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1. Abstract 12 

Favorable interspecies associations prevail in natural microbial assemblages. Some of 13 

these favorable associations are cometabolic dependent partnerships in which 14 

extracellular electrons are exchanged between species. For such electron exchange to 15 

occur, the cells must exhibit electroactive interfaces and get involved in direct cell-to-cell 16 

contact (Direct Interspecies Electron Transfer/DIET) or use available conductive mineral 17 

grains from their environment (Conductive-particle-mediated Interspecies Electron 18 

Transfer/CIET). This review will highlight recent discoveries and knowledge gaps 19 

regarding DIET and CIET interspecies associations in artificial co-cultures and consortia 20 

from natural and man-made environments and emphasize approaches to validate DIET 21 

and CIET. Additionally, we acknowledge the initiation of a movement towards applying 22 

electric syntrophies in biotechnology, bioremediation and geoengineering for natural 23 

attenuation of toxic compounds. Next, we have highlighted the urgent research needs that 24 

must be met to develop such technologies. 25 

 26 

  27 



 28 

2. Introduction 29 

We live on a microbial planet—a planet where microbes control the distribution of nearly 30 

all life's essential elements. Recent estimates place prokaryotes as the second most abundant 31 

organisms of all Earth's biomass (bacteria ≈12.7% and archaea ≈1.3% of ≈550 Gt bound-C). 32 

Although largely surpassed by plants in terrestrial environments, prokaryotes dominate the 33 

subterrestrial (90%) and oceanic realms (70%)[1].   34 

Prokaryotes do not live in isolation and typically establish associations between species 35 

or with eukaryotes in the environment. Interactions between microbial species could be 36 

favorable, like mutualism, or unfavorable, like competition. Favorable interspecies associations 37 

based on cross-feeding prevail in natural microbial assemblages, as shown by a thorough survey 38 

of 800 microbial communities [2]. During favorable interspecies associations, prokaryotes 39 

synchronize their activity and growth via an array of information exchange strategies like 40 

quorum sensing, membrane vesicles, intercellular junctions, or intercellular membrane nanotubes 41 

[3]. Remarkably, the exchange of cellular material between species can even implicate the entire 42 

cytoplasm leading to hybrid cells that can reproduce – a possible unexplored driver of 43 

evolutionary diversification. The later has been recently investigated in a Clostridium 44 

ljungdahlii and Clostridium acetobutylicum co-culture, which exchanged RNA and proteins [4].  45 

Favorable interactions between prokaryotes involve the exchange of cell material (Fig.1) 46 

including:  47 

1. exchange of small metabolites (e.g., H2, formate) 48 

2. exchange of electrons (e.g., via shuttles, conductive materials, or native redox-active cell-49 

surface molecules) and  50 

3. exchange of other small molecules and cytoplasmic material (e.g., iron, vitamins, amino 51 

acids, antibiotic resistance proteins).  52 

The first two are also known as syntrophy or metabolic cross-feeding - a cooperative 53 

interaction in which two species, (A) a syntroph/electron-donating species and (B) an electron-54 

accepting partner, survive environmental conditions that would benefit neither species alone. In 55 

environments without soluble electron acceptors, syntrophs carry out energetically unfavorable 56 

reactions, like organic matter oxidation, by releasing reducing equivalents outside of the cell as 57 

electrons or small metabolites. These are scavenged by the accepting partner and used as electron 58 



donors for their metabolism (Fig. 1). Without their partner, syntrophs experience catabolite 59 

repression. Without the syntroph, the electron-accepting partner experiences famine. Thus, only 60 

together, they prevail. 61 

Syntrophic interactions via diffusible chemicals (H2 or formate) or mediated by electron 62 

shuttle molecules (e.g., cysteine, flavin, quinones) have been described elsewhere [5–7].  63 

In this review, we will focus on “electric” syntrophy, established either by relying on 64 

direct cell-to-cell electrical contacts (DIET – Direct Interspecies Electron Transfer) or mediated 65 

by electrically conductive materials (CIET – Conductive-particle-mediated Interspecies Electron 66 

