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Abstract 

Non-structural mitigation measures to the globally increasing flood events include forecast 

based alert generation. However, the extreme rainfall forecasts are associated with low hit 

rate, high false alarm, and spatiotemporal bias; which makes it difficult to rely on them. 

Further, the losses due to flood in a region not only depend on rainfall severity but also on 

topography, socioeconomic conditions and exposure of the region to floods. Here, we 

introduce a new concept of spatial flood risk mapping and forecasting at weather  to medium 

range based on forecasted hazard, embedded with vulnerability topographic and 

socioeconomic) and exposure information. Here, we define hazard as the probability of 

extreme rainfall event during upcoming days given an available weather forecast for the same 

days. As hindcast is used for computation of probabilities, hazard contains prior information 

about the false alarm, hit rate and spatiotemporal bias of the forecast. Vulnerability is 

calculated by averaging the topographic and socioeconomic indicators, and exposure is 

calculated using a land use land cover map. Topographic vulnerability is computed with 

digital elevation model using Height Above the Nearest Drainage method, whereas Data 

Envelopment Analysis is performed to derive the socioeconomic vulnerability based on the 

demographic census data. For a specific region and a specific event, the relative flood risk 

maps are generated at an administrative level (e.g., district, subdistrict or village level for 

India) and the high-risk areas can be identified from those maps for mitigation. The 

methodology is demonstrated for a very recent extremely severe flood event that happened in 

Kerala, India in August, 2018. It is evident from the results that the high-risk areas forecasted 

well in advance (as high lead time as 15 days) match fairly well with the areas, which 

suffered maximum losses because of direct flood.  
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1.   Introduction 

Climate change has caused a considerable impact to the global water cycle which lead to 

changes in seasonal patterns as well as an increase in the frequency of extreme rainfall events 

[Oki and Kanae, 2006]. Intergovernmental Panel on Climate Change [IPCC, 2012] reports 

that this increase in extreme rainfall is statistically significant in many parts of the globe. It 

also states with medium confidence, that these changes in extremes are attributed to 

anthropogenic influences. In the Indian sub-continent as well, both empirical methods and 

model projections have shown an increase in the frequency and magnitude of extreme rainfall 

events [Goswami et al., 2006; Preethi et al., 2017; Roxy et al., 2017]. A decrease in the total 

rainfall and intensification of extremes in the tropics for 21
st
 century has been projected in the 

IPCC reports [Seneviratne et al., 2012]. ]. Irrespective of climate change, the importance of 

forecast and understanding its uncertainty have a very high societal relevance. Increasing 

extremes in a changing climate further increases its importance. Extreme rainfall events not 

only affect our day to day lives but also result in floods and landslides which cause huge loss 

of lives and property [Dottori et al., 2018; Fowler et al., 2010]. Every year a billion people 

are affected and thousands die because of these extreme events [IFRC/RCS, 2011].  

According to the National Disaster Management Authority (NDMA, 2008), floods have 

become a cause of concern because of an increasing trend in flood related losses in India. 

Some examples of such extreme events include the heavy rainfall event in Mumbai, India on 

26
th

 July 2005, which recorded 944 mm rainfall in 24 hours [Jenamani et al., 2006]. The 

rainfall and resulting flood caused the death of almost 1000 people and an economic loss of 

about US$100 million [Kumar et al., 2008]. Uttarakhand in India received almost 340 mm 

rainfall in a day (375% above daily mean) on 17
th

 June 2013, which resulted in severe flash 

floods [Dube et al., 2014]. Chennai city experienced a terrible flood during November-
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December 2015, which caused at least 400 deaths, economic loss of US$ 1120 million 

[Narasimhan et al., 2016; Seenirajan et al., 2017].  

A significant amount of research has been conducted in the past decades to understand these 

events. A large proportion of these events could not have been predicted accurately and hence 

resulted in devastation [Coumou and Rahmstorf, 2012]. The commonly used alert generation 

and warning system for flood are mostly based on the rainfall forecast. Hence, an accurate 

prediction of extreme rainfall at an administrative level is very important for the stakeholders 

and decision-makers. However, the complex multiscale atmospheric processes responsible 

for the occurrence of any extreme rainfall event and their inherent variability makes them 

difficult to predict [Fritsch et al., 1998].  Coarse resolution dynamical models often fail to 

predict these extreme rainfall events with accuracy as these have high false alarm, low hit rate 

and spatio-temporal biases [Březková et al., 2010; Khaladkar et al., 2007; Selvam, 2011; 

Shastri et al., 2017]. Prediction skills can be improved using regional models at a high 

spatiotemporal resolution, but these simulations are computationally very intensive thus are 

difficult to perform on real-time [Dodla and Ratna, 2010].  

Very heavy rainfall in a short time span often results in floods when it exceeds the ground 

absorption capacity and the runoff exceeds the capacity of river system [Neuendorf et al. , 

2005]. This makes mitigation planning difficult. Flood risk associated with these events are 

difficult to predict as it not only depends on the complexity of processes related to extreme 

rainfall but also on the interaction between these events and the geography, population, 

infrastructure, the preparedness of the region [Balk et al., 2012].  

Flood risk can be defined as a product of hazard, vulnerability and exposure [IPCC, 2012; 

Kron, 2005; Karmakar et al. , 2010], which is used for climatological projections. In the risk 

framework for climate applications, hazard is defined in IPCC (2012) as "The potential 
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occurrence of a natural or human induced physical event that may cause loss of life, injury, or 

other health impacts, as well as damage and loss to property, infrastructure, livelihoods, 

service provision, and environmental resources". Calculating flood risk also requires 

vulnerability, which works as a proxy of human-environment relationship [Turner et al., 

2003]. IPCC (2012) defines vulnerability as the “propensity or predisposition to be adversely 

affected”. In order to get the overall vulnerability of a region, various classes of vulnerability 

are combined together [Karmakar et al., 2010]. The exposure [IPCC, 2012] component of 

risk is defined as “the presence (location) of people, livelihoods, environmental services and 

resources, infrastructure, or economic, social, or cultural assets in places that could be 

adversely affected by physical events and which, thereby, are subject to potential future harm, 

loss, or damage”. In the changing climate, along with an increase in the amount and 

frequency of extreme rainfall events, the exposure of humans to flood is also increasing 

[Hirabayashi et al., 2013], thus is considered for flood risk quantification. However, this 

approach of defining climatological flood risk cannot be used for event range flood 

mitigation. 
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Here, we propose a new methodology to use this concept of flood risk at weather to medium 

range scale to generate event specific risk maps. Traditionally the concept of hazard is used at 

a climate scale, where it is defined as the probability of extreme rainfall above a specific 

threshold and computed from the long-term data. Here we have introduced a concept of 

hazard, which is computed at weather to medium range in the forecast system. Hazard is 

computed as the probability of occurrence of an extreme rainfall in any grid, given a forecast 

value. Flood risk maps are to be generated by combining hazard with socioeconomic and 

topographic vulnerability and, exposure of a region. To demonstrate and evaluate this 

methodology, it is applied for the flood event in Kerala, India, which occurred during August 

2018. The following section discusses the case study are and the data used. The limitations of 

the state of art weather forecast system is discussed in the section 3. Sections 4 and 5 contains 

the methodology and results respectively and the paper is summarised in the last section. 

