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Abstract

Although the treatment of eutrophied lakes with aluminium (Al) compounds has been
established for more than 40 years, publications reporting on long-term consequences
for phytoplankton are rare. Here we present observations from Lake Barleber for the
period 1985-2016. The lake was treated in autumn 1986 because of high phosphorus
(P) concentrations and cyanobacteria blooms, which limited the lake’s recreational
use. Within six weeks 480 t of Al sulphate solution (37 t of Al) were applied to the lake.
This was equivalent to a dose of 36 g AI** m2 or 5.7 mg AlI3* L'.. Already after having
applied half of the Al sulphate, the concentration of soluble reactive phosphorus (SRP)
reached its analytical limit of quantification (3 pg L'!). Removal rates calculated after
completion of the treatment were 98% for SRP and 90% for total phosphorus (TP). In
the following 13 years from 1987 to 1999, cyanobacteria were almost absent. In the
years 2000 to 2003 as well as in 2005 and 2014 they appeared in low abundances. In
the period 1987-2014, almost complete absence of cyanobacteria and high
transparency provided good conditions for recreational use of Lake Barleber.
Compared to pre-treatment conditions, phytoplankton biomass increased temporarily
from 1987-2016. This increase in biomass did not interfere with the use for bathing
and swimming, because phytoplankton community composition changed towards a
dominance of chlorophytes and dinophytes. In 2016, however, P concentration and
cyanobacterial biomass rose again to the level of the last pre-treatment years (TP 134
ug L, cyanobacterial biomass 1 mg L'; averages for the period May-October). We

conclude that Al treatment is effective and can last for decades. For recreational lake
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use, the effects of the alum treatment on phytoplankton community composition

showed to be more important than its effects on total phytoplankton biomass.

Dedication statement

This paper is dedicated to Prof. Dr. Helmut Klapper (June 2, 1932 to June 19, 2019).
Until his retirement in 1997, he was the leader of the team that designed the

treatment of Lake Barleber in 1986 and that did the accompanying monitoring.

Key words: eutrophication, diazotrophic cyanobacteria, phytoplankton composition,

lake management, aluminium application, cyanoHAB
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1 Introduction

Growing incidences of cyanobacterial blooms in lakes worldwide place a serious
burden on water resources (Pearl and Scott, 2010; lbelings et al., 2016a).
Cyanobacterial blooms cause a range of ecological, economic and health effects
(Huisman et al., 2005; Sharma et al., 2013), which can lead to serious problems,
especially in water bodies used primarily for drinking water supply or recreational
purposes. The negative side effects of such blooms can include the formation of algal
mats, taste and odour compounds as well as the production of cyanotoxins, which can
have far-reaching effects on aquatic and terrestrial organisms (Chorus and Bartram,
1999; Backer et al., 2015). Moreover, if water bodies are used primarily for bathing,
direct exposure to algal toxins poses a health risk to the public (Chorus et al., 1999).
Anthropogenic eutrophication is considered to be the main reason for the increase in

cyanobacterial blooms (Carpenter, 2008; Watson et al., 2008).

The addition of aluminium (Al), which permanently binds P and removes it by
sedimentation, is recognized as one of the most effective strategies for controlling
internal P loads (Cooke et al. 1982, 2005; Klapper, 1991; Wagner 2017). In P-rich lakes,
the addition of Al can reduce the internal P loading and thereby limit primary
production and suppress toxic cyanobacterial blooms (Cooke et al. 2005). The addition
of Al sulphate (Al>(SO4)s; referred to as alum) to the water body rapidly leads to
hydrolysis and the formation of amorphous flocs of Al(OH)s, which exhibit a high
adsorption affinity for P (Huang et al., 2002). They react with PO to form insoluble

AlIPO4 (Nogaro et al., 2013), whereby a high binding capacity for inorganic P is reached
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at a pH of 6 to 8. In addition to reducing the P concentration, the application of Al
sulphate also reduces cyanobacterial blooms by flocculation (Cooke et al., 2005;

Brattebo et al., 2017).