Transfer) in artificial co-cultures and consortia from natural and manmade environments. A 67 

timeline of the discoveries in this research field is highlighted in Figure 2. We will highlight 68 

methods to validate DIET and CIET in such environments. Finally, we will provide a list of open 69 

questions regarding the ecology of electric syntrophies and their role in future technology 70 

applications.  71 

3. Direct interspecies electron transfer in artificial co-cultures  72 

DIET between Geobacter metallireducens and Geobacter sulfurreducens. DIET was 73 

first demonstrated in an artificial Geobacter co-culture provided with ethanol as the electron 74 

donor and fumarate as an electron acceptor [8]. Neither partner could use the ethanol-fumarate 75 

energy sources alone. When the ethanol-oxidizing G. metallireducens was placed together with 76 

the fumarate-reducing G. sulfurreducens, a metabolically co-dependent consortium was formed  77 

 [8].  78 

The partnership did not require enzymes for the metabolism of formate or H2 [9]. Instead, 79 

it required a distinct apparatus for extracellular electron release in the donor strain (G. 80 

metallireducens) or extracellular electron uptake in the electron-accepting partner (G. 81 

sulfurreducens) (Figure 1). To release electrons, G. metallireducens required electrically 82 

conductive pili (e-pili) [10,11] and outermembrane multiheme c-type cytochromes [10] . 83 

Conversely, to accept extracellular electrons, G. sulfurreducens did not require e-pili [11], but 84 

required an outermembrane multiheme cytochrome (OMC) - OmcS [8] - an OMC, which could 85 

self-assemble into electrically conductive cytochrome-chains [12,13].  86 

DIET between Geobacter metallireducens and Methanosarcinales. In methanogenic 87 

environments, syntrophy is the key process in organic matter decomposition [6]. Thus, 88 

methanogens were expected to play the role of electron-accepting partners for syntrophs 89 



like Geobacter metallireducens. Indeed, DIET was possible between the alcohol-utilizing G. 90 

metallireducens and Methanosarcinales [14–18], including strict non-H2 consumers [14,16–18]. 91 

Instead, G. metallireducens could not interact syntrophically with strict H2 or formate-consuming 92 

methanogens [14,17]. It was conceivable that strict acetoclastic methanogens like Methanosaeta 93 

harundinacea, were only transferring acetate. However, expression analyses coupled with 94 

stoichiometry and 14CO2-radiolabeling incubations showed that CH4 was generated from CO2 95 

and not acetate alone. Additionally, incubations of G. metallireducens – M. 96 

harundinacea cocultures with long-chain alcohols (e.g., butanol) that cannot split into acetate, 97 

but oxidize to their respective long-chain fatty acids (e.g., butyrate), led to DIET-based 98 

cocultures, independent of acetate-transfer [18]. All these results confirmed that Methanosaeta 99 

was exchanging electrons with G. metallireducens. Nevertheless, the electron uptake 100 

mechanisms in Methanosaeta has not been studied and remains enigmatic. 101 

During DIET with Methanosarcinales, G. metallireducens required conductive pili 102 

[14,15] and outermembrane multiheme c-type cytochromes (OMCs) [15]. The process of 103 

electron uptake usually involves OMCs in many autotrophs that accept extracellular electrons 104 

[19]. Therefore, Methanosarcinales  were expected to retrieve electrons similarly as the only 105 

methanogens with c-type cytochromes [20]. However, not all Methanosarcinales capable of 106 

DIET flaunted multiheme c-type cytochromes (MHC) in their genomes [17]. Besides, one 107 

Methanosarcina (M. mazei) which contains a MHC (Mma_0663), did not require it for growth 108 

with extracellular electrons from DIET partners or electrodes [17]. Therefore, it appears that 109 

Methanosarcinales may use unprecedented electron uptake mechanisms that remain profoundly 110 

unexplored. 111 

Other DIET co-cultures. The diversity of DIET syntrophic interactions in co-cultures is 112 

expanding (Figure 2), beyond typical electroactive species. Typically, effective electrogens 113 

[22,23] play the role of electron-donating strains to DIET-accepting partners but not HIET-114 

partners (H2-based interspecies electron transfer). These electrogens belong to the genera  115 