2.   Case study and Data 

2.1. Case study description: Kerala flood of August, 2018 

Kerala is a southern coastal state of India, spread over an area of 38,863 km
2 

and is divided 

into 14 districts and 63 subdistricts (Figure 1a) [Apel et al., 2009]. It is one of the most 

densely populated Indian states with a population of over 33 million (860 people per square 

kilometre) and with a gross domestic product (GDP) of US$120 billion (Department of 

Economics and Statistics, Government of Kerala, 

http://www.ecostat.kerala.gov.in/index.php/economy). Many other human development 

indicators for Kerala are at par with those of developed countries like literacy rate 93.11%, 

life expectancy 77 years and a sex ratio of 1,084 women per 1,000 men [Census, 2011]. It 

should also be noted that the state Kerala is a coastal state extending like a thin strip along the 
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west coast of India and the grids of state of the art weather forecasting model, such as the 

Global Ensemble Forecast System (GEFS) Reforecast Version 2, is too coarse (spatial 

resolution of 1° × 1° for the present one, which is used in the study) to obtain district and state 

specific information (Figure 1b).  

Between June 1 and August 18, 2018, the cumulative rainfall in Kerala was 42% in excess of 

the normal average which caused the worst flood (in August) in the state since 1924. During 

this period, maximum rainfall occurred on 15
th

 August and the daily accumulated rainfall is 

shown in Figure 2a. Coastal parts of Kerala received extremely heavy rainfall during the 

event. From figure 2a, it is evident that Thrissur. Malappuram, Alappuzha, Pattanamtitta and 

Kollam districts received the rainfall amount more than 120 mm/day, whereas in the other 

parts of Kerala the intensity was more than 60 mm/day. 1,259 out of 1,664 villages spread 

across all 14 districts (Supplementary table S1) were affected [KPDNA, 2018]. Nearly 341 

landslides were reported from 10 districts with Idukki being the worst hit district with 143 

landslides. The seven most affected districts were Alappuzha, Ernakulam, Idukki, Kottayam, 

Pattanamtitta, Thrissur, and Wayanad. Malappuram and Palakkad suffered moderate losses in 

this flood. This affected 5.4 million people, displaced 1.4 million people, and took 433 lives 

(22 May–29 August 2018) [KPDNA, 2018]. The district wise total crop, transport, 

aquaculture, health and heritage losses (in million USD), as obtained from the KPDNA, 2018 

reports are presented in Figure 2b. It is interesting to note that there is lack of consistency 

between the districts with high rainfall and the districts with high loss. It may also be possible 

that the heavy rainfall that occurred at different places during the 1
st
 half of August 2018 is 

responsible for such an inconsistency.  To explicitly show this, we have shaded the districts 

with high loss in Figure 2a. This is quite evident that very high loss cannot be attributed to 

the rainfall intensity only and there exists lot of other factors, related to vulnerability and 
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exposure. Here, in this study we focus on the same for the forecasts of weather to medium 

range flood risk map. 

According to the KPDNA (2018) report, though heavy rainfall was forecasted well in 

advance, a lack of planning caused the overflow of reservoirs. The late pre-emptying of 

reservoirs is often making flood damage worse, in India and elsewhere. These problems 

could have been avoided by the help of a reliable forecast system and proper mitigation plan. 

The method proposed here is applied to the Kerala flood of August 2018 for demonstration. 

2.2. Data 

The data obtained for different modules of the weather to medium range flood risk forecast 

models are mentioned in the following subsections. 

2.2.1. Hazard 

The 6 hourly rainfall data at a spatial resolution of 1° × 1° for a period of 1985 to 2015 from 

Global Ensemble Forecast System (GEFS) Reforecast Version 2, is used as the reforecasted 

rainfall dataset [Hamill et al., 2013]. Reforecast (also called hindcast) data are retrospective 

forecasts for the past using the same model configuration employed for operational forecasts. The 

datasets are generated from an 11-member ensemble forecast, every day from 00 UTC for a 

period of December 1984 to present day; and is available at a 3-hourly time step for first 8 days 

(horizontal resolution is T254 (~50 km)) and 6-hourly time step for 8-16 days (T190 (~70 km)) at 

42 vertical levels.  

The daily gridded rainfall data for the period 1985 to 2015 from the India Meteorological 

Department (IMD) at a spatial resolution of 0.25º × 0.25º is used as the observational dataset [Pai 

et al., 2015]. This dataset is developed based on ground observations from 6995 stations across 

India using an inverse distance weighing scheme and is available for the period of 1901-2015 [Pai 
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et al., 2015]. The data is re-gridded to a resolution of 1º × 1º to match the resolution of forecast 

data. Figure 1b shows the grids considered in this study to generate the forecasted hazard for 

Kerala during August 2018 flood event. 

To compare the model performance in forecasting the extreme rainfall event, Tropical Rainfall 

Measurement Mission (TRMM) 3 hourly 0.25 º× 0.25 º rainfall product is used to generate 

daily accumulated rainfall for 15th August 2018, the day of maximum rainfall during the flood 

event. We have used the TRMM data, as the gridded data from IMD was not available for 2018. 

2.2.2. Socioeconomic and topographic vulnerability 

To calculate the socioeconomic vulnerability, the subdistrict level demographic and 

economic information is obtained from the Census of India, 2011. As per the availability of 

data from Census of India, a set of relevant indicators are chosen to appropriately represent 

the status of socio-economy of the region [Vittal et al., 2020]. Table 1 shows the list of 

indicators chosen along with corresponding justifications in support of their selection. For the 

topographic information, we procure digital elevation model (DEM) product [Farr et al., 

2007] from NASA Version 3.0 Shuttle Radar Topography Mission (SRTM) at Global 1 arc 

second (~ 30m) resolution, which is further used in the Height Above the Nearest Drainage 

(HAND) model to generate the topographic vulnerability.  

