This is the accepted manuscript version of the contribution published as:

Herzsprung, P., Wentzky, V.C., Kamjunke, N., von Tümpling, W., Wilske, C., Friese, K., Boehrer, B., Reemtsma, T., Rinke, K., Lechtenfeld, O.J. (2020): Improved understanding of dissolved organic matter processing in freshwater using complementary experimental and machine learning approaches *Environ. Sci. Technol.* **54** (21), 13556 - 13565

The publisher's version is available at:

http://dx.doi.org/10.1021/acs.est.0c02383

Subscriber access provided by HELMHOLTZ ZENTRUM UMWELTFORSCHUNG

Contaminants in Aquatic and Terrestrial Environments

Improved understanding of dissolved organic matter processing in freshwater using complementary experimental and machine learning approaches

Peter Herzsprung, Valerie Wentzky, Norbert Kamjunke, Wolf von Tumpling, Christin Wilske, Kurt Friese, Bertram Boehrer, Thorsten Reemtsma, Karsten Rinke, and Oliver Jens Lechtenfeld

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.0c02383 • Publication Date (Web): 23 Sep 2020 Downloaded from pubs.acs.org on September 23, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Improved understanding of dissolved organic						
2	matter processing in freshwater using						
3	complementary experimental and machine learning						
4	approaches						
5	Peter Herzsprung,*,† Valerie Wentzky,†,# Norbert Kamjunke,‡ Wolf von Tümpling,‡						
6	Christin Wilske,‡ Kurt Friese,† Bertram Boehrer,† Thorsten Reemtsma, ^{§,⊥} Karsten						
7	Rinke,† and Oliver J. Lechtenfeld *,§,∥						
8	AUTHOR ADDRESS						
9 10	† UFZ – Helmholtz Centre for Environmental Research, Department Lake Research, Brückstraße 3a, D-39114 Magdeburg, Germany						
11 12	# State Agency for Agriculture, Environment and Rural Areas Schleswig-Holstein - LLUR, Lake Department, Hamburger Chaussee 25, D-24220 Flintbek, Germany						
13 14	‡ UFZ – Helmholtz Centre for Environmental Research, Department River Ecology, Brückstraße 3a, D-39114 Magdeburg, Germany						
15 16	§ UFZ – Helmholtz Centre for Environmental Research, Department Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany						
17	$^\perp$ Institute of Analytical Chemistry, University of Leipzig, D-04103, Leipzig, Germany						

- 18 UFZ Helmholtz Centre for Environmental Research, ProVIS Centre for
- 19 Chemical Microscopy, Permoserstr. 15, D-04318 Leipzig, Germany
- 20
- 21 KEYWORDS
- 22 DOM, molecular reactivity, microbial processes, photochemical transformations,
- 23 drinking water reservoir, ultra-high resolution mass spectrometry, machine learning,
- 24 predictive models
- 25 ABSTRACT

26 Dissolved organic matter plays an important role in aquatic ecosystems and poses a 27 major problem for drinking water production. However, our understanding of DOM 28 reactivity in natural systems is hampered by its complex molecular composition. Here, 29 we used Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and data from two independent studies to disentangle DOM reactivity based on 30 photochemical and microbial induced transformations. Robust correlations of FT-ICR-31 32 MS peak intensities with chlorophyll a and solar irradiation were used to define 9 reactivity classes for 1277 common molecular formulas. Germany's largest drinking 33 34 water reservoir was sampled for one year and DOM processing in stratified surface

35	waters could be attributed to photochemical transformation during summer months.
36	Microbial DOM alterations could be distinguished based on correlation coefficients with
37	chlorophyll a and often shared molecular features (elemental ratios, mass) with photo
38	reactive compounds. Specifically, many photo products and some microbial products
39	were identified as potential precursors of disinfection byproducts. Molecular DOM
40	features were used to further predict molecular reactivity for the remaining compounds
41	in the data set based on a random forest model. Our method offers an expandable
42	classification approach to integrate reactivity of DOM from specific environments and
43	link it to molecular properties and chemistry.

44 1 Introduction

Dissolved organic matter (DOM) sources in surface waters can be classified as allochthonous or autochthonous organic material.¹ Both sources contribute to a large molecular diversity of the DOM pool.² The molecular composition and properties of DOM play a critical role in a number of biogeochemical processes such as metal redox cycling,³ microbial growth, maintenance of community structure,⁴ and photochemical processes.⁵⁻⁷ A multitude of processes, e.g. microbial production (exudation from

51	autotrophic algae) and (heterotrophic) degradation, photochemical reactions (photo
52	production and photo degradation), leaching of organic material from plant debris, soils
53	or sediments, can in turn alter the molecular composition of freshwater DOM. ^{3,6,8,9} In
54	natural systems, these processes are often difficult to disentangle due to our limited
55	analytical abilities to distinguish multiple concurrently acting molecular transformations
56	of DOM. ¹⁰
57	In surface waters of lakes and reservoirs for example, solar radiation enhances both,
58	autotrophic processes and photochemical reactions. ¹¹ Algal growth can be monitored
59	e.g. by chlorophyll a (Chl-a) concentrations and results in a direct release of DOM as
60	exudates and a release of DOM degradation products via heterotrophic processes.8 In
61	addition, photo products are also formed from pre-existing or newly released DOM
62	molecules. All these processes may be positively correlated with Chl-a concentration
63	(or cell density, solar irradiation dose, or others). In order to discriminate photo
64	products from microbially derived products, additional data are required, e.g. on
65	molecular DOM properties and reactivity, which can serve as markers for individual
66	processes. This challenge is exemplified by the problem of increasing levels of
67	dissolved organic carbon (DOC) in drinking water reservoirs, which poses serious

