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Abstract 12 

Models are important tools to integrate ecological and socio-economic knowledge to better 13 

understand and manage social-ecological systems. Challenges include, among others, the adequate 14 

representation of feedback loops between the socio-economic and the ecological subsystems, 15 

uncertainties and human behaviour. To analyse how well models are able to address these 16 

challenges in the fields of biodiversity conservation and ecosystem services management the 17 

present paper systematically reviews recent mechanistic models of the field and analyses them with 18 

respect to a number of binary criteria. The reviewed models generally contain quite a few of the 19 

above-mentioned system features but still fall short when it comes to the adequate representation of 20 

the socio-economic dimension. Sorting the models by the labels given to them by their authors, 21 

such as “ecological-economic” or “system-dynamic”, allows assessing model variation within and 22 

among labels and indicates that there is a fruitful level of diversity in the models.  23 

 24 

 25 

Highlights 26 

• Papers with models integrating ecological and socio-economic knowledge are reviewed 27 

• Considered fields of application are biodiversity conservation and ecosystem services 28 

• Models contain important features but generally miss important socio-economic issues 29 

• There seems to be a fruitful level of diversity among the models in the field 30 

 31 
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1 Introduction 37 

Despite various political and scientific initiatives (MA (2005), CBD (2007), IPBES: Díaz et al. 38 

(2018), TEEB (2010)), the loss of biodiversity and the degradation of ecosystem services is still 39 

ongoing worldwide (EEA 2019). Next to climate change, one of the main drivers of these losses is 40 

human land use (MA 2005), which in turn is driven by the socio-economic conditions, such as 41 

agricultural policy (e.g., Lakner et al 2019), under which the land users operate.  42 

 43 

To understand the human-induced decline of biodiversity and ecosystem services, both the 44 

ecological and the socio-economic dimensions have to be considered in an integrated manner 45 

(Shogren et al. (1999), TEEB (2010), Wätzold et al. (2006)). A challenge here is that the coupled 46 

ecological and socio-economic processes are usually 47 

• dynamic, partly involving feedbacks, so that, e g., the ecological subsystem affects the 48 

socio-economic subsystem and vice versa (Polasky and Segerson 2009), 49 

• spatially structured, so that, e.g., the distance between habitats affects the dispersal and the 50 

survival of a species (Hanski 1999), or the deforestation in the tropics leads to the 51 

fragmentation of rainforests (Taubert et al. 2018),  52 

• subject to risk and uncertainty, since for instance the dynamics of species populations are 53 

often influenced by random factors (Beissinger et al. 2002), or systems may tip from one 54 

state to another where the location of the tipping point is fully or partly unknown (Bauch et 55 

al. (2016), and 56 

• influenced by non-trivial behaviour of humans, where humans partly try to maximise their 57 

economic profits but in their decisions are also influenced by other motives (e.g., 58 

Bartkowski and Bartke 2018). 59 

 60 

Mathematical models have become important tools for the improvement and support of the 61 

understanding, prediction and management of complex systems, such as the world’s climate system 62 

(e.g., Neelin 2010) or the dynamics of animal diseases (e.g., Vicente et al. 2019), which also holds 63 

for those cases in which several scientific disciplines, in particular natural sciences and social 64 

sciences, need to be considered in an integrated manner (Voinov (2008), Clark (2010), Flichman et 65 

al. (2011), Schlüter et al. (2012), Drechsler (2020)). 66 

 67 

Purposes of models are manifold (Baumgärtner et al. 2008), probably the most important being a 68 

better understanding of systems and observed phenomena (e.g., Getzin et al. 2006, Taubert et al. 69 

2018), prediction of system dynamics (e.g., Bauch et al. 2016), and decision support (e.g., EFSA et 70 

al. 2017). 71 

  72 



To increase their relevance for decision support, models should ideally consider that human land 73 

use is often influenced by agricultural, environmental and other policies (de Vries and Hanley 2016, 74 

Pe’er et al. 2017). A major obstacle to the development of policies is asymmetric information 75 

(Laffont and Mortimort 2002). Following the environmental-economics literature (e.g., Hanley et 76 

al. 2007), a case of asymmetric information is present when one actor has more information about 77 

some relevant facts than another (e.g., when landowners know their costs of carrying out a 78 

conservation measure, but a conservation agency that wishes to introduce a conservation policy 79 

does not). 80 

 81 

The question arises, (Q1) to what extent current models used for the integration of ecology and 82 

socio-economics in the fields of biodiversity conservation and the management of ecosystem 83 

services, capture the above-mentioned issues of spatial, temporal and behavioural complexity and 84 

address the needs of deciders and policy makers.  85 

 86 

To address this question, a quantitative analysis of research papers from the field is carried out, 87 

based on a systematic search from the past five years and focusing on mechanistic models. The 88 

papers are analysed with respect to a number of characteristics, including the purpose for which the 89 

models have been developed and analysed, structural features such as spatial structure or dynamics, 90 

issues of system complexity such as emergence, models of human behaviour, issues relevant in 91 

policy making, and the method by which the model is implemented and analysed.  92 

 93 

With regard to agent-based models, a similar analysis has been carried out by Groeneveld et al.  94 