2.2.3. Exposure 

Here, the land use land cover (LULC) data is used as a proxy to quantify the exposure 

component of risk, as it directly affects the severity of flood. For example, but not limited to, 

the land use pattern specifically over urbanized region leads to increasing the severity of 

flood due to increase in an impervious fraction, which eventually increases the exposure of 

land use to flood over urban hotspots [Karmakar et al., 2010]. The decadal 100 m resolution 
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LULC dataset for 2005 from ORNL DAAC [Roy et al., 2016] is used for this purpose, which 

classifies the LULC into 19 classes, as provided in Supplementary table S2. 

3.   Limitations of State-of-the-Art Weather Forecasts 

The state-of-the-art flood alert generation system uses the forecasted rainfall amount during 

extreme rainfall events. However, these forecasts are often associated with very low hit rate 

and high false alarm along with spatiotemporal biases. Here, we consider the weather to 

medium range forecasts of extreme rainfall event in Kerala on 15
th

 August, 2018, at multiple 

lead times. Since, the meteorological forecasts have significant bias, we apply bias correction 

by scaling [Maraun, 2016], using the hindcast and observed data. The bias corrected outputs 

are presented in Figure 3. Following the conventional approach bias correction is done for the 

entire available hindcast dataset but the result is presented only for a single storm. Even at 

lead day 1, the model completely fails to produce the magnitude of the extreme rain (Figure 

2a) over the state of Kerala. Further to this, at a lead time of 10 and 15 days, the forecasts are 

not at all showing indications of extremes over Kerala, and at a lead time of 2-3 days, it 

started showing a bit of indication of moderate rainfall. Clearly these are not sufficient for an 

evacuation action or taking any other precautionary measures. We also find that these 

forecasts are associated with very low hit rate and high false alarms. Here we define hit rate 

as the fraction of extremes predicted by the model successfully and false alarm as the fraction 

of time model predicts a non-extreme event as an extreme. Hit rate and false alarm are 

calculated as: 
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where 

a = number of intersects between A and B 

b = number of intersects between A and   ̅ 

c = number of intersects between  ̅ and B 

A = Number of times model forecasts an extreme  

B = Number of times observation shows an extreme 

 ̅ = Number of time model forecasts a non-extreme rainfall 

 ̅ = Number of time observation shows a non-extreme rainfall 

The hit rate and false alarm associated with the forecasts are given in Supplementary figure 

S1. The hit rate always remains around 10% at any lead time with a very slight improvement 

at a lead time of 1 day. False alarm remains as high as 90%. It is evident that they are not 

enough for decision making towards disaster mitigation.  

4.   Method 

Here, to address the above-mentioned problems associated with the uncertain and biased 

forecasts, we propose a novel approach of forecasting flood risk at weather to extended range 

scale. This is in contrast to the conventional approach of flood forecasting, which uses bias 

corrected weather forecasts. Conventionally, the risk to extremes is defined as the product of 

hazard, vulnerability and exposure as [Chen et al., 2015; Gusain et al., 2020; IPCC, 2012; 

Karmakar et al., 2010; Kron, 2005; Sahani et al., 2019] : 
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The concept of risk has been widely used at a climate scale; however, we propose the same at 

a weather to medium range. The difference in the concept of risks between weather to 

medium range and climate scales lies in the definition of hazards. We define hazard as the 

probability of an extreme event (above a defined threshold) given the forecasts for the same 

day. The flood risk at a weather to medium range incorporates weather to medium range 

forecasts, which essentially makes the hazard component dynamic, whereas the remaining 

components of flood risk (vulnerability and exposure) are considered to be static. During 

extreme events, based on the forecasted risk maps generated at a weather to medium range, 

the high risk areas can be identified and targeted first. Hence, a location specific evacuation 

and flood mitigation can be done well in advance to reduce the losses. Figure 4 shows a 

complete flowchart of the methodology used to generate weather to medium range event 

specific flood risk maps. Further, these maps need to be generated at an administrative (eg. 

district, subdistrict or village for India) level depending upon the data availability for better 

efficiency in decision making. In the present study, flood risk is generated at subdistrict level 

based on the authoritarian decision process and availability of demographic data. 

4.1. Hazard 

Hazard is typically defined as the probability of an extreme event. This concept is 

traditionally used at a climate scale [Gusain et al., 2020; Sajjad et al., 2020]. As for example a 

hazard associated with 95
th

 percentile of rainfall is 0.05. Here, we propose to define hazard at 

a weather to medium range and define it as the probability of getting an extreme rainfall in 

any grid, given a forecast value. This is a dependant of the forecasts, and hence with the 

change in lead time and subsequent forecasts, the hazard value at a location gets modified. At 

a location (for example for a grid), if we define extreme rainfall event as the rainfall above a 

threshold of 99
th

 percentile, the hazard may be defined as:  
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                ∣∣                                                          

where, 

   = observed daily rainfall 

   = 99
th 

percentile of rainfall observations 

H = forecasted (Hindcast) rainfall with its value denoted as f 

In order to generate the conditional probability given in equation 4, we first obtain the joint 

probability of observed and hindcast (from the same model which is being used for forecast). 

To generate the joint probability, copula is used which creates the multivariate distribution 

based on the individual marginal distributions [Dupuis, 2007; Ghosh, 2010]. Copula does not 

need the marginal distributions to follow a specific and same distribution. This makes copula 

advantageous over conventional multivariate parametric multivariate distributions like 

normal, log-normal.  