Since the early 1970s, hundreds of lakes have been treated with Al (Landner, 1970;
Cooke et al. 2005; Jensen et al., 2015; Huser et al., 2016). Most of those treatments
have been carried out in the USA. In addition to P precipitation in the pelagic zone, the
formed Al hydroxide can also increase P-retention in the sediment once the flocs have
settled to the sediment (Lewandowski et al., 2003; Huser et al., 2011). According to
Cook et al. (2005) an increase of the P retention capacity of the sediment even is the
main goal of P inactivation when using alum. Unless overcritical external inputs or
burial of new sediments interfere with the sustained adsorption of P at the sediment-
water interface, alum treatment thereby can lead to a long-lasting improvement of
water quality (Lewandowski et al., 2003; Huser et al., 2016). Recently, Huser et al. (2016)

reviewed cases from 114 lakes of different morphology to determine key parameters for a

long-term success of alum treatment. They analysed treatment results with respect to the
long-term effects on total P concentration (TP), water clarity (Secchi depth) and
phytoplankton biomass (chlorophyll a). Decisive criteria for long-term success were:
the applied Al dose, the watershed-to-lake area ratio, and the morphology of the lakes.
The duration of success varied widely, ranging from a few months to more than 30

years (Welch and Cooke, 1999; Huser et al., 2016).

Lake Barleber (Germany) was treated with alum (autumn 1986; Ronicke and Bahr,

1989; Klapper and Geller, 2001) in order to re-establish conditions allowing for safe
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recreational use after years of increasing dominance of N,-fixing cyanobacteria
(Anabaena, Aphanizomenon; Fig. 1). The reduction of the P concentration lasted until
2014 and for almost 30 years the occurrence of cyanobacteria could be limited to a
level acceptable for recreational use. Although reviews, individual reports and even
three special issues of journals dealing with alum treatment of lakes have been
published in recent years (Zamparas and Zacharias, 2014; Lirling et al., 2016; Huser et
al., 2016; Ibelings et al., 2016a,b; Wagner, 2017), long-term studies including the
response of the plankton have rarely been reported. By presenting results from the
long-term monitoring (1985-2016) of Lake Barleber (Germany), we intend to
contribute to fill this gap. We further discuss the criteria for evaluating the success of P
precipitation with particular emphasis on the role of phytoplankton community

composition.

2 Methods

2.1 Study Site

Lake Barleber is located in the north of the city of Magdeburg, Germany (Table 1). It is
a gravel pit lake, created mainly between 1929 and 1931 (Bauch, 1953). After
excavation, it filled rapidly with groundwater. The lake does not have any surface
inflow nor outflow, but groundwater is flowing through the lake (ca. 640,000 m3a™*
inflow, ca. 530,000 m3a* outflow; Hannappel and Strom, 2020). The surrounding area

is used for agriculture, i.e., mainly the cultivation of grains and root vegetables. The
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most important morphometric parameters are presented in Table 1. Fig. S1 (see

Supplementary Material) provides a bathymetric map of Lake Barleber.

Around Magdeburg, Lake Barleber is the most heavily used lake for recreation. It is
fully developed for tourism and mainly used for bathing, swimming, diving and angling.
Since the 1970s, a large camping site, an anglers’ allotment and a main beach for

bathing have been established.

Lake Barleber is monomictic, with stable thermal stratification during summer (Fig. S2
in Supplementary Material). Only exceptionally, in case of complete ice cover, the lake
is stratified inversely in winter. The shallow depth of Lake Barleber results in a very

small hypolimnion, with a waterbody volume of only 117,000 m® below 7 m depth, i.e.

1.5% of the total volume.

Soluble reactive phosphorus (SRP) has been measured in Lake Barleber since the 1950s
(Fig. 1; Bauch 1953). Until 1962, SRP concentrations remained below the analytical
detection limit of 3 pg L'1. The lake was in clear-water stage with extensive underwater
grasslands (Chara and Elodea populations; Bauch 1953). From the mid-1960s to the
mid-1970s, SRP concentrations steadily increased up to 50 ug L%. This increase in SRP
concentrations was linked to the onset of turbidity as a result of the increased
presence of planktonic algae (greens and diatoms). In the following decade (1975 to
1985), a rapid increase in the SRP concentration was observed which, in the mid-80s,
led to a concentration above 150 pg L. In the same period, planktonic cyanobacteria
appeared during the summer months, culminating in cyanobacteria mass

developments and a high turbidity of the water body (Ronicke and Bahr, 1989).
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To reduce the internal P loading sufficiently enough to inhibit summer cyanobacterial
blooms, alum was applied to Lake Barleber in autumn 1986 (for details see Table 2).
Within a period of six weeks, the alum treatment was accomplished by surface
spraying (Ronicke and Bahr, 1989; Klapper and Geller, 2001). Since there were no
surface inflows and no known inflows of waste water, a reduction of the external

phosphorus load was not possible.