Geobacter and Rhodoferax [17,21,22] namely, G. metallireducens, G. sulfurreducens and G. 116 

hydrogenophilus and R. ferrireducens. Contrariwise, non-electrogenic (G. bemidjiensis) or poor 117 

electrogenic Geobacter (G. bremensis, G. uraniireducens, G. humireducens, G. chapeleii) could 118 

not interact syntrophically with DIET-accepting-partners [22].   119 



However, recent studies appear to challenge the hypothesis that effective electrogens are 120 

better DIET-ers [24,25], indicating that DIET relationships may occur between unexpected 121 

partners and under unusual conditions. For example, one interaction occurred only under light 122 

conditions, between the acetate-oxidizing G. sulfurreducens and the CO2-reducing phototrophic 123 

partner Prosthecochloris aestuarii [21]. 124 

Semenec el at. paired a formate-oxidizing Pseudomonas aeruginosa with the fumarate-125 

reducing G. sulfurreducens as the electron-accepting partner and showed that the interaction was 126 

dependent on multiheme cytochromes [25]. Although P. aeruginosa is capable of extracellular 127 

electron transfer (EET), it does so with the aid of self-secreted phenazine shuttles retained in a 128 

network of extracellular DNA [26]. Yet, Pseudomonas’ phenazines were not required for its 129 

interaction with G. sulfurreducens. Walker et al. showed that the typical H2-producing syntroph 130 

(Syntrophus aciditrophicus) – never characterized as an electrogen - harbored e-pili and switched 131 

to DIET, when a DIET option was available [24]. This DIET interaction was demonstrated by 132 

placing Syntrophus with a partner incapable of H2 and formate uptake - a G. sulfurreducens, 133 

which lacked a subunit for formate dehydrogenase and one for hydrogenase [24]. Besides, 134 

Syntrophus is not the only syntrophic bacterium encoding e-pili in its genome, hinting at a 135 

potential option for other syntrophs to do DIET [24].  136 

Moreover, DIET does not always correlate with electroactivity in methanogens.  137 

For example, a Methanosarcina horonobensis could not use a cathode as the electron 138 

donor, but could form DIET consortia with G. metallireducens [16].  139 

DIET was also indicated as mode of interaction for a new Methanobacterium isolate (and 140 

strict formate utilizer) co-cultured with G. metallireducens [27]. Astoundingly, the 141 

Methanobacterium-Geobacter co-culture was independent of e-pili. So, it remains to be 142 

determined whether and how this Methanobacterium receives extracellular electrons.  143 

Mostly, effective electroactive microorganisms interact by DIET. So, what makes “non-144 

electroactive species” capable of DIET? Furthermore, how come that archetypal syntrophs 145 

interact by DIET-syntrophy in the absence of a possibility for H2/formate-transfer? What 146 

ecological advantages might they have when switching from H2/formate-transfer to DIET and 147 

vice-versa? These questions remain open to future investigations. 148 

 149 



Conductive materials accelerate DIET co-culture metabolism. The metabolism in 150 

DIET co-cultures is accelerated by electrically conductive particles (iron-oxide minerals [28] and 151 

carbon-based materials [15–17,29–31]. Such cell-particle-cell interactions are not strictly 152 

speaking DIET. When minerals mediate the interaction between species (CIET), cells are not in 153 

direct contact and genes typically involved in DIET are significantly downregulated. For 154 

example, a Geobacter co-culture amended with a semi-conductive iron-oxide (magnetite) 155 

downregulated the expression of OmcS, which was not required for the mineral-mediated 156 

interaction, but it required e-pili [28].  157 

 Moreover, conductive materials are sometimes essential for the syntrophy between 158 

partners otherwise incapable of DIET, as was the case for an acetate-nitrate fed Geobacter 159 

sulfurreducens – Thiobacillus denitrificans co-culture, which can only grow together in the 160 

presence of iron-oxide minerals [32] or redox active humic substances [33].  161 

Approaches to validate DIET in co-cultures. Precise validation of DIET in artificial 162 

co-cultures requires a polyphasic approach (Figure 3). This approach includes: i) determining the 163 

potential to form a cross-feeding interaction (with DIET and non-DIET partners) along with ii) 164 

the syntrophic consortia’s physiology, iii) genomics to document the potential absence of 165 

alternative electron transfer strategies, iv) gene expression and v) targeted gene-deletion studies. 166 