(2017) who focus on behaviour of land users, and Egli et al. (2019) who explore the consideration 95 

of resilience in agent-based models. However, while these two reviews address model features 96 

similar to those listed above, they consider different fields of model applications and, most 97 

importantly, consider only agent-based models.   98 

 99 

Agent-based models, however, form only a limited subset of models integrating ecology and socio-100 

economics in the fields of biodiversity conservation and the management of ecosystem services. 101 

Instead, next to agent-based, models in the field are known under very different labels, such as bio-102 

economic or system-dynamic. Including these other labels on the one hand broadens the scope of 103 

the analysis and on the other hand raises additional research questions: (Q2) Do different labels 104 

reflect different model structures, possibly implying different abilities of the models to capture the 105 

features, and fulfil the purposes, described above? Further, how strongly are models of different 106 

labels are related to each other and do the different labels indicate the presence of separate 107 

modelling communities with only limited communication among each other? To address these 108 



questions, the reviewed models are sorted by the labels given to them, and the models found under 109 

each label are analysed separately and the results compared among the different labels. 110 

 111 

The way models are built and labelled may change over time, and thus research question Q3 reads: 112 

What are the magnitudes and statistical significance of these changes? To address the three research 113 

questions Q1–Q3, relevant papers from the years 2015–2019 are identified and analysed as outlined 114 

above and described in detail below in the Methods. The Results section presents the outcomes of 115 

the analyses, and in the Discussion conclusions are drawn from these outcomes to formulate 116 

answers to the three research questions.   117 

 118 

 119 

2 Methods 120 

2.1 Data collection 121 

The research context of the present analysis is mechanistic, or process-based, models that explicitly 122 

consider both the ecological and the socio-economic dimension of problems in the field of 123 

biodiversity, resource, and ecosystem services management. The basis of the quantitative literature 124 

review is thus a search with Scopus, performed in February 2020, for „TITLE-ABS-KEY  125 

• ( ( model*  W/10  ( social*  OR  socio*  OR  economic* ) )   126 

• AND ( model*  W/10 ecological* )   127 

• AND ( biodiversity  OR  resource  OR  ( ecosystem  W/5  service ) ) )  128 

• AND ( EXCLUDE ( SUBJAREA ,  "MEDI" )  OR  EXCLUDE ( SUBJAREA ,  "BIOC" )  129 

OR  EXCLUDE ( SUBJAREA ,  "ARTS" )  OR  EXCLUDE ( SUBJAREA ,  "PSYC" )  OR  130 

EXCLUDE ( SUBJAREA ,  "NURS" )  OR  EXCLUDE ( SUBJAREA ,  "CENG" )  OR  131 

EXCLUDE ( SUBJAREA ,  "NEUR" )  OR  EXCLUDE ( SUBJAREA ,  "IMMU" )  OR  132 

EXCLUDE ( SUBJAREA ,  "MATE" )  OR  EXCLUDE ( SUBJAREA ,  "PHYS" )  OR  133 

EXCLUDE ( SUBJAREA ,  "CHEM" )  OR  EXCLUDE ( SUBJAREA ,  "HEAL" )  OR  134 

EXCLUDE ( SUBJAREA ,  "PHAR" )  OR  EXCLUDE ( SUBJAREA ,  "VETE" ) )   135 

 136 

This search string was chosen to detect modelling papers considering (i) social, economic, or socio-137 

economic dimension, (ii) an ecological dimension, and (iii) addressing issues of biodiversity, 138 

resources or ecosystem services (note that in Scopus the command W/n requires that the two 139 

connected keywords must not more than n words apart from each other). And to avoid an explosion 140 

of work load, thematic fields most likely to be irrelevant in the context of biodiversity were 141 

excluded. In total 1082 papers were identified, from which 73, 66, 85, 86 and 101 papers fell into 142 

the years 2015, 2016, 2017, 2018 and 2019, which form the basis of the present analysis. 143 

 144 



Next, all the 411 papers were subjected to a rigorous manual screening process to avoid mis-145 

classification of papers due to malfunctioning search filters (cf. Zare et al. 2017) and ensure that the 146 

remaining papers fall into the above-defined context. About twenty papers dropped out because they 147 

were not accessible (e.g., because they appeared in a journal of minor range), or not written in 148 

English language, and/or where the model description was too superficial (because, e.g., the paper 149 

is an extended abstract for a conference) to allow for the below-described detailed characterisation 150 

of the model. Then, a considerable proportion of papers dropped out whose models are of a 151 

qualitative/conceptual or statistical nature. Statistical models were excluded because these models 152 

are by their nature largely independent of the research context: a linear regression analysis, e.g., 153 

simply correlates data and looks the same, regardless whether the data are from biological, social or 154 

astronomic observations (cf. Drechsler et al. 2007). Quite a few papers also dropped out, because 155 

other than suggested by their title, keywords or abstract (which were the targets of the Scopus 156 

search), they included only one of the two dimensions of ecology and socio-economics or even 157 

none of them. Lastly, models containing a mere aggregation of numbers into an index, such as 158 

ecological-footprint analysis or simple multi-criteria analysis (that did not include any further 159 

ecological and socio-economic modelling) were discarded. 160 

 161 

2.2 Selection of model characteristics and labels 162 

As a result, 122 papers (cf. Appendix A in the Supplementary Material) are retained which (or 163 

precisely, of course: the models in which) are characterised by the purpose for which the model was 164 

built, the structure of the model, particular issues addressed, and the formal implementation and 165 

analysis of the model. The selection of the criteria was influenced by Drechsler et al. (2007), 166 