2.2 Sampling and analytical methods

Sampling of Lake Barleber was done at the deepest point of the lake at intervals of 2-3
weeks during the vegetation period (May to October) from 1986 to 2000. Since 2001,
sampling was done at monthly intervals. Until 1992, water samples were taken with a
Ruttner sampler; from 1993 onwards, a Limnos sampler (LIMNOS, Finland) was used.
In general, water samples were taken at depths of 0, 1, 2.5, 5 and 7.5 m and the
analytical data were averaged over the water column. To examine the water-sediment
contact zone (9 m), a specially developed sediment corer (Ronicke and Bahr 1990) that
enabled the collection of water samples right above the sediment was used. The chemical
parameters Al, sulphate, soluble reactive phosphorus (SRP), total phosphorus (TP) and
dissolved inorganic nitrogen (DIN; calculated by summing up of nitrogen analysed as
nitrate, nitrite and ammonia) were analysed as described in Herzsprung et al. (2005,
2006). We calculated DIN:TP ratios according to Dolman et al. (2016), who identified
this ratio as most informative with respect to nutrient limitation of primary

production. They defined a critical value of 1.6, with a DIN:TP ratio of < 1.6
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corresponding to N limitation and a DIN:TP ratio of > 1.6 to P limitation. Chlorophyll-a
concentration was analysed photometrically according to the German standard DIN
39412. Qualitative and quantitative determination of the phytoplankton and ciliate
abundance was done by microscopic analysis following Utermdhl (1958), after fixation
with Lugol’s solution. Cell sizes were measured and their biovolume calculated based
on suitable geometric shapes. The biomass of the individual species was determined
under the assumption of a specific density of 1 g cm™ (Premazzi, 1980; Benndorf et al.,
1983). Zooplankton samples were taken by vertical hauls from 7.5 m depth to the
surface using a conical plankton net (opening diameter 25 cm, length 0.5 m, mesh size
55 um, corrected for filtering efficiency). These samples were also fixed with Lugol’s
solution and species were identified and quantified under the microscope. Rotifer
volume was calculated according to Ruttner-Kolisko (1977). Crustacean biomass was
calculated according to published length-weight relationships assuming that dry

weight equals 15% of wet weight.

Macrophytes were investigated four times during the study period (July 23, 2007;
August 26, 2010; June 29, 2014; July 13, 2016) following the requirements of the EU
Water Framework Directive (WFD, Guideline 2000/60/EG) by contractors of
Landesbetrieb fiir Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt. A semi-
guantitative methodology was appied following the German assessment standard that

is based on Schaumburg et al. (2004) and Stelzer et al. (2005).

First, a survey of the occurrence of macrophytes, macrophyte species and their

estimated abundance was done (according to a five degree scale: 1 - very rare; 2 - rare;
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3 - common; 4 - frequent; 5 - abundant, predominant). Occurrence was mapped along
transects (four in 2007 and 5 during the other years) and separated by depth zones 0-1
m, 1-2 m, 2-4 m and >4 m according to Melzer (1999). Abundances were converted
into plant quantities using the function y = x3 (Melzer 1999). From these, the reference
index and the class of ecological potential were determined following Schaumburg et
al. (2004) (the five status classes are: 1 - very good, 2 - good; 3 - moderate; 4 - poor

and 5 — bad).

In order to visualize changes in the abundance of the dominating species (abundance
degrees 5-3), the calculated plant quantities of all transects were averaged per depth

zone and sampling date.

3 Results

3.1 Effects of alum addition on P, Al, and sulphate concentrations

At the start of the alum treatment at 3™ of October 1986, the SRP concentration in the
pelagic zone was 180 ug L'* and the TP concentration was 190 pg L indicating that
95% of the P was present in soluble, mineralized form. By October 22nd after
approximately half of the total precipitant quantity had been applied, the detection
limit for SRP (3 pg L) was reached in the pelagic zone (Fig. 2). The remaining 50% of
the Al sulphate solution was applied as excess precipitant to condition the sediment
with AlI(OH)s flocs in order to enhance the P binding capacity. After having completed

the precipitation, 98% of SRP had been removed and TP had been reduced by over

11
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90%. The mean SRP concentrations in the subsequent years until 2014 fluctuated
between 6 pg L™ (1989) and 15 pg L™ (1995), and the mean TP concentration ranged
between 24 pg L' (1997) and 54 pg L™ (1998) (Fig. 3). In 2016, however, a substantial
increase in P was observed (SRP 86 pg L'}, TP 134 ug L'Y). Concentrations of Al and

sulphate increased during the treatment, but reached similar levels to the ones observed

before the treatment by the end of the year 1986 (Table 3).

