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Land use and climate change are two of the key forces driving soil organisms’ activity and thus the 16 

ecosystem functions they provide. However, potential interactive effects of climate change and 17 

different land-use types on soil biological activity still remain unclear. Here, we studied soil 18 

biological activity in a large-scale field experiment initiated in 2014 in central Germany with two 19 

levels of input intensity (conventional versus organic treatment) and two climate scenarios 20 

(ambient climate versus “projected climate”, i.e., increased temperature by +0.55°C and altered 21 

rainfall patterns across seasons). We measured soil microbial activity and invertebrate 22 

decomposer feeding activity across two years (2rd and 3rd year after establishment) in three-week 23 

intervals. Both soil biological activity measures were used as proxies for decomposition processes. 24 

Interactive effects of climate change and land-use types were not significant in the present study. 25 

Our results show that the projected climate reduced soil invertebrate decomposer activity by -26 

16%, while soil microbial activity was not impaired. This suggests that even a slight increase in 27 

temperature together with a shift in precipitation patterns, can induce a significant reduction in 28 

soil functions like organic matter decomposition and nutrient cycling. Soil microbial (-9.6%) and 29 

invertebrate decomposer activity (-22%) were significantly lower in organic treatment compared 30 

to conventional treatment, which might be due to higher soil organic carbon and nutrient 31 

concentrations in conventional treatment in the short term. These findings highlight the need to 32 
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better understand the main drivers of short- and long-term effects on belowground functioning 33 

to develop sustainable management strategies for healthy soils in a changing climate. 34 

Keywords 35 

Organic farming; conventional farming; climate change; soil invertebrate activity; soil microbial activity; 36 

conversion to organic farming  37 
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1. Introduction 38 

Climate change is one of the key driving forces threatening soil organisms and thus endangering 39 

functions and services of terrestrial ecosystems (Parmesan, 2006; Phillips et al., 2019). Climate 40 

models predict a rise of air temperatures by 1.0 to 3.7°C by the end of the century (Allen et al., 41 

2018), accompanied by an increase in the frequency of extreme climate events, leading to 42 

changes in the availability of world's water resources (Huntington, 2006). At the same time, 43 

global food demand is rising rapidly due to a growing population, putting pressure on agriculture 44 

to increase yields and improve agricultural practices (Tilman et al., 2011). 45 

Soils have a profound impact on ecosystem functions, including plant performance and 46 

agricultural production, thus linking them closely to human-wellbeing (Wall et al., 2015). Their 47 

highly heterogeneous systems include an extensive pore network that accommodates a large 48 

part of terrestrial biodiversity (Decaëns, 2010). The complex activities of these diverse organisms 49 

enable a wide range of ecosystem functions, on which the provision of ecosystem services 50 

depends, such as food production (Bardgett and Van Der Putten, 2014; Decaëns, 2010). However, 51 

intensive management practices as well as climate change currently put considerable stress on 52 

some soil organisms, thereby threatening their functional role (Amundson et al., 2015; Beaumelle 53 

et al., 2020). Contrarily, poor knowledge of potential interactive effects between these two 54 
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pervasive global change drivers limits our ability to predict alterations of belowground 55 

communities and functions. 56 

As soil organisms are dependent on soil moisture (Decaëns, 2010), drought periods reduce their 57 

activity and abundance (Frampton et al., 2000; Kardol et al., 2011; Orchard and Cook, 1983; Riutta 58 

et al., 2016). In addition, the strength of drought effects depends on changes in temperature, as 59 

high temperatures can intensify detrimental drought effects on the activity of soil 60 

microorganisms (Butenschoen et al., 2011) and invertebrates (Thakur et al., 2018). At the same 61 

time, soil organisms are temperature-sensitive. For example, increased temperatures accelerate 62 

microbial metabolism at sufficiently high soil moisture levels, thereby enhancing microbial 63 

respiration and thus intensifying greenhouse effects (Crowther et al., 2015; Hanson et al., 2000; 64 

