetation layer, which is necessary to sense Θ. The lack of sensitivity to Θ is 259 

characteristic for mature dense forests, where the C-band SAR signal interacts primarily with the tree 260 

crown (i.e., volume scattering), whereas the signal scattered from the soil (i.e., either attenuated 261 

surface scattering or double bounce) is not significant (Quegan et al., 2000). A distinctive radar 262 
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feature of these targets is a high level of cross-polarized backscattering arising from the multiple 263 

reflections characteristic of volume scattering. In the case of agricultural or short vegetated areas (e.g. 264 

grassland and herbaceous cover), the interaction between the C-band radar signal and crops can 265 

significantly vary with the crop canopy structure and with the plant water content (i.e., fresh biomass).  266 

These canopy characteristics are strongly related to the phenological stage and ultimately to the plant 267 

development stage (Cookmartin et al., 2000; Khabbazan et al., 2019; Macelloni et al., 2001; McNairn 268 

and Brisco, 2004; Moran et al., 2012; Palmisano et al., 2020; Picard et al., 2003; Saich et al., 2000; 269 

Le Toan et al., 1997). Under these circumstances, it is clear that before performing a quantitative 270 

retrieval of Θ at SAR C-band, masking is required for those surfaces characterized by volume 271 

scattering.  272 

  The mathematical framework for the STCD algorithm is provided by a first-order approximation 273 

of the radiative transfer (RT) theory, which expresses the total backscatter of a vegetated surface as a 274 

superposition of three terms: the attenuated soil backscatter, the volume contribution and the soil-275 

vegetation interaction (Tsang et al., 2001). In this context, the STCD algorithm adopts two main 276 

approximations: 277 

• the first is that STCD applies only to bare or vegetated soils dominated by attenuated surface 278 

backscattering (σ0), which at VV polarization can be expressed as in (1), i.e., volume scattering and 279 

soil-vegetation interaction are negligible  280 

σ0 ≈ σ0 
s ∙ τ2 = |𝛼𝑉𝑉 (휀, 𝜗)|2 ∙ Ω(𝜈 , 𝜗,𝜒) ∙ τ2 ,                                                                                                        (1) 281 

where τ2 is the two-way vegetation attenuation and σ0
s  is the ground backscatter. The latter is written 282 

as the product of a term, 𝛼𝑉𝑉 (휀, 𝜗), which represents the influence of the surface permittivity (휀) and 283 

incidence angle (𝜗) and a term, Ω(𝜈 , 𝜗, 𝜒), which represents the influence of the soil roughness, 284 

depending on the surface roughness power spectrum, 𝜒(∙), the SAR frequency, 𝜈, and 𝜗. This 285 

factorization is consistent with surface scattering models like the Small Perturbation Model and Small 286 
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Slope Approximation (Voronovich, 1994) for which the expression of the reflection coefficient in 287 

VV polarization is 288 

|𝛼𝑉𝑉(휀, 𝜗)| = |
( −1)(sin2 𝜗− (1+sin2 𝜗))

( cos𝜗+√ −sin2 𝜗)
2 |  .                                                                                                 (2) 289 

 290 

• The second is that the backscatter ratio between two subsequent SAR acquisitions, at 𝐷𝑜𝑌(𝑖) 291 

and 𝐷𝑜𝑌(𝑖 + 1), depends only on the ratio between the surface reflection coefficients of the two 292 

correspondent dates, such that  293 

(𝜎0)𝐷𝑜𝑌(𝑖+1)

(𝜎0)𝐷𝑜𝑌(𝑖)
≈

(σ0 
s ∙τ2)𝐷𝑜𝑌(𝑖+1)

(σ0 
s ∙τ2)𝐷𝑜𝑌(𝑖)

≈
|𝛼𝑉𝑉 ( ,𝜗)|2

𝐷𝑜𝑌(𝑖+1)

|𝛼𝑉𝑉 ( ,𝜗)|2
𝐷𝑜𝑌(𝑖)

 ,                                                                                (3) 294 

which requires that the roughness and vegetation parameters in (1) do not change between the two 295 

acquisition dates. The approximation in (3) was first proposed in Balenzano et al. (2011), under the 296 

name of the “alpha approximation”. The code implementing the STCD algorithm is referred to as 297 

SMOSAR (Soil MOisture retrieval from multi-temporal SAR data) (Balenzano et al., 2013). Fig. 3 is 298 

a schematic of the logic implemented in SMOSAR. The input is a time series of N (N=4) S-1 IW 299 

images at 40m pixel, which is firstly masked (using static land cover and dynamic S-1 VH 300 

observations). Then, it is transformed into Θ maps at 40m pixel, through the retrieval module (the 301 

soil texture maps are used to convert the dielectric constant into Θ). The final step is a low pass filter 302 

and resampling module that deliver Θ mean and standard deviation at 520m pixel (corresponding to 303 

half the spatial resolution of the Θ maps, which is ~1km). The retrieval module requires a calibration 304 

parameter, which can be updated as external information. The aforementioned processing chain is 305 

described in detail in Sections 4.2-4.4. 306 

Finally, it is noted that the S-1 data acquired from different orbits are not handled by this version 307 

of the code, which means that in (3) the incidence angle is assumed not to change between two 308 

subsequent S-1 images. In this respect, an advanced version of SMOSAR accepting as input S-1 time 309 

series acquired from different orbits is under development. 310 

 311 
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 312 

Fig. 3. SMOSAR soil moisture (Θ) retrieval algorithm schema. Input and output data and main modules, i.e., 313 
masking and retrieval blocks, are drawn.  314 
 315 
 316 

4.2 Location masking  317 

The need for limiting the S-1 Θ retrieval to surfaces over which the C-band SAR signal shows 318 

good sensitivity to Θ requires a masking process before applying the retrieval. This task is 319 

implemented as a two-step process in SMOSAR. The first uses the quasi-static ESA CCI land cover 320 

at 300 𝑚 spatial resolution (v2.0.7; Product User Guide, 2017) to mask forests, urban areas, water 321 

bodies and permanent snow and ice. The second step consists of a dynamic masking of the vegetation, 322 

which exploits a classification algorithm developed by Satalino et al. (2014). The method uses the   323 

S-1 VH observations to separate the radar response of seasonal crops into volume and soil attenuated 324 

scattering. The areas dominated by volume scattering are obscured, whereas those dominated by soil 325 

attenuated scattering are left unmasked. The rationale of the approach is that the higher the VH level, 326 

the higher the volume contribution. The detailed procedure implemented in SMOSAR is reported in 327 

Appendix B, as Supplementary material. 328 

4.3 The retrieval of Θ and its variance 329 

In SMOSAR, the variable that is initially retrieved is the absolute value of the alpha coefficient, 330 

|𝛼𝑉𝑉(휀, 𝜗)|, which is subsequently inverted into the relative dielectric constant, 휀, and then into Θ 331 
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using the soil texture information. Mathematically at pixel scale and at a given date, the retrieved Θ 332 

content, Θ𝑟𝑒𝑡𝑟 , and its variance, δℱ
2 , can be expressed by the Taylor uncertainties propagation  333 

Θ𝑟𝑒𝑡𝑟 = ℱ(휀(𝛼𝑉𝑉))                                                                                                                                                   (4) 334 

δℱ
2 = (

∂ℱ

∂
(휀) ∙

∂

∂𝛼𝑉𝑉
(𝛼𝑉𝑉))

2

∙   δ𝛼𝑉𝑉
2  ,                                                                                                         (5) 335 

where ℱ(∙) is the function relating Θ to 휀 (e.g., Hallikainen, 1985), 휀(𝛼𝑉𝑉) is the analytical inversion 336 

of the reflection coefficient in (2) and δ𝛼𝑉𝑉
2  is the variance of the random variable |𝛼𝑉𝑉(휀, 𝜗)|. 337 

4.3.1 The maximum likelihood estimator of |𝜶𝑽𝑽(𝜺, 𝝑)| 338 

The retrieval method described in Balenzano et al. (2013) is here summarized. It is a time series 339 

approach that applies the approximation in (3) to 𝑁 subsequent dates. For the sake of simplicity, the 340 

square roots of the quantities in (3) are considered and the following ratio defined as �̂�𝑖𝑗 =341 

√(𝜎0)𝐷𝑜𝑌(𝑖)/(𝜎0)𝐷𝑜𝑌(𝑗)   .  It is therefore possible to write a linear underdetermined stochastic system 342 

of 𝑁 − 1 equations with 𝑁 unknowns, |𝛼𝑉𝑉(휀, 𝜗)|: 343 

  344 

�̿� �⃗�𝑉𝑉 =

[
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= 0⃗⃗                       (6)                      345 

 346 

where �̿� is a full row rank (𝑁 − 1) ∙ 𝑁 matrix,  �⃗�𝑉𝑉 = [𝛼1, 𝛼2, … . 𝛼𝑁]  is a  N-dimensional vector 347 

and 0⃗⃗  is the  (N-1)-dimensional null vector.  The solution of the system can be expressed as a function 348 

of a free parameter (0 < 𝜆 < ∞)  349 

 �⃗�𝑉𝑉 =  λ̂ ∙ [�̂�1𝑁, �̂�2𝑁 , … . �̂�𝑁𝑁].                                                                                                            (7)  350 

A set of linear constraints can be applied to the solution of the underdetermined system    351 

 0 < 𝛼𝑚𝑖𝑛 ≤ |𝛼𝑉𝑉(휀, 𝜗)|𝐷𝑜𝑌(𝑖)  ≤  𝛼𝑚𝑎𝑥  < ∞       𝑖 = 1…𝑁 ,                                                          (8) 352 
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and noting that for a number of looks of the S-1 images much larger than 10, as is always the case 353 

in this study, the probability density function (pdf) of each �̂�𝑖𝑁 element in (7) can be approximated 354 

well by a normal distribution (Lee et al., 1994; Oliver and Quegan, 1998), the maximum likelihood 355 

(ML) criterion provides an optimal estimate for the λ parameter as  356 

𝜆 ̂    = 𝑚𝑎𝑥 (
𝛼𝑚𝑖𝑛

�̂�𝑖𝑁
)    𝑖 = 1, . . 𝑁.                                                                                                                                         (9) 357 

It is noted that the ML solution in this case is the minimum norm solution which is equal to the 358 

least square solution (LS) (e.g., Ouellette et al., 2017). In summary, the algorithm transforms time 359 

series of S-1 observations into time series of Θ absolute values, under the assumption that additional 360 

information is available in terms of an estimate of the minimum value of the alpha coefficient, 361 

|𝛼𝑉𝑉(휀, 𝜗)| during the 𝑁 S-1 acquisitions.  362 

There are various options to ascertain the value of 𝛼𝑚𝑖𝑛 required in (9). For instance, an estimate 363 

of 𝛼𝑚𝑖𝑛 at low resolution (e.g., ~40 𝑘𝑚) can be obtained from Θ operational products, e.g., SMOS, 364 

SMAP, ASCAT, etc. Such an option was implemented in Ouellette et al. (2017) and Al-Khaldi et al. 365 

(2019). Another option is to use in situ data to drive the retrieval (e.g., Palmisano et al., 2020). In this 366 

study, a calibration curve expressing S-1 VV observations versus |𝛼𝑉𝑉(휀, 𝜗)|2 values at low 367 

resolution was adopted. The rationale is that the spatial average at coarse scale reduces the influence 368 

of surface parameters characterized by a high spatial frequency (~0.1 𝑘𝑚), such as roughness, crop 369 

canopy structure and vegetation water content, while strengthening the relationship with Θ, which 370 

adjusts steadily in space (Macelloni et al., 1999). The calibration curve was first implemented in an 371 