Baumgärtner et al. (2008), Schlüter et al. (2012), Egli et al. (2019) and Drechsler (2020), and the 167 

criteria are chosen to explicitly address the issues raised in the Introduction: 168 

 169 

Is the model 170 

1. general? 171 

2. specific? 172 

3. built for positive analysis? 173 

4. built for normative analysis? 174 

5. used to improve the understanding of the modeled system or develop theory? 175 

6. used to make predictions of the system dynamics? 176 

7. used to include stakeholders and/or support management decisions?  177 

 178 

Does the model explicitly consider 179 

8. system dynamics? 180 



9. spatial structure? 181 

10. randomness/stochasticity? 182 

11. feedback loops? 183 

12. individual agents? 184 

13. networks? 185 

 186 

Regarding human actions, does the model address issues of 187 

14. asymmetric information? 188 

15. prediction and learning of actors? 189 

and is based on a  190 

16. utilitarian framework, in particular the human model of homo oeconomicus? 191 

17. or employing alternative, “non-classical” models of human behaviour? 192 

 193 

Does the model analysis address issues of 194 

18. non-linearity, such as resilience or discontinuous transitions/tipping points? 195 

19. emergence, in particular spatial pattern formation? 196 

20. policy interventions on the system? 197 

 198 

Is the model formulated through 199 

21. (differential or difference) equations? 200 

22. algorithms and rules?  201 

and is it solved or analysed  202 

23. analytically, or 203 

24. numerically/via computer simulation? 204 

 205 

And, how was the model labeled by its authors? 206 

 207 

Similar to Drechsler (2020), a general model is understood as a model that is not applied to a 208 

specific (geographically localised) case but formulated in a general manner by quantities like 209 

economic cost, population growth rate, etc. If a model is analysed numerically, it is counted as 210 

general if a systematic sensitivity analysis is carried out to explore the general behaviour of the 211 

model. A specific model, in contrast, is applied and parametrised to a specific case without any 212 

sensitivity analysis. Positive analysis is understood (cf. Drechsler 2020) as exploring how the 213 

system looks like or will develop, while normative analysis is understood as addressing how a 214 

system should be (managed) to maximise certain objectives like cost-effectiveness or social 215 

welfare.  216 



 217 

Characteristic 7 is meant to capture participatory modelling approaches (e.g., Voinov et al. 2018), 218 

which includes research were stakeholders are not only sources of information (like in a survey) but 219 

actively and significantly involved in the research. Characteristic 12 contains multi-agent systems 220 

(Gilbert 2007) but also game theoretical approaches (Tadelis 2013; often with only two agents), 221 

while networks (characteristic 13) can, e.g., be ecological (Pascual and Dunne 2005) or social 222 

networks (Bruggeman 2008).  223 

 224 

Asymmetric information (characteristic 14) was explained in the Introduction. Characteristic 16 225 

measures whether decisions are based on the maximisation of some utility function (as does, e.g. a 226 

welfare-maximising policy maker or the rational utility-maximising homo oeconomicus), while 227 

non-classical models (characteristic 17) may include altruism or inequity aversion in agents (e.g., 228 

Fehr and Schmidt 1999), satisficing behaviour (Simon 1979) or social interaction such as copying 229 

opinions or decisions of other agents (Weisbuch 2005). Or the decisions may be modeled by 230 

statistical models (with the rest of the model being mechanistic as explained above) fitted to 231 

observed decisions (Lewis and Plantinga 2007),  so that a utility function is, or cannot be, derived 232 

explicitly. 233 

 234 

Most models in the sample include some non-linear elements. However, such non-linearity in the 235 

model structure (e.g., logistic growth of an animal population) does not necessarily lead to non-236 

trivial model dynamics that can address issues of resilience or tipping points. Similarly, resource 237 

management models may contain a feedback loop in their formulation but may be analysed only to 238 

identify a monotonic optimal harvesting trajectory. Non-linearity in the context of the present paper 239 

(characteristic 18) does not refer to such non-linearities in the model formulation but only to the 240 

question of whether issues of non-linearity like resilience are addressed explicitly in the model 241 

analysis. 242 

 243 

Characteristic 20 addresses, e.g., agricultural policies or the establishment of nature reserves. Some 244 

models contain policies as an exogenous driver but do not explicitly analyse the effects of these 245 

policies: these models are not classified as considering policy intervention. The last question above 246 

addresses the observation that models used in the present context have quite different labels, such as 247 

bio-economic or system-dynamic.  248 

 249 

2.3 Determination of the frequency distributions of the model characteristics (research 250 

question Q1)  251 

Having analysed all 122 papers with regard to the 24 characteristics, the relative frequencies of the 252 



models falling into each of these 24 categories are counted. Regarding the authors’ label, many 253 

models have been given only an unspecific label like “simulation model” or “coupled model”, and 254 

are classified as “not-specified”. Although the label “network model” is specific, it is not 255 