Liang et al., 2019; Wan et al., 2007), as soil carbon dynamics are largely dependent on microbial 65 

activity (Liang et al., 2017). Soil microbial activity, in turn, is driven by inputs derived from plants, 66 

which are also largely climate-dependent (Kallenbach et al., 2016; Rudgers et al., 2018). On the 67 

other hand, the microbial metabolism may adapt to elevated temperatures, which would reduce 68 

climate feedback effects in the long run (Allison et al., 2010). Adding to these complex responses 69 

of soil organisms to climatic drivers, the direction and strength of climate change effects may 70 

depend on local site conditions, such as land use type and management intensity. 71 
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Half of the terrestrial surface is managed by farmers, with conventional farming accounting for 72 

the largest share, while organic farming is steadily increasing (Meemken and Qaim, 2018). More 73 

diverse crop rotations and limited use of chemical pesticides in organic farming often produce 74 

positive outcomes, such as higher biological activity, biomass, and species richness (Hole, 2005; 75 

Lori et al., 2017; Mäder et al., 2002). However, such positive effects often depend on additional 76 

site-specific conditions, landscape context, and management decisions (Bengtsson et al., 2005), 77 

While conventional practices such as pesticide application are known to have detrimental effects 78 

on soil organisms (FAO et al., 2020), regular application of mineral fertiliser in particular is 79 

considered to have a beneficial short-term impact on the soil community, as it enhances 80 

biological activity through increased plant biomass production (DeMalach, 2018). 81 

We address this challenge by investigating the effects of climate change in two management 82 

systems in the framework of the large-scale experimental research platform “Global Change 83 

Experimental Facility” in Germany (Schädler et al., 2019). To gain a comprehensive picture of soil 84 

biological activity responses to two environmental change drivers, we performed 27 samplings 85 

of soil invertebrate decomposer activity and 34 samplings of soil microbial activity across two 86 

years in a full-factorial combination of climate (ambient versus +0.55°C increase in temperature 87 

and shifts in annual precipitation patterns) and input intensity in two land-use systems (organic 88 

versus conventional management). We hypothesized that (1) climate change and (2) and the 89 
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organic treatment, mainly characterized by a lower fertilizer input intensity, will reduce soil 90 

invertebrate decomposer and microbial activity. Based on the assumption that fertilization will 91 

have a positive short-term effect on soil organisms (Treseder 2008), we expected them to be 92 

more resistant to climate extremes. Therefore, we hypothesized that (3) the impacts of climate 93 

change are more pronounced in organic than in conventional treatment in the short term. We 94 

do not claim that we can directly compare the effect sizes of both environmental change drivers 95 

– climate change and land use - and we expect that the timing of effects and underlying 96 

mechanisms differ (Yin et al., 2020). Moreover, the reader should note that our hypotheses refer 97 

to short-term effects of land use; the potential benefits of organic land-use treatment, in 98 

comparison to conventional treatment, for soil life may only materialize after several years. 99 

2. Material and Methods 100 

2.1 Research site 101 

The research site is part of the field research station of the Helmholtz-Centre for Environmental 102 

Research UFZ in Bad Lauchstädt, Germany (51°22’60 N, 11°50’60 E, 118 m a.s.l.). Located within 103 

the central German dry area, climate conditions are characterized by a low annual precipitation 104 

(489 mm, mean 1896-2013) and an average temperature of 8.9°C (mean 1896-2013). These 105 
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semiarid conditions paired with carbonated loess substrates and a grassy vegetation led to the 106 

development of a soil classified as a Haplic Chernozem. Hence, the area that had been maintained  107 

as an arable field until 2012 is characterized by a highly fertile 40 cm deep humus layer 108 

(Altermann et al., 2005). 109 

2.2 Experimental design 110 

We took advantage of the Global Change Experimental Facility, a large field experiment 111 

investigating the influence of a projected climate scenario on ecosystem processes within five 112 

different land use types (for details on the experimental design, see Schädler et al., 2019). 113 