68	challenges for the commercial supply of drinking water. ^{12,13} Here, DOM sources and
69	its quality play a crucial role for DOC removal during drinking water production. ^{14,15} The
70	discrimination of photochemical and microbial DOM transformation processes in
71	drinking water reservoirs is important as they alter the DOM quality and its removal
72	potential. ¹⁶ Thus it is of high importance to better understand relationships between
73	DOM molecular composition, chemical characteristics and biogeochemical reactivity in
74	the reservoir as well as removal ¹⁷ and disinfection byproducts formation potential. ^{18,19}
75	Ultra-high resolution mass spectrometry (FT-ICR or Orbitrap MS) provides molecular
76	chemical information about DOM molecules, and thus provides a direct link to
77	microbial, photochemical, or geochemical molecular reactivity.20-23 Experimental
78	approaches with isolated transformation processes provide direction and strength of
79	molecular changes of DOM. However, the transferability to natural environments with
80	coupled transformation processes can be limited and need to be combined with field
81	observations ^{8,9,24-28}
82	This study employs a novel approach to evaluate the relative importance of
83	biogeochemical processes by linking the DOM quality change in two different
84	experiments: First, the DOM composition in a reservoir was correlated to a biological

85	parameter (Chl-a concentration) across seasons and water depth (mixed microbial and
86	photochemical processes). Second, the DOM composition was correlated to radiation
87	dose (only photochemical transformations) as recently published in an irradiation
88	experiment using water from a reservoir tributary ²⁹ . We used a simple, yet robust model
89	based on Spearman's rank correlation which is an established tool to correlate peak
90	intensities of FT-ICR-MS derived molecular formulas with external parameters with a
91	semi-quantitative validity. ^{12,15,30-35} Combining two experimentally derived correlations
92	yielded nine potential correlation types for DOM compounds, which were interpreted
93	as molecular reactivity classes. Using a random forest model we predicted the
94	classification of further compounds in the data set to the nine reactivity classes.
95	Primarily this study aimed at establishing a versatile and transferable framework to
96	determine and to predict DOM transformation reactions based on mass spectrometry
97	derived molecular information. The molecular reactivity classes, which we derived from
98	our datasets, can thus be used and validated in future studies.

100 2 Materials and methods

101 2.1 Study site and sampling

102 The Rappbode Reservoir is the largest drinking water reservoir in Germany 103 (catchment size 274 km², volume 113 • 10⁶ m³, 400 m a.s.l.).^{36,37} Samples were 104 collected on seven dates between January 16 and December 6, 2016 at the deepest 105 location of the lake close to the dam wall (51°44'18" N 10°53'29" E) with a 4.2 L water 106 sampler (Limnos) at nine depths (0-70 m; Table S1) at around 10 am local time. Only 107 60 out of 63 (7 dates x 9 depths) potential samples were collected (in January the 30 108 m sample was missing; in October and December the water level was too low for a 70 109 m sample). Aliquots of 1.5 L were filtered within a few hours after sampling using glass 110 fiber filters (Whatman GF/F). Algal pigments were determined in filtered samples after 111 extraction with 5 mL ethanol and several freezing/thawing cycles with HPLC-UVD-112 FLD-DAD system (Ultimate 3000, Thermo fisher, USA).³⁸ DOC was measured via the 113 high-temperature catalytic oxidation method (DIMATOC2000, Dimatec, Germany). 114 Rappbode Reservoir is a dimictic water body. In 2016, summer stratification persisted 115 from April until November while mixing extended to a depth of 10 m from early May 116 until late September (Fig. S2.; see Wentzky et al. for details³⁷). During the growing

season, measured Secchi depths between 3.5 and 5 m indicated photic depths
between 10 and 14 m.³⁹

119

120 2.2 FT-ICR-MS data sets

121 The analysis of the filtered samples from the Rappbode Reservoir included solid phase extraction (SPE)^{40,41}, analysis with ultrahigh resolution Fourier-transform ion 122 cyclotron resonance mass spectrometry²⁹, molecular formula (MF) assignment^{42,43}, 123 124 calculation of relative peak intensities from mono-isotopic data sets⁴⁴, molecular degradation index (I_{DEG})⁴⁴ and removal of process blanks (for details see SI2). In total 125 126 6181 unique MF representing on average > 99% of assigned intensity in all 60 samples were used for further data evaluation ("Lake data set", Fig. S3). 1704 compounds (≈ 127 128 82% of assigned intensity on average) were jointly present in all 60 samples of the 129 Lake data set and constitute the "Chla data set". 130 In addition, we used a data set from a photo degradation experiment ("Photo data 131 set"; comprising 7211 unique MF), originating from a study where stream water 132 samples had been exposed to natural sunlight.²⁹ Briefly, the samples originated from 133 a forested catchment dominated by terrestrial DOM and only little exposure to solar