ESA feasibility study (Mattia et al., 2011), and improved by using a subset of 1/3 of the total couples 372 

available in Table 2. A data set of S-1 VV observations and |𝛼𝑉𝑉(휀, 𝜗)|2 observed at site scales was 373 

built. The Apulian Tavoliere data set was not used to identify the calibration curve, because of its 374 

limited extent. S-1 observations were expressed in terms of the 𝛾 coefficient (i.e., 𝛾 = 𝜎0/cos (𝜗)) 375 

rather than 𝜎0 in order to mitigate the effect of difference in 𝜗 from site to site (Table 2). The S-1 376 

observations were first masked, as described in Section 4.2, in order to select the area dominated by 377 



 17 

the soil attenuated scattering (1), then  𝛾 was estimated over the unmasked areas. The Θ measurements 378 

of the hydrological networks were temporally collocated with the S-1 acquisitions and averaged at 379 

the site scale. The |𝛼𝑉𝑉(휀, 𝜗)|2 coefficients were derived from the mean Θ values considering the 380 

mean 𝜗 (Table 2) and the soil texture (Table 1) specific for each test site. Finally, the linear 381 

relationship |𝛼𝑉𝑉(휀, 𝜗)|2 versus 𝛾  was identified at coarse scale and used to derive 𝛼𝑚𝑖𝑛 during the 382 

Θ retrieval process. The calibration curve was applied for the Θ retrieval over all validation sites in 383 

Table 1, and it is expected to improve with time as new S-1 observations are integrated. For this 384 

reason, in the SMOSAR algorithm there is an option to update the parameters of the calibration. 385 

It is also noted that even though 𝛼𝑚𝑖𝑛 in (9) is derived at a coarse scale, the time series approach 386 

enables resolving at high resolution the Θ fields undergoing a different temporal evolution. This is 387 

because the maximum condition in (9) is enforced at the pixel scale and, therefore, the indexing of 388 

𝑚𝑎𝑥 (
1

�̂�𝑖𝑁
) in (7) changes with the local temporal evolution of the backscatter.  389 

4.3.2 The Θ retrieval error 390 

The expression of the retrieved variance δℱ
2  in (5) depends on two main terms: i) the partial 391 

derivatives 
∂ℱ( )

∂
(휀) and 

∂

∂𝛼𝑉𝑉
(𝛼𝑉𝑉) and ii) the variance of the reflection coefficient, δ𝛼𝑉𝑉

2 . The 392 

computation of the partial derivative can be carried out analytically (the computation is 393 

straightforward, though quite lengthy and tedious and therefore not reported here). The estimate of 394 

δ𝛼𝑉𝑉
2  is detailed in the Appendix A. The result (see eq. (A12)) indicates an upper bound that can be 395 

expressed as 396 

δ𝛼𝑉𝑉
2 ≤ [ δ𝑠𝑡𝑎𝑡

2 + δ𝑐𝑎𝑙
2  ],                                                                                                                     (10) 397 

where δ𝑠𝑡𝑎𝑡
2  and δ𝑐𝑎𝑙

2  arise from the propagation of the measurement error affecting the terms �̂�𝑖𝑁 (𝑖 =398 

1, . . 𝑁) in (7) and the error affecting the estimate of the parameter 𝛼𝑚𝑖𝑛 in (9). In Appendix A, the 399 

analytical expressions of these two terms are derived and discussed. Here, it is noted that on top of 400 

the two aforementioned error sources, a third contribution, δ𝑚𝑜𝑑
2 , accounting for possible failures of 401 
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the approximations reported in (1) and (3), needs to be included in the error budget. For instance, (3) 402 

assumes that between two subsequent S-1 acquisitions the only surface parameter that changes is Θ. 403 

In reality, there is always a certain probability that the roughness and/or vegetation parameters also 404 

change and this probability is expected to increase with the revisit time. Therefore, the total variance 405 

can be expressed as 406 

 δ𝑟𝑒𝑡𝑟
2 = δℱ

2 + δ𝑚𝑜𝑑
2  = δ𝑠𝑡𝑎𝑡

2
+ δ𝑐𝑎𝑙

2
 + δ𝑚𝑜𝑑

2
.                                                                                           (11) 407 

In principle, the term δ𝑚𝑜𝑑
2 , called the model error, can be characterized experimentally in those 408 

cases where δ𝑠𝑡𝑎𝑡
2 ≈ δ𝑐𝑎𝑙

2 ≈ 0. In many circumstances, the δ𝑚𝑜𝑑
2  term can be the dominant 409 

contribution in (11). In this respect, a thorough investigation of the impact of the S-1 time revisit on 410 

the RMSE and R will be conducted in a future study, in which constant observation conditions but 411 

the time revisit are kept. 412 

4.4 The output product 413 

Once the coefficient |𝛼𝑉𝑉(휀, 𝜗)| on each date is retrieved, 휀 can be analytically derived and then 414 

Θ estimated by inverting the Hallikainen et al. (1985) empirical model. To this regard, SMOSAR 415 

includes the global gridded ISRIC soil texture at 250 𝑚 spatial resolution (Hengl et al., 2017). 416 

The last step in SMOSAR is a low pass filter, with a kernel of 𝑊 × 𝑊 pixels (W=13), applied to 417 

the Θ maps at 40 𝑚 pixel size. The advantage is twofold. First, the uncertainty on the Θ retrieved is 418 

reduced and, second, the impact of errors due to abrupt changes of vegetation and/or soil roughness, 419 

which normally take place at field scales and can be wrongly interpreted as Θ changes, are mitigated. 420 

The mitigation would probably increase when averaging over larger areas. However, 1 𝑘𝑚 resolution 421 

is a tradeoff between the need of reducing the presence of biases and preserving a high resolution in 422 

the final Θ product. A side effect of the masking process is that a number of pixels in each 1 𝑘𝑚2 423 

resolution cell could be masked and therefore null. To handle this aspect, the adopted rule is that if 424 

the ratio between the remaining pixels over the total pixels is less than 33%, than the Θ estimate for 425 

that kernel window is set to null. Finally, a resampling of the Θ map is performed (using the same 426 
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resampling parameter 𝑊), changing the pixel size from 40 𝑚 to 520 𝑚, which corresponds to a 427 

spatial resolution of approximately 1 𝑘𝑚. The standard deviation associated with the mean Θ value 428 

at 1 𝑘𝑚 resolution is also estimated and delivered as a companion layer. 429 

As an example, Fig. 4 (upper panel) shows a prototype of a 1 𝑘𝑚 S-1 Θ 6-day composite (24 430 

overlapping S-1 descending tracks composed of 165 frames) over the Mediterranean basin as well as 431 

the 1 𝑘𝑚 S-1 Θ standard deviation 6-day composite (lower panel). The main river basins are 432 

delineated by black lines. The Θ patterns related to precipitation (light to dark blue) and drying of the 433 

soil (yellow to orange and then red) are visible. The Θ uncertainty is generally high over areas with a 434 

contrasting topography and very wet conditions. The S-1 Θ product prototype at the Mediterranean 435 

scale has been generated for one year (December 2017 – 2018) and its extension, systematic 436 

production and distribution (WebGIS Service) is currently under study. 437 

4.4.1 The sliding window processing 438 

SMOSAR processes the S-1 time series in a continuous chain using a sliding-window of four S-1 439 

images each time (𝑁 = 4). As soon as a new S-1 image is acquired (e.g. image 𝑘𝑡ℎ on date(𝑘)), it is 440 

processed together with the previous (𝑁 − 1) images. As a result, a time series of N-Fast Delivered 441 

(FD) Θ maps referring to [date(𝑘 − (𝑁 − 1)),…, date(𝑘)] is obtained (horizontal black box at time 𝑇 442 

in Fig. 5). When subsequent S-1 images are processed (from time 𝑇+1 up to 𝑇+N-1), multiple 443 

estimates of Θ maps are obtained on the same date(k) (i.e., those on the same column in Fig. 5). The 444 

FD Θ maps on the same date are partly correlated and can be averaged to reduce their total variability. 445 

The averaged output is called the Precision Θ product. It is noted that the temporal standard deviation 446 

can be an indicator of the extent to which the vegetation and/or surface roughness were stationary 447 

during the 4 subsequent S-1 acquisitions. This indicator is, however, not analyzed in the present study.  448 

In the event that a gap in S-1 acquisitions occurs, a new processing chain is started. The first and 449 

last S-1 images of the processed time series are prone to larger errors because there are no multiple 450 
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Θ estimates on the same date to be averaged. The Precision Θ product is the product validated in the 451 

following Sections.  452 

 453 

 454 

Fig. 4.  Upper panel: 6-day composite from April 04 to 09, 2018 of descending S-1 Θ at 1km resolution over the 455 
Mediterranean basin. The main river basins are delineated. Main river basins in Europe and Africa are 456 
superimposed (JRC Catchment Characterisation Model (CCM2) v2.1 and United Nations University WaterBase 457 
databases. Lower panel: 6-day composite of S-1 Θ standard deviation at 1km resolution.  458 

1km S-1 Θ 6-day composite 

1km S-1 Θ standard deviation 6-day composite 
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 459 
 460 
Fig. 5 Multiple Fast Delivered (FD) Θ maps produced by the processing of N S-1 data applied continuously to the pipeline of 461 
S-1 images (N=4) and Precision Θ product derived by averaging the FD images for the same date. 462 
 463 
 464 
 465 

5 Methods for local validation  466 

The analysis focused on the comparison of time series of retrieved (Θ𝑟𝑒𝑡𝑟) versus observed Θ 467 

values (Θ𝑜𝑏𝑠) collected over the validation sites. The comparison was performed at two spatial scales: 468 

1 𝑘𝑚 and the network scale. To match the spatial and temporal time series of retrieved and in situ 469 

measured Θ, the ground stations closest to the centroids of the S-1 Θ retrieved grid were selected and 470 

mean Θ measurements within 1 hour (from 1 to 4 samples according to the temporal sampling of the 471 

hydrologic networks) before the S-1 acquisition time were considered. 472 

The metrics selected for Θ validation are standard statistical scores, such as bias, root mean square 473 

error (RMSE), unbiased RMSE (ubRMSE), Pearson correlation coefficient (𝑅) and its significance 474 

(𝑝), standard deviation (𝛿), and the parameters of the linear regression, i.e., slope (𝛽) and intercept, 475 

of retrieved versus observed Θ (Entekhabi et al., 2010). However, the interpretation of these metrics 476 

should be approached with caution when independent (Θ𝑜𝑏𝑠) and dependent (Θ𝑟𝑒𝑡𝑟) variables are 477 

affected by similar error levels, as it is the case in this study. Indeed, the measurement errors for Θ𝑜𝑏𝑠 478 

reduce the magnitude of the observed correlation between the independent and dependent variables, 479 
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bias the estimate of the slope towards zero (Kelly, 2007) and increase the RMSE (Dorigo et al., 2015). 480 

Under these circumstances, the Weighted Least Square (WLS) method (York et al., 2004) is most 481 

suited to evaluate the linear regression parameters and 𝑅, instead of the Ordinary Least Square (OLS). 482 

The WLS code implemented in (Thirumalai et al., 2011) was used in the analysis. It is noted that 483 

WLS also accounts for the presence of heteroscedastic errors (unequal variability across the Θ range) 484 

both in the dependent and independent variables (Cantrell, 2008; Thirumalai et al., 2011). The 485 

rationale of WLS is that data with the least errors have the greatest influence on the slope and intercept 486 

of the fitted line (i.e., weights are proportional to the inverse of the variance of the data values). 487 