For example, the incapacity to exchange electrons via H2/formate was tested with the help of a 167 

donor strain incapable of H2/ formate transfer [14,17]. In instances where the donor strain can 168 

oxidize their substrate to H2/formate [17,22,24], researchers tested first if the donor strain was 169 

unsuccessful at establishing co-dependent interactions with H2/formate-utilizing partners [14,17] 170 

and second if it was successful with acceptor strains unable of H2/formate uptake (naturally or 171 

artificially by gene deletion) [9,16,24]. Additional tests are needed to exclude other electron 172 

transfer possibilities between species via self-generated shuttles or other redox-active compounds 173 

(e.g., flavins or cysteine, respectively). For example, cysteine could be transiently excluded from 174 

the media [15], or co-cultures could be spiked with spent cell filtrate, which would significantly 175 

stimulate metabolism if rich in shuttles [34]. 176 

4. Evidence for DIET-syntrophy in environmental dual-species consortia 177 

Recent investigations indicate that DIET is a relevant electron transfer process in 178 

microbial consortia catalyzing the anaerobic oxidation of methane (AOM) and higher gaseous 179 

alkanes, both coupled with sulfate-reduction. Sulfate-dependent AOM is a process with broad 180 



climate impact, controlling methane emissions to the atmosphere. AOM-mediating consortia are 181 

abundant in various methane-rich habitats [35] while archaea oxidizing higher alkanes appear 182 

widespread in hydrocarbon-impacted sediments [36,37]. 183 

DIET in anaerobic methane-oxidizing consortia. 184 

Sulfate-dependent AOM consortia consist of anaerobic methanotrophic (ANME) Archaea 185 

tightly packed with partner sulfate-reducing bacteria (SRB). Reducing equivalents from methane 186 

oxidation are transferred from ANME-Archaea to the partner SRB, which reduces sulfate to 187 

sulfide [35]. Two studies indicated that the ANME-SRB interaction is based on DIET [38,39]. 188 

As determined by stable isotope assimilation [38] and confirmed by modeling [40], the 189 

distribution of metabolically active cells within natural ANME-2−SRB aggregates from cold 190 

seeps could only be explained by an interspecies association dependent on electrically 191 

conductive conduits between cells, similar to DIET.  192 

Additionally, ANME-2 genomes contain large multiheme cytochromes (MHC) similar to those 193 

in electrogens like Geobacter [38]. Researchers identified probable electroactive interfaces in 194 

cellular membranes and the interstitial space between cells via heme staining [38]. Besides, they 195 

identified MHC genes in the genomes of both partners of thermophilic AOM consortia, ANME-1 196 

and HotSeep-1 SRB, enriched from hot seeps [39]. Moreover, HotSeep-1 encoded type IV pili 197 

proteins. MHC and pili genes were specifically overexpressed under methane-oxidizing 198 

conditions, and nanowire-like structures were observed in consortia's intercellular space, 199 

indicating DIET coupling [39].  200 

DIET in anaerobic butane- and ethane-oxidizing consortia. Recently, DIET 201 

interactions have been proposed for thermophilic archaea candidate lineages oxidizing butane 202 

(Ca. Syntrophoarchaeum) or ethane (Ca. Ethanoperedens) in consortia with SRB of the HotSeep-203 

1 clade [36,41]. The SRB partners of both Ca. Syntrophoarchaeum [41], and Ca. Ethanoperedens 204 

[36] encode and express MHC or type IV pili, and nanowire-like structures have been observed 205 

connecting cells within consortia [41]. A representative of the HotSeep-1 clade  (Ca. 206 