134	irradiation for photochemical alteration. Catchment characteristics and DOM quality
135	were similar to those of the Lake data set and representative for drinking water
136	catchments in Germany. ³ The Photo data set from Wilske et al. (2020) consisted of
137	water samples which were exposed to solar radiation (Rad) in quartz glass bottles and
138	sampled 12 times within six days. ²⁹ 3214 MF (\approx 89% of assigned intensity on average)
139	were jointly present in all 13 Photo data set samples and constitute the "Rad data set".
140	For this study, the Lake data set was combined with the Photo data set. This was
141	done by intersecting the 1704 Chla MF with the 3214 Rad MF. This joint data set
142	contained 1277 shared MF (\approx 73% intensity from the Chla data set and \approx 64% from
143	the Rad data set, Fig. S3.), which were present in 73 samples from both data sets.
144	Throughout this article, we also refer to a calculated MF from a DOM sample as
145	"compound", although a DOM MF potentially represents multiple isomers. ^{16,40}
146	
147	2.3 Statistical approach and model
148	For the Spearman`s rank correlation the intensity ranking was calculated for the 1704
149	MF in the Chla data set and the 3214 MF in the Rad separately. The rank correlation
150	coefficients r_s (Chla) were calculated ¹² for each MF using their inter sample ranks

151	(based on 60 samples) and 60 Chl-a concentration ranks. The inter sample ranking
152	calculation is a kind of double ranking (two step rank calculation) and explained in more
153	detail in SI4. Independently, rank correlation coefficients r_s (Rad) were calculated for
154	the Rad data set (inter sample ranks of MF based on 13 samples) with 13 cumulated
155	solar radiation dose ranks. ²⁹ The <i>p</i> -values were calculated from the r_s -values as
156	function of the sample number <i>n</i> and were adjusted for multiple testing using the
157	Benjamini-Hochberg correction (B-H-cor; 5% false discovery rate).45,46
158	We used Chl-a to link DOM processes in the epilimnion of the lake as planktonic
159	algae release a considerable proportion of dissolved photosynthesis products which
160	may reach > 50% of total primary production at low nutrient concentration.47
161	For the definition of reactivity classes, the two r_s – values from both correlation types
162	were considered each for the 1277 MF of the joint data set. Due to the different degrees
163	of freedom (58 vs 11), B-H-cor <i>p</i> -values and thus significance levels differed for the
164	same r_{s} -values in both data sets. For each MF in the joint data set, the two correlation
165	features (r_s and B-H-cor <i>p</i> -values from Chla and Rad data set, respectively) were used
166	as measure for the averaged reactivity of underlying DOM compounds. We propose
167	that the combination of two independent correlation types from distinct data sets (Chla

168	and Rad) results in a better assessment of DOM reactivity as compared to individual
169	data sets, provided, that the underlying samples are comparable and the studied
170	processes are sufficiently orthogonal. Table 1 shows the definitions of reactivity
171	classes as function of r_s - and B-H-cor <i>p</i> -values. MF having B-H-cor <i>p</i> -values < 0.05
172	were considered reactive, MF with B-H-cor <i>p</i> -values > 0.05 were considered non-
173	reactive towards one or both processes (Table 1). The mean molecular chemical
174	properties of the derived reactivity classes (cf. section 3.4) were robust against sample
175	sizes in both data sets (Figure S5), suggesting that sample sizes in our study did not
176	substantially affect the classification using B-H-cor <i>p</i> -values.
177	A Random forest model (RF) was used to expand the molecular reactivity classes
178	(defined for the 1277 joint MF comprising the training data) to all MF which were at
179	least present once in both data sets ($n = 3162$, see details in SI9). Random forests are
180	built on decision trees, which do not require linear relationships between variable or
181	multivariate normal distributions. ⁴⁸ Fitting multiple decision trees to the data combines
182	two statistical concepts, bootstrap aggregating (bagging) and random predictor subset
183	selection reducing the influence of predictor collinearity.49 We used the RF in
184	regression mode48 using chemical properties derived from the 1277 joint MF as

185	predictors (after exclusion of near zero-variance and highly correlated ($r^2 > 0.8$)
186	predictors) and the correlation coefficients r_s as variables. The model predicted r_{s} -
187	values, referred to as modeled <i>r_s</i> .
188	For each correlation type (Chla and Rad, see above) 500 trees were grown down to
189	a minimum node depth of 5 using 11–13 randomly selected predictors at each split.
190	Initial model validation was done with repeated cross-validation (10-fold, 10-times) and
191	the model performance was evaluated with out-of-bag prediction estimates. Further
192	Chla (Rad) model validation included a set of MF, for which r_s values were only
193	available in the Chla (Rad) data set. For more details on model setup, validation and
194	performance refer to SI9. Modeled r_s values for 3162 MF were transformed into
195	reactivity classes as described above using the same degree of freedom (df) to
196	calculate the B-H-cor <i>p</i> -values as in the respective original data set. The random forest
197	model was implemented in R^{45} using the packages randomForest ⁵⁰ for model algorithm
198	and caret ⁵¹ for hyperparameter tuning.

200 2.4 Suitability of the approach

201 The interpretation of DOM compositional changes based on molecular formulas is 202 based on an extremely large, yet unknown isomeric diversity of each molecular 203 formula.^{52,53} Although biogeochemical processes will affect isomers differently, it can 204 be assumed that the average mass spectral representation of compounds did not 205 change from sample to sample (for consequences see SI5.1). For comparison of 206 samples within a data set we used the ranking of mass peak intensities after 207 harmonization of carbon concentrations for MS measurements (see SI5.2, SI5.3). A 208 change in ranks of the same MF between samples is interpreted as a corresponding 209 increase in its concentration and used in the correlation of inter sample ranks with 210 external parameters like the Chl-a concentration or the cumulated radiation. 211 Evidently, the experimental design (number of samples, sampling time and depth 212 intervals) and the statistical approach (rank correlation and data set combination) affect 213 the interpretation of results (SI5.4, SI5.5). Moreover, if environmental processes are 214 derived from correlations (like the interpretation of Chl-a correlation), possible 215 superposition of multiple reactions need to be considered (SI5.6). The presented

216 approach offers one possibility to deal with this via combination of multiple217 experiments.