3.2 Phosphorus accumulation in the bottom layer

In the summer of 1986, before the alum was applied, a massive release of dissolved P
from the lake sediment was detected (Fig. 4). Already in Arpril, a rapid decline in
oxygen concentrations occurred near the bottom of the lake, and led to anaerobic
conditions during the summer months. This oxygen decline was accompanied by a
marked increase in SRP: in mid-April (16 Apr) 1986 the SRP concentration was 49 pg L
and at the end of September (30 Sept) a concentration of almost 1 mg L™ (980 pug L)
was recorded. These SRP concentrations at the lake bottom were several times higher
than those measured in the surface water (0.18 mg L) indicating a substantial release

of P from the phosphate-rich sediment during the summer stratification period.

In the years after the alum treatment, even during periods of low oxygen levels, the
release of P was almost entirely inhibited and SRP concentration remained low (Fig. 4).
From 1987 to 2014, no or only very low P release rates from the sediments were
recorded (Fig. 4). In late September 2016, however, 1.15 mg L™* SRP was measured

above the sediment indicating significant P release from the sediment.

12
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3.3 N:P ratios

During the summer period of 1986 (June-August), before the phosphate precipitation
took place, the mean mass-related DIN:TP ratios remained below the critical value of
1.6, indicating N-limitation of the phytoplankton (Fig. 5). After the application of alum,
DIN:TP ratios increased as a result of the reduction in the pelagic P concentration. In
the following years 1987 to 2014, DIN:TP ratios were mostly above the critical value of
1.6, indicating P-limitation. In 1987, the value even rose to 5.3. In summer 2016, the

DIN:TP ratio again dropped below the critical value of 1.6.

3.4 Secchi disc transparency and chlorophyll-a concentration

Bi-weekly to monthly Secchi depths measurements were averaged over the six-month
vegetation period. The mean Secchi depths in 1985 and 1986 prior to application of
the precipitant, were 1.3 m and 2 m, respectively (Fig. 6). During the summer months
and the mass development of diazotrophic cyanobacteria, the values dropped to well
below 1 m. In the years after the application of the precipitant, Secchi depths
increased. The highest mean values were calculated for the years 1998, 1999, 2002
and 2013 at approximately 6 m. Even individual values 28 m were observed: 8.6 m (15
June 1994), 8 m (19 June 2000), 8.5 m (20 June 2013) and 9.0 m (9 June 2016). In
addition to the general increase in Secchi depths, also the duration of periods of high

transparency (> 5 m) increased. It continually lasted over several weeks in the post-

13
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treatment years. In 1994, for instance, the period of high Secchi depths lasted over
two months from 15 June until 24 August 1994. In August 2016, however, Secchi

depths decreased to 0.5 m again, caused by an algal mass development.

In the six-month vegetation period of the years 1985 to 2016, mean chlorophyll-a
concentrations overall remained at a low level (Fig. S1). Significant fluctuations
occurred during the study period as a whole. The lowest recorded chlorophyll-a
concentration was 2.0 ug L' in 1998. The highest annual average (10.1 pg L) was
measured in 2001. The highest single concentration peak during the years 2000 and
2001 corresponded with the mass occurrence of Ceratium hirundinella (dinophytes)

(see below).

3.5 Development of phytoplankton

In the years 1985 and 1986, the summer phytoplankton community was largely
characterized by diazotrophic cyanobacteria (Fig. 6, Fig. S2). The dominant species
were Anabaena flos-aquae, A. lemmermannii and A. circinalis. The genus
Aphanizomenon was represented by the species Aphanizomenon flos-aquae and A.
gracile. The average percentage contribution of cyanobacteria to the total
phytoplankton biomass was 45% in 1985 and 58% in 1986. In the summer months June
to August, cyanobacteria dominated the phytoplankton community with maximum
percentages of 96% (11 July 1985, mean 85%) and 98% (09 July 1986, mean 88%).
These mass developments led to the formation of extensive floating algal mats. In the

subsequent 13 years after P precipitation (autumn 1986), N,-fixing cyanobacteria were