Therefore, the analysis of the error sources and the quantification of the various contributions is 488 

crucial for the implementation of the WLS. For the independent variable, the most important source 489 

of error is the SRE. In preparation for the validation activity of the SMAP mission various 490 

experimental sites have been identified, or established or upgraded to deploy an appropriate number 491 

of ground stations to ensure an accurate estimate of the average Θ (Colliander et al., 2017). This 492 

analysis, however, depends on the resolution of the EO system. For this reason, a similar effort should 493 

be undertaken at higher resolution, e.g. ~1 𝑘𝑚. In this study, an experimental analysis was carried 494 

out over the Apulian Tavoliere (Italy) core site, as well as a modelling analysis to provide to SRE the 495 

appropriate weights across a number of spatial scales. 496 

5.1 Spatial representativeness error  497 

Each technique measuring Θ is characterized by its own “support”, which is the effective area that 498 

each measurement represents (Western and Blöschl, 1999). In this respect, the support of in situ 499 

observations is, in general, much smaller than that of satellite Θ retrieved products. To allow 500 

meaningful comparisons it is necessary to sample and then average a number (𝑆) of independent Θ𝑜𝑏𝑠 501 

over an area comparable to the resolution cell of the satellite product. The spatial representativeness 502 

error (SRE) is the margin of error in estimating the mean Θ value of that area, at a specific confidence 503 

level (CL) and using 𝑆 independent point-scale Θ𝑜𝑏𝑠 observations. Its mathematical expression is:  504 
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δ̃𝑆𝑅𝐸 = 𝑧𝛼/2  ∙ 𝛿Θ𝑜𝑏𝑠
/√𝑆  ,                                                                                                                  (12) 505 

 506 

where 𝑧𝛼/2 is the standard normal variable at the chosen significant level 𝛼, and 𝛿Θ𝑜𝑏𝑠
 is the standard 507 

deviation of spatial observations (i.e., the (∙)̃ tilde symbol indicates that sample mean is computed at 508 

spatial scale). In Brocca et al., (2010); Famiglietti et al., (2008); Wang et al., (2008); Jacobs et al., 509 

(2004), the estimation of the SRE for data sets collected at various spatial scales and in different 510 

conditions was evaluated. The SRE dependence on the timescale was also investigated (e.g. Entin et 511 

al., 2000; Molero et al., 2018). Simply inverting (12), it is possible to estimate how many samples 𝑆 512 

need to be collected to obtain δ̃𝑆𝑅𝐸  below a certain threshold.  513 

It is noted that Θ is a multiscale, heteroscedastic process (Das et al., 2010; McColl et al., 2017; 514 

Western and Blöschl, 1999), so that 𝛿Θ𝑜𝑏𝑠
 is a function both of the sampling scale (𝐿) and 𝜇𝑜𝑏𝑠, i.e., 515 

𝛿Θ𝑜𝑏𝑠
= ℒ(𝐿, 𝜇𝑜𝑏𝑠). To estimate it, Gilbert, (1987) recommends characterizing first its coefficient of 516 

variation (𝐶𝑉𝐿), then 𝛿Θ𝑜𝑏𝑠
 can be obtained as a product, i.e., 𝐶𝑉𝐿 ∙ 𝜇𝑜𝑏𝑠. This is beneficial because 517 

𝐶𝑉𝐿 usually shows less variability than 𝛿Θ𝑜𝑏𝑠
 , and its experimental relationship with 𝜇𝑜𝑏𝑠 can be fitted 518 

using an exponential law depending on two parameters, 𝑘1 and 𝑘2 such that 519 

𝐶𝑉𝐿 =
�̃�Θ𝑜𝑏𝑠

�̃�𝑜𝑏𝑠
= 𝑘1 ∙ 𝑒−𝑘2�̃�𝑜𝑏𝑠,                                                                                                                   (13)  520 

 521 

where the subscript 𝐿 underlines that the 𝑘1 and 𝑘2 parameters depend on the extent scale 𝐿 at which 522 

the 𝑆 samples Θ𝑜𝑏𝑠 were collected. The exponential decrease of the CV with increasing mean Θ is 523 

due in a large part to the difference in magnitude between 𝜇𝑜𝑏𝑠 and 𝛿Θ𝑜𝑏𝑠
 (Famiglietti et al., 1999). 524 

The fitting of 𝐶𝑉𝐿 over the experimental sites is provided in the Appendix C (Supplementary 525 

material). Here, it noted that an interesting feature of the set of curves 𝛿Θ𝑜𝑏𝑠
= 𝐶𝑉𝐿 ∙ 𝜇𝑜𝑏𝑠 = 𝑘1 ∙ 𝜇𝑜𝑏𝑠 ∙526 

𝑒−𝑘2�̃�𝑜𝑏𝑠  is that the coordinates of their maximum, i.e., (𝜇 𝑜𝑏𝑠
𝑚𝑎𝑥, 𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 ), are simply expressed in terms 527 

of 𝑘1 and 𝑘2 parameters: 528 
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{
𝜇 𝑜𝑏𝑠

𝑚𝑎𝑥 = 1/𝑘2

𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 = 𝑘1/(𝑒𝑘2)
 ,                   (14)        529 

 530 

where 𝑒 is Euler’s number. This feature can be further exploited to predict the dependence of 𝛿Θ𝑜𝑏𝑠
 531 

on 𝜇𝑜𝑏𝑠 at any extent scale 𝐿, as will be shown in the next Section.  532 

5.1.1 Scaling of Θ variability at 𝟏𝒌𝒎 and SRE quantification 533 

The multi-scale nature of Θ𝑜𝑏𝑠 suggests that the relation between its sample mean and standard 534 

deviation, i.e.,  𝜇𝑜𝑏𝑠 and 𝛿Θ𝑜𝑏𝑠
, and the extent scale 𝐿 is approximated well by a power-law. In 535 

(Famiglietti et al., 2008), this property was assessed in a 𝐿𝑜𝑔 − 𝐿𝑜𝑔 plot between 𝛿Θ𝑜𝑏𝑠
 and the extent 536 

scale, 𝐿. Since for each scale, 𝛿Θ𝑜𝑏𝑠
 depends on 𝜇𝑜𝑏𝑠, as shown in Fig. C1 (in the Supplementary 537 

material), Famiglietti et al. (2008) plotted the mean standard deviation at each scale and suggested 538 

that a fit of the plot could be used to estimate the mean variance at a particular scale. Following this 539 

line of reasoning, the maximum value of 𝛿Θ𝑜𝑏𝑠
 at each scale is considered in this study, rather than its 540 

mean value. In other words, a power law relation between (�̃� 𝑜𝑏𝑠
𝑚𝑎𝑥, 𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 ) and 𝐿 was sought such that 541 

{
 �̃� 𝑜𝑏𝑠

𝑚𝑎𝑥 = 𝛼1  ∙ 𝐿𝛽1

 𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 = 𝛼2  ∙ 𝐿𝛽2
        ,                                                                                                                     (15) 542 

 543 

where 𝛼1 (𝛼2) and 𝛽1 (𝛽2)  are fitting parameters, the latter related to the fractal dimension (i.e., 544 

Mandelbrot and Van Ness, 1968). For each scale (site) reported in Table C1 (in the Supplementary 545 

material), the couples (�̃� 𝑜𝑏𝑠
𝑚𝑎𝑥 , 𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 ) were estimated. To increase the number of the fitting points the 546 

curves reporting  𝛿Θ𝑜𝑏𝑠
 vs 𝜇𝑜𝑏𝑠 in Famiglietti et al., (2008) and Jacobs et al., (2004) were also 547 

included. Additionally, the Θ variability at the 3 𝑘𝑚 and 9 𝑘𝑚 nested grids of the Yanco and TxSON 548 

networks was also considered. The total number of the fitting points is 24. Fig. 6 (left panel) shows 549 

the 𝐿𝑜𝑔10(𝜇 𝑜𝑏𝑠
𝑚𝑎𝑥) (orange points) and the 𝐿𝑜𝑔10(𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 ) (green points) versus the 𝐿𝑜𝑔10(𝐿) 550 

respectively. The fitting parameters 𝛼1 , 𝛽1and 𝛼2 , 𝛽2 are reported in the caption. The vertical dotted 551 

line identifies the 𝐿𝑜𝑔10(𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 ) and 𝐿𝑜𝑔10(�̃� 𝑜𝑏𝑠
𝑚𝑎𝑥) at 1 𝑘𝑚. The coefficient of determination for the 552 
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fit of 𝜇 𝑜𝑏𝑠
𝑚𝑎𝑥 and 𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥  are ~0.6 and ~0.8, respectively. In both cases, the correlation is highly 553 

significant confirming not only that most of the variability of  Θ𝑜𝑏𝑠 over the various sites can be 554 

explained with the extent of the site, but also that it is possible to predict the variability of  Θ𝑜𝑏𝑠 at a 555 

particular scale. For instance, using (15) (𝜇 𝑜𝑏𝑠
𝑚𝑎𝑥, 𝛿 Θ𝑜𝑏𝑠

𝑚𝑎𝑥 ) can be estimated at 𝐿 = 1 𝑘𝑚 and then using 556 

(14), it is possible to derive the associated 𝛿Θ𝑜𝑏𝑠
= 𝐶𝑉𝐿 ∙ 𝜇𝑜𝑏𝑠. In particular, for 𝐿 = 1 𝑘𝑚: 𝑘1 =557 

0.686 and 𝑘2 = 4.328(𝑚3/𝑚3)−1. 558 

Moreover, using (12), the behaviour of δ̃𝑆𝑅𝐸 as a function of  𝜇𝑜𝑏𝑠 and for any 𝑆 can be estimated. 559 

Fig. 6 (right panel) shows δ̃𝑆𝑅𝐸  at 1 𝑘𝑚 scale, 70% CL, for 𝑆=1 and 4. For 𝑆=4, δ̃𝑆𝑅𝐸  is within the 560 

typical calibration error of ground station probes, i.e., ~0.03  𝑚3/𝑚3. For 𝑆=1, δ̃𝑆𝑅𝐸  is significantly 561 

higher, hence in comparing retrieved Θ values at 1 𝑘𝑚 with that observed by a single station, the 562 

δ̃𝑆𝑅𝐸  cannot be disregarded. The outcome of this Section is that in the absence of an adequate number 563 

of stations, a viable alternative is to predict δ̃𝑆𝑅𝐸  and take this into account in the validation metrics, 564 

as shown in the next Section. 565 

 566 

Fig. 6. Left panel: Log10 (�̃� 𝚯𝒐𝒃𝒔

𝒎𝒂𝒙 ) vs Log10(L) (green squares). The fitting parameters are 𝜶𝟐 = 𝟎. 𝟎𝟐𝟑 𝒎𝟑/𝒎𝟑;  𝜷𝟐 =567 

𝟎. 𝟏𝟑𝟐, 𝐑𝟐 = 𝟎. 𝟖𝟏, p <0.01. Log10(�̃� 𝒐𝒃𝒔
𝒎𝒂𝒙) vs Log10(L) (orange circles). The fitting parameters are 𝜶𝟏 =568 

𝟎. 𝟎𝟖𝟓 𝒎𝟑/𝒎𝟑;  𝜷𝟏 = 𝟎. 𝟏𝟒𝟒, 𝐑𝟐 = 𝟎. 𝟔𝟎, p <0.01 (N=24). The vertical line indicates the Log10(�̃� 𝒐𝒃𝒔
𝒎𝒂𝒙) and 569 

Log10 (�̃� 𝚯𝒐𝒃𝒔

𝒎𝒂𝒙 ) at 1 km. Right panel: spatial representativeness error (�̃�𝑺𝑹𝑬) as a function of �̃�𝒐𝒃𝒔 at 70% CL, at 1 570 
km scale and S=1 station (blue line) and S=4 stations (red line). 571 
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5.2 Error budget 572 