- 218 3 Results
- 3.1 Rank correlation of DOM compound intensities with Chl-aconcentration
- 1277 unique MF were shared among all lake monitoring (n = 60) and photo 221 222 degradation samples (n = 13), divided into 1002 (78%) CHO, 266 (21%) CHNO and 9 223 (1%) CHOS compounds (Table S4). The 1277 MF (out of 6181 in the Lake data set) 224 represented on average 72.9% ± 1.7% of the total intensity in each of the 60 samples 225 of the Lake data set. Out of all shared compounds, 342 (27%) correlated positively, 226 345 (27%) correlated negatively, and 590 (46%) did not correlate significantly with Chl-227 a concentration (Table S4). If significant, CHNO compounds mostly correlated 228 positively (39% vs 5% negative), while CHOS (although very few) correlated only 229 negatively with Chl-a concentrations. CHO compounds were more balanced between 230 positive (24%) and negative (33%) correlation.

231	3.2 Rank correlation of DOM compound intensities with cumulated
232	radiation
233	The 1277 shared MF (out of 7211 in the Photo data set) represent on average 64.2%
234	\pm 2.8% of the total intensity in each of the 13 samples of the Photo data set. Among
235	the 1277 shared compounds, 288 were photo produced (positive correlation with
236	cumulative radiation, 22%), 508 were photo degraded (negative correlation, 40%), and
237	481 compounds were non-reactive (no significant correlation 38%; Table S4). Out of
238	the CHNO compound class, 15% were photo degraded, 36% were photo produced
239	and the remaining 49% were non-reactive. Like in the Chla data set, nearly no positive
240	correlation of CHOS compounds was observed in the Rad data set. Again, the CHO
241	class was dominated by negatively correlating compounds (47% vs 19% positive). All
242	these observed transformations solely result from direct photo degradation.
243	3.3 Classification of molecular reactivity
244	The combination of both correlation types, i.e. rank correlation of DOM compounds
245	with Chl-a and with cumulative radiation, resulted in nine distinct reactivity classes
246	(Figure 1, Table 1). Each class is characterized by either positive, negative, or non-
247	significant correlation in each correlation type. E.g. $C_{25}H_{28}O_9$ showed negative
248	correlation with Chl-a concentration ('Chla') but non significant correlation with

cumulated irradiation ('Rad'), resulting in a classification as Chla⁻Rad⁰ (Table
S3,Figure 1).

251

252 Figure 1.

253

254 The fraction of CHO (CHNO) compounds (out of 1277) which correlated both 255 positively with Chl-a and radiation (Chla⁺Rad⁺) was 85% (71%) with respect to all 256 positive correlating CHO (CHNO) compounds in the photo degradation experiment and 257 68% (65%) with respect to the Chla data set (Table S4). Similarly, 48% (5%) of the 258 CHO (CHNO) compounds with negative correlation in the photo degradation experiment and 69% (14%) of the CHO (CHNO) compounds having negative Chl-a 259 260 correlation formed the class Chla⁻Rad⁻. 44% (40%) of all CHO (CHNO) compounds showed significant correlation only in one dataset (classes Chla⁺Rad⁰, Chla⁻Rad⁰, 261 262 Chla⁰Rad⁻, Chla⁰Rad⁺) while less than 0.4% (4.9%) of the CHO (CHNO) compounds 263 showed contrasting correlation behavior (classes Chla⁺Rad⁻, Chla⁻Rad⁺). Overall, 17% 264 and 42% of the CHO and CHNO compounds showed mutually no correlation in both

- 265 data sets (class Chla⁰Rad⁰), while 83% and 64% of the MF could be classified as
- 266 reactive.

Table 1. Classification approach, definition of correlation types based on rank
correlation in two data sets

correlatio Chla dat	on with Chl-a, a set	correlation with radiation, Rad data set		correlation	reaction type
r a	<i>p-</i> value	r _s a	<i>p-</i> value	туре	
1 _S	(B-H-cor) ^b		(B-H-cor)⁵		
positiv e	<i>p</i> < 0.05	positive	<i>p</i> < 0.05	Chla⁺Rad⁺	photo product ^c
±	non sign	positive	ρ<0.05	Chla⁰Rad⁺	photo product, no net reactivity in lake water
negativ e	<i>p</i> < 0.05	positive	<i>p</i> < 0.05	Chla ⁻ Rad⁺	microbially degraded photo product
positiv e	<i>p</i> < 0.05	±	non sign	Chla⁺Rad⁰	microbially derived product
±	non sign	±	non sign	Chla ⁰ Rad ⁰	non-reactive
negativ e	<i>p</i> < 0.05	±	non sign	Chla ⁻ Rad ⁰	microbially degraded compound
positiv e	<i>p</i> < 0.05	negativ e	<i>ρ</i> < 0.05	Chla⁺Rad⁻	photo degraded microbial product
±	non sign	negativ e	ρ<0.05	ChlaºRad ⁻	photo degraded compound, no net reactivity in lake water