particularly relevant to the issue of ecological and socio-economic integration, and so “network 256 

models” are also classified as “not-specified”. For the five labels with the highest numbers of 257 

models the frequencies of the 24 characteristics are counted in the same way as for the set of all 122 258 

models. 259 

 260 

2.4 Determination of relationships between model labels (question Q2) 261 

The counts of the model characteristics in the different model labels are used to identify 262 

characteristics typical for each model label to obtain a first understanding of the differences and 263 

similarities between the model labels. This is followed by a quantitative assessment of the 264 

relationships between the five model labels. For this, the frequency distributions are considered as 265 

vectors and Pearson correlation coefficients between these vectors are calculated. As an indicator of 266 

overlap and communication between different modelling communities, for each model label the 267 

journals are identified in which models of that label are published and the journals are identified 268 

that contain a particular number of model labels. 269 

 270 

2.5 Determination of trends in the consideration of model characteristics and model labels 271 

(question Q3) 272 

Although five years of data is a rather short time frame to detect significant trends, two trend 273 

analyses are carried out using linear regression with time as the explaining variable. In the first 274 

analysis the explained variables are the frequencies of the model characteristics within the sample 275 

of all 122 models, while the second analysis considers the frequencies of the five model labels as 276 

explained variables.     277 

 278 

3 Results 279 

3.1 Distribution of the model characteristics (research question Q1) 280 

The general distribution of the characteristics, based on all 122 models, is shown in Fig 1. About 281 

one third of the models is general while two thirds are specific (note that the sum of general and 282 

specific models is slightly above 100 %, since a few papers contain both a general and a specific 283 

analysis). Almost 80 % of the models were used for a positive analysis while about 30 % are 284 

normative (note that some papers contain both a positive and a normative analysis). About half of 285 

the models were analysed for system understanding and theory development, about two third were 286 

used for prediction, while only about five percent were developed and applied in a participatory 287 

approach.  288 



 289 

Half of the models consider spatial structure, stochasticity and feedback loops; 80 % are dynamic, 290 

but less than one third consider agents and less than ten percent consider networks. Asymmetric 291 

information is considered only in less than five percent of all models, and the consideration of 292 

prediction and learning is only slightly more abundant. About half of all models include some sort 293 

of utilitarian approach of decision making, less than 20 % assume non-classical human behaviour, 294 

while in the rest of the models modes of decision making or human behaviour are irrelevant or not 295 

addressed. About one third of the models address issues of non-linearity, while only ten percent 296 

consider emergence. Effects of policy intervention were analysed in about 30 % of the models. 297 

Lastly, about one third of the models is equation-based while two thirds are algorithmic, and almost 298 

all models were analysed numerically or by computer simulation.   299 

 300 

3.1 Distribution of the model characteristics for the dominant model labels (research question 301 

Q2) 302 

As described in the Methods, an issue of interest is the label attached to the model by its author(s). 303 

In the sample of 122 papers, 24 models were labeled “socio-ecological” or “social-ecological” 304 

(SEM), 23 are “ecological-economic” (EEM), 14 “bio-economic” (BEM), 13 “agent-based” or 305 

“multi-agent” (ABM), and eight are “system-dynamic” (SDM). Five models have two labels like 306 

“agent-based social-ecological model” or “ecological-socio-economic model” and were sorted in 307 

both respective classes. In addition, the labels “land use model” and “multi-objective model” are 308 

observed three times each and two “game models” are in the sample. The labels “business model”, 309 

“carbon cycle model”, “disease-economic model”, “growth model” and “socio-hydrological” occur 310 

once each, and all other models are “not specified” as defined in the Methods. 311 

 312 

For the five most frequent labels, Fig. 2 shows the characteristics distributions, analogous to Fig. 1. 313 

Frequencies between 0.25 and 0.75 (this choice is, if course, somewhat arbitrary) in a characteristic 314 

indicate that both, presences and absences are quite abundant, so that this characteristic is neither 315 

very typical nor very untypical for the considered model label. Larger frequencies ≥ 0.75, in 316 

contrast, indicate that the characteristic is typical for the model label while smaller frequencies ≤ 317 

0.25 indicate that the characteristic is untypical. Table 1 summaries for each label the typical and 318 

the untypical characteristics. 319 

 320 

By these definitions of “typical” and “untypical”, participatory approaches or decision support are 321 

untypical purposes for all model labels. Except for the EEM, all model labels are typically dynamic. 322 

Typically, there is no consideration of networks, asymmetric information or learning. With the 323 

exceptions of ABMs, consideration of emergence is untypical. And models of all labels are typically 324 



analysed numerically. 325 

 326 

 327 
Figure 1: Relative frequencies of the model characteristics over all 122 model studies (for the 328 

numerical values, see Appendix B in the Supplementary Material). 329 

 330 

 331 
Figure 2: Relative frequencies of the model characteristics within the five most dominant model 332 

labels: agent-based models (ABM), bio-economic models (BEM), ecological-economic models 333 

(EEM), social-ecological models (SEM) and system-dynamic models (SDM) (for the numerical 334 

values, see Appendix B in the Supplementary Material). 335 

 336 



Beyond this, ABMs (recall: according to the authors’ own labelling) are typically used for positive 337 

and not for normative analysis, contain many of the features like stochasticity and feedbacks, etc., 338 

and consider non-classical human behaviour. Policy analysis is untypical, as well as an equation-339 

based formulation. Instead the models are typically formulated (and solved) algorithmically. 340 