Established in 2013, the experiment consists of 50 subplots (16 m x 24 m) arranged in 10 main 114 

plots (Fig. S1). On half of the main plots, the climate has been manipulated according to projected 115 

climate scenarios in the future (Fig. S1). These scenarios were informed by different regional 116 

climate models for the year 2070-2100 (Döscher et al., 2002; Jacob and Podzun, 1997; Rockel et 117 

al., 2008). While temperature is predicted to rise up to 2°C across seasons, the consensus model 118 

estimates a reduction of rainfall in the summer months and an increase in spring and fall. The 119 

climate manipulation is realized by a steel construction (5 m height) with automatically closing 120 

roofs as well as a sprinkler system to simulate rainfall. The construction increases air temperature 121 

by 0.55°C, reduces rainfall by 20% in summer and increases it by 10% in spring and fall, 122 
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respectively. However, the treatment did not increase soil temperatures significantly in the study 123 

period (Fig. S3b). In the present study, for each season, a period of three months was defined by 124 

adjusting the precipitation according to the projected scenario: spring (March-May), summer 125 

(June-August), fall (September-November), and winter (December-February). 126 

Within each main plot, five subplots represent five different land use types: conventional 127 

farming, organic farming, intensively-used meadow, extensively-used meadow, and extensively-128 

used pasture. The subplots have been managed in accordance with regional agricultural 129 

practices, including typical crop rotations. In our study, we focused on climate change effects on 130 

conventional and organic farming systems, i.e. two out of the five land-use types (n=20 subplots; 131 

2 land use types x 2 climate treatments x 5 replicates). In order to be managed according to local 132 

recommendations, the two farming systems were subjected to a slightly differing crop rotation. 133 

In the conventional treatment, a 3-year crop rotation of winter rape, winter wheat, and winter 134 

barley was applied. Organic plots, on the other hand, were maintained according to the EU 135 

regulation for organic agriculture based on a 6-year rotation (European Union 2007). Crop 136 

rotation included winter wheat (year 2 and 5), winter barley (year 3 and 6), and - to ensure 137 

nitrogen supply - legumes (alfalfa and white clover) every first and fourth year. Growing a legume 138 

every three years is the minimum requirement of the EU guidelines for organic farming. However, 139 

the aim of the GCEF was to bring crop rotation for organic treatment as close as possible to that 140 
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in conventional farming, in order to allow a direct comparison in 2 out of 3 years. A crop rotation 141 

with 8-9 species would lead to a large number of possible combinations, each with specific 142 

effects, which is why the crop rotation described above was chosen for the experimental design. 143 

During the two-year period of our study, wheat (2015) and barley (2016) were grown in both 144 

management types (Table S1). The conventional plots received regular applications of mineral 145 

fertilizers and pesticides (herbicides, fungicides, and insecticides). On the contrary, according to 146 

the recommendation for Chernozem soils in organic farming, no nitrogen fertilizer is applied in 147 

organic plots. Nitrogen supply is only provided by nitrogen-enriching crops in the crop cycle every 148 

third and sixth year, which are supplemented with rock phosphate and patent kali (K-Mg-S) (Table 149 

S1). Since the use of herbicides is restricted in organic farming, weed control was done 150 

mechanically (Table S2). 151 

2.3 Assessment of soil microbial activity and soil water content  152 

Soil microbial activity was assessed by measuring soil microbial activity of soil samples under 153 

controlled laboratory conditions using an O2-microcompensation system (Scheu, 1992). The first 154 

soil sampling took place in March 2015. Sampling campaigns were repeated every three weeks 155 

year-round until April 2017. This resulted in a total of 34 soil sampling events, which allowed us 156 

to draw conclusions regarding seasonal belowground patterns under projected climate 157 
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conditions. Soil samples were taken with a steel core sampler (1.5 cm in diameter; 15 cm deep) 158 

with 8 subsamples per plot to account for spatial heterogeneity. Samples were homogenized and 159 