	negativ e	<i>p</i> < 0.05	negativ e	<i>p</i> < 0.05	Chla ⁻ Rad ⁻	photo degraded compound			
271	a Spearman's rank correlation coefficient								
272 273	^b Significance level (Benjamini-Hochberg corrected) derived from r_s and df in each data set								
274	^c photo product includes photo-enriched and photo-resistant molecules, cf. SI5.3								
275	[±] Correlation coefficient could be positive or negative								
276									
277									
278	3.4 Che	emical proper	ties of re	activity class	ses				
279	So far, the presented results are evaluations of the number and direction of								
		6 5 6 1 4							
280	correlation	ns of DOM co	ompounds	with environr	nental parar	neters, used to define			
281	reactivity classes. In order to link reactivity with molecular properties, we utilized the								
282	molecular	information of	DOM com	pounds obtain	ed from the F	T-ICR-MS data (Figure			
283	2).								
284									
285	Figure 2.								
286									
287	Compou	unds in the clas	s Chla⁻Ra	d ⁻ (photo degra	aded compou	ınds; Figure 2a, b) were			
288	on averag	e less saturate	d and of hi	gher molecular	⁻ weight wher	eas more saturated and			

289	lower molecular weight compounds were dominating the class Chla ⁺ Rad ⁺ (photo
290	products; Figure 2c, d). CHNO compounds generally followed the distribution of the
291	CHO compounds in the van Krevelen space but with lower average masses (Figures
292	S6-7, Tables S6-7). Notably compounds in class Chla-Rad ⁰ (microbially degraded
293	compounds, Figure 2a, b) had higher molecular weight than compounds in class
294	Chla ⁺ Rad ⁰ (microbially derived products, Figure 2c, d; Tables S6-7). The latter class
295	also had a higher average O/C ratio (Tables S6-7) compared to Chla-Rad ⁰ .
296	Compounds of the class Chla ⁰ Rad ⁺ and Chla ⁰ Rad ⁻ exhibited similar chemical
297	properties as classes Chla ⁺ Rad ⁺ and Chla ⁻ Phot ⁻ , respectively (Figure 2e, f). Only 15
298	MFs were classified into the contrasting reactivity class Chla ⁺ Rad ⁻ and none into Chla ⁻
299	Rad ⁺ . Expectedly, the compounds of the non-reactive class Chla ⁰ Rad ⁰ were evenly
300	distributed in the van Krevelen and H/C vs mass space (Figure ${f 2}$ e, f).
301	
302	3.5 Modeled reactivity classes
303	The random forest model performed with an r^2 (post-resample) of > 0.97 for both

304 correlation types ('Chla' and 'Rad', Table S8, Figure S10). In both cases, most

305 important predictors (assessed by its influence on model accuracy) were the number

306	of N atoms in a MF, with carbon nominal oxidation state (NOSC) values, mass and
307	DBE also being important (Figure S10). Together with the MF's $X_{\rm C}$ values (as measure
308	of aromaticity) and O/C ratio, these predictors were also most frequently selected as
309	splitting variables at the top of the regression trees (Figure S11-12). The predicted r_s -
310	values bimodally (trimodally) distributed for Rad (Chla) correlation types, similar to the
311	observed r_s -values (Figure 3).
312	
313	Figure 3.
314	
315	The average coordinates in the van Krevelen space of the predicted reactivity
316	classes generally followed the initially classified MF (as based on the calculated r_s -
317	values), with however mostly expanded ranges (Figures S13-14). No MF was assigned
318	to the two classes with contrasting reactivity (Chla ⁻ Rad ⁺ and Chla ⁺ Rad ⁻). The modelled
319	reactivity classes covered a larger fraction of N-and S-containing MF (36% and 13%,
320	Table S8) as compared to the observations used in the model (21% and < 1%, Table
321	S4). Model predictors did account for the elemental composition of individual MF by
322	including the number of N and S, resulting in assignments of reactivity classes also for

323	CHNOS (in addition to CHNO and CHOS) MF which were not part of the joint data set.
324	However, the functional groups of these MFs were not part of the model, which may
325	result in unaccounted reactivity for heteroatom-containing MF. The fraction of MF
326	classified as non-reactive (55%) was almost three times larger than for the 1277 shared
327	MFs in the joint data set.
328	
329	Figure 4.
330	
331	4 Discussion
332	4.1 Improved links between chemical properties and biogeochemical
333	reactivity
334	During lake stratification in spring and summer months algal blooms establish in the
335	epilimnion of the Rappbode Reservoir ⁵⁴ (Figure S2, Chl-a profiles), increasing the DOC
336	concentration and altering DOM composition via release and transformation of
337	photoautotrophically produced compounds. However, also photochemical processes
338	may have altered the DOM composition and therefore photochemically produced
339	molecules and microbial derived molecules cannot easily be distinguished via
340	environmental time series alone. E.g. using the ranges of the molecular degradation

341	index IDEG ⁴⁴ , photo degradation may account for most of the peak intensity variability
342	in surface samples of the Chla data set (Figure S17). Our approach of using data from
343	an independent but comparable photo degradation experiment allowed us to better
344	differentiate biological and photochemical origin and potential fate of DOM compounds.
345	Further linking the observed biogeochemical reactivity (via classification based on
346	experimental data sets) with molecular chemical properties (via machine learning
347	models) offers more insights into the chemical driving factors of DOM reactivity in the
348	environment.
349	Photo products (Chla ⁺ Rad ⁺) are MF which showed positive correlation in both data
350	sets (cf. SI5.3). The correlation to radiation in the photo degradation experiment clearly
351	describes the chemical reactivity of compounds. In contrast the correlation to Chl-a is
352	ambiguous, although Chl-a concentration in surface waters is often well correlated to
353	solar radiation. However, it cannot be excluded that some of the photo products (or a
354	subset of the underlying isomers) can also be microbially produced or directly released
355	as algal exudates. Samples from the lake monitoring comprise different seasons and
356	depth. Positive correlations of the photo products with Chl-a suggest that these
357	compounds accumulate in the surface layer or are selectively enriched (the