 341 

BEMs are typically deterministic, employ a utilitarian framework like the human model of homo 342 

oeconomicus and are equation-based.  They typically disregard non-linearities and are equation-343 

based. Agent-based approaches, including the consideration of non-classical behaviour are untypical 344 

in EEMs. SEMs are very similar to the ABMs but in contrast – and like the EEMs – typically 345 

disregard non-classical behaviour and emergence. 346 

 347 

SDMs are typically specific and not general, are used for positive rather than normative analysis 348 

and for prediction. They are typically non-spatial and deterministic but consider feedbacks. They do 349 

not consider agents, and since they are typically not used for normative analysis like cost-350 

effectiveness analysis they also do not use a utilitarian framework. Like the BEMs they are typically 351 

equation-based. 352 

 353 

If a model characteristic is found typical (or untypical) in only one model label then that model 354 

label may be regarded as distinctive in the considered characteristic (grey shaded cells in Table 1). 355 

By this definition, ABMs are distinctive by their consideration of spatial structure and stochasticity 356 

and, naturally, by their use of an agent-based approach. This allows them to distinctively consider 357 

non-classical behaviour and implies that they are formulated algorithmically rather than through 358 

mathematical equations. BEMs, in contrast, are distinctive by their use of a utilitarian framework 359 

and their formulation through equations. EEMs and SEMs are, by the present definition, not 360 

distinctive in any characteristic.  361 

 362 

However, one should note that these outcomes, of course, depend on the choice of the thresholds 363 

(0.75 and 0.25) by which a characteristic is denoted as typical or untypical, respectively. The fact 364 

that SEMs, e.g., are not distinctive for feedback loops is because on the one hand the proportion of 365 

models with feedback loops in that label (0.72) is below the threshold of 0.75; and on the other 366 

hand, by the chosen definition, a model label is distinctive in a characteristic only if it is the only 367 

label in which that characteristic is typical. And because feedback loops are typical also for ABMs, 368 

if the threshold was lowered for instance to 0.7, feedback loops would be typical for both ABMs 369 

and SEMs – and none of both labels would be judged distinctive with respect to feedback loops. 370 

Therefore, if a label is not denoted as distinctive by a particular characteristic this does not imply 371 



that this characteristic is rare in that label, but it means that the label does not stand out in this char-372 

acteristic relative to the other labels.  373 

 374 

Table 1: Typical and untypical model characteristics for the five model labels: agent-based models 375 

(ABM), bio-economic models (BEM), ecological-economic models (EEM), social-ecological 376 

models (SEM) and system-dynamic models (SDM). The crosses mark the typical and untypical 377 

characteristics in each model label and grey shaded areas mark characteristics that render the 378 

respective model label distinctive (for further details, see text). 379 

 ABM BEM EEM SEM SDM 

 typ. untyp. typ. untyp. typ. untyp. typ. untyp. typ. untyp. 

general          × 

specific         ×  

positive ×      ×  ×  

normative  ×      ×  × 

understanding           

prediction         ×  

participatory  ×  ×  ×  ×  × 

spatial ×         × 

dynamic ×  ×    ×  ×  

stochastic ×   ×      × 

feedbacks ×        ×  

agents ×     ×    × 

networks  ×  ×  ×  ×  × 

asym. info  ×  ×  ×  ×  × 

learning  ×  ×  ×  ×  × 

utilitarian  × ×       × 

non-classical ×   ×  ×  ×   

non-linearity    ×       

emergence    ×  ×  ×  × 

policy  ×      ×   

eq.-based  × ×      ×  

algorithmic ×   ×      × 

analytical  ×  ×  ×  ×  × 

numerical ×  ×  ×  ×  ×  

 380 

 381 



3.2 Relations between the models (question Q2 continued) 382 

In the previous section the main similarities and differences between ABMs, BEMs, EEMs, SEMs 383 

and SDMs have been highlighted. According to Table 1, quite a lot of the 24 characteristics are 384 

either typical or untypical or neither of both in most or even all model labels. Only 12 instances 385 

were found where a model label is distinctive by a certain characteristic (grey-shaded cells in Table 386 

1). The degree of overlap between the five model labels can be measured quantitatively by 387 

regarding the frequency distributions in Fig. 2 as vectors and calculating the Pearson’s correlation 388 

coefficients between these vectors (Table 2). 389 

 390 

The average correlation between a model label with the four respective others labels ranges from 391 

1.8/4 = 0.45 (ABM) to 0.71 (EEM) and 0.74 (SEM). The highest pairwise correlation is between 392 