According to (11), the total Θ retrieval error (δretr
2  ) can be split into three main terms, namely: 573 

the statistical (δ𝑠𝑡𝑎𝑡
2 ), the calibration (δ𝑐𝑎𝑙

2 ) and the model (δ𝑚𝑜𝑑
2 ) error. Conversely, the error affecting 574 

the Θ observations (δobs
2 ) consists of two independent contributions: the first due to the SRE (δ𝑆𝑅𝐸

2 ) 575 

and the second due to the sensor calibration error δ𝑠𝑒𝑛𝑠𝑜𝑟
2 . Therefore, it can be written as 576 

δobs
2 = δ𝑆𝑅𝐸

2 + δ𝑠𝑒𝑛𝑠𝑜𝑟
2  ,                                                                                                                     (16) 577 

where in most cases δ𝑠𝑒𝑛𝑠𝑜𝑟
2  can be disregarded compared to δ𝑆𝑅𝐸

2  because its RMSE level is 578 

~0.03  𝑚3/𝑚3 (Rowlandson et al., 2013) or even lower (Coopersmith et al., 2016).  As a result, the 579 

RMSE is:   580 

𝑟𝑚𝑠𝑒2 = 𝐸[(𝛩𝑟𝑒𝑡𝑟 − 𝛩𝑜𝑏𝑠)
2] = 𝐸[((𝛩′𝑟𝑒𝑡𝑟 +  ϵ𝑟𝑒𝑡𝑟) − (𝛩′𝑜𝑏𝑠 +  ϵ𝑜𝑏𝑠))

2] = 581 

 582 

=  𝐸[(𝛩′𝑟𝑒𝑡𝑟 − 𝛩′𝑜𝑏𝑠)
2]  + δretr

2   +  δobs
2 = 𝑟𝑚𝑠𝑒𝑖𝑛𝑡𝑟

2  +  δobs
2  ≈ 𝑟𝑚𝑠𝑒𝑖𝑛𝑡𝑟

2  +  δ𝑆𝑅𝐸
2   ,                (17) 583 

where  ϵ𝑟𝑒𝑡𝑟 and ϵ𝑜𝑏𝑠 are zero-mean random errors, with variance  δretr
2  = 𝐸(ϵ𝑟𝑒𝑡𝑟

2 )  and δ𝑆𝑅𝐸
2  =584 

 𝐸(ϵ𝑆𝑅𝐸
2 ), while 𝛩′𝑟𝑒𝑡𝑟 and 𝛩′𝑜𝑏𝑠 are two random variables with their intrinsic variability. Eq. (17) 585 

assumes that error cross-correlation and error orthogonality (i.e., homoscedasticity) components are 586 

zero or perfectly compensating (Gruber et al., 2020). Disregarding  δ𝑆𝑅𝐸
2 , the RMSE between  587 

𝛩𝑟𝑒𝑡𝑟 and 𝛩𝑜𝑏𝑠 is the intrinsic mean square error, RMSE𝑖𝑛𝑡𝑟
2 . 588 

For sites with a low density of ground stations at ~1 𝑘𝑚 resolution, a workable approach is to use 589 

the procedure outlined in Section 5.1 to predict δ̃𝑆𝑅𝐸  in (12) on each date for an arbitrary number of 590 

stations, 𝑆. Then δ𝑆𝑅𝐸
2  in (17) can be approximated by the temporal mean of the retrieved δ̃𝑆𝑅𝐸 .   591 

Finally, the RMSE𝑖𝑛𝑡𝑟 can be retrieved using (17). In the case of high-density sites, RMSE2 ≈592 

RMSE𝑖𝑛𝑡𝑟
2 , as δ𝑆𝑅𝐸

2  is expected to be negligible. For biased estimates of  𝛩𝑟𝑒𝑡𝑟, i.e.,  𝜇𝑜𝑏𝑠 − 𝜇𝑟𝑒𝑡𝑟 =593 

𝑏𝑖𝑎𝑠, the relation between 𝑢𝑏RMSE2 and RMSE2 is (Entekhabi et al., 2010): 594 

 𝑢𝑏RMSE2 = RMSE2 − 𝑏𝑖𝑎𝑠2.                                                                                                          (18) 595 
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6 Validation results 596 

6.1 Validation at 1km 597 

The performance of the STCD algorithm was investigated under two different experimental 598 

conditions: 599 

 over the core site, i.e., the Apulian Tavoliere, where the error on the independent variable 600 

(Θ𝑜𝑏𝑠) is much lower than the retrieval error, i.e., 𝛿obs
2 ≪ 𝛿retr

2  601 

 over the low-density sites, where 𝛿obs
2 ~𝛿retr

2  and therefore, it is necessary to estimate the 𝛿𝑜𝑏𝑠 602 

and evaluate  RMSE𝑖𝑛𝑡𝑟 through (17). 603 

6.1.1 Validation over the Apulian Tavoliere core site 604 

The relatively high density of ground stations deployed on this site (i.e., ~4 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/𝑘𝑚2) 605 

enables the use of the standard metrics to characterize the performance of the STCD algorithm. This 606 

site provides the opportunity to investigate experimentally the dependence of the RMSE on the 607 

number of stations (from 1 to 11) used to estimate the spatial mean Θ, i.e., 𝜇𝑜𝑏𝑠. To investigate this, 608 

first the time series of Θ𝑟𝑒𝑡𝑟  values averaged at site scale (i.e., 1.6 𝑘𝑚 × 1.6 𝑘𝑚; see Fig. 1), i.e. 𝜇𝑟𝑒𝑡𝑟, 609 

was derived using the S-1 time series of ascending A146 orbit (Table 2). Next, the ground stations 610 

were randomly aggregated in 11 non-overlapping groups (𝐺), including 𝑆 = 1, 2, 3, 4…11 stations 611 

as illustrated in Fig. 7 (left panel). The aggregated stations are shown in the same colour. For each 612 

group and on each date, the correspondent Θ𝑜𝑏𝑠 values were averaged and compared against  𝜇𝑟𝑒𝑡𝑟. 613 

For those groups with the same number of stations 𝑆, the related RMSEs were evaluated and averaged 614 

and the standard deviation was calculated. In Fig. 7 (right panel), the dotted line shows the mean 615 

RMSE and standard deviation (up to 𝑆 = 5) versus the number of the stations. The higher the value 616 

of 𝑆, the lower the mean RMSE as well as the associated standard deviation. The mean RMSE 617 

decreases from 0.078  𝑚3/𝑚3 for 1 station to the minimum RMSE, 0.064  𝑚3/𝑚3, for 𝑆 = 11. 618 

However, below ~0.06  𝑚3/𝑚3, the RMSE is minimally reduced, likely because the 𝛿𝑆𝑅𝐸 reaches a 619 
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value lower than 𝛿𝑠𝑒𝑛𝑠𝑜𝑟 (see Fig. 6, right panel). Likewise, the observed threshold level of RMSE, 620 

i.e., ~0.06 𝑚3/𝑚3 can be considered as a good estimate of the STCD retrieval error.  621 

An overview of the STCD algorithm performance is displayed in Fig. 8 (left panel), which reports 622 

the data of Fig. 7 in the form of a scatter plot, for 𝑆 = 11. Three outliers (residual errors > 3 standard 623 

deviations (Komorowski et al., 2016)) are reported in black circles. A further aspect that was 624 

investigated is the variability of the RMSE as a function of Θ ranges, when 𝛿𝑆𝑅𝐸 is minimized. Fig. 625 

8 (right panel) illustrates the distribution of RMSE (green bars) and ubRMSE (blue bars) per Θ 626 

interval. To balance the number of points per Θ interval, Θ𝑜𝑏𝑠 were aggregated in uneven intervals 627 

(𝑚3/𝑚3), i.e, [0.05,0.20], [0.20,0.30] and [0.30,0.55]. The (ub)RMSE increases as a function of Θ 628 

and its minimum value in the first interval is ≈ 0.05  𝑚3/𝑚3. The relative error is ~20% of the mean 629 

of the two subsequent intervals. Under these circumstances, the adoption of a relative error for the 630 

requirements on SAR Θ retrieval products seems more realistic than an absolute threshold. The 631 

Appendix A further elaborates on why the (𝑢𝑏)RMSE increases with Θ. 632 

 633 

Fig. 7. Left panel: Number of stations (𝑺) per each group (G). Stations 𝑺 with the same colour belong to the same 634 
group G. Right panel: RMSE between ascending 1.6 km*1.6 km S-1 Θ and Θ measured by 1 station or averaged 635 
from 2 up to 11 stations as a function of the number of the stations within the Apulian Tavoliere core test site.  636 

 637 
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 638 

Fig. 8. Left panel: Scatter plot (Dates=183) between 𝚯  derived from the S-1 ascending track (A146) and the 𝚯 639 
values averaged over the 11 stations at the Apulian Tavoliere site (1.6 km *1.6 km). The Ordinary Least Square 640 
(OLS) fit (in black), as well as the statistical scores, are reported. Three outliers are in black circles.  Right panel: 641 
Distribution of RMSE (green bars) and ubRMSE (blue histogram bars), as defined in (18), per Θ interval (without 642 
the three outliers). 643 

 644 

Fig. 9 compares the temporal behavior of 𝜇𝑟𝑒𝑡𝑟 (red line) and 𝜇𝑜𝑏𝑠 (blue line) over the Apulian 645 

Tavoliere site. The dashed areas represent the daily spatial standard deviations. The daily precipitation 646 

available from a meteo station 10 𝑘𝑚 distant from the site is also reported. Few comments are in 647 

order: 648 

 In general, the level and the temporal evolution of the continuous red and blue lines 649 

are in good agreement (R=0.71), in particular Θ𝑟𝑒𝑡𝑟 captures fairly well the wetting and 650 

dry-downs observed in situ. Nevertheless, the retrieved standard deviation is important for 651 

medium-high values of Θ, while it is fairly small in dry conditions. This is in agreement 652 

with the prediction of the statistical error of STCD reported in Appendix A (see Fig. A1). 653 

As a consequence, the RMSE in the spatial domain can be highly affected by biases for 654 

wet rather than for dry surfaces.   655 

 Some nuisance in the Θ retrieval performance can be observed when the STCD 656 

physical approximations (e.g., constant soil roughness and vegetation between two S-1 657 

acquisitions) are not fulfilled. This is the case of the three outliers reported in Fig. 9, as red 658 
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points. For instance, between July and August 2015 various fields of the farm were 659 

ploughed and then arrowed (i.e. smoothed). The change in soil roughness and consequent 660 

drastic change of backscatter between August, 11 and 23 was interpreted by SMOSAR as 661 

due to a change of Θ𝑟𝑒𝑡𝑟, thus leading to the Θ overestimation. Similarly, the Θ 662 

underestimation in April is likely related to the rapid growth of wheat canopy (“stem 663 

elongation” phase) which characterized several fields of the farm. Conversely, the two 664 

outliers occurred on September 29 and October, 23 2017 are probably due to a high 665 

spatial/temporal variability of the precipitation fields in the area. Indeed, although 666 

precipitation events were recorded by the meteo station and a consequent increase of Θ 667 

retrieved values is observed, the ground stations in average did not measure a significant 668 

increase of Θ. 669 

 670 

Fig 9 Time-series comparing S-1 soil moisture product with respect to the site observations averaged at the network 671 
scale. The in situ average, �̃�𝑜𝑏𝑠, is the blue continuous line and the S-1 average,  �̃�𝑟𝑒𝑡𝑟 is the red line. The shaded areas 672 
represent the daily soil moisture standard deviation. Daily precipitation from a meteo station 10 km far from the site is indicated 673 
by the black line. The three outliers over the Apulian Tavoliere are reported as red points. 674 
 675 
 676 