Desulfofervidus auxilii) was enriched without its archaeal partner and shown to be a 207 

chemolithoautotrophic H2-oxidizer [42]. Together with the detection of H2 in thermophilic AOM 208 

cultures [39], this raised the prospect of a hydrogen-based coupling of alkane oxidation to sulfate 209 

reduction. However, after specific inhibition of the SRB partner, the H2 concentrations in AOM 210 

and butane-oxidizing consortia were far too low to explain the measured sulfate reduction rates, 211 



leaving DIET as the only reasonable electron transfer mechanism [39,41]. Nevertheless, direct 212 

proofs for pili and MHCs being undoubtedly linked to DIET in such consortia is yet to be 213 

determined.  214 

Proposed alternative mechanism via zero-valent sulfur (S0). Chemical imaging of 215 

AOM consortia of ANME-2 and Desulfosarcina-SRB showed a high abundance of S0 in the 216 

archaeal cells [43]. S0-abundance was corroborated with physiology experiments and 217 

immunolabelling of canonical enzymes and interpreted as interspecies electron transfer mediated 218 

by S0-based (polysulfides) compounds. This model had one major drawback, the reliance on a 219 

hypothetical, cryptic sulfate-reduction pathway producing S0/polysulfides in archaea whose 220 

enzymes were never identified. Recently, archaea with high S0 content have been identified in an 221 

ethane-oxidizing culture  [44]. Like ANME archaea, the ethane-oxidizing archaea (Ca. 222 

Argoarchaeum ethanivorans) also depend on partner SRB, but they do not form aggregates and 223 

do not exhibit nanowire-like structures. These recent findings revived the idea that in some 224 

consortia, alkane-oxidation may be coupled to sulfate reduction via S0-mediated IET and not by 225 

DIET [44]. 226 

5. Evidence for CIET-syntrophy in environmental communities  227 

Some syntrophic partners may interact via conductive mineral-chains [45]. Conductive 228 

minerals are often present in natural environments (e.g., in coastal sediments, rice paddies, 229 

hydrothermal vents)[46–48] and their absence during laboratory incubations severely impacts 230 

species distribution and survival [34,49,50]. 231 

Interactions dependent on conductive particles (CIET) are more straightforward to 232 

investigate than DIET. This is because we can use conductive minerals to specifically enrich 233 

CIET-partners from environmental communities where partners may rely on conductive minerals 234 

to interact with each other. Under such enrichment conditions, non-syntrophic species fade out. 235 

For example, a Geobacter - Methanosarcina consortium from Baltic Sea sediments required the 236 

presence of conductive materials (iron-oxides or activated carbon) to carry out syntrophic acetate 237 

oxidation [34]. Without conductive minerals, syntrophic acetate oxidation ceased, and both 238 

groups went extinct. Without conductive minerals, a less abundant and metabolically ineffective 239 

species took over acetate turnover via acetoclastic methanogenesis [34]. Stable isotope analyses 240 

clearly showed that acetate was processed via syntrophic acetate oxidation coupled with CO2 241 



reductive methanogenesis [34,51], likely relying on the conductive iron-minerals abundant in 242 

marine sediments [34,49,50].  243 

6. Approaches to validate DIET and CIET in natural guilds. 244 

The application of the polyphasic approach mentioned above (Figure 3) to confirm DIET 245 

and CIET in environmental communities is not always possible because some syntrophic 246 

partners cannot be separated or genetically manipulated, especially those in obligate syntrophic 247 

interactions like the ANME-SRB consortia.  248 

Secondly, significant concerns have been raised at describing "electric"-syntrophy based 249 

on metabolism stimulation by conductive materials [52], because conductive materials enhance 250 

the metabolism of some methanogens (e.g. carbon nanotubes [53]) independent of being coupled 251 

with an "electric"-syntroph.  252 

Besides, investigations of environmental DIET/CIET associations based on the mere 253 

presence of the DNA/RNA of "electric"-syntrophs (see references in [17]) are not ideal, since 254 

species abundance (e.g., Geobacter) or expression of a certain protein does not necessarily mean 255 

they perform DIET/CIET in the environment.  256 

With many Geobacter-species incapable of establishing syntrophic associations [22] and 257 

many uncharacterized potential "electric"-syntrophs out there [49,50], novel investigation 258 