14
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observed rarely. The low abundances of cyanobacteria detected in autumn 1987 and
spring 1988 were composed by the species Limnothrix redekei and Microcystis
aeruginosa. Diazotrophic cyanobacteria (Anabaena and Aphanizomenon species) were
first detected again in the years 2000, 2002, 2003 and 2005. However, their
percentage contribution to the total phytoplankton was significantly lower than
measured in 1985 and 1986. Dunig the six-month vegetation period they accounted for
6% in 2000, 13% in 2002, 15% in 2003 and 3% in 2005. Besides cyanobacteria, over the
entire study period dominant representatives of chrysophytes (Kephyrion spec.,
Ochromonas spec., Chrysochromulina parva, Dinobryon divergens), greens
(Chlamydomonas spec., Ankistrodesmus angustus, A. falcatus, Scenedesmus
longispina, S. quadricauda, Kirchneriella obesa, Crucigenia rectangularis), diatoms
(Stephanodiscus astraea, S. hantzschii, Nitzschia acicularis, Tabellaria fenestrata,
Diatoma elongatum, D. vulgare, Fragilaria crotonensis, Synedra acus), dinophytes
(Ceratium hirundinella, Gymnodinium spec., Peridinium umbonatum) and cryptophytes
(Cryptomonas erosa, C. ovata, Rhodomonas pusillum) were detected. During the years
2000 to 2005, dinophytes were increasingly present. Ceratium hirundinella, a species
with very high cell volume, dominated the phytoplankton community. Its mean
percentage share during the six-month vegetation period ranged between 66% and
99%. During the Ceratium-dominated years, the total phytoplankton biovolume was
high compared to the years before or afterwards (Fig. 6). Starting in 2014, the
contribution of cyanobacteria to the total phytoplankton biomass increased again
(2014: 6%, 2016: 20%; Fig. 6), parallel to the increase of P concentrations (Fig. 3).
However, on average dinophytes still dominated during the years 2014 and 2016.
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3.6 Dynamics of zooplankton

Zooplankton total biomass was 1.3 mm? L' in spring and summer 1986, but decreased
to 0.5 mm3 L* during the alum treatment (Fig. 7). During treatment, cladocerans
disappeared and both rotifers and ciliates declined in number. Copepods were less
affected. From 1987 onwards, cladocerans re-established and contributed significantly
to the algivorous biomass (Daphnia hyalina, D. galeata, Diaphanosoma brachyurum,
Bosmina longirostris). With the exception of 1990, copepods (Eudiaptomus gracilis,
Cyclops spp.) remained dominant in terms of biovolume. The average annual
zooplankton biomass was somewhat lower (0.6 — 1.2 mm?3 L) in the years after the

treatment compared to 1986t (pre-treatment; Fig. 7).

3.7 Macrophytes

The macrophyte status of Lake Barleber evaluated according to the WFD was

moderate (2007), good (2010 and 2014) and moderate (2016) (Tab. 4).

The species reaching the abundance degree of 5 in at least one transect and at least
once were Phragmites australis, Typha angustifolia, Potamogeton pectinatus,
Ranunculus circinatus, Elodea canadensis, and Chara contraria. The abundance degree
of 4 was reached in at least one transect and at least once by Fontinalis antipyretica,
Potamogeton lucens, Potamogeton perfoliatus, Ceratophyllum demersum, Lemna

trisulca, Chara globularis and Nitellopsis obtuse. Detailed results of the macropyhte

16
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assessment are provided as supplementary material
(Roenicke_etal_Macrophytes_LakeBarleber_2007-2016.xls). There was no consistent
trend in the lake-wide averages of plant quantities separated by depth zones (Fig. S5).
At all investigation dates, the entire lake bottom was also colonised by the filamentous

green alga Vaucheria spec. down to the deepest parts of the lake basin.

4 Discussion

4.1 Suitability of aluminium sulphate treatment for Lake Barleber

From the available approaches for suppressing cyanobacterial blooms alum treatment
was chosen for Lake Barleber. Under the conditions in Magdeburg (former GDR, i.e.
East Germany) in 1986, alum treatment was seen as the most effective and efficient
approach with the highest longevity. However, the use of alum is often seen critically
and subject of discussion in the public due to the well-known toxicity of Al. Al and low
pH values can have direct toxic effects on plankton (Havens, 1990, Wauer et al., 2004),
as demonstrated for Daphnia at Al concentrations of 1 mg L (Havas and Likens, 1985).
Also indirect negative effects on zooplankton can occur. The non-selective filter
feeding daphnids are particularly vulnerable to decreases in food quality such as
increasing amounts of abiotic seston (e.g. Al flocs) (Kirk, 1992). Smaller zooplankton
organisms (ciliates, rotifers) may also be removed from the water column directly by
flocculation. In Lake Barleber, only a slight and short increase in Al concentrations was
observed (Table 3). The the sufficiently high alkalinity in Lake Barleber (=2 meq L)

kept pH at a natural level where Al solubility is very low. The occurrence of a diverse
17
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and abundant zooplankton community in the years following the treatment implies
that there was no sustainable toxic effect. Also no damage of fish was reported by

anglers.