BEM and EEM (0.90), SEM and SDM (0.81) and SEM and EEM (0.80). These results identify 393 

quite a substantial overlap between the model labels, in particular between bio-economic, 394 

ecological-economic and social-ecological models. One may wonder whether this overlap also 395 

reflects in the journals in which the models were published. Comparing the diagonal cells of Table 3 396 

with the off-diagonal cells reveals that for each model label the umber of “unique” journals in 397 

which no other model label was observed (given in the diagonal cells of the Table) is about equal to 398 

the number of journals in which also other model labels were found (given in the off-diagonal 399 

cells).  400 

 401 

Table 2: Correlations between the model labels agent-based (ABM), bio-economic (BEM), 402 

ecological-economic (EEM), social-ecological (SEM) and system-dynamics (SDM), based on the 403 

frequency distributions in Fig. 2. 404 

 ABM BEM EEM SEM SDM Row sum – 1 
ABM 1.00 0.20 0.39 0.71 0.50 1.80 
BEM 0.20 1.00 0.90 0.62 0.67 2.39 
EEM 0.39 0.90 1.00 0.80 0.73 2.82 
SEM 0.71 0.62 0.80 1.00 0.81 2.94 
SDM 0.50 0.67 0.73 0.81 1.00 2.71 
    405 

Although the smallness of the sample size demands some caution, this indicates that the authors of 406 

different model labels partly prefer different journals to publish their papers but that there is also a 407 

substantial overlap through “shared” journals. The broadest journals in that sense, that contain more 408 

than two model labels, are Ecological Economics (containing BEM, EEM, SEM and SDM), 409 

Ecological Modelling (containing ABM, BEM, EEM and SEM), Journal of Environmental 410 

Management (containing ABM, BEM, EEM, SEM), Proceedings of the National Academy of 411 

Sciences of the USA, PNAS (containing ABM, BEM, SEM and SDM) and Land Use Policy 412 

(containing BEM, EEM and SEM). 413 



 414 

3.3 Trends (question Q3) 415 

The first part of the trend analysis is to relate the number of papers represented by each model label 416 

to the publication year (for the numerical values, see Appendix C in the Supplementary Material). 417 

Table 4 shows the average annual changes and their statistical significance obtained by linear 418 

regression. While BEMs, EEMs, and SDMs exhibit slight but highly insignificant declines, there is 419 

a weakly significant increase of about one ABM paper per year and a strongly significant increase 420 

of about two SEM papers per year. For comparison, for the years 2015–2019 the sum of the 421 

numbers of ABMs, BEMs, EEMs, SEMs and SDMs equals 27, 20, 24, 20, 31, reflecting in a (highly 422 

insignificant) average annual change of 0.8 (Table 4). Thus, SEMs increase significantly faster than 423 

the average of all five model labels while ABMs seem to exhibit an average growth.  424 

   425 

Table 3: Journals or conference proceedings in which the 122 model papers have been published, 426 

sorted by the five model labels agent-based (ABM), bio-economic (BEM), ecological-economic 427 

(EEM), social-ecological (SEM) and system-dynamic (SDM). The diagonal cells contain the 428 

sources found only for the respective model label, while the off-diagonal cells contain the sources in 429 

which papers of the two respective model labels were found. Journals in which four (three) model 430 

labels were found are bold-faced (in italics).   431 

 ABM BEM EEM SEM SDM 
ABM Ecol. Complex. 

Fishes 
Frontiers Ecol. Env. 
Frontiers Env. Sci. 
Proc. IEEE Conf.* 
Reg. Env. Change 

Ecol. Model. 
J. Env. Manag. 

PNAS 

Ecol. Model. 
J. Env. Manag. 

Ecol. Appl. 
Ecol. Model. 

Env. Soft. 
J. Env. Manag. 

PNAS 

PNAS 

BEM  Aust. J. Agr. Res. Ec. 
Biol. Inv. 

J. Env. Econ. Manag. 
Nat. Res. Model. 

Agricult. Syst. 
Ecol. Econ. 

Ecol. Model. 
J. Env. Manag. 
Land Use Policy 

Ecol. Econ. 
Ecol. Model. 

J. Env. Manag. 
Land Use Policy 

PNAS 

Ecol. Econ. 
IOP Earth & Env. Sc. 

PNAS 

EEM   Adv. Syst. Sci. Appl. 
Aquaculture 
Biol. Cons. 

CEUR Works. Proc. 
Cons. Biol. 

Glob. Change Biol. 
IEEE Transact. Cyber. 
Syst. Res. Behav. Sci. 

Ecol. Econ. 
Ecol. Model. 

Env. Res. Econ. 
Intl. J. Commons 
J. Env. Manag. 
Land Use Policy 

Ecol. Econ. 

SEM    Earth Syst. Dyn. 
Ecol. Appl. 

JASSS 
Marine Policy 

Ocean Coast. Manag. 
Sci. Total Env. 

Scientific Reports 
Sustainability (Switz.) 

Theor. Ecol. 
Urban Ecosystems 

Ecol. Econ. 
PNAS 

SDM     J. Cleaner Prod. 