strategies are needed. A combination of tools must be employed after case-by-case adjustment to 259 

the process and the environmental considered. For example, to demonstrate CIET-dependent 260 

interactions we must verify the strict dependence on conductive minerals over non-conductive 261 

materials  [34,49]. For both DIET and CIET, expression studies can inform on MHC and pili 262 

content [54]. However, these cannot inform whether two species are coupled metabolically. For 263 

this we need to monitor metabolites to inform on consortias’ stoichiometry, and determine 264 

species co-occurrence. Plus, specific inhibition of the donating and accepting partners could 265 

inform whether the oxidation and reduction processes are co-dependent [34,49,50]. The role of 266 

H2/formate or shuttles/enzymes as interspecies intermediates can be excluded by following their 267 

impact on the metabolism of the interspecies association [55]. For example, H2-additions to a 268 

consortium relying on H2-transfer would block the syntroph’s metabolism by feedback inhibition 269 

[56]. Or suppose the interaction depends on shuttles/enzymes generated by the consortia. In that 270 

case, the shuttles/enzymes in the spent media would facilitate the extracellular electron 271 

exchange. Such experiments testing the spent media, are typical when investigating electron 272 



uptake during Fe°-biocorrosion [57,58]. Additionally, we can apply electrochemical methods 273 

like cyclic voltammetry to determine the presence of active redox molecules or enzymes in the 274 

live/heat-killed spent culture media [59]. 275 

DIET and CIET interactions may have specific isotopic signatures, specific microscopic 276 

distribution patterns, molecular and elemental signatures (e.g., high metal-content on cell 277 

surfaces) compared to H2/formate IET. None are understood or explored sufficiently. Therefore, 278 

innovative methods to simplify the verification of these processes in the environment require 279 

immediate attention.   280 

7. Ecological and biotech ramifications of electric syntrophies 281 

 It is apparent that cooperative metabolic dependencies greatly influence environmental 282 

chemistry and, consequently, impact our health, climate, and industries (Figure 4). Because we 283 

lack tools to study DIET and CIET in the environment, our understanding of how interspecies 284 

interactions impact environmental processes is in its infancy. Nevertheless, we mentioned studies 285 

that showed how both methane production and methane consumption in marine environments 286 

appear to be controlled by DIET/CIET interactions, possibly influencing the release of this 287 

greenhouse gas in the atmosphere. Therefore, it is imperative to understand better the triggers 288 

and controls for these processes of climate relevance. 289 

Biotechnologies dependent on DIET and CIET are budding, with DIET-syntrophs and 290 

conductive materials often applied to stimulate industrial processes like anaerobic digestion. 291 

Several recent reviews summarized the implications of electric syntrophies in anaerobic 292 

digestion and demanded the development of suitable detection methods (extensively reviewed in 293 

Refs. [52,60]).  294 

Another role for DIET and CIET is the bioremediation of toxic compounds from industry 295 

off streams or already released in the environment. Recent studies investigated the possibility to 296 

apply CIET in order to improve the degradation of toxic compounds from the effluents of 297 

various industrial processes like: nitrobenzene – found in herbicides, insecticides and 298 

pharmaceuticals [61], azo dyes from the textile industry [62], solvents from the printing industry 299 

[63], chlorinated compounds (e.g.,[64,65]) generally used as precursors for PVC-production, and 300 

petroleum hydrocarbons [66–69].  301 

Geoengineering approaches using CIET to stimulate the attenuation and degradation of 302 

contaminants and decontaminate sediments are now under consideration [70]. Two recent studies 303 



showed that the addition of activated carbon stimulated polycyclic aromatic hydrocarbon 304 

degradation under anaerobic conditions when CIET was possible, but not under aerobic 305 

conditions [71,72]. However, the actual implications of DIET and CIET in environmental 306 

decontamination remains to be verified. It is advisable to proceed stepwise because adding 307 

conductive minerals to contaminated soils could significantly enhance CIET and methane 308 

production, possibly enhancing methane emissions to the atmosphere. Thus, it is paramount that 309 

primary tests are carried out to investigate the effect of such materials on communities through 310 

the sediment depth and verify the effect on microorganisms along the entire spectrum of electron 311 

acceptors.   312 

8. Conclusion 313 

DIET and CIET have been intensely studied in laboratory co-cultures, natural dual-species 314 

consortia and enriched environmental consortia. However, methods to easily fingerprint 315 