sieved through 2 mm, stored at 4°C, and used to determine soil microbial respiration as a 160 

measure of soil microbial activity (µl O2 h-1 g-1 soil dry weight) (Scheu, 1992b). Six grams of soil, 161 

which were previously acclimatised for 3 days in an airtight container at 20°C, were weighed into 162 

glass vessels, attached to the O2-microcompensation system and measured all at once. Samples 163 

were measured in one of four machines, which was accounted for in the statistical analysis. In 164 

order to perform the analysis under constant conditions, the entire measuring part of the 165 

machine was immersed in a 20°C water bath during the 24-h measurement, as done before 166 

(Eisenhauer et al., 2010; Siebert et al., 2019; Thakur et al., 2018). Given the constant temperature 167 

conditions during the measurement, the variable may be regarded as “potential” activity, 168 

although other drivers of soil microbial activity varied according to the treatments, such as soil 169 

water and nutrient contents. Afterwards, samples were dried for three days at 75°C and weighed 170 

to determine soil water content. 171 

2.4 Assessment of invertebrate decomposer feeding activity 172 

We measured in situ soil invertebrate decomposer feeding activity responses to the treatments 173 

by applying the bait lamina test (Terra Protecta GmbH, Berlin, Germany). The method evaluates 174 
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the feeding activity of soil invertebrates and represents a rapid and standardized approach to 175 

assess decomposition of organic materials in the top soil (Kratz, 1998). It has been successfully 176 

used to study land use (Birkhofer et al., 2011), climate change (Thakur et al., 2018), and 177 

interactive effects of grassland-use and climate change effects on soil invertebrate feeding 178 

activity (Siebert et al., 2019). Nevertheless, the information on the main consumers of the bait 179 

material differs among studies (Birkhofer et al., 2011; Eisenhauer et al., 2014) and may also 180 

depend on detritivore community structure. As the feeding bait is composed of cellulose powder 181 

(70%), wheat bran (27%), and activated carbon (3%), it is most likely that the test primarily 182 

indicates the feeding activity of soil invertebrate decomposers. The test is carried out with rigid 183 

PVC strips that have a series of 16 perforations with 1.5 mm diameter arranged in 5 mm distance. 184 

The bait holes were repeatedly filled with the bait substrate and inserted into the soil in an 185 

upright position with the upmost perforation just below the surface level. In order to avoid 186 

damage during insertion, a steel knife was used to prepare the ground. To account for spatial 187 

heterogeneity within the subplots, five strips were used per plot, as done previously (Siebert et 188 

al., 2019; Thakur et al., 2018). At each sampling time point, the bait lamina strips were removed 189 

from the soil after three weeks of exposure and directly evaluated in the field. Bait consumption 190 

was rated as empty (1), partly empty (0.5), or filled (0). Consequently, soil invertebrate 191 

decomposer feeding activity could range from 0 to 16 (maximum feeding activity). Mean bait 192 
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consumption per plot was calculated prior to statistical analyses by combining the data from the 193 

five strips per plot. The activity was assessed in the same three-week intervals as microbial 194 

activity measures. However, due to ongoing management activities related to tillage directly 195 

after each harvest, soil invertebrate decomposer feeding activity could only be determined at 27 196 

points in time (Fig. S8).  197 

2.5 Measurement of soil environmental properties 198 

Soil abiotic parameters were analyzed in spring and fall 2015 and 2016. Soil samples were also 199 

taken with a steel core sampler (1.5 cm in diameter; 15 cm deep). To account for spatial 200 

heterogeneity, 8 samples per plot were taken and homogenized before measurements. Total 201 

organic carbon (TOC) content was determined by dry combustion using a Vario EL III C/H/N 202 

analyzer (Elementar, Hanau, Germany). Hot water extractable carbon (HWC) and nitrogen 203 