Proc. 2016 Comp.** 
  *Proceedings of the IEEE Conference on Decision and Control 432 
**Proceedings – 2016 International Conference on Computational Intelligence and Applications, ICCIA 2016 433 
 434 

 435 

Table 4: Average annual changes in the number of published papers within the time frame 2015–436 

2019 for agent-based (ABM), bio-economic (BEM), ecological-economic (EEM), social-ecological 437 

(SEM) system-dynamic models (SDM), and all five model labels (All); and corresponding p-values 438 

from the underlying linear regression. 439 

Model label ABM BEM EEM SEM SDM All  
Annual change 0.8 –0.3  –0.1 1.8 –0.4  0.8 
p-value 0.2 0.7 0.8 0.004 0.5 0.7 
   440 

Analogously, Table 5 shows the trends in selected model characteristics (for the numerical values, 441 

see Appendix C in the Supplementary Material). Most characteristics exhibit insignificant trends 442 

with p-values above 0.2, while significant trends with p-values equal to or below 0.07 are observed 443 

only for the characteristics general, stochastic and non-linearity. 444 

 445 

Table 5: Average annual changes in the number of published papers within the time frame 2015–446 

2019 that contain a particular model characteristic, and corresponding p-values from the underlying 447 

linear regression. Only model characteristics with p-values ≤ 0.2 are shown. 448 

Characteristic Annual change p-value 
general 1.6 0.006 
understanding 1.5 0.1 
stochastic 1.5 0.07 
agents 1.6 0.2 
utilitarian 1.5 0.2 
non-linearity 1.8 0.04 
algorithmic 1.8 0.15 
analytical 0.8 0.2 
 449 

 450 

4 Discussion and Conclusions 451 

4.1 Summary of the main results 452 

122 papers dealing with the model-based integration of ecology and socio-economics in the fields 453 

of biodiversity conservation, ecosystem services and natural resource management from the years 454 

2015–2019 were analysed with regard to 24 characteristics. The characteristics measure the purpose 455 

of the model study, structural features of the model, consideration of information, human behaviour, 456 

system complexity, environmental policy, as well as the formal implementation and analysis of the 457 

model. 458 



 459 

In most model characteristics there is high variation among the models so that between 25 and 75 460 

percent of the models have that characteristic and the complementary percentage does not (cf. Fig. 461 

1). Rather frequently observed characteristics (> 75%) are: positive analysis, dynamic, and 462 

numerical analysis; while networks, asymmetric information, learning in agents, non-classical 463 

agent behaviour and emergence are considered only relatively rarely (< 25 %); and only very few 464 

studies are participatory. These observations do not seem to change over time, as a trend analysis 465 

shows (cf. Table 5): significant increases are found only in the characteristics general, stochastic 466 

and non-linearity which are quite abundant anyway in the sample.  467 

 468 

Some of the large variation in the first-mentioned characteristics with occurrences between 25 and 469 

75 percent is captured by the labels assigned to the models by the authors. The five most frequent 470 

labels found in the sample are “agent-based models” (ABM) (13), “bio-economic models” (BEM) 471 

(14), “ecological-economic models” (EEM) (23), “social-ecological models” (SEM) (25) and 472 

“system-dynamic models” (SDM) (8). In comparison to the other models, the ABMs have a high 473 

number of structural features and – next to the classical assumption of utility-maximising agents – 474 

also consider alternative models of human behaviour (although most of the ABMs do assume 475 

utility-maximising agents, confirming Groeneveld et al. (2017)) (cf. Table 1). Similar to 476 

observations made by Egli et al. (2019), emergence is also considered only in a minority of all 477 

ABMs in the sample. On the opposite end are the BEMs which contain only relatively few 478 

structural features and make use of a utilitarian framework such as the human model of homo 479 

oeconomicus. In between one can find the EEMs, the SEMs and the SDMs (which however also 480 

differ between each other, such that e.g., the SDMs rarely consider spatial structure, usually contain 481 

feedback loops and are often equation-based). 482 

 483 

However, although there are differences between the models with different labels there are still 484 

many similarities, which can be seen in Fig. 2 and Table 1 – and is numerically confirmed by high 485 

pairwise correlation coefficients (taking the frequency distributions in Fig. 2 as vectors) (cf. Table 486 

2). While ABMs somewhat differ, the other four model labels are correlated quite strongly, 487 

especially BEM with EEM, SEM with SDM, and SEM with EEM, with correlation coefficients ≥ 488 

0.8.   489 

 490 

That the ABMs are closely related to each other and somewhat different from the other model labels 491 

is also indicated by the results of a cluster analysis of the model characteristics. In Appendix D of 492 

the Supplementary Material, pairwise correlations between the model characteristics are calculated. 493 

Each characteristic is represented by a 122-element vector whose k-th element is one (zero) if the k-494 



th model in the sample of all models has (does not have) the characteristic. A high correlation 495 

between two characteristics i and j indicates that if characteristic i is present (absent) in a model 496 

then characteristic j is likely to be present (absent) in that model, as well. The two overlapping 497 

clusters D and E in Fig. D2 contain the characteristics spatial, stochastic, algorithmic, agents and 498 

non-classical behaviour, which are five of the typical characteristics of ABMs and exactly those 499 

five which render ABMs distinctive  (Table 1). The other clusters in Fig. D2 cannot be mapped one-500 

to-one to model labels. Clusters A and B contain many of those characteristics that are either typical 501 

or untypical for all 122 models (Fig. 1), while cluster C is difficult to relate and interpret. 502 

 503 

The partial overlaps between the model labels indicated by Table 2 is also reflected in the journals 504 

in which the reviewed model papers have been published (Table 3). Although some journals were 505 

found to contain only one model label, a number of journals have published models of several 506 

labels – in particular Ecological Economics, Ecological Modelling, Journal of Environmental 507 