High concentrations of sulphate can promote the formation of iron sulphide under
anoxic conditions and, thus, reduce the P binding capacity. In Lake Barleber, the alum
treatment did not change the sulphate concentration considerably (Table 3). Thus,
selection of Al sulphate for phosphate precipitation in Lake Barleber was adequate.
Due to the improvement of Secchi depths and the suppression of cyanobacteria mass
developments of cyanobacteria allowing for undisturbed recreational use for almost

30 years, the treatment of Lake Barleber was a success.

4.2 Comparison of the treatment results with other lakes

In the 114 case studies examined by Huser et al. (2016) for the long-term impact and
effectiveness of alum treatment, the applied quantities of alum ranged between 5 and
122 g Al m™. In six Danish lakes treated with polyaluminium chloride during the years
2001 to 2009, the applied Al doses ranged between 10 and 54 g Al m (Jensen et al.,
2015). Thus, the Al dose of 36 g Al m2applied to Lake Barleber is in the middle range

of the published data.

The reduction of the phosphate concentration reached immediately after the
treatment was very high (98% for SRP, 90% for TP). Although the average reductions

for the years 1987-2014 were only 89% for SRP and 68% for TP, this was still enough to

18
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cause considerable changes in the phytoplankton composition (Fig. 7) and was in the
range reached in other lakes (Huser et al., 2016). The reduction lasted at least until
2014, i.e. 28 years. This is much longer than Huser et al. (2016) found as average for
unstratified (6 years) and stratified lakes (21 years). Obviously, in Lake Barleber, the
intended surplus of binding capacity of the sediment, which resulted from the second
half of the applied alum amount worked well until it was exhausted in 2015 or 2016.
Nevertheless, our results indicate that the water quality improvements after the alum
treatment were limited in time — a statement that was also clearly made by Huser et

al. (2016).

The absence of surface inflows and the small catchment area of Lake Barleber
probably has not provided enough sediment to bury the Al hydroxide rapidly as
reported for Lake StiBer See (Lewandowski et al., 2003). Bioturbation during times of
sufficient supply of oxygen at the sediment surface (Fig. 4) may have contributed to
the long lasting reduction of P concentrations in Lake Barleber. Firstly, the consequent
mixing of the sediment can have prevented a too deep burial of the Al hydroxide as
observed in Lake StRer See (Lewandowski et al., 2003). Secondly, bioturbation can
allow for deeper oxidation of the sediment surface (Lewandowski and Hupfer, 2005).
Future sediment investigations and a detailed P balance are needed to reliably identify

the reasons for the end of the success phase of the alum treatment in Lake Barleber.

4.3 Evaluation of changes in phytoplankton
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Comparing chlorophyll-a concentrations and phytoplankton biomass before and after
the treatment may not lead to the conclusion that the measure was a success. The
biomass and also the concentration of chlorophyll-a remained in the same range
before and after the treatment, in particular when considering the interannual
fluctuations. However, there were remarkable changes in the community composition
of the phytoplankton. Green algae and increasingly dinophytes were dominant after
the treatment. The mass occurrence of dinophytes in the years 2000 to 2005 mainly
consisted of the species Ceratium hirundinella. Ceratium has the ability to migrate
from surface waters during the day to the metalimnion during the night in order to
take up P at depth (Whittington et al., 2000). This may have given the species a
competitive advantage under P limitation. The change in phytoplankton community
composition was accompanied by increases in Secchi depths and cell volumes of the

dominant algal species.

Relevant phytoplankton consumers are in the group of crustaceans rather than rotifers
or ciliates. For the onset of the clear-water phase, Lampert (1988) quoted a critical
biomass of crustaceans of 1.5 g m2 dry weight, which corresponds to a value of 1.3 mg
L' fresh weight for our study lake. This biomass was reached or exceeded on 16
sampling days, i.e. in 15% of the samples. Within the group of crustaceans, large
Daphnia species are the most efficient phytoplankton grazers. Earlier studies observed
significant changes in the abundance of available prey at a Daphnia biomass of 0.7 mg
L' fresh weight (Jirgens 1994, Tittel et al. 1998). This value was exceeded in 12% of
the sampling days. Smaller cladocerans (Bosmina) were included in our calculations,

which are less efficient phytoplankton consumers than Daphnia species. High
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biomasses occurred only in summer with maximum values in July 1987 (2.1 mg L) as
well as in June and August 1988 (1.9 mg L?). The well available and likely the most
affected prey can be expected to be in the size of up to ca. 30 um length. These were
green algae, chrysophytes and partly diatoms, but not dinophytes (Ceratium) or
filamentous cyanobacteria. We conclude that in about 30% to 40% of all summer days

the zooplankton contributed significantly to high transparencies.