The first step in applying the copula-based approach is to obtain the marginal distribution 

functions of associated variables, which are the observed rainfall (O) and hindcast rainfall 

(H). As both observational and hindcast rainfall data contain zero rainfall values, mixed 

marginal distributions are used. Gamma distributions are fitted to the non-zero values of 

rainfall. To model the probability mass function of zero and non-zero rainfall, we apply 

Bernouli Trials. The CDF of the variables (X, which stands for both O and H) is given by: 

       {
                       
                                         

                                                      

where, 

p = probability of getting zero rainfall = 
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  = total no of days 

  = no of zero rainfall days 

  (x) = CDF of nonzero rainfall obtained by fitting a Gamma distribution 

After generating the marginal distributions, Archimedean copula is used to generate the 

bivariate distribution. In this case, O and H are the two variables for which copula is to be 

fitted. By definition of copula, a two dimensional distribution function is given by:  

        (           )                                                           

where,  

C = Copula  

          = marginal distribution functions of O and H 

In the approach based on Copula, we consider two variables, U =       and V =       to be 

the CDF of O and H respectively, where U and V are uniformly distributed random variables 

with values u and v. Here a single parametric copula is used with parameter θ [Ghosh, 2010; 

Nelsen, 1999; Zhang & Singh, 2006]: 

            {          }                                                       

where, 

     is a convex decreasing function (copula generator) 

The parameter θ is generated using the relationship between Kendall’s coefficient of 

correlation (τ) and  (??) [Ghosh, 2010; Karmakar and Simonovic, 2009]: 

     ∫
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where,  

t = u or v 

Kendall’s   calculated using the following equation: 

    (
 
 
)
  

 ∑     [(     )(     )]
    

                                   

where,  

           [(     ) (  
  

 
)]    

           [(     ) (  
  

 
)]    

i, j = 1,2, ….. n 

Three types of Archimedean copulas are used namely Gumbel, Frank and Clayton. The 

relationship between   and θ and the mathematical equations for each of these copulas are 

given in Supplementary table S3. The most important step in this approach is the choice of 

copula to best fit the distributions [Favre et al., 2004]. The copula having minimum Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) score is considered to 

be the best fitted copula. For correct representation of extreme events, tail dependence test is 

important for the selection of copula [Ghosh, 2010; Poulin et al., 2007]. As we are dealing 

with extreme rainfall events, copula having the highest upper tail dependence coefficient is 

desirable. Here, the upper tail dependence coefficient is computed using a nonparametric 

estimator, CFG (Caperaa, Fougeres, Genest) [Capéraà et al., 2000]. Based on AIC, BIC and 

upper tail dependence coefficient, the best copula is selected.   

The other important criteria is the selection of grids for analyzing the forecasts. Ideally, the 

forecasted and obserevd rainfall should belong to the same grid. However, there is a high 

possibility of spatial bias in the forecasts that generates rainfall to a neighbouring place of the 
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area of interest. To overcome this, we perform three anlyses: a) considering only the grid of 

interest for both observations and the forecasts, b) considering maximum of the observed and 

forecasted rainfall over a 3   3 box of 9 grids with the grid of interest at the centre; c) 

considering maximum of the observed and forecasted rainfall over a 5    5 box of 25 grids 

with the grid of interst at the centre. The hazard values thus generated using equation 4 are in 

gridded form which are converted into subdistrict level by area weighted average method. 

4.2.  Vulnerability 

The vulnerability component of flood risk is calculated as the average of socioeconomic and 

topographic vulnerabilities. 

4.2.1. Socioeconomic Vulnerability 

Here, a measure of a region’s susceptibility to flood damage is referred as flood vulnerability, 

which includes a portion of population susceptible to either emotional, mental or physical 

damage. In addition, the seriousness of current situation and previous experiences with 

disastrous event may further influence the vulnerability [Karmakar et al., 2010]. During a 

disastrous event, the socio-economic vulnerability mainly focuses on response, reaction and 

resistance for a population of a region, along with the damage caused to the economic sector. 

Here, the framework proposed by Sherly et al. (2015) and Vittal et al. (2020) is implemented 

to estimate the socio-economic vulnerability over the study region. The major steps followed, 

which include, judicious selection, standardization and aggregation of indicators and 

subsequent ranking of sub-districts have been shown in Figure 5. A step-by-step exposition 

has been provided in the following paragraphs.  

Choice of indicator plays an important role in socioeconomic vulnerability quantification. 

The indicators chosen should be relevant, justifiable and a good representative of the social 
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and economic condition of the concerned region [Vittal et al., 2020]. The set of indicators 

selected for our study along with their justification are given in Table 1. Identifying an 

indicator as positive (sensitive) or negative (adaptive) has a significant influence on the 

overall vulnerability, and thus appropriate recognition of such indicators is crucial [Vittal et 

al., 2020; Sharma et al., 2020]. A positive (negative) indicator increases (decreases) the 

vulnerability, and consequently affect the flood risk. Here, the vulnerability indicators are 

standardized mainly to make the indicators dimensionless, which will allow us to compare 

the different indicators over the study region. The method of standardization for an indicator 

(Wu et al., 2002; Karmakar et al., 2010) is provided in the equation below: 

  
     

        

          
                                                                                

  
     

         

          
                                                                               

where, 

  
    = standardized vulnerability indicator of i

th 
subdistrict 

   = vulnerability indicator of i
th 

subdistrict 

     = minimum vulnerability indicator in all the subdistricts 

     = maximum vulnerability indicator in all the subdistricts  

These equations consider both maximum and minimum values in the expression, and ensure 

that the vulnerability values are within a [0, 1] interval (Wu et al., 2002) and always non-

negative (Karmakar et al., 2010). During standardization, the indicators were adjusted for 

their sign, which indicates whether each indicator contributes positively (+) or negatively ( ) 

to overall vulnerability.  
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The inherent subjectivity involved in the selection of threshold values for different classes or 

ranges makes it difficult to categorize the vulnerability [Holand et al., 2011; Mitchem, 2004; 

Uitto, 1998]. To address this issue, there have been different approaches adopted by the 

researchers ranging from simple averaging [Karmakar et al., 2010] to more complex cluster 

analysis [Kok et al., 2016; Sietz et al., 2011]. Although, these approaches are equally efficient 

for an elegant representation, these lacks in reducing the subjectivity in selection of weights 

[Rygel et al., 2006]. Contrarily, Data Envelopment Analysis (DEA) [Huang et al., 2011; 

Sherly et al., 2015; Vittal et al., 2020; Wei et al., 2004] does not require weight assignment, 

thereby reducing the subjectivity; and also introduces a new classification approach with 

minimal possibility of  rank reversal [Huang et al., 2011; Wei et al., 2004]. In addition, DEA 

does not make any assumption on the form of the functions, as it is a non-

parametric technique. Therefore, the present study implements DEA to aggregate the 

standardized indicators and subsequently rank each spatial unit, known as Decision Making 

Units (DMUs), i.e., subdistricts in the present study. 