(HWN), which represent the labile organic C and N pools, were determined from 10 g of air-dried 204 

soil according to Schulz (2002). Briefly, soil/water suspensions (1:5 w/v) were boiled for 1 h under 205 

reflux. After cooling down to room temperature, 0.1 ml of 1 M MgSO4 was added and the 206 

suspensions were centrifuged for 10 min at 6700 g. Supernatants were filtered (0.45 mm Minisart 207 

RC25 single-use syringe membrane filters, PP-housing, SartoriusAG, Göttingen, Germany) prior 208 

to the determination of hot water extractable C and N concentrations (mg kg-1), which was done 209 
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using an elemental analyzer for liquid samples (Multi N/C, Analytik Jena, Germany). Soil mineral 210 

nitrogen was extracted (20 mL 1 M KCl, 1.5 h) from 5 g of fresh soil and measured using flow 211 

injection analysis (FlAstar 5000, Foss GmbH, Rellingen, Germany). Plant available P and K were 212 

extracted from field-fresh soil using double lactate (1:50 w/v, pH 3.6, 1.5 hours; Riehm, 1942). 213 

Subsequently, P and K concentrations in filtered soil extracts were quantified colorimetrically 214 

using the molybdenum blue method (Murphy and Riley, 1962) and with a potassium-selective 215 

electrode (perfectION, Mettler-Toledo, Gießen, Germany), respectively. 216 

2.6 Extraction and identification of soil decomposers 217 

Soil decomposers were extracted in spring and fall 2015 and 2016, i.e. four times in total. 218 

Therefore, we took soil cores of 5 cm diameter for mesofauna (mites and Collembola) and 16 cm 219 

diameter for macrofauna (earthworms). For mesofauna, the extracted soil cores were heated 220 

from above in a Macfayden extractor for ten days and slightly cooled from below. The warming 221 

conditions and decreasing water availability force soil arthropods to move towards the cooler 222 

and wetter area. Here, they were collected by a vessel and preserved in a glycol water 223 

suspension. The same procedure was applied to extract macrofauna, while a Kempson extractor 224 

was used for this purpose (Kempson et al., 1963). After filtration, the samples were stored in 70% 225 

ethanol, sorted, and identified at order level (Mcfayden, 1961). 226 
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2.7 Statistical analyses 227 

Linear mixed effects models were used to analyse the effects of climate, land use, season, and 228 

their interactions on soil microbial activity and soil invertebrate decomposer feeding activity. 229 

Year and sampling time as well as main plot served as random effects. To improve the model fit, 230 

soil invertebrate decomposer feeding activity was log-transformed prior to analyses. To analyse 231 

the treatment effects on soil microbial respiration, measuring device was added as an additional 232 

random term to the model to control for possible machine effects. Linear mixed effects models 233 

were calculated using the R-package “lme4” (Bates et al., 2014). Linear regression of microbial 234 

activity, invertebrate decomposer feeding activity and soil water content were performed with 235 

the lm() function. Data were tested for normality of residuals and homogeneity of variances using 236 

the Shapiro-Wilk and Levene’s test. Pairwise comparisons were carried out to determine 237 

significant differences (α = 0.05) between soil parameters in conventional and organic farming 238 

using the glht() function in the multcomp package.  Principal component analysis was performed 239 

to identify microbial, faunal and environmental patterns, using the factoextra package. The PCA 240 

was performed separately for fall and spring (in each case combined for 2015 and 2016) to 241 

account for seasonal dynamics. The principal components were selected using the scree plot 242 

criterion. PCA analysis in fall was conducted excluding invertebrate decomposer feeding activity, 243 
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yield and potassium, as these properties were not unavailable for both samplings. All statistical 244 

analyses were conducted using R version 3.4.3 (R Core Team 2018).  245 
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3. Results 246 

Soil microbial activity ranged from 0.3 to 2.5 μl O2 h-1 g-1 soil dry weight with an average of 1.22 247 