6.1.2 Validation over low-density test sites 677 

Apart from the Apulian Tavoliere, the density of ground stations of all the sites can be considered 678 

to be 1 𝑠𝑡𝑎𝑡𝑖𝑜𝑛/𝑘𝑚2 (Table 1). As a consequence, 𝛿𝑆𝑅𝐸 is expected to contribute significantly to the 679 
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RMSE. Therefore in this section, 𝛿𝑆𝑅𝐸 is estimated for each site and accounted for to compute the 680 

intrinsic RMSE, according to (17) as described in Section 5.2. 681 

Fig. 10 (upper panel) reports per site, the (ub)RMSE, the intrinsic RMSE, 𝛿𝑆𝑅𝐸 at 70% 𝐶𝐿 and bias. 682 

The total number of points and outliers (in brackets) are also reported. 𝛿𝑆𝑅𝐸 ranges between 683 

0.050 𝑚3/𝑚3 and 0.056 𝑚3/𝑚3 for the low-density experimental sites and decreases with 𝜇𝑜𝑏𝑠 . In 684 

general, the 𝛿𝑆𝑅𝐸 increases the RMSE by approximately 0.02 𝑚3/𝑚3 and the intrinsic RMSE ranges 685 

between  ~0.06𝑚3/𝑚3 and ~0.08 𝑚3/𝑚3. Positive biases (i.e., Θ underestimation) are mostly 686 

observed; the highest value ~0.035 𝑚3/𝑚3 was detected over the Yanco and Txson sites.  This effect 687 

should be assessed over longer time series and eventually reduced by improving the calibration of the 688 

retrieval algorithm. Indeed, although the impact of biases is in average modest in specific areas/times 689 

can be fairly high. An anomalous behaviour is observed over Elm Creek, which shows a RMSE and 690 

bias significantly higher than the remaining results. For a further insight, the Elm Creek dataset was 691 

split into two parts: spring and summer-autumn, excluding the frozen soil periods. While the summer-692 

autumn retrieval performance is in line with that observed over the other sites (see EC (SuAu) in Fig. 693 

10), the statistical scores estimated in spring are the worst of the entire data set. Fig. 10 (lower panel), 694 

shows the correlation R (orange points) observed over each site, including EC (SuAu), versus the 695 

standard deviation of Θ𝑜𝑏𝑠, i.e., δ𝚯𝒐𝒃𝒔
 (see Fig. 2). It is noted that 61% of the variability of R is 696 

explained by δ𝚯𝒐𝒃𝒔
. The correlation for the whole Elm Creek dataset is reported as a separated black 697 

point. It can be observed that R is significantly reduced for Elm Creek if spring Θ time series is added 698 

in the comparison. An interpretation of this phenomenon is provided in section 6.2. 699 

 700 
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 701 

 702 
 703 

Fig. 10. Performance metrics over the low-density hydrological networks. Upper panel: ubRMSE (blue bars), 704 
RMSE (green bars), intrinsic RMSE (red bars), 𝜹𝑺𝑹𝑬 (yellow bars) according to (17) and bias (white bars). The 705 
total number of point and removed outliers (in brackets) are reported (AT=Apulian Tavoliere, EC=Elm Creek, 706 
EC (SuAu)=Elm Creek for the season summer and autumn, T=TxSON, H= HOBE; Y=Yanco, LW=Little Washita, 707 
R=REMEDHUS).  Lower panel: ordinary least square Pearson correlation vs 𝜹𝚯𝒐𝒃𝒔

. Linear fit is also reported 708 
R2

fit=0.61.  709 

 710 

6.1.3 Overall results at 1km 711 

An evaluation of the performance of Θ𝑟𝑒𝑡𝑟 over all the experimental test sites was carried out and 712 

the impact of the errors on the dependent and independent variables on the fitting parameters was 713 

assessed. Furthermore, in case of the Apulian Tavoliere sites only the S-1 ascending time series was 714 
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considered, as well as only the summer-autumn periods for the Elm Creek dataset. The total number 715 

of Θ𝑜𝑏𝑠 and Θ𝑟𝑒𝑡𝑟 pairs is 𝑀 = 15057. 716 

First, Table 3 summarizes the statistical scores. Accounting for the 𝛿𝑆𝑅𝐸 implies that the intrinsic 717 

RMSE is ~0.02 𝑚3/𝑚3  lower than the RMSE. Then, the WLS was applied to mitigate the effect of 718 

the errors on the dependent and independent variables. In this regard, the S-1 Θ standard deviation, 719 

provided with the retrieved S-1 mean Θ at 1 km resolution, was used as an estimate of the uncertainty 720 

associated with the S-1 Θ. Conversely, (12) was used as Θ𝑜𝑏𝑠 uncertainty in the WLS for each station 721 

on each day. Table 3 reports the WLS R and linear fitting parameters and shows a clear improvement 722 

with respect to the correspondent OLS (Réjou-Méchain et al., 2014). Finally, Fig. 11 illustrates the 723 

distribution of intrinsic RMSE (red bars) and RMSE (green bars) per Θ𝑜𝑏𝑠 ranges. The RMSE at             724 

1 km is generally higher than the one reported in Fig. 8, because the Θ𝑜𝑏𝑠 are not averaged at network 725 

scale and therefore include the RSE. Indeed, the intrinsic RMSE is comparable with that observed 726 

over the core validation site, per Θ intervals up to 0.30 𝑚3/𝑚3. Conversely, for very wet surfaces 727 

both RMSEs are higher than those observed in Fig. 8. The reason is that the moderate positive bias, 728 

observed in average in Fig. 10 (top panel), is significantly higher in the third interval [0.30 𝑚3/𝑚3– 729 

0.55 𝑚3/𝑚3]. Likely, this is the result of various effects. First, the spatial variability of 𝛩𝑟𝑒𝑡𝑟 that is 730 

larger for wet and very wet soils (see Fig. A1) directly amplifies the bias. Besides, there is a spurious 731 

effect because the high tail of the 𝛩𝑟𝑒𝑡𝑟 distribution in the second interval [0.20 𝑚3/𝑚3– 0.30 732 

𝑚3/𝑚3] largely falls in the third interval further skewing the distribution toward lower values. 733 

Finally, the calibration of the algorithm needs to be improved particularly for very wet surfaces.  734 

Table 3. Overall performance metrics over the experimental sites. R refers to the Pearson correlation (𝒑 < 𝟎. 𝟎𝟏). The parameters 735 
of the ordinary least squares (OLS) and weighted least squares (WLS) are shown. 736 

M 
 

(out) 

(ub)RMSE 
 

m3/m3  

𝝁𝒐𝒃𝒔± 
𝜹𝚯𝒐𝒃𝒔

 

m3/m3 

𝝁𝒓𝒆𝒕𝒓± 
𝜹𝚯𝒓𝒆𝒕𝒓

 

m3/m3 

Bias 
 

m3/m3 

𝛿𝑆𝑅𝐸   
(70%CL) 
m3/m3 

intrinsic 
(ub)RMSE 

m3/m3 

OLS  
linear fit 

R 

WLS linear 
fit 
R 

15057 
(82) 

0.088 
(0.085) 

0.188± 
0.090 

0.168± 
0.073 

0.021 0.053 0.070 
(0.067) 

y=0.377*x 
+ 0.097 
R=0.46 

y=0.810*x + 
0.017  and 

R=0.54 
 737 
 738 
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 739 

 740 

Fig. 11. Distribution of RMSE (green bars) and intrinsic RMSE (red bars) according to (17)  per 𝚯𝒐𝒃𝒔 interval.   741 

 742 

 743 

6.2 Validation at the network scale 744 

Fig. 12 reports the validation results at the network scale, i.e., both Θ𝑟𝑒𝑡𝑟 and Θ𝑜𝑏𝑠 were spatially 745 

averaged at the network scale on each S-1 acquisition date, 𝜇𝑜𝑏𝑠 and 𝜇𝑟𝑒𝑡𝑟. Results of the whole (EC) 746 

and the summer-autumn Elm Creek (EC (SuAu)) dataset are reported separately both for the RMSE 747 

and the Pearson correlation. The estimated RMSE (upper panel) ranges between approximately 748 

0. 050𝑚3/𝑚3 and 0. 066𝑚3/𝑚3, excluding EC. The Pearson correlation (lower panel) is reported as 749 

a function of the standard deviation of the temporal series of the daily spatial mean 𝜇𝑜𝑏𝑠, i.e.  𝛿�̃�𝑜𝑏𝑠
. 750 

R can still be ordered by  𝛿�̃�𝑜𝑏𝑠
 as for Fig. 10 (lower panel), but R at the network scale, ranging 751 

between 0. 35 and 0. 86,  generally increases due to the spatial average process which enhances the 752 

sensitivity to Θ. Besides, higher correlation (> 0.60) are observed for the sites imaged at incidence 753 

angle lower than 35° (yellow points). In particular, the lower correlation coefficient for the Apulian 754 

Tavoliere descending (D) time series relative to the ascending (A) passes is likely due to the higher 755 

S-1 incidence angle (Palmisano et al., 2020).  756 
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 757 
 758 

   759 

Fig. 12. Statistical scores at the site scale. Upper panel: ubRMSE (blue bars), RMSE (green bars), and bias (white 760 
bars) per site. The total number of compared points is reported. Lower panel: Pearson correlation vs the observed 761 
 𝜹�̃�𝒐𝒃𝒔

. Linear fits are also reported, R2
fit=0.57.  For the Apulian Tavoliere site, the metrics for both the S-1 762 

ascending (A) and descending (D) tracks are shown (AT=Apulian Tavoliere, EC=Elm Creek, EC (SuAu) =Elm 763 
Creek in summer-autumn, T=TxSON, H= HOBE Y=Yanco, LW=Little Washita, R=REMEDHUS).  Sites imaged 764 
at incidence angle lower than 35deg are shown identified by the yellow points. 765 

 766 

Fig. 13 and Fig. 14 show the temporal behaviour of retrieved and observed Θ averages, together 767 

with their standard deviations, at the Yanco and Elm Creek network scales. Over the Yanco site, the 768 

daily precipitation is available for several sub-areas, therefore, they were averaged on each date to 769 

obtain an estimate representative of the network. In particular, Fig. 13 confirms that STCD (red line) 770 
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reproduces fairly well the changes of Θ due to precipitation events and dry down cycles, over the 771 

entire period of approximately 4 years (R=0.86). It is noted that Yanco, unlike Segezia, cannot be 772 

considered a homogeneous site in terms of soil properties and vegetation cover. As a consequence, 773 

the standard deviation of Θ𝑟𝑒𝑡𝑟 observed in Fig. 13 (red shaded area) is likely driven by land cover, 774 

topography and soil conditions. 775 

The Elm Creek site was selected because it is a challenging case for the retrieval algorithm, due to 776 

a number of site factors. First, Fig. 14 shows the presence of large gaps of data, mainly in winter, 777 

which are due to frozen soil conditions. In addition, missing S-1 data in July and August 2017 778 

inhibited the retrieval during the active growing season, a period of favourable conditions for 779 

estimating soil moisture. Moreover, a systematic underestimation of Θ in springtime is observed. This 780 

underestimation is related to a biased estimation of the 𝛼𝑚𝑖𝑛 parameter at a coarse scale, which 781 

propagated the bias at high resolution. In May an important drop in backscatter (i.e., 4 − 5 dB with 782 

respect to April) was observed at large scale in the Manitoba region. Spring wheat, canola and corn, 783 

which are the main crops of the area, are typically seeded in the first 10 days of May (Powers, 2021). 784 