To use the DEA model efficiently, the indicators should have very low correlation. In order 

to decorrelate the highly correlated indicators and decrease the dimensionality of these 

indicators, Principal Component Analysis (PCA) is performed. Principal Components (PCs) 

explaining ~75% of the variability are considered as inputs for the DEA. Following the 

approach of Sherly et al. (2015) and Vittal et al. (2020), a dummy value 1 (unity) is assigned 

as output in the DEA, since it represents the state of the system prior to the occurrence of a 

hazard. Hence, the socioeconomic vulnerability of each DMU (subdistrict) is obtained by 

subtracting the relative efficiency of that subdistrict from unity. In our case, 2 PCs are 

considered as input and the Banker-Charnes-Cooper (BCC) model [Banker et al., 1984] of 

DEA is used to rank the DMUs by calculating their relative efficiencies. Lower the 

efficiency, lower is the rank and higher is the vulnerability.    
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4.2.2. Topographic vulnerability 

To quantify the flood risk during extreme rainfall events, elevation of a region plays a very 

important role. Topographic vulnerability accounts for the elevation and HAND method 

[Rahmati et al., 2018; Rennó et al., 2008; Nobre et al., 2011, 2016] is used to quantify this 

parameter. The model normalises Digital Elevation Model (DEM) values by changing the 

elevation with respect to sea level into elevation with respect to nearest drainage. The 

advantage of using HAND values to calculate topographic vulnerability is that, grids with 

different elevation values, but same HAND value are considered equally vulnerable. A flow 

chart of the methodology followed to calculate topographic vulnerability at grid level is 

shown in Figure 6 and the steps followed are described considering an example DEM in 

Supplementary figure S2.  

Firstly, the DEM with sinks is used as input for the HAND model. A sink (or depression) is 

an area or a point which has an elevation lower than all its neighbouring area or point 

[Rieger, 1998] (marked in red circles in Supplementary figure S2a). As it does not have any 

drainage outlet, flow network generation is not possible with DEM having sinks. Depression 

breaching method [Martz and Garbrecht, 1999] is used to connect these sinks and a 

hydrologically coherent DEM is generated (Supplementary figure S2c). The breaching 

method connects two neighbouring sinks by lowering elevation of some points in the shortest 

path connecting them. Flow direction is computed from this hydrologically coherent DEM 

using D8 method [Tarboron, 1997]. In this method flow from each grid is assigned to one of 

its eight neighbours having the steepest slope to generate a local drainage direction (LDD). 

The LDD generated using hydrologically coherent DEM is called Coherent LDD 

(Supplementary figure S2d).  Next, a flow accumulation for each grid is computed by the 

adding the number of grids draining into that grid to get an accumulated area map 
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(Supplementary figure S2e). In order to generate a drainage network map, channel initiation 

is done by setting up a threshold of accumulated area (set as 10 in the example) in the map. 

Grids having an area above the threshold value are considered in the drainage network. This 

threshold can be applied manually or automatically, by using an accurate drainage network 

map, called mapped stream network (MSN) as input. Using the LDD with drainage network, 

nearest drainage map is generated and each grid is associated with the grid that it drains into, 

known as the drainage grid. An example is shown in Supplementary figure S2g, where each 

drainage grid is given a colour and the associated grids are represented as a lighter shade of 

the same colour. The relative height of each grid is calculated as the difference of height of 

that grid and its drainage grid to generate a HAND map (Supplementary figure S2h).  

To calculate topographic vulnerability for Kerala, an automated geographic information 

system GIS tool of the HAND model developed by Rahmati et al.(2018) is used. Due to the 

unavailability of an accurate MSN, an appropriate threshold is to be selected manually by 

trial and error method as suggested by Rahmati et al. (2018). Here, 25000 is found to an 

appropriate threshold, as higher values fail to give any positive value to the grids in the low 

lying areas (coastal areas) and lower values result in a very high density drainage network. 

Using this drainage network, nearest area map is generated and HAND values calculated at a 

grid level (~30m). These gridded HAND values are converted to subdistrict level by 

weighted average method. Lower the HAND value, higher is the topographic vulnerability. 

Subdistrict level HAND values are standardised between 0 and 1 and are subtracted from 1 to 

obtain the topographic vulnerability.  

4.3. Exposure 

LULC of an area is used as indicator to quantify exposure of any area to flood. LULC is a 

primary characteristic of any region and decides the soil permeability, run off etc. Following 
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the methodology used by Karmakar et al. (2010) each LULC category is assigned with a 

Degree of Importance (DI). For example, the built-in area has more pavement and concrete 

surfaces which increases the run off and is more prone to losses during flood, and thus is 

assigned a higher DI value. On the other hand, grassland like open areas have very low DI 

values since they allow infiltration and decrease run off, so suffer lesser losses. DI values 

associated with each of the LULC type (as described by Karmakar et al. (2010)) are given in 

Table 2. Using the DI values and the fraction of area they covered by any LULC type in a 

subdistrict, exposure is calculated as: 

    ∑[      (
  

 

  
)]

 

   

                                                                   

 

where, 

   = exposure of subdistrict i 

l = LULC type 

    = Degree of importance for LULC type   

  
  = Area occupied by LULC type   in subdistrict i 

   = Area of subdistrict i 

The subdistrict wise exposure values obtained are then standardised between 0 and 1 and 

exposure maps are generated. 
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5.   Results 

5.1. Hazard 

In the proposed methodology hazard is calculated for different lead times, using the rainfall 

forecast, as the conditional probability of extreme rainfall event given the forecasts (equation 

4). To get the conditional probability, joint probability needs to be calculated from the 

bivariate distribution of observed and forecasted (hindcasted) rainfall. A bivariate copula is 

used and three Archimedean copulas are fitted: Gumbel, Frank and Clayton in order to find 

the best fit. Among these three, Gumbel is found to be the best fitted, for all the grids and at 

all the lead times, as it has the minimum AIC and BIC values and the maximum upper tail 

dependence coefficient, calculated using the CFG-estimator. Hence, Gumbel copula is 

identified as the most suitable and is used to generate the conditional probability of extreme 

rainfall given the forecasts and to calculate the hazard. The daily accumulated rainfall 

forecasted at lead day 15 (forecasted on 1
st
 August, 2018) to lead day 1 (forecast done on 15

th
 

August, 2018) is used in equation 4 to forecast hazard at respective lead days for the event 

that took place on 15
th

 August, 2018. 