Management and PNAS which include four model labels each. 508 

 509 

While there is a substantial overlap between the structure of the models within the different model 510 

labels, some differences exist with regard to temporal developments. While the number of published 511 

SEMs in the sample increased by about two per year, the numbers in the other model labels seem to 512 

remain rather constant (Table 4). 513 

 514 

 4.2 Evaluation of the main results 515 

Addressing research question Q1, there appears to be quite a good balance between general and 516 

specific models, between positive and normative analyses, and between the model purposes of 517 

system understanding and prediction;  also features like dynamics, spatial structure, stochasticity,  518 

agents and feedback loops are quite often considered. On the downside, issues that are likely to be 519 

relevant and complicate policy making in the real, such as asymmetric information, non-rational 520 

behaviour of agents and social networks, are rarely addressed; and despite calls for more 521 

participation of stakeholders in research, models are still very rarely used in participatory research. 522 

As the trend analysis in Table 5 indicates, this does not seem to change over time (addressing 523 

research question Q3). 524 

 525 

Addressing question Q2, the labels attached to the models by their author(s) partly indicate a typical 526 

structure of the model, so that agent-based models (ABMs) tend to differ from the models with 527 

other labels, in particular the system-dynamic (SDM) and bio-economic models (BEMs). 528 

Explaining these differences between the models with different labels is clearly beyond the scope of 529 

the present paper. One explanation could be the disciplinary background (even though the 122 530 



models were selected for interdisciplinarity) of the model authors. Although with different 531 

characteristics, Drechsler et al. (2007) and Drechsler (2020) compared in a similar way ecological, 532 

economic and ecological-economic models from the field of biodiversity conservation and found 533 

that the ecological models tended to contain more structural features and were more complex than 534 

the economic models.  535 

 536 

On the other, despite these differences there is quite some overlap between the model labels, 537 

indicated by the correlation coefficients in Table 2, which reflect that, e.g., the models have similar 538 

purposes, share some structural features like dynamics, and share deficiencies like the wide absence 539 

of participatory applications. The overlap between the models also reflects in the observation that 540 

various journals include models of several labels. These observation can altogether be regarded as a 541 

positive signal, such that there seems to be enough diversity in the modelling cultures to avoid 542 

“inbreeding” but enough similarities to allow for communication and cross-fertilisation among 543 

different modelling communities.   544 

 545 

A problematic observation, though, is that the number of papers with the present type of 546 

mechanistic models, designed to integrate ecology and socio-economics for the management of 547 

biodiversity and ecosystem services, grows only slowly (addressing research question Q3; cf. Table 548 

4). Qualitatively this is confirmed by another Scopus search (not shown), carried out in June 2020, 549 

with the same search string as in section 2.1 and adding in turn the terms “agent-based”, “bio-550 

economic”, “ecological-economic”, “socio-ecological” OR “social-ecological” and “system-551 

dynamic”. Although the tedious manual screening described in section 2 was excluded for 552 

simplicity (so the two searches can be compared only loosely), the qualitative result is the same 553 

such that, except for SEM, the number of papers seems to remain constant over the past decade; 554 

while the number of SEM papers has increased from about 10 in 2010 to about 50 in 2019.   555 

 556 

4.3 Limitations of the analysis and future research 557 

The present study involves a number of limitations. The literature search via Scopus (section 2.1) 558 

will certainly not have found all the papers of the considered field. This is indicated, e.g., by the fact 559 

that the same search a few months later led to slightly different results. Further, the manual 560 

screening of the obtained papers may have not been free of any errors. In addition, the choice of the 561 

search terms is subjective and may have led to the omission of relevant articles. For instances, it did 562 

not yield any papers with integrated models that also contain applications in the field of 563 

environmental management.  564 

 565 

Related to this is the fact that the selection of the model characteristics (section 2.2) is subjective, 566 



too. Smaller errors may have also occurred in the evaluation of the models with regard to the model 567 

characteristics (section 2.3). Although it is used only as a supplement to the correlation analyses 568 

described in section 2.4, the manual cluster analysis in Appendix D of the Supplementary Material 569 

involves subjective elements. Lastly, for time constraints only five years of data were considered 570 

which limits the significance of the results of the trend analysis (section 2.5).  571 

 572 

While the errors in sections 2.2–2.4 are probably minor, the errors in the generation of the data base 573 

in section 2.1 and the trend analysis in section 2.5 call for further research. The use of alternative – 574 

possibly broader – search terms and a longer time frame could lead to interesting insights beyond 575 

those of the present study.   576 

 577 

4.4 Conclusion 578 

To conclude, mechanistic models integrating ecology and socio-economics for the management of 579 

biodiversity and ecosystem services by now consider quite a lot of system features such as spatial 580 

structure, agents and feedback loops, but are still largely (to varying degrees, depending on the 581 

model label) disregarding quite a number of issues such as the distribution and acquisition of 582 

information among and by the human actors, as well as the way in which the human actors translate 583 

available information into decisions. The human factor is also under-represented in the sense that 584 

only very few models are used within participatory studies. Nevertheless, there seems to be a 585 

fruitful level of diversity in modelling cultures but also sufficient overlap for cross-fertilisation, 586 

which may help further improving the models in the field.  587 
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