μl O2 h-1 g-1 soil dry weight across all measurements. Microbial activity was not significantly 248 

affected by the climate treatment, but by a significant interaction effect between land use and 249 

season: conventionally managed plots had higher levels of soil microbial activity than organic 250 

plots in summer, spring, and winter (Table 1; Fig. 1). Moreover, microbial activity revealed a 251 

positive relationship with soil water content in both management types, especially in spring (Fig. 252 

S5). 253 

Soil invertebrate decomposer feeding activity per plot ranged from 0 to 50% of consumed bait 254 

substrate. The activity was significantly influenced by main effects of climate and land use, but 255 

no significant interaction effects were found (Table 1). The projected climate reduced 256 

invertebrate decomposer feeding activity consistently across all seasons (-16%), while 257 

conventional farming had higher levels of invertebrate decomposer feeding activity than organic 258 

farming (+22%). In addition, soil invertebrate decomposer feeding activity was (marginally) 259 

significantly affected by season and tended to be lowest in winter (Table 1; Fig. 1). 260 

The PCA analysis of microbial activity, invertebrate decomposer feeding activity, soil 261 

decomposers, and soil environmental properties revealed a pattern that distinctly distinguished 262 
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between conventional and organic plots, showing a significant effect of land use, especially in 263 

spring (Fig. 2a; Table S4). On the contrary, PCA analysis of microbial activity, soil decomposers 264 

and soil environmental properties in fall samplings showed no management-specific clustering, 265 

underlining the seasonal dependence of these patterns (Fig. 2b; Table S4). The interaction of 266 

climate and land use had a (marginally) significant effect on soil detritivores (Table S5). Current 267 

climate conditions lead to higher abundances in conventional plots, whereas organic treatment 268 

had a positive effect in the projected climate scenario (Fig. S7). 269 

Despite similar dependency patterns in both forms of land use, a significantly higher content of 270 

total organic carbon, mineral N-inorganic, plant-available potassium, hot water extractable 271 

carbon, as well as hot water extractable nitrogen was found in conventional compared to organic 272 

treatment. However, soil water content, pH-value, and plant-available phosphorus did not differ 273 

significantly between the land use treatments (Fig. S6). 274 

4. Discussion 275 

We assessed the short-term effects of two of the most important global change drivers, climate 276 

change and input intensity in two land-use systems (Díaz et al., 2019; Schädler et al., 2019), on 277 

soil biological activity across two years in high temporal resolution. Our study shows two key 278 

results. First, we saw differing responses of the two groups of organisms to climate change: the 279 
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projected climate treatment reduced soil invertebrate decomposer activity significantly, while 280 

soil microbial activity was not impaired. Second, in line with our assumption, the organic 281 

treatment reduced soil biological activity after two years of organic management compared to 282 

conventional management. This decreased soil biological activity on organic plots was 283 

accompanied by lower concentrations of soil carbon and nutrients. 284 

The observed decline of soil invertebrate decomposer activity under projected climatic 285 

conditions is consistent with our hypothesis (1), stating that climate change constrains soil 286 

biological activity. Soil invertebrate and microbial responses were decoupled in their response: 287 

projected climate conditions did not affect microbial activity in a significant way. It is well 288 

established that temperature increases biological rates (Brown et al., 2004) and thus promotes 289 

soil organism activity (Allison et al., 2010; Lehmann and Kleber, 2015). However, as elevated 290 

temperature also increases evapotranspiration (Dermody et al., 2007), this may reduce soil 291 

moisture (Wan et al., 2002) and thus exacerbate water limitation, counteracting any positive 292 

effect (Liu et al., 2009; Thakur et al., 2018). 293 

Soil organism activity is strongly dependent on soil moisture (Coleman et al., 2004). However, the 294 

ability of different groups of organisms to withstand drought varies considerably (Voroney, 295 

2007). When soil water content decreases, so does biological activity (Riutta et al., 2016), with 296 



20 
 

invertebrates generally being more susceptible to stress than bacteria and fungi (Manzoni et al., 297 