Here, to consider the spatial bias, we propose to apply three approaches as mentioned in 

Section 4.1, by considering the rainfall data, (a) only at the grid of interest; (b) which is 

maximum over 3   3 grid boxes centred on the grid of interest and (c) which is maximum 

over 5   5grid boxes centred on the grid of interest. First, we calculate the hazard for each 

grid using the observed and forecasted rainfall of the grid of interest at different lead times 

(Supplementary figure S3). For case (a), the higher hazard areas are not matching with the 

most affected areas (hatched areas) until lead day 2. Even on lead day 1, only some of the 

hatched parts are shown to be having a high forecasted hazard value. This may be attributed 

to the spatial bias present in the model which results in forecasting the rainfall in the 
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neighbouring grid. The other two analyses (case (b) and (c)) are done, by considering the 

maximum rainfall in a 3   3 box of 9 grids and 5   5 box of 25 grids with the grid of interest 

at the centre.  The hazard maps generated using the 3   3 (Figure 7) and 5   5 boxes 

(Supplementary figure S4) shows high values at the areas that suffered maximum losses from 

lead day 15. This further proves that the rainfall forecast is likely to have a spatial bias in the 

model which can be overcome by also including the neighbouring grids in the analysis. Since 

the 3   3 and 5   5 cases (Cases (b) and (c)) do not show much disagreement, the maximum 

rainfall forecasted in a 3   3 box is used to generate the gridded hazard maps for each grid 

(Figure 7b (1-6)) further which is used to calculate risk. Hazard for the same event is 

generated using rainfall forecast from all the 11 ensembles present in the GEFS. It found that 

no major difference exists in the hazard values between different ensembles. This is because 

of the consideration of conditional probabilities from the hindcast.   

In the gridded hazard maps from lead day 5 most of the grids start showing very high value, 

which implies our method is able to predict the extreme event. The hazard maps generated by 

this method are able to take into account the model’s inability to forecast extreme rainfall 

magnitude correctly. We further use area weighted average method to convert these gridded 

values to subdistrict scale values (Supplementary figure S5). The subdistrict wise hazard 

values are standardised between 0 and 1 and divided in to five categories; very low (0 - 0.2), 

low (0.2 – 0.4), medium (0.4 – 0.6), high (0.6 – 0.8) and very high (0.8 - 1). Starting from day 

15, till lead day 10, the standardized hazard values are showing a low to very low values in 

most of the affected areas. These values start to increase by lead day 5 and show high to very 

high hazard in most of the affected areas. As these subdistrict wise hazard values are obtained 

based on the method that considers 3   3 grids, these show a very little variability among 

adjacent subdistricts. Hence it is difficult to identify the high-risk zones in the area under 

consideration using these subdistrict wise hazard maps. 
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To understand the applicability of the model for other extremes, we apply the same to six 

extreme events that took place during 1985-2015 in the study region (Supplementary table 

S4). We present the composites of hazard values with their band (from six events) at different 

lead days (Supplementary figure S6 (b-i)). It is quite interesting to note that within lead days 

of 10, for all the cases of extremes, the hazard value comes almost same and this is a good 

indication of identifying a correct threshold of hazard for a specific grid. Such an 

identification of threshold must be done probably with a higher number of extreme events 

corresponding to different high percentiles. We further compute the false alarm ratio by 

considering the days to have false alarms when they are not extreme days, but the model 

shows a higher hazard with respect to the threshold corresponding to the specific grid and 

lead day (Supplementary figure S7). We find still a huge false alarm ratio exists with our 

proposed post processing approach. The false alarm ratio drops a bit at a lead day of 1. Such a 

huge false alarm for the west coast of India during monsoon was also reported in Shastri et 

al., (2017). Reducing false alarm needs improvements in the weather models and such 

improvements are not possible using post-processing techniques alone for this specific region 

and the season. For a coastal region, it also needs finer resolution models to take care of the 

sea-land inerface. 

 However, given the forecasts these are the best estimates and among the high hazard zones, 

the hotspots are identified with the help of vulnerability and exposure values. Hence, we 

introduce the concept of risk that considers all three aspects, hazard, vulnerability and 

exposure. The next subsections present the results obtained from the vulnerability analysis. 
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5.2. Vulnerability 

5.2.1. Socioeconomic Vulnerability 

Subdistrict wise socioeconomic vulnerability is computed using DEA approach, which 

calculates the relative efficiency of each subdistrict using various vulnerability indicators. 

Figure 8a shows the subdistrict wise socioeconomic vulnerability map of Kerala. To 

understand the importance of socio-economic vulnerability, we overlaid the economic loss 

map on the vulnerability map showing the highly affected districts with hatching. We find 

that most of the highly affected regions have high socio economic vulnerability. The results 

also show the correctness of the selection of the socioeconomic indicators for this present 

study.  

5.2.2.  Topographic vulnerability 

The topographic vulnerability values, calculated using the HAND method and the 

vulnerability map is given in Figure 8b. Among the highly affected districts, Alappuzha, 

Kottayam and some parts of Pattanamtitta and Wayanad have very high topographic 

vulnerability but Idukki and eastern parts of Pattanamtitta show very low to low 

vulnerabilities though losses in these areas are high. This is because, Idukki and parts of 

Pattanamtitta lie in Western Ghats mountain ranges resulting in higher HAND values and 

thus lower topographic vulnerability.  

5.3. Exposure 

Exposure is calculated at subdistrict level as the sum of product of each the DI value of a 

LULC type with the fraction of area covered by each type using equation 11 and exposure 

maps are generated (Figure 8c). Subdistricts with more crop areas and built-in areas such as 
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Ernakulam, Kottayam and Wayanad are more exposed to flood risks because of a high DI 

value of these LULC types. Idukki and parts of Alappuzha show low exposure due to the 

presence of more forest, barren lands and, water bodies which are associated with low DI 

values.  

5.4. Risk 

Subdistrict wise relative risk maps are generated for the extreme rainfall event that took place 

on 15
th

 August at different lead days, by combining hazard, vulnerability and exposure, using 

equation 3 (Figure 9). Risk is standardised and is categorised into 5 predefined categories, 

very low (< 20%), low (20-40%), medium (40-60%), high (60-80%) and very high (> 80%). 

It should be noted that “very low” here refers to very low relative risk compared to other sub-

district, but at an absolute level, they may be still high. This risk map helps to prioritize sub-

district level the action plans by selecting the region with highest relative risk. Subdistricts 

with relatively higher relative risk are identified in this process, which could have been 

prioritised for implementation of evacuation strategies, planning response and recovery 

practices and, other mitigation. 