The phagotrophy of Ceratium was subjected to a debate among phycologists. Earlier
reports of Hofeneder (1930) and of Dodge und Crawford (1970) have provided
evidence of phagotrophy. Later on phagotrophy of Ceratium has been questioned
(Chapman et al., 1981, Hansen und Calado, 1999, Stoecker 1999). However, there is
clear evidence of phagotrophy by another species of the genera (C. furcoides,
Bockstahler and Coats 1993). Further work is needed to address this issue (Moestrup
and Calado 2018). If C. hirundinella was capable of ingesting bacteria this phagotrophy
might enlarge the accessible P pool for the phytoplankton and contribute to the
relatively high phytoplankton biovolume as was observed after the alum treatment. No
decline in phytoplankton biomass after P reductions also was reported for other lakes,
including the progressing dominance of phagotrophic algae (mixotrophs) (Jeppesen et
al., 2005; Weyenmeyer and Broberg, 2014; Wentzky et al., 2018). Therefore, the total
biovolume of phytoplankton often is a poor indicator of successful eutrophication
control, while community composition and transparency are usually more powerful

indicators.
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The predominant cyanobacteria in Lake Barleber were Anabaena and Aphanizomenon
in Lake Barleber. Both genera have the potential to fix nitrogen, to form surface scums
and to produce toxins. Due to the formation of filaments and large colonies, both
genera can hinder efficient grazing by filter feeders. Diazotrophic cyanobacteria are
likely favoured by low nitrogen concentrations, but require high P levels for mass

development (Reynolds et al., 2002).

To understand their dominance, the N:P ratio plays an important role. In a series of

studies, the DIN:TP ratio in the water column was shown to be the best indicator for

limiting conditions (e.g. Morris and Lewis, 1988; Bergstrém, 2010; Dolman et al., 2016).

According to this ratio, the conditions in Lake Barleber changed from N-limitation to P-
limitation after the phosphate precipitation. This counteracts the dominance of
diaozotrophic cyanobacteria and can be regarded as the major reason for the

suppression of cyanobacterial blooms after Al treatment (Brattebo et al. 2017).

Unfortunately, no quantitative data exist for the occurrence of macrophytes in Lake
Barleber before the restauration in autumn 1986 and in the years immediately after
the treatment. However, property owners at Lake Barleber reported that there was a
considerable increase of the abundance of submerged macrophytes in 1987 and the

following years. This is consistent with the memories of the author H. Ronicke.

Macrophytes are well known to stabilize clear water conditions in shallow lakes
(Scheffer and van Nes 2007). According to Hilt (2015) this stabilizing effect may be
found in deep lakes, too. Therefore, stabilizing effects can also be expected for Lake

Barleber. The status class “good” found for macrophytes in 2010 and 2014 suggests
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that the macrophytes were abundant enough to contribute to the high water clarity.
The decline in abundance for a number of species in 2016 already may have been a
consequence of the re-occurrence of considerable P release from the sediment and,

thus, an indicator for a shift back to a turbid state.

5 Conclusion

The precipitation of P using Al sulphate, as carried out in Lake Barleber in autumn
1986, has proven to be an effective restoration method. The P content of the water
body was largely reduced and harmful cyanobacterial blooms were suppressed over a

period of almost thirty years. This pronounced long-term effect had been achieved by

applying an excess Al dose. By conditioning the P-rich sediment with Al(OH)s flocks, the

release of P (internal fertilization) in the following years was considerably reduced.
Consequently, only at the end of the study period, a significant increase in P
concentrations was observed. In well-buffered eutrophic standing waters with little
through-flow and low external input of P, precipitation with Al can lead to a marked
long-term improvement in water quality. The missing reduction of the phytoplankton
biomass and even its increase above the pre-treatment level did not hinder the
recreational use of Lake Barleber since the transparency of the water was high and
toxin producing cyanobacteria did not reach relevant abundances. We conclude that
the success of the measure was based on a shift in the phytoplankton community

composition caused by the strong reduction of P availability.
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Table 1 Morphometric parameters for Lake Barleber

Lake parameter

Value

Location 52°13“15“N, 11°39°0“ O
Area 103 ha

Volume 6.9 x 10 m3

Mean depth 6.7m

Maximum depth 10.0 m

Inflow groundwater
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Table 2 Application of aluminium sulphate to the surface of Lake Barleber

Period:

3 October to 13 November 1986

Precipitating

aluminium sulphate

agent:

Quantity added: | 480 t of solution containing 37 t AI*
Al dose per 5.7 mg APP*L?

volume:

Al dose per area: | 36 g A** m?