2012). As the bait lamina test is mainly composed of cellulose, it is primarily a measure of 298 

decomposers feeding activity. Particularly Collembola, Enchytraeidae, and earthworms appear 299 

to be responsible for the largest share of bait consumption (Birkhofer et al., 2011; van Gestel et 300 

al., 2003), but evidence is mixed (Eisenhauer et al., 2014). A decline in soil moisture leads to 301 

reduced soil water films (Coleman et al., 2004), which increases soil hardness (Anh et al., 2014), 302 

making movement more difficult, especially for larger soil fauna such as Enchytraeidae and 303 

earthworms. In addition, drought disrupts faunal reproductive cycles (Maraldo et al., 2009) and 304 

makes their food drier and hard to digest (Thakur et al., 2018). Therefore, drought severely 305 

impairs soil invertebrates (Frampton et al., 2000; Maraldo and Holmstrup, 2010; Tsiafouli et al., 306 

2005; Wever et al., 2001), forcing them to migrate to deeper soil layers (Coyle et al., 2017), enter 307 

diapause (Holmstrup, 2002), survive unsuitable conditions in a cocoon/egg stage (Fraser et al., 308 

2012), and/or causes mortality (Thakur et al., 2018) and thus can have significant effects on soil 309 

community composition (Yin et al., 2019). At the same time, however, we observed higher 310 

densities of detritivores in organic farming under projected climate conditions, suggesting that 311 

organic farming methods might have positive effects in the long-term (Garratt et al., 2011). In 312 

contrast to our assumption, soil invertebrate decomposer activity was not significantly positively 313 

correlated with soil moisture (Fig. S4b), which may indicate that detritivore densities may not 314 
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necessarily reflect their impacts on certain soil processes. However, climate change may alter soil 315 

properties slowly (Gelybó et al., 2018), underling the importance of future long-term studies that 316 

explore the activity patterns and drivers of soil decomposer invertebrates in more detail, for 317 

instance, by using monitoring systems that detect soil-dwelling microarthropods in real-time 318 

(Dombos et al., 2017). 319 

Contradicting our initial assumption, soil microbes did not seem to suffer from the summer 320 

drought. This is surprising given that soil water content promoted microbial activity in our 321 

experiment, which was also confirmed by others (Baldrian et al., 2010). However, resistance to 322 

desiccation generally increases as organism size decreases (Lavelle and Spain, 2001), and many 323 

groups of soil microbes are able to survive in extremely dry environments by employing a range 324 

of strategies: regulating their internal water potential (Harris, 1981), undergoing anhydrobiosis 325 

(García, 2011), or producing exopolysaccharides (Roberson and Firestone, 1992) enables them to 326 

resist dehydration. At the same time, soil microbial community composition may have changed 327 

under scenarios with reduced rainfall (Wallenstein and Hall, 2012), for instance, by being 328 

increasingly dominated by drought-tolerant species and/or more persistent r-strategists (Schimel 329 

et al., 2007). 330 
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In line with our hypothesis (2), the conventional treatment had a beneficial short-term effect on 331 

soil organisms; their activity was higher in conventional plots compared to organic plots. Despite 332 

the fact that organic practices aim to damp the environmental impact on ecosystems and 333 

promote biodiversity (Luttikholt, 2007), biological activity was higher in conventional plots 334 

compared to organic plots.  335 

A main difference between the land-use treatments was mineral fertilization causing a rapid 336 

increase of soil carbon and nitrogen concentrations in the conventional treatment, which in turn 337 

led to higher yields in conventional plots (11.28 t/ha) than in organic plots (9.9 t/ha; mean values 338 

over 2015 and 2016; unpublished results). Higher plant productivity is able to increase inputs of 339 

organic materials (Geisseler and Scow, 2014), which was also shown for Chernozem soils (Wei et 340 

al., 2008). The enhanced plant performance provides microbes with a higher amount of C sources 341 

in form of root exudates, decaying roots, and aboveground residues, thereby boosting microbial 342 

growth (Bais et al., 2006; Peart et al., 2001). Thus, mineral fertilization may have supported the 343 

development of more active soil microbial communities and enhanced soil biological activity in 344 

the present study. However, this short-term effect should be interpreted with caution, as the 345 

long-term effects of mineral fertilization have been shown to cause detrimental effects on soil 346 

organisms (Treseder, 2008) and negative climate feedbacks, both through CO2 emissions during 347 
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production of mineral fertilizer and through N2O emissions occurring downstream (Jiang et al., 348 