Comparing the generated relative risk maps (Figure 9) with the actual loss data (Figure 2b), it 

is evident that high relative risks in the districts like Wayanad, Thrissur, Ernakulam and 

Kottayam are forecasted by the model well in advance with a lead time of up to 15 days. 

Some subdistricts in Malapuram, which had reported moderate losses (Figure 2b), are also 

showing high to very high relative risk throughout the 15 days forecast. The predicted 

relative risk in Kannur region is higher in the extended range (15–8 days) forecasts because 

of the higher rainfall prediction in the region during that period. This relative risk eventually 

reduces with lead time as the rainfall forecast improves. The model failed to forecasts the 

high relative risk in some parts of Alappuzha district, because of the low exposure value 
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despite having a very high vulnerability value (Figure 8). The low exposure value in that area 

is attributed to the small water bodies, which cover a significant fraction of the total area, and 

these water bodies are assigned with a very low DI value (0.1). Losses in Idukki, Palakkad 

and eastern parts of Pattanamtitta are mostly attributed to landslides in the Western Ghats 

during the event. Our model does not consider landslides and hence, those areas are not 

identified by the relative flood risk maps as high risk zones. The future scope is to consider a 

landslide model in this framework to further improve the forecasting skill. 

The loss data for the flood is available at district level whereas we are predicting risk at 

subdistrict level. It is evident from Figure 9 that in some of the affected districts, not all 

subdistricts are showing a high relative risk. This may be due to the fact that the reported loss 

in a district is dominated by some of the subdistricts in it. Overall, this method is successful 

in identifying most areas effected by direct flood as high-relative risk areas at a lead time of 

almost 15 days.  

6.    Summary 

Extreme rainfall events show an increasing trend in the Indian subcontinent and so do the 

resultant flood events. The state-of-the-art rainfall forecast system is usually associated with a 

very high false alarm, low hit rate and spatiotemporal biases. In recent years there have been 

a number of cases where the prediction of extreme rainfall is either spatially or temporally 

inaccurate or the amount of rainfall predicted is wrong altogether. These forecasts were not 

good enough to be implemented in mitigation planning, which thus resulting in huge loss of 

life and property. Here a new methodology has been proposed which generates relative flood 

risk maps at weather to medium range as a product of hazard, vulnerability, and exposure. 

This methodology is applied to the August 2018 Kerala floods in India for demonstration. 

The concepts of vulnerability and exposure do not really add to the predictive information but 
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helps to identify the regions with high risk, well in advance. The flood event during 2018 

over Kerala showed that all the areas with high flood losses did not necessarily experienced 

spatially highest amount of rainfall in the state. The losses were also governed by the 

vulnerability and exposure. Therefore this concept is brought into the forecast system with 

the proposed approach. 

Hazard is defined as the probability of getting an extreme rainfall (above 99
th

 percentile) in 

any grid given a forecast value. GEFS forecast data is used to generate hazard forecast up to 

15 lead days. In order to find the conditional probability, a bivariate copula is fitted to the 

GEFS hindcast and IMD observed rainfall data for the period 1985 to 2015. CDF of observed 

and hindcasted rainfall data is found by fitting a mixed distribution where Gamma 

distribution is used for the non-zero values. For selection of the best copula, three 

Archimedean copulas are considered, namely Gumbel, Frank and Clayton. Gumbel is 

selected as it showed minimum AIC, BIC values and maximum tail dependence among the 

three Archimedean copulas. In order to take care of the spatial bias present in the rainfall 

forecast model, the maximum rainfall observed and forecasted in the neighbouring (3   3) 

box of 9 grids with the grid of interest in centre, is considered as the rainfall observed and 

forecasted respectively for a grid. The hazard generated is able to predict extreme rainfall by 

showing high values but fails to identify areas under high risk due to coarse spatial resolution. 

Hence, along with the hazard values other local parameters such as the social and economic 

conditions, topography and LULC are also incorporated in terms of vulnerability and 

exposure in order to find the relative risk of the units in the region of interest. 

Vulnerability is defined as average of socioeconomic and topographic vulnerabilities. 

Socioeconomic vulnerability describes the socioeconomic conditions of an area. From the 

Census of India (2011) data, various positive and negative indicators are considered in order 

to quantify the socioeconomic vulnerability. PCA is performed to reduce the dimensionality 
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of these indicators and 2 PCs explaining 75% of the variability are used as input for the DEA 

framework. BCC model of DEA is used to calculate the relative efficiency of the subdistricts 

in order to rank them. Socioeconomic vulnerability is computed by subtracting the relative 

efficiency from 1. Topographic vulnerability is calculated using the HAND method which 

uses DEM output and generates HAND maps, where the relative height of each grid with 

respect to the flow path is considered. The smaller HAND values show larger vulnerabilities, 

so the value subtracted from 1 is used as the topographic vulnerability. Exposure for each 

subdistrict is calculated by assigning DI values to different LULC types and multiplying 

these with the area fraction covered by each type in that subdistrict.  

To evaluate the performance of the method, it is applied to the devastating floods in Kerala 

during August, 2018. Relative risk maps are generated at a subdistrict level at different lead 

days by combining the hazard generated with corresponding lead days with socioeconomic 

and topographic vulnerability and, exposure. These maps are compared with the district wise 

loss data from KPDNA (2018) reports which is used as a proxy for severity of the flood. 

Most subdistricts in the highly affected districts like Wayanad, Thrissur, Ernakulam and 

Kottayam and moderately affected district Malappuram are identified as high relative risk 

areas starting from lead day 15. Though losses due to flood is very high in Alappuzha, the 

model fails to identify them in some of its subdistricts due to presence of water bodies with 

very low exposure value. The high relative risk areas identified in the risk maps could have 

been given priorities in flood mitigation and evacuation planning in order decrease the flood 

losses.  

The risk model can be applied to any different case studies and may suitably be adjusted/ 

modified depending on data availability. As for example, the major issue, a new case study 

area may face, are the problems associated with the availability of socio-economic data. The 

elevation data and the gridded rainfall data, as applied in the present manuscript, are mostly 
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available for majority of areas around the globe. The socio-economic vulnerability 

component in the present model is a flexible one to consider a lower availability of variables. 

The model is sensitive to the component used for vulnerability analysis and it does not 

consider intermodal uncertainty across different approaches used for computing vulnerability. 