As a result, the status of the soil roughness changes in large areas of Manitoba. During this active 785 

spring period, roughness diminishes as farmers prepare a smooth soil seedbed. As crops emerge, 786 

canopies in fill with varying canopy structures and scattering mechanisms. The S-1 response increases 787 

on average and is again more distinct among fields. Currently, this dynamic is not handled well by 788 

the SMOSAR calibration (at least over the spring period). Under these conditions, a further 789 

understanding and adaptation of the code is required. 790 
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 791 

Fig 13 Time-series comparing S-1 soil moisture data product with respect to Yanco site observations averaged at 792 
the network scale. The in situ average is the blue continuous line and the S-1 average is the red line. The shaded 793 
areas represent the daily standard deviation. Daily precipitation averaged at network scale is indicated by the 794 
black line.  795 
 796 

 797 
Fig 14 The same as Fig. 13 but for the Elm creek site. Periods with frozen soils show no data. 798 
 799 

 800 

Finally, Fig. 15 compares Θ𝑟𝑒𝑡𝑟 against Θ𝑜𝑏𝑠 at the network scale for all the validation sites (EC 801 

(SuAu) included) and the S-1 acquisitions. The statistical scores are also reported. The overall 802 

correlation and RMSE are 0. 67 and 0. 058 𝑚3/𝑚3, respectively. Three outliers were removed, as in 803 

Fig. 8. Overall, the bias and the 𝛿𝑆𝑅𝐸 are quite small (e.g., 𝛿𝑆𝑅𝐸 ≪ 0. 03𝑚3/𝑚3) for the seven 804 
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experimental sites. Therefore, 𝛿𝑆𝑅𝐸 has a marginal impact on the RMSE and the OLS method was 805 

adopted for estimating the linear fit in Fig. 16, i.e., 𝑦 = 0.735 𝑥 + 0.045. 806 

 807 

Fig. 15. Site scale comparison between Θ retrieved from S-1 and observed over AT=Apulian Tavoliere  (A146), 808 
AT=Apulian Tavoliere  (D124), EC (SuAu) =Elm Creek in summer-autumn, T=TxSON, H= HOBE, Y=Yanco, 809 
LW=Little Washita, R=REMEDHUS sites. The comparison includes 1068 dates. Three outliers (>3 standard 810 
deviations), i.e. black points, are also reported. 811 

 812 

 813 

7 Conclusions  814 

This study presents an extended validation of a pre-operational surface soil volumetric water 815 

content Θ product [𝑚3/𝑚3] at ~1 km resolution derived from VV&VH S-1 observations. The VH  816 

S-1 channel is used for the dynamic masking of vegetation, while the Θ retrieval is based on the VV       817 

S-1 observations. Only static information about land cover and soil texture is needed for Θ retrieval 818 

in addition to the S-1 backscatter. The S-1 Θ retrieval algorithm consists of a time series based short 819 

term change detection approach. This approximation decouples the effect of Θ from that of the other 820 

surface parameters (e.g., surface roughness and vegetation) on the SAR signal, hence significantly 821 

simplifying the Θ-retrieval and expediting the processing. The strength of the retrieval algorithm is 822 

its conceptual simplicity and its robustness as the Θ estimates depend on a single free parameter, i.e., 823 
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𝛼𝑚𝑖𝑛. Conversely, the accuracy of the S-1 Θ product depends on: i) the statistical variability of the 824 

backscatter temporal ratio between subsequent S-1 acquisitions, and ii) the calibration of the retrieval 825 

algorithm needed to identify 𝛼𝑚𝑖𝑛. The latter is a continuous process improving with the length of the 826 

time series of S-1 and in situ data analysed (in particular, wet and very wet soil conditions are still 827 

underrepresented). An important aspect of the developed Θ product is that a co-registered standard 828 

deviation layer is also provided with each mean Θ product at 1 𝑘𝑚. A quantitative analysis on the 829 

dependence of Θ uncertainty on land cover, topography, soil texture and mean Θ, at increasing spatial 830 

scales, remains to be assessed.  831 

In the study, the performance of the S-1 mean Θ product was estimated through direct comparison 832 

against in situ Θ-observations recorded over 7 hydrologic networks with 167 ground stations, located 833 

in Italy, Spain, Denmark, Canada, USA and Australia covering 4 years between January 2015 and 834 

December 2020. An emphasis was also placed on addressing the SRE that arises from the mismatch 835 

between the S-1 Θ retrieved at ~1 𝑘𝑚 and the in situ point-scale Θ-observations and its impact on the 836 

metrics. At the core validation site (4.3 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/𝑘𝑚2) in the Apulian Tavoliere (Italy), the in situ 837 

Θ observations were upscaled at 1 𝑘𝑚 to a relatively low SRE (i.e., SRE < 0.03 𝑚3/𝑚3, 70% 𝐶. 𝐿) 838 

and therefore it was considered as a benchmark for the S-1 Θ performance. The observed correlation 839 

between S-1 Θ and in situ observations is 0.71 and the RMSE is ~0.06 𝑚3/𝑚3 with a bias of 840 

~0.01 𝑚3/𝑚3 over the Θ range [0.03, 0.60] 𝑚3/𝑚3.  The S-1 Θ time series over Southern Italy is 841 

available through the connected Data in Brief article (Balenzano et al, 2021).  842 

A first recommendation steaming from this study is to establish cal/val sites (either new or as an 843 

update of existing hydrologic networks) dedicated to SAR soil moisture retrieval having a minimum 844 

density of 4 − 5 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠/𝑘𝑚2. It is noted that such an estimate is independent on the characteristics 845 

of the SAR sensor as it is solely based on consideration of the statistics of the observed Θ fields. A 846 

second suggestion is to reconsider the requirement for SAR Θ product accuracy, usually expressed in 847 

terms of the RMSE. The motivation is that the SAR signal uncertainty increases with its mean, and 848 
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this statistical property is also observed on the derived Θ estimates. A more realistic requirement 849 

could therefore be to adopt a relative error (either unbiased or not, i.e., (ub)RMSE/mean). For 850 

instance, the results of this study would indicate a level of 20%  for Θ equal or higher than 851 

0.20 𝑚3/𝑚3. For lower Θ values, a constant threshold for (ub)RMSE of, e.g., 0.05 𝑚3/𝑚3 could be 852 

adopted. 853 

In terms of outlook, despite the important progress that the launch of the S-1 constellation has 854 

brought for high-resolution Θ retrieval, technical and programmatic issues persist. The former mainly 855 

concern the temporal resolution of presently available satellite SAR data that is still non optimal for 856 

Θ applications, as user requirements point to a temporal resolution of 1-2 days or less [e.g., 857 

www.wmo-sat.info]. To tackle this issue a programmatic effort for a coordinated acquisition plan of 858 

multi-mission SAR data, such as those acquired by S-1 and the recently launched RADARSAT 859 

Constellation Mission, or those provided by S-1 and the forthcoming EU L-band Radar Observation 860 

System for Europe (ROSE-L) system (Davidson et al., 2019), is needed. Success in this approach will 861 

require the development of retrieval algorithms combining C- and L-band SAR data (Zhu et al., 2019), 862 

which can also lead to simultaneous and consistent retrieval of Θ and vegetation water content at high 863 

temporal and spatial resolution with beneficial impact on coupled hydrology–crop growth models 864 

(Pauwels and Verhoest, 2007) and on a better understanding of the land-atmosphere interaction 865 

(Vereecken et al., 2010).  866 
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APPENDIX A: Error Budget 880 

The symbolic expression for the variance of the retrieved Θ, 𝛿ℱ
2, at pixel scale and for a given date, 881 

is reported in (5), which shows that δℱ
2  depends on δ|𝛼𝑉𝑉|

2 . Here, the procedure for estimating δ|𝛼𝑉𝑉|
2  882 

is briefly sketched. The quantitative retrieval of |𝛼𝑉𝑉(휀, 𝜗)| is based on (7), which for a specific date 883 

𝑖 can be written as 884 

|�̂�𝑉𝑉| = λ̂  ∙  �̂�𝑖𝑁       𝑖 = 1,…𝑁                                                                                                         (A1)   885 

where λ̂ and �̂�𝑖𝑁 are two random variables. �̂�𝑖𝑁 is defined in (6); for 𝑖 = 𝑁 − 1 and  𝐿 ≫ 10 (𝐿 is the 886 

number of looks) the probability density function of �̂�𝑖𝑁  is normal and its moments’ expression can 887 

be found in (Lee et al., 1994; Oliver and Quegan, 1998). In particular, using the Stirling’s 888 

approximation of a gamma function ratio (Tricomi and Erdelyi, 1951), the estimate of its sample 889 

coefficient of variation (CV) decreases with 𝐿 as 890 

�̃��̂�𝑖𝑁

�̃��̂�𝑖𝑁

≈
1

√2𝐿
                                                                                                                                 (A2) 891 

where 𝛿�̂�𝑖𝑁
 and 𝜇�̂�𝑖𝑁

 are the spatial sample standard deviation and mean, computed over 𝐿 ≫ 10 892 

independent samples. 893 

For 𝑖 = 𝑁,  �̂�𝑁𝑁 assumes constant values equal to 1 and, therefore, its variance is zero. The 894 

maximum likelihood estimate of λ̂ is given in (9) and can be cast in the following form  895 

�̂� = 𝑚𝑎𝑥 (
𝛼𝑚𝑖𝑛

�̂�𝑖𝑁
) = �̂�𝑚𝑖𝑛 ∙ 𝑚𝑎𝑥(�̂�𝑁𝑖) = �̂�𝑚𝑖𝑛 ∙ �̂�𝑁𝑗∗        𝑖 = 1,…𝑁                                       (A3)                                     896 



 42 

where �̂�𝑁𝑗∗ has the same statistics of �̂�𝑁𝑖 in (A1). For the sake of notation simplicity, from now on �̂�𝑁𝑗∗ 897 

will be indicated as �̂�∗. In (A3), �̂�𝑚𝑖𝑛 is obtained from the calibration curve, discussed in Section 898 

4.1.2.1, and its variance is derived later on in this Appendix. The two random variables �̂�∗ and �̂�𝑚𝑖𝑛 899 

are independent, therefore the sample mean of �̂� is  900 

𝜇�̂� = 𝜇�̂�𝑚𝑖𝑛
∙ 𝜇�̂�

∗                                                                                                                                                 (A4) 901 

and the variance  δ̃
�̂�
2 can be simply derived as  902 

δ̃
�̂�
2 = �̃��̂�𝑚𝑖𝑛

2 ∙ �̃��̂�∗
2

+ �̃�
�̂�∗
2 ∙ �̃��̂�𝑚𝑖𝑛

2
                                                                                                                        (A5) 903 

From (A4) and (A5) and for a sufficiently large 𝐿, the sample squared CV is 904 

δ̃
�̂�
2

�̃��̂�
2 =

�̃��̂�𝑚𝑖𝑛

2

�̃��̂�𝑚𝑖𝑛

2 +
�̃��̂�∗
2

�̃��̂�∗
2 ≈

�̃��̂�𝑚𝑖𝑛

2

�̃��̂�𝑚𝑖𝑛

2 +
1

2𝐿
                                                                                                             (A6)                                               905 