358 concentrations did not necessarily increase, see caveats in SI5.3). The epilimnion in 359 Rappbode Reservoir was rather shallow due to the wind-protected position of the 360 reservoir (see depth profiles in Fig. S2). However, when mixing of the water column 361 starts in autumn, relative intensities of photo products decrease towards values of the 362 hypolimnion (as shown for $C_9H_{12}O_5$ in Figure S18). 363 The compounds from Chla⁺Rad⁺ were relatively saturated (H/C > 1, AI_{mod} < 0.34), 364 had low (negative) DBE-O values (Tables S6-7, FigureS8) and showed an enrichment 365 in the epilimnion of the Rappbode Reservoir during summer months and a monotonous 366 normalized intensity increase during irradiation (Figure S18 a-d). Experimental 367 evidence for the production of aliphatic photo products in freshwater suggests this as being a common process throughout environments.^{9,28,55,56} In a photo degradation 368 experiment with water from ten world rivers photo produced MF in the range H/C > 1.4 369 370 and O/C > 0.5 are in agreement with the photo products in our study.⁹ For the range 371 1.0 < H/C < 1.4 and O/C < 0.5 we found both photo products and photo degraded compounds whereas Riedel et al. found mainly photo products.⁹ Similarly, aliphatic 372 373 compounds, which were enriched in stratified marine surface waters, were suggested

374	to be produced via photochemical transformation, suggests this as being a common
375	process throughout environments. ²⁶
376	Aliphatic and potentially microbial derived CHNO compounds were also part of the
377	photo product class, consistent with observations from rivers and marine
378	systems. ^{25,57,58}
379	Photo degraded compounds (Chla-Rad-) were on average more unsaturated (lower
380	H/C ratio, higher AI_{mod} values), less oxygenated (lower O/C ratios, higher DBE-O
381	values; Tables S6-7, Figure S8) and of higher molecular mass than photo products,
382	similar to other studies. ^{24,26,56,59} Photo degraded compounds in the range H/C < 1 and
383	O/C > 0.5 were previously found in other studies. ^{9,11} Compounds with similar chemical
384	characteristics (higher aromaticity, low nitrogen content) are typically found in
385	freshwater systems and are mainly derived from terrestrial sources.9 Photochemical
386	reactivity of aromatic compounds like $C_{19}H_{22}O_7$ (strong relative depletion in the surface
387	of the Rappbode Reservoir during summer month, Figure S18 e-h) is attributed to the
388	high degree of aromatic moieties and is also suggested due to a pronounced loss in
389	specific UV absorption. ⁵⁶ However, the majority of MF in the Chla-Rad- class were
390	found in a range 0.2 < O/C < 0.4 and 1 < H/C < 1.6. Gonsior et al. also found in a

391	boreal lake DOM photo degradation of compounds with comparable molecular
392	elemental ratios. ¹¹ In comparison to the Chla ⁺ Rad ⁺ class the Chla ⁻ Rad ⁻ class
393	comprises very few CHNO compounds (Table S4, Figure 1). Hence, photo degradation
394	of CHNO seems to play a minor role.
395	Concerning the differences in average oxygenation, addition of reactive oxygen
396	species to double bonds, in contrast to photo decarboxylation, may explain the relative
397	higher average O/C and lower DBE-O values for photo products as compared to the
398	photo degraded compounds. ^{60,61}
399	Non-reactive (Chla ⁰ Rad ⁰) compounds showed conservative behavior within the
400	observation periods (days to month) and boundary conditions (oxic surface water). As
401	reported earlier not all compounds show biogeochemical reactivity. Bittar et al. found
402	many compounds which originated from axenic algae cultures to be both photo- and
403	bioresistant. ⁸ However, these compounds may also represent intermediate products in
404	complex biogeochemical reaction cascades and their reactivity attribution may depend
405	on the investigated time range. Also, simultaneous degradation both in epilimnion and
406	hypolimnion or a continuously supply via the tributaries and mixing would lead no
407	observable correlation with biogeochemical proxies like Chl-a. Some algal exudates

408	are more photolabile and less biolabile ⁸ possibly resulting in no detectable correlation.
409	In any case this class shows no net reactivity of compounds and the mean molecular
410	properties of this class are close to the overall average of all samples (Tables S6-7).
411	Microbially derived products (Chla ⁺ Rad ⁰) are postulated if no correlation to radiation
412	but a significant positive correlation with Chl-a was observed. They were also evidently
413	enriched in the epilimnion of the Rappbode Reservoir during summer months (as
414	shown for $C_{11}H_{11}N_1O_6$ in Figure S19 a-d). This class potentially represents the
415	autochtonous DOM in the lake: the molecules are on average small (290 Da) and
416	oxygen rich (Tables S6-7). A large number of potentially microbial derived products will
417	not be detectable by this approach due to low extraction and ionization efficiency (like
418	polysaccharides) and turnover rates in the range of minutes to days. ¹⁴ Also, using a
419	correlation to Chl-a, differentiation between autotrophic and heterotrophic processes
420	is not possible. Compounds identified via Chl-a correlation can be algal exudates or
421	molecules released after processing by bacteria and both processes are known for
422	introducing rather small and polar compounds into the DOM pool. ^{59,62} Although these
423	compounds share chemical characteristics with the photo product class, we assume
424	high production/release of the compounds in the surface layer due to biological activity.