The proposed model assumes that only local rainfall feeds into the regional flood and does 

not consider either the upstream hydrology or the memory resulting from near past heavy 

rainfall. Such an assumption does not hold true for large watersheds. The units considered in 

the model are rather administrative depending on the availability of socio-economic data. 

Understanding of flood needs the consideration of hydrological units, such as watershed or 

sub-basin. Future scope of the work lies in addressing these limitations. Further improvement 

of this risk based forecast system can be done, by using in-situ station level or finer resolution 

rainfall data.  By combining this method with hydro-economic models, flood loss can be 

predicted accurately which is very useful for reduction and assessment of losses during 

floods. Often extreme rainfall in hilly regions lead to landslides, and thus a landslide module 

can be added to the present model to further improve it for a multi-hazard system. Another 

limitation of this framework is combining multiple indicators like hazard, vulnerability and 

exposure using product-based combination/aggregation. Though this approach has been 

popularly used and are efficient for a quick and relative representation, it may not be the best 

metric. A solution could be a multi-criteria decision making approach which can be 

considered as a potential area of future research.  
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Figure Captions 

Figure. 1 (a) Map of Kerala, India showing districts and neighboring states. (b) Grids of 

weather forecast model, GEFS, superposed over the study region. 

Figure. 2: (a) Observed daily rainfall from Satellite (TRMM) on 15
th

 August 2018 (Hatched 

areas show the most affected districts as per the loss report). (b) District wise total crop, 

transport, aquaculture, health and heritage losses (in million USD) from KPDNA, 2018 report 

Figure 3: (a-f) Bias corrected GEFS forecasted daily rainfall on lead days 15(1
st
 Aug), 10(6

th
 

Aug), 5(11
th

 Aug), 3(13
th

 Aug), 2(14
th

 Aug) and 1(15
th

 Aug) for 15
th

 August 2018 

Figure. 4: Flowchart of the proposed methodology for event specific flood risk forecast at 

weather to medium range 

Figure. 5: Flowchart of the methodology for calculating socioeconomic vulnerability 

Figure 6: Flowchart of the methodology for calculating topographic vulnerability in terms of 

HAND values 

Figure 7: (a) Demonstration of a 3   3 box of 9 grids considered (grey) with the grid of 

interest at the center (red) for the forecasted rainfall used to calculate hazard. (b1- b6) Hazard 

forecasted for each grid considering the maximum rainfall in the neighboring 3   3 box of 9 

grids with the grid of interest at the center. The hatched area shows the most affected districts 

(in terms of losses) by the flood. 

Figure 8: subdistrict wise (a) socioeconomic vulnerability; (b) topographic vulnerability; and 

(c) exposure. The hatched area shows the most affected districts in terms of losses due to the 

flood. 
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Figure 9.  Subdistrict wise relative flood risk map at a lead time (a) 15 days; (b) 10 days; (c) 5 

days; (d) 3 days; (e) 2 days and (f) 1 day. The hatched area shows the most affected districts 

in the flood. 
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Tables 

Table 1: List of socioeconomic vulnerability indicators and justification of each 

indicator  

 Positive Indicators Justifications 

Total number of houses Increases potential loss 

Total population More difficult evacuation and more deaths 

Total SC-ST population Categorized as socially backward community by the 

government 

Percentage of house with power The electronic equipment increases the loss 

Negative Indicators  

Main working population More resilience against hazard 

Female literates The more the literate female the more they can save 

their families during hazard 

Amenities Helps during disaster management and emergency 

operations 

Percentage of house with water Resources to help during hazard 
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Table 2. DI values for different LULC 

Type DI 

values 

Category 

Deciduous broadleaf forest 0.3 Forest 

Crop 0.8 Resources 

Built-in  0.85 Urban area  

Mixed Forest 0.3 Forest 

Shrub land 0.3 Open area 

Barren 0.4 Sparse crop land (Causes more loss than open 

area) 

Fallow 0.4 No crop farm land (Causes more loss than open 

area) 

Waste 0.2 Waste (Open area with less sensitivity to loss)  

Water Bodies 0.1 Water body 

Plantation 0.8 Resources 

Aquaculture 0.8 Resources 

Mangrove 0.3 Forest 

Salt pan 0.8 Resources 

Grass 0.4 Open area 

Evergreen broadleaf forest 0.3 Forest 

Deciduous needle leaf forest 0.3 Forest 

Permanent wetland 0.5  

Snow and ice 0  
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Evergreen needle leaf forest 0.3 Forest 

 

Figures 

 

Figure. 1 (a) Map of Kerala, India showing districts and neighboring states. (b) Grids of 

weather forecast model, GEFS, superposed over the study region. 
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Figure. 2: (a) Observed daily rainfall from Satellite (TRMM) on 15
th

 August 2018 (Hatched 

areas show the most affected districts as per the loss report). (b) District wise total crop, 

transport, aquaculture, health and heritage losses (in million USD) from KPDNA, 2018 report 
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Figure 3: (a-f) Bias corrected GEFS forecasted daily rainfall on lead days 15(1
st
 Aug), 10(6

th
 

Aug), 5(11
th

 Aug), 3(13
th

 Aug), 2(14
th

 Aug) and 1(15
th

 Aug) for 15
th

 August 2018 
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Figure. 4: Flowchart of the proposed methodology for event specific flood risk forecast at 

weather to medium range 
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Figure. 5: Flowchart of the methodology for calculating socioeconomic vulnerability 
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Figure 6: Flowchart of the methodology for calculating topographic vulnerability in terms of 

HAND values 
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Figure 7: (a) Demonstration of a 3   3 box of 9 grids considered (grey) with the grid of 

interest at the center (red) for the forecasted rainfall used to calculate hazard. (b1- b6) Hazard 

forecasted for each grid considering the maximum rainfall in the neighboring 3   3 box of 9 

grids with the grid of interest at the center. The hatched area shows the most affected districts 

(in terms of losses) by the flood. 
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Figure 8: subdistrict wise (a) socioeconomic vulnerability; (b) topographic vulnerability; and 

(c) exposure. The hatched area shows the most affected districts in terms of losses due to the 

flood. 
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Figure 9.  Subdistrict wise relative flood risk map at a lead time (a) 15 days; (b) 10 days; (c) 5 

days; (d) 3 days; (e) 2 days and (f) 1 day. The hatched area shows the most affected districts 

in the flood. 
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