In the same vein as for (A5), we can estimate the variance δ|𝛼𝑉𝑉|
2  of  |𝛼𝑉𝑉| in (A1). It is, however, 906 

worth noting that in (A1), λ̂ and �̂�𝑖𝑁 are somehow correlated because both in �̂�∗and �̂�𝑖𝑁 appears the 907 

backscatter acquired on the last date 𝑁 in the time series. Under these circumstances, the mean of 908 

|𝛼𝑉𝑉| is 909 

𝜇|𝛼𝑉𝑉| = 𝜇�̂� ∙ 𝜇�̂�𝑖𝑁
∙ [1 + �̃�λ̂,�̂�𝑖𝑁

∙
�̃��̂�

�̃��̂�

∙
�̃��̂�𝑖𝑁

�̃��̂�𝑖𝑁

] ≤ 𝜇�̂� ∙ 𝜇�̂�𝑖𝑁
∙ [1 +

�̃��̂�

�̃��̂�

∙
1

√2𝐿
] ≈ 𝜇�̂� ∙ 𝜇�̂�𝑖𝑁

                             (A7)                      910 

where  �̃�λ̂,�̂�𝑖𝑁
 is the sample Pearson correlation coefficient between λ̂ and �̂�𝑖𝑁. Therefore, for a 911 

sufficiently large 𝐿, the variance of  |𝛼𝑉𝑉| is bounded as 912 

 0 ≤ 𝛿|𝛼𝑉𝑉|
2 ≤ 𝜇

�̂�
2 ∙ 𝛿�̂�𝑖𝑁

2  + 𝜇�̂�𝑖𝑁

2 ∙ 𝛿
�̂�
2 = 𝜇

�̂�
2 ∙ 𝜇�̂�𝑖𝑁

2 ∙ [
�̃�

�̂�
2

�̃�
�̂�
2 +

�̃�
�̂�𝑖𝑁

2

�̃�
�̂�𝑖𝑁

2 ]          𝑖 = 1, …𝑁                                (A8)       913 

Substituting (A6) and (A7) into (A8), we obtain 914 

𝛿|𝛼𝑉𝑉|
2 ≤ 𝜇|𝛼𝑉𝑉|

2 ∙ [
�̃��̂�𝑚𝑖𝑛

2

�̃��̂�𝑚𝑖𝑛

2 +
1

𝐿
]      𝑖 = 1,…𝑁                                                                                      (A9)              915 
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To estimate 
�̃��̂�𝑚𝑖𝑛

2

�̃��̂�𝑚𝑖𝑛

2  it is necessary to consider the calibration curve of |�̂�𝑉𝑉|2 versus 𝛾, obtained at 916 

the low resolution (𝛾 is the S-1 backscatter divided by the cosine of the incidence angle). The curve 917 

is a first order polynomial |�̂�𝑉𝑉|2 = �̂� ∙ 𝛾 + �̂�, then �̂�𝑚𝑖𝑛 is 918 

�̂�𝑚𝑖𝑛 = |�̂�𝑉𝑉|𝑚𝑖𝑛 = √�̂� ∙ 𝛾𝑚𝑖𝑛 + �̂�                                                                                    (A10)      919 

The related CV is derived by using the propagation of uncertainty on �̂�𝑚𝑖𝑛, considering 𝛾𝑚𝑖𝑛, �̂� and 920 

�̂� all affected by errors. 921 

𝛿�̂�𝑚𝑖𝑛

2

𝜇�̂�𝑚𝑖𝑛

2 ≈
1

4
∙
(𝜇�̂�𝑚𝑖𝑛

2 ∙𝛿
�̂�
2+𝛿�̂�

2)+𝜇
�̂�
2 ∙𝛿�̂�𝑚𝑖𝑛

2

[𝜇�̂�∙𝜇�̂�𝑚𝑖𝑛
+𝜇�̂�]

2                                                                                                                        (A11)                         922 

Substituting (A11) into (A9), it results  923 

𝛿|𝛼𝑉𝑉|
2 ≤ 𝜇|𝛼𝑉𝑉|

2 ∙ {
1

4
∙
(𝜇�̂�𝑚𝑖𝑛

2 ∙𝛿
�̂�
2+𝛿�̂�

2)+𝜇
�̂�
2 ∙𝛿�̂�𝑚𝑖𝑛

2

[𝜇�̂�∙𝜇�̂�𝑚𝑖𝑛
+𝜇�̂�]

2 +
1

𝐿
} = [𝛿𝑐𝑎𝑙

2  +  𝛿𝑠𝑡𝑎𝑡
2 ]                                                          (A12) 924 

In Fig. A1, it is reported the retrieved Θ ± 𝛿ℱ as a function of the true |𝛼𝑉𝑉| (and Θ on the 925 

secondary x-axis) for VV polarization and 30° incidence, where 𝛿ℱ is evaluated by (5), using (A12). 926 

The predicted retrieval error increases from dry to wet surfaces. This is expected to be a general 927 

property that can be easily understood considering that i) |𝛼𝑉𝑉|
2 is almost linear with Θ (e.g., (Kim 928 

and van Zyl, 2009)) and ii) the radar backscatter is proportional to |𝛼𝑉𝑉|
2, see (1). Therefore, the 929 

standard error on Θ increases with the standard error on the radar backscatter, which in turn is 930 

proportional to the backscatter itself. As a result, the higher the retrieved Θ, the higher its standard 931 

error. In terms of the weight of �̃�𝑠𝑡𝑎𝑡

2
 versus �̃�𝑐𝑎𝑙

2
, for Θ retrieved at a resolution of 1 k𝑚, corresponding 932 

to an equivalent number of looks L~104, the estimated statistical error is always below 0.02 𝑚3/𝑚3. 933 

Therefore, the major contribution to the error comes from the calibration error, as for instance 𝛿ℱ is 934 

approximately 13% of Θ in average over the range of Θ variability. 935 
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 936 

Fig. A1. Example of the error budget for 1 km Θ retrieved at VV polarization and 30° incidence angle. 937 
 938 
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 1301 

LIST OF FIGURE CAPTIONS 1302 

Fig. 1. Left panel: Location of the hydrological network (in red) at the Apulian Tavoliere site (Apulia region, 1303 
Southern Italy). Right panel: distribution of the stations (red points) at the Segezia experimental farm (black line) 1304 
over the S-1 soil moisture product grid with 520 m grid spacing (yellow lines). 1305 
 1306 
Fig. 2. Mean (solid line bars), 𝝁𝒐𝒃𝒔, and standard deviation, 𝛅𝚯𝒐𝒃𝒔

, (dashed line bars) of the Θ distribution per site 1307 
(AT=Apulian Tavoliere, EC=Elm Creek, T=TxSON, H= HOBE; Y=Yanco, LW=Little Washita, R=REMEDHUS).  1308 
The yellow and black diamonds display the 75th (Q75) and 25th (Q75) percentiles. M is the total number of Θ 1309 
measurements per site.  1310 
 1311 
Fig. 3. SMOSAR soil moisture (Θ) retrieval algorithm schema. Input and output data and main modules, i.e., 1312 
masking and retrieval blocks, are drawn.  1313 
 1314 

Fig. 4.  Upper panel: 6-day composite from April 04 to 09, 2018 of descending S-1 Θ at 1km resolution over the 1315 
Mediterranean basin. The main river basins are delineated. Main river basins in Europe and Africa are 1316 
superimposed (JRC Catchment Characterisation Model (CCM2) v2.1 and United Nations University WaterBase 1317 
databases. Lower panel: 6-day composite of S-1 Θ standard deviation at 1km resolution.  1318 

 1319 
Fig. 5 Multiple Fast Delivered (FD) Θ maps produced by the processing of N S-1 data applied continuously to the 1320 
pipeline of S-1 images (N=4) and Precision Θ product derived by averaging the FD images for the same date. 1321 
 1322 
Fig. 6. Left panel: Log10 (�̃� 𝚯𝒐𝒃𝒔

𝒎𝒂𝒙 ) vs Log10(L) (green squares). The fitting parameters are 𝜶𝟐 = 𝟎. 𝟎𝟐𝟑 𝒎𝟑/𝒎𝟑;  𝜷𝟐 =1323 

𝟎. 𝟏𝟑𝟐, 𝐑𝟐 = 𝟎. 𝟖𝟏, p <0.01. Log10(�̃� 𝒐𝒃𝒔
𝒎𝒂𝒙) vs Log10(L) (orange circles). The fitting parameters are 𝜶𝟏 =1324 

𝟎. 𝟎𝟖𝟓 𝒎𝟑/𝒎𝟑;  𝜷𝟏 = 𝟎. 𝟏𝟒𝟒, 𝐑𝟐 = 𝟎. 𝟔𝟎, p <0.01 (N=24). The vertical line indicates the Log10(�̃� 𝒐𝒃𝒔
𝒎𝒂𝒙) and 1325 

Log10 (�̃� 𝚯𝒐𝒃𝒔

𝒎𝒂𝒙 ) at 1 km. Right panel: spatial representativeness error (�̃�𝑺𝑹𝑬) as a function of �̃�𝒐𝒃𝒔 at 70% CL, at 1 1326 
km scale and S=1 station (blue line) and S=4 stations (red line). 1327 
 1328 

Fig. 7. Left panel: Number of stations (𝑺) per each group (G). Stations 𝑺 with the same colour belong to the same 1329 
group G. Right panel: RMSE between ascending 1.6 km*1.6 km S-1 Θ and Θ measured by 1 station or averaged 1330 
from 2 up to 11 stations as a function of the number of the stations within the Apulian Tavoliere core test site.  1331 

Fig. 8. Left panel: Scatter plot (Dates=183) between 𝚯  derived from the S-1 ascending track (A146) and the 𝚯 1332 
values averaged over the 11 stations at the Apulian Tavoliere site (1.6 km *1.6 km). The Ordinary Least Square 1333 
(OLS) fit (in black), as well as the statistical scores, are reported. Three outliers are in black circles.  Right panel: 1334 
Distribution of RMSE (green bars) and ubRMSE (blue histogram bars), as defined in (18), per Θ interval (without 1335 
the three outliers). 1336 

Fig 9 Time-series comparing S-1 soil moisture product with respect to the site observations averaged at the network 1337 
scale. The in situ average, �̃�𝑜𝑏𝑠, is the blue continuous line and the S-1 average, �̃�𝑟𝑒𝑡𝑟 is the red line. The shaded 1338 
areas represent the daily soil moisture standard deviation. Daily precipitation from a meteo station 10 km far from 1339 
the site is indicated by the black line. The three outliers over the Apulian Tavoliere are reported as red points 1340 
 1341 
Fig. 10. Performance metrics over the low-density hydrological networks. Upper panel: ubRMSE (blue bars), 1342 
RMSE (green bars), intrinsic RMSE (red bars), 𝜹𝑺𝑹𝑬 (yellow bars) according to (17) and bias (white bars). The 1343 
total number of point and removed outliers (in brackets) are reported (AT=Apulian Tavoliere, EC=Elm Creek, 1344 
EC (SuAu)=Elm Creek for the season summer and autumn, T=TxSON, H= HOBE; Y=Yanco, LW=Little Washita, 1345 
R=REMEDHUS).  Lower panel: ordinary least square Pearson correlation vs 𝜹𝚯𝒐𝒃𝒔