425	A part of this group shows similar van Krevelen coordinates (0.6 < H/C < 1.3; 0.5 <
426	O/C) with compounds which were highly negatively correlated to the DOC
427	concentration (which was decreasing) in a biodegradation experiment with samples
428	from ten world rivers. ⁹ In a degradation experiment with leaf leachates MF with 0.5 <
429	H/C < 1.5 and < 450 Da were microbially produced. ⁶² Bacterial metabolites with
430	comparable molecular properties were stable on time scales of weeks-month.22
431	Compounds of the Chla ⁺ Rad ⁰ class share molecular characteristics with the island of
432	stability (0.9 < H/C < 1.4; 0.4 < O/C < 0.7) suggesting long term stability as found for
433	marine DOM. ^{40,43,63}
434	Microbially degraded compounds (Chla-Rad ⁰) were suggested when depletion in the
435	epilimnion of the Rappbode Reservoir (as shown for $C_{25}H_{28}O_9$ in Figure S19 e-f),
436	negative correlation with Chl-a, and no alteration in the photo degradation experiment
437	were found.
438	Negative correlation with Chl-a may also result from an enrichment of a compound
439	in the hypolimnion versus the epilimnion, resulting in an interpretation as (hypolimnetic)
440	microbial product. The decomposition of particulate organic matter after settling to the

442	positive flux of DOC from the sediment to the hypolimnion in a predam of Rappbode
443	Reservoir occurred only at dissolved oxygen (DO) concentrations < 6 mg L ⁻¹ . ⁶⁴ DOC
444	release under oxic conditions was only found at T > 10° C. During our study, the
445	temperature was always below 10 °C at the lake bottom and DO was below the
446	threshold of 6 mg L ⁻¹ only in October. We conclude that DOM release to the
447	hypolimnion in the Rappbode main dam Reservoir was negligible.
448	CHO compounds in the Chla ⁻ Rad ⁰ class were on average larger (452 Da) than
449	CHNO (382 Da), but both were larger than molecules in the microbial derived product
450	class. Both results suggest preferential release of smaller and degradation of larger
451	molecular weight compounds by microbial heterotrophic processes. ^{22,62} Compounds
452	in this class which are degraded by heterotrophic processes can originate from
453	autochthonous and/or allochthonous sources. Bittar et al. ⁸ found biolabile and at the
454	same time photo-resistant compounds using an axenic algae culture (autochthonous
455	source) in the mass range 400–600 Da and with $0.7 < H/C < 1.3$ which is in agreement
456	with compounds in the (Chla-Rad ⁰) class. In a degradation experiment with terrestrial
457	source (leaf leachate), compounds in the same range were found to be degraded.62
458	Riedel et al. ⁹ found compounds in the range $0.9 < H/C < 1.5$ and $O/C < 0.5$ positively

459	related to DOC (which decreased) suggesting bio-degradation in agreement to the
460	(Chla ⁻ Rad ⁰) group. Lusk et al. ⁶⁵ reported that biodegraded CHNO are less oxygenated
461	than bio-produced CHNO which is in agreement to our results (Table S7). Alternatively,
462	the negative correlation of non-photo reactive compounds to Chl-a can be explained
463	by enrichment of allochthonous versus autochthonous compounds in winter.
464	The remaining classes Chla-Rad+, Chla+Rad-, Chla ⁰ Rad+, Chla ⁰ Rad- are discussed
465	in SI11. The first three comprised less than 6% of all classified MF, the latter one 21%.
466	
467	4.2 Relevance for drinking water production
468	Depending on the applied treatment process DOM compounds of different
469	biogeochemical origin (and different molecular characteristics) can be removed (i.e. by
470	coagulation, oxidation or other processes) during drinking water production. ¹⁷ Mainly
471	oxygen-rich and relatively unsaturated compounds (O/C > 0.5; H/C < 1.5; m/z > 400
472	Da) can be readily removed via conventional full scale process (coagulation with
473	$AI_2(SO_4)_3$, sedimentation, rapid sand filtration, slow sand filtration, UV disinfection,
474	dosing of NH_2CI). ^{14,17} Such compounds are depleted in epilimnetic waters mainly by
475	photochemical degradation (class Chla-Rad-, Figure 2). In contrast, photo products

476	(class Chla ⁺ Rad ⁺) produced in the epilimnion can be potential precursors for
477	disinfection byproducts. ^{18, 19} Reported potential precursor compounds match with MF
478	from our study and are listed in Table S9, many of them classified here as photo
479	products. Some of the putative precursors like the photo product $C_9H_{12}O_6$ had two
480	times higher intensity in the epilimnion compared to the hypolimnion in the Rappbode
481	Reservoir (SI database.xlsx). We suggest that a tracing of photo products as potential
482	DBP precursors need be taken into account for drinking water processing in the future.
483	
484	4.3 Final statements
485	A classification approach to discriminate biogeochemical reaction types founded on
486	independent experimental information and data sets was developed. Our approach
487	does not rely on an a priori definition of biogeochemical reactivity classes based or
488	questionable assumptions on macromolecular precursors.
489	Nevertheless, it appears to manifest that based on molecular formulas, DOM
490	compounds can have comparable chemical and biological properties (photo reactivity,
491	microbial lability, etc.) in comparable biogeochemical contexts ^{8,9,40,43,66} and the results
492	of this study clearly support the reactivity continuum models of DOM. 40,44,63,67