DIET/CIET associations in the environment are lacking. Here we indicate a polyphasic approach 316 

to study such associations in environmental samples and call for additional tools to be developed.  317 

The significance of electric associations along other types of interspecies associations in 318 

natural processes is ambiguous. Thus, it is imperative to understand the role of “electric” 319 

syntrophies in global element cycles, especially in the interplay between the iron and methane 320 

cycles. Climate change has led to increased erosion and input of rock and mineral particles in our 321 

oceans, possibly enhancing CIET interactions and the release and perhaps consumption of the 322 

potent greenhouse gas -methane. Overall, this significantly influences our present-day climate 323 

models since we do not comprehend potential novel methane sources and sinks in natural 324 

environments. The wastewater and anaerobic digestion industries are now investing resources to 325 

determine DIET and CIET implications in speeding up organic matter decomposition. 326 

Additionally, geoengineering approaches are being sought considering conductive mineral 327 

particle additions to contaminated environments to induce bio-attenuation of pollutants.  It is 328 

time we, as a scientific community, come together to cover these knowledge gaps.  329 
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Figures and figure legends 334 

Figure 1. Examples of favorable interactions between prokaryotic species based on intercellular 335 

material exchange: (a) via diffusible molecules (e.g., H2 and formate see ref. [9]); (b) via an 336 

electron shuttle (e.g., via flavins see ref. [73]); (c) by direct cell-to-cell contacts (e.g., pili [14] 337 

and outermembrane c-type cytochromes [15]); (d) via conductive particles (e.g., magnetite [28]). 338 

The first four (a-d) are typical interactions based on extracellular electron transfer. However, 339 

cells can also transfer larger cellular material by (e) membrane fusion (e.g., between two species 340 

of Clostridium [4]); (f) vesicles (e.g., interspecies iron delivery [74]) or nanotubes (e.g., 341 

interspecies aminoacid transfer to compensate for amioacid auxotrophies [75]).  342 

ED – electron donor; EA – electron acceptor; ES – electron shuttle; ox – oxidized; red – reduced.  343 

 344 

 345 



Figure 2. Timeline of discoveries regarding direct interspecies electron transfer (DIET – above 346 

the arrow) and conductive mineral mediated interspecies electron transfer (CIET – below the 347 

arrow). GM; Geobacter metallireducens, GS; Geobacter sulfurreducens, GH; Geobacter 348 

hydrogenophilus, MB; Methanosarcina barkeri, MH; Methanosaeta harundinacea, 349 

PA; Prosthecochloris aestaurii, PA*; Pseudomonas aeruginosa, PC; Pelobacter carbinolicus, 350 

RF; Rhodoferax ferrireducens, SA; Syntrophus aciditrophicus, AOM; anaerobic oxidation of 351 

methane, OMC; outer membrane cytochrome, HIT; hydrogen interspecies transfer, NP; 352 

nanoparticles, IET; interspecies electron transfer, AQDS; anthraquinone-2,6-disulfonate, EET; 353 

extracellular electron transfer, ANME; anaerobic methanotrophic archaea. Additional references 354 

not discussed in the manuscript text [76–82]. 355 

 356 

 357 

  358 



Figure 3. Methods to validate DIET in a co-culture. (a) Establishing cross-feeding interactions to 359 

ensure substrate selectivity of each member, (b) Ensuring the incapability of other alternative 360 

interspecies electron transfer (e.g. via hydrogen or formate) (c) Monitoring expression profiles of 361 

electron transfer conduit proteins, (d) Validating the absence of possible exogenous and 362 

endogenous electron shuttles in the culture media and (e) Deletion studies targeting genes 363 

involved in extracellular electron transfer (e.g. pili, outer membrane cytochromes). 364 

 365 

  366 



Figure 4. Ecological relevance and potential applications of DIET and CIET interactions. 367 

368 
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