. Linear fit is also reported 1346 

R2
fit=0.61. 1347 

 1348 
Fig. 11. Distribution of RMSE (green bars) and intrinsic RMSE (red bars) according to (17)  per 𝚯𝒐𝒃𝒔 interval.   1349 
 1350 
Fig. 12. Statistical scores at the site scale. Upper panel: ubRMSE (blue bars), RMSE (green bars), and bias (white 1351 
bars) per site. The total number of compared points is reported. Lower panel: Pearson correlation vs the observed 1352 
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 𝜹�̃�𝒐𝒃𝒔
. Linear fits are also reported, R2

fit=0.57.  For the Apulian Tavoliere site, the metrics for both the S-1 1353 
ascending (A) and descending (D) tracks are shown (AT=Apulian Tavoliere, EC=Elm Creek, EC (SuAu) =Elm 1354 
Creek in summer-autumn, T=TxSON, H= HOBE Y=Yanco, LW=Little Washita, R=REMEDHUS).  Sites imaged 1355 
at incidence angle lower than 35deg are shown identified by the yellow points. 1356 
 1357 
Fig 13 Time-series comparing S-1 soil moisture data product with respect to Yanco site observations averaged at 1358 
the network scale. The in situ average is the blue continuous line and the S-1 average is the red line. The shaded 1359 
areas represent the daily standard deviation. Daily precipitation averaged at network scale is indicated by the 1360 
black line.  1361 
 1362 
Fig 14 The same as Fig. 13 but for the Elm creek site. Periods with frozen soils show no data. 1363 
 1364 

Fig. 15. Site scale comparison between Θ retrieved from S-1 and observed over AT=Apulian Tavoliere  (A146), 1365 
AT=Apulian Tavoliere  (D124), EC (SuAu) =Elm Creek in summer-autumn, T=TxSON, H= HOBE, Y=Yanco, 1366 
LW=Little Washita, R=REMEDHUS sites. The comparison includes 1068 dates. Three outliers (>3 standard 1367 
deviations), i.e. black points, are also reported. 1368 

 1369 
Fig. A1. Example of the error budget for 1 km Θ retrieved at VV polarization and 30° incidence angle. 1370 

Fig. B1 Temporal behaviour of the mean value of S-1 VH 𝜸 coefficient for winter rape (red) and winter wheat 1371 
(blue) fields over Selhausen site (Germany) in 2018 (Mengen et al., 2021). The constant threshold at -14dB is also 1372 
shown (black dashed line). The shaded areas represent the intra-field standard deviation. 1373 

Fig. B2.  Scheme of thresholding method for volume and surface attenuated crop classes. 1374 

Fig. C1. Examples of standard deviation, �̃�𝚯𝒐𝒃𝒔
, vs mean Θ,  �̃�𝒐𝒃𝒔, in the range [0.03-0.60] 𝒎𝟑/𝒎𝟑 over Yanco (Y), 1375 

TxSON (T) and Apulian Tavoliere (AT) derived from fitting parameters in Table C1. Only the �̃�𝚯𝒐𝒃
 and �̃�𝒐𝒃𝒔 1376 

values during the S-1 acquisitions in the time frame reported in Table C1 are shown in squared points. 1377 
  1378 
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APPENDIX B: Supplementary material 1379 

Dynamic masking of vegetation 1380 

The method for dynamic masking of vegetation adopted in SMOSAR was suggested by Satalino 1381 

et al. (2014), who proposed to use the C-band VH backscatter temporal signature to classify the 1382 

agricultural areas into crops dominated by volume and soil attenuated scattering. The underlying 1383 

hypothesis is that the higher the volume contribution, the higher the level of VH backscatter. For 1384 

example, it has been shown that there exist crops for which the volume scattering mechanism is 1385 

dominant since early phenological stages (e.g. winter rape), whereas for other crops (e.g. winter 1386 

wheat) the attenuated soil scattering remains the dominant mechanism throughout the growing season 1387 

(Cookmartin et al., 2000; Picard et al. 2003). Satalino et al. (2014) carried out a literature review 1388 

about the C-band scattering mechanisms of various crops and, in parallel, an analysis of long and 1389 

dense time series of C-band backscatter collected over agricultural sites in Europe and North America 1390 

during the ESA AgriSAR’06 and ‘09 campaigns (Hajnsek et al., 2007; Caves et al., 2009). A first 1391 

outcome of the analysis has been to confirm that crop canopies characterized by large leaves or 1392 

random branching structure, predicted to be dominated by volume scattering at C-band (e.g. sugar 1393 

beet, potato, maize, onion, garlic etc), show a VH backscatter temporal behavior similar to that of 1394 

winter rape. Conversely, those crops with canopies characterized by small stems and then dominated 1395 

by attenuated surface scattering mechanisms at C-band (e.g., barley, oat, alfalfa, bean, grass etc.) 1396 

present a VH backscatter temporal behavior similar to that of winter wheat. Of course, there exists a 1397 

large intra-class variability for both classes of crops. Nevertheless, both Khabbazan et al., (2019) and 1398 

Palmisano et al., (2020) recently confirmed that the temporal behaviour of the S-1 VH backscatter of 1399 

the two classes of crops remains substantially different.  1400 

As an example, Fig. B1 shows a time-series of S-1 VH 𝛾 coefficients (i.e. backscatter normalized 1401 

for the cosine of the incidence angle) collected over one wheat (blue) and one winter rape (orange) 1402 

fields over the Selhausen site (Germany) in 2018 (Mengen et al., 2021). The shaded areas correspond 1403 
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to the gamma standard deviation estimated over the field. The cross-pol radar response of winter rape 1404 

increases during the growing season, while towards the end of the season, when the crop canopy dries 1405 

and then tends to be transparent to the SAR signal, the radar response of winter rape drops again to 1406 

the soil backscatter level. Conversely, the VH level of winter wheat backscatter remains generally 1407 

low (usually not exceeding the level of -14 dB) throughout the growing season and the behaviour 1408 

below -14 dB is erratic and likely related to changes in the level of soil moisture. 1409 

 1410 

Fig. B1 Temporal behaviour of the mean value of S-1 VH 𝜸 coefficient for winter rape (red) and winter wheat 1411 
(blue) fields over Selhausen (Germany) in 2018 (Mengen et al., 2021). The constant threshold at -14dB is also shown 1412 
(black dashed line). The shaded areas represent the intra-field standard deviation. 1413 

 1414 

The segmentation proposed by Satalino et al., (2014) is an adaptive thresholding approach applied 1415 

to S-1 VH gamma coefficient (i.e. γ𝑉𝐻). The algorithm implements an iterative solution of the Kittler-1416 

Illingworth (KI) method (Kittler and Illingworth, 1986), which is an adaptive scheme seeking for the 1417 

optimal separation of two classes statistically described as a mixture of two Gaussian pdfs. The 1418 

iterative solution of the KI method is implemented because it can use a quasi-optimal guess value for 1419 

the threshold (approximately -14 dB) that was identified in the experimental analysis.  1420 

The procedure starts from the initial guess threshold 𝑇0 and splits the areas remaining after the 1421 

ESA CCI masking in two sets (see Fig. B2), i.e. pixels with γ𝑉𝐻  values higher (h) and lower (l) than 1422 
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𝑇0. The average (𝜇𝑖), the standard deviation (𝛿i) and the number of pixels (𝑃𝑖) (𝑖 = ℎ, 𝑙) of each set 1423 

are computed. They completely define the Gaussian pdf of the two classes, which approximates the 1424 

histogram of data. Then, the estimate of the optimal threshold at iteration k=1 (𝑇𝑘), represented by the 1425 

crossover of the two Gaussian pdfs, is obtained by solving the following equation: 1426 

[
𝑇𝑘−�̃�ℎ 

�̃�h
] + 2 ln(𝛿h) − 2 ln(𝑃ℎ) = [

𝑇𝑘− �̃�𝑙

�̃�l
] + 2 ln(𝛿l) − 2 ln(𝑃𝑙) , 𝑘 > 0            (B1) 1427 

The procedure can be iterated until the threshold value becomes stable (i.e. 𝑇𝑛). Finally, pixels 1428 

having backscatter greater or lower than  𝑇𝑛  are separated in two classes. The number of iterations 1429 

required to reach the nearly optimal threshold depends on the goodness of the initial threshold  𝑇0 and 1430 

on the actual data pdf. As a result, only those land surfaces dominated by soil attenuated scattering 1431 

are left unmasked, and it is for these surfaces that the Θ retrieval algorithm is applied.  1432 

 1433 

Fig. B2.  Scheme of thresholding method for volume and surface attenuated crop classes. 1434 

APPENDIX C: Supplementary material 1435 

Fitting the coefficient of variation over the experimental sites 1436 

To characterize the coefficient of variation (𝐶𝑉𝐿) at each test site a time series of continuous Θ 1437 

measurements recorded by the hydrological networks over various periods from one to four years 1438 
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(Table C1) was considered. For each test site daily averages and standard deviations of Θ, i.e., 𝜇𝑜𝑏𝑠 1439 

and 𝛿Θ𝑜𝑏𝑠
, recorded by the ground stations were calculated. Additionally at the Apulian Tavoliere 1440 

network, ten intensive ground campaigns were also carried out to extend the estimate of the Θ 1441 

statistics over small areas, with a size of ~0.1 𝑘𝑚 ×  0.1 𝑘𝑚. The 𝐶𝑉𝐿 was then fitted with the curve 1442 

in (13) and the 𝑘1 and 𝑘2 parameters identified at the various extents. Results are shown in Table C1. 1443 

As an example, Fig. C1 shows the fitted curve 𝛿Θ𝑜𝑏𝑠
= 𝐶𝑉𝐿 ∙ 𝜇𝑜𝑏𝑠 versus 𝜇𝑜𝑏𝑠 for Yanco, TxSON, 1444 

and Apulian Tavoliere in continuous lines. As well, 𝛿Θ𝑜𝑏𝑠
 measured only during the S-1 acquisitions 1445 

in the time frame reported in Table C1 are shown as squared points. The plotted curves of 𝛿Θ𝑜𝑏𝑠
 have 1446 

a convex upward shape and with levels increasing with the extent, as expected (Crow et al., 2012; 1447 

Famiglietti et al, 2008). For instance over the Apulian Tavoliere, which is the smallest site, 𝛿Θ𝑜𝑏𝑠
 is 1448 

within 0.04  𝑚3/𝑚3 whereas over Yanco, the largest site, it may reach 0.12  𝑚3/𝑚3. An additional 1449 

modulation of the relation between 𝛿Θ𝑜𝑏𝑠
and 𝜇𝑜𝑏𝑠 is due to the different dry out processes that depend 1450 

on the local soil texture and land cover (Crow et al., 2012; Pan and Peters-Lidard, 2008).  1451 

 1452 

Table C1. Fitting parameters of (13) between the coefficient of variation, 𝑪𝑽𝑳, and �̃�𝒐𝒃𝒔 over the experimental sites. 1453 
L is the extent of the site. 1454 

Site Station  AT EC LW H R T Y 

L (𝑘𝑚) 0.1 1.6 17 25 30 35 36 60 

𝑘1 0.563 0.324 

 

0.713 0.933 0.905 0.905 0.534 0.601 

𝑘2 -5.477 

 

-2.623 -2.700 -4.258 -3.262 -3.421 -2.010 -2.018 

period Intensive 

campaigns 

Feb14-

Jan18 

Jan14-

Dec16 

Jan15-

Sep17 

Jan15-

Feb17 

Jan15-

Dec17 

Jan15-

Mar18 

Jan15-

Sep17 

 1455 
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 1456 

Fig. C1. Examples of standard deviation, �̃�𝚯𝒐𝒃𝒔
, vs mean Θ,  �̃�𝒐𝒃𝒔, in the range [0.03-0.60] 𝒎𝟑/𝒎𝟑 over Yanco (Y), 1457 

TxSON (T) and Apulian Tavoliere (AT) derived from fitting parameters in Table C1. Only the �̃�𝚯𝒐𝒃
 and �̃�𝒐𝒃𝒔 1458 

values during the S-1 acquisitions in the time frame reported in Table C1 are shown in squared points.  1459 
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