2019) and are known to reduce soil carbon sequestration (Khan et al., 2007). 349 

Nevertheless, nutrient addition appears to be a key component determining biological activity  in 350 

the present study. Organic practices avoid the use of mineral fertilizers, and for Chernozem soils 351 

the guidelines only allow the inclusion of legumes in the cropping cycle for additional nutrient 352 

input (European Union 2007). Legume-based systems improve several ecosystem properties 353 

(Stagnari et al., 2017), including soil organic matter availability, as plant litter is its primary source 354 

(Castellano et al., 2015; Jensen et al., 2012). However, green manures in particular, only show 355 

positive effects if implemented over a sufficient number of years (Sacco et al., 2015). As our study 356 

was conducted in the second and third year after the introduction of organic practices, soil 357 

microbes have not yet been able to benefit from this important source of energy and nutrients 358 

(Kuzyakov, 2010). 359 

Similar to microbial activity, invertebrate decomposer feeding activity also increased under 360 

conventional management. However, their activity did not appear to be directly linked to soil 361 

properties, such as pH, C and N contents. Nevertheless, activity patterns of microbes and 362 

invertebrates are generally thought to be tightly intertwined, as they interact in diverse direct 363 

and indirect ways (Crowther et al., 2015). For example, by grazing, soil invertebrates alter 364 
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bacterial and fungal community composition and biomass (Crowther et al., 2011a, 2011b; 365 

Dempsey et al., 2013). At the same time, invertebrates continuously fragment and displace litter, 366 

thereby changing its availability as a microbial resource and its chemistry (Chang et al., 2017; 367 

Filley et al., 2008; García-Palacios et al., 2013). Since these are processes that show their effects 368 

mainly in the long term, future studies may have to explore the activity patterns of different taxa, 369 

as a two-year study will not be able to reveal long-term consequences (Treseder, 2008). 370 

In conclusion, our results indicate that the response of soil organisms to climate change was not 371 

modulated by input intensity, but differed between soil microorganisms and soil invertebrates. 372 

In contrast to invertebrate decomposers, soil microbial activity was not significantly affected by 373 

climate change, illustrating that soil communities are highly divers and complex in their 374 

responsiveness to changes in precipitation patterns (Siebert et al., 2019). Due to their short life 375 

cycles, soil microbes may respond more quickly to environmental changes (Araújo et al., 2008), 376 

resulting in rapid shifts of the community structure. As different microbial groups employ a range 377 

of traits, this would have considerable consequences for the respective ecosystem. In this 378 

context, it is necessary to extend the analysis beyond the measurement of microbial activity and 379 

to take a closer look at changes in the microbial community structure (Kostin et al., 2020; 380 

accepted Manuscript). At the same time, many ecosystem functions are only provided by the 381 

joint activities of soil microbes and invertebrates (Simpson et al., 2012), and long-term studies 382 
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are needed to explore if treatment effects need more time to materialize. Notably, enhanced 383 

rainfall in spring and fall was not able to compensate for detrimental effects of summer drought 384 

on soil invertebrate decomposer activity, highlighting that even modest climate changes will 385 

exert considerable pressure on farming systems in the future. Long-term studies are urgently 386 

needed to gain a more comprehensive picture of land use-dependent climate effects on soil 387 

communities and processes. More detailed analyses of soil community composition will provide 388 

further insights into the consequences of co-occurring environmental change drivers and may 389 

facilitate the development of sustainable management approaches. Moreover, more research is 390 

needed on how changes in decomposition processes will alter soil fertility and crop yield under 391 

future conditions. 392 

  393 
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