Distribution

technique:

floating vessel with tank for the aluminium sulphate solution and

a perforated tube (with 10 mm holes) pushed by a motor boat
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668  Table 3 Aluminium and sulphate concentrations as well as pH values (mean values 0-
669 7.5 m) before, during and after the application of aluminium sulphate (n.d. - not

670  analysed)

Date ABR* (mg L) | SO43>(mg L) | pH
11/09/1986 | n.d. 505 8.3
29/09/1986 | 0.04 495 8.1
08/10/1986 | 0.12 510 7.8
15/10/1986 | 0.17 513 7.6
23/10/1986 | 0.25 525 7.5
29/10/1986 | 0.5 534 7.4
12/11/1986 | 0.4 651 7.6
19/11/1986 | 0.1 611 7.7
10/12/1986 | 0.05 454 7.8
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Table 4 Results of macrophyte investigations summarized per transect (for all depth

zones) and evaluation in terms of status classes

Date Transect | Location |Lower limit of | Species | Total |Status class | Status class
of macrophytes | number | species in | of transect | of Lake
transect (m) of Lake Barleber
transect | Barleber
23.07.2007 1 West 5.4 5 16 moderate | moderate
23.07.2007 2 East 6.5 12 16 good moderate
23.07.2007 3 North- 6.0 11 16 moderate | moderate
west
23.07.2007 4 South 6.5 8 16 good moderate
26.08.2010 1 West 7.0 7 15 good good
26.08.2010 2 East 7.7 7 15 moderate good
26.08.2010 3 North- 7.0 5 15 good good
west
26.08.2010 4 South 7.0 8 15 good good
26.08.2010 5 South- 7.2 6 15 very good good
east
29.06.2014 1 West 4.8 6 19 moderate good
29.06.2014 2 East 6.1 8 19 good good
29.06.2014 3 North- 5.8 10 191 good good
west
29.06.2014 4 South 4.8 9 19 good good
29.06.2014 5 South- 5.8 10 19 very good good
east
13.07.2016 1 West 8.3 5 18 moderate | moderate
13.07.2016 2 East 8.2 13 18 good moderate
13.07.2016 3 North- 6.5 11 18 good moderate
west
13.07.2016 4 South 6.5 8 18 good moderate
13.07.2016 5 South- 7.2 7 18 good moderate
east

37



679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

Figure captions

Figure 1 Concentrations of phosphorus (SRP, spring overturn values, 0-7.5 m), 1950 to

2017 (based on Ronicke et al. 1995, extended)

Figure 2 SRP concentration (0-7.5 m) and oxygen in the deep water layer (9 m), 1986

and 1987 (IC —ice cover, AP — aluminium precipitation)

Figure 3 Alum application and the effects on phosphorus concentration (mean values

0-7.5m), 1986 to 2016

Figure 4 Dynamics of SRP- and oxygen concentration in the deep water layer (9 m) in

Lake Barleber, 1986 to 1992, 1999, 2010, 2013, 2014, and 2016

Figure 5 Mean values of N:P ratio (DIN:TP) in the summer months (June to August) in

Lake Barleber, 1986 to 2016

Figure 6 Mean values of phytoplankton biomass and composition (0-7.5 m) and Secchi

depths during the vegetation period (May to October) in Lake Barleber, 1985 to 2016

Figure 7 Zooplankton biovolume and community composition. Upper part: total
biovolume, means from 9-19 samplings per year; lower part: composition derived from
proportions at individual sampling days. * before precipitation (February to October 2,

14 samples), # during precipitation (October 15 to December, 6 samples)
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Figure S1 Bathymetric map of Lake Barleber (redrawn based on the map prepared by Fisch
und Umwelt e.V., Rostock, Germany by order and for account of Landesbetrieb fir



Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt, Gewdasserkundlicher Landesdienst,
Magdeburg, Germany in 2003).
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Figure S2 Results of selected temperature measurements from surface to bottom in 1986 at
the deepest site of Lake Barleber.
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Figure S3 Mean values of chlorophyll-a concentration (0-7.5 m) and Secchi depths during the
vegetation period (May to October) in Lake Barleber, 1985 to 2016.
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Figure S4 Percentage of phytoplankton biomass classified into the major taxonomic groups
(annual mean values, 0-7.5 m) during the vegetation period (May to October) in Lake
Barleber, 1985 to 2016.