493	However, if two or even more reactivity types are taken into consideration,
494	multidimensional reactivity continua largely overlap and molecular reactivity classes
495	cannot be easily projected in a two dimensional (e.g. van Krevelen) molecular space
496	any more. Thus, for the interpretation of DOM changes in biogeochemical and
497	ecological studies, a classification of molecular formulas into (environment-dependent)
498	reactivity types may prove much more valuable and of practical usefulness than
499	putative structural assignments in a low-dimensional chemical space (like H/C versus
500	O/C or H/C versus mass).
501	Here, we have demonstrated the potential to extend DOM biogeochemical properties
502	and reactivity information based on molecular information via predictive models to less
503	frequently observed compounds, further taking advantage of the reactivity continua
504	within DOM.
505	Expanding our approach to an array of experiments/monitoring data sets from alike
506	and contrasting environments and interlinked via databases and machine learning
507	methods will provide more accurate and more detailed biogeochemical reactivity
508	classes assigned to individual MF as ever before.

510 5 ASSOCIATED CONTENT

- 511 The Supporting Information is available free of charge at https://pubs.acs.org/doi/
- 512 Study site and water chemistry details; quality control of FT-ICR-MS; examples for rank
- 513 correlation; data set combination description; additional results from rank correlation in
- tables and diagrams; random forest model results in tables and diagrams; compounds
- 515 intensity versus depth or cumulated radiation diagrams; additional references (pdf)
- 516 A data base with all molecular formulas used in this study (database.xlsx)

517 6 AUTHOR INFORMATION

- 518 Corresponding Authors
- 519 *E-mail: peter.herzsprung@ufz.de, Phone: +49 391 810 9330
- 520 *E-mail: oliver.lechtenfeld@ufz.de, Phone: +49 341 235 1020
- 521 Present Addresses
- 522 # State Agency for Agriculture, Environment and Rural Areas Schleswig-Holstein -
- 523 LLUR, Lake Department, Hamburger Chaussee 25, 24220 Flintbek, Germany Author
- 524 Contributions

- 525 The manuscript was written through contributions of all authors. All authors have
- 526 given approval to the final version of the manuscript.

527 Notes

528 The authors declare no competing financial interest.

529 7 ACKNOWLEDGMENTS

530 Jan M. Kaesler is gratefully acknowledged for the FT-ICR-MS analysis at the Centre 531 for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental 532 Research which is supported by European Regional Development Funds (EFRE-533 Europe funds Saxony) and the Helmholtz Association. We thank Kai Franze for 534 software development, Mick Wu for support with the random forest model, Ina Siebert 535 for DOC determination, Ines Locker for SPE and Kerstin Lerche for Chl-a analysis. We further 536 thank Karsten Rahn, Martin Wieprecht and Michael Herzog for collecting water samples at 537 Rappbode Reservoir. The comments of three anonymous reviewers improved the manuscript 538 considerably.

540 8 REFERENCES

McKnight, D.; Thurman, E. M.; Wershaw, R. L.; Hemond, H. Biogeochemistry
 of aquatic humic substances in Thoreau bog, Concord, Massachusetts. *Ecology* **1985**, *66* (4), 1339-1352.

Morling, K.; Raeke, J.; Kamjunke, N.; Reemtsma, T.; Tittel, J. Tracing
 aquatic priming effect during microbial decomposition of terrestrial dissolved organic
 carbon in chemostat experiments. *Microbial Ecology* 2017, *74* (3), 534-549.

547 3. Dadi, T.; Harir, M.; Hertkorn, N.; Koschorreck, M.; Schmitt-Kopplin, P.;

548 Herzsprung, P. Redox conditions affect dissolved organic carbon quality in stratified

549 freshwaters. *Environmental Science & Technology* **2017**, *51* (23), 13705-13713.

550 4. Osterholz, H.; Kirchman, D. L.; Niggemann, J.; Dittmar, T. Environmental 551 drivers of dissolved organic matter molecular composition in the Delaware Estuary.

552 Frontiers in Earth Science **2016**, *4*, 95

553 5. Cottrell, B. A.; Gonsior, M.; Timko, S. A.; Simpson, A. J.; Cooper, W. J.; van 554 der Veer, W. Photochemistry of marine and fresh waters: A role for copper-dissolved 555 organic matter ligands. *Mar. Chem.* **2014**, *162*, 77-88.

556 6. Maizel, A. C.; Li, J.; Remucal, C. K. Relationships between dissolved organic 557 matter composition and photochemistry in lakes of diverse trophic status.

558 *Environmental Science & Technology* **2017**, *51* (17), 9624-9632.

559 7. Berg, S. M.; Whiting, Q. T.; Herrli, J. A.; Winkels, R.; Wammer, K. H.;

560 Remucal, C. K. The role of dissolved organic matter composition in determining

photochemical reactivity at the molecular level. *Environmental Science & Technology*2019, *53* (20), 11725-11734.

8. Bittar, T. B.; Vieira, A. A. H.; Stubbins, A.; Mopper, K. Competition between
photochemical and biological degradation of dissolved organic matter from the
cyanobacteria Microcystis aeruginosa. *Limnology and Oceanography* 2015, *60* (4),
1172-1194.

567 9. Riedel, T.; Zark, M.; Vahatalo, A. V.; Niggemann, J.; Spencer, R. G. M.;
568 Hernes, P. J.; Dittmar, T. Molecular signatures of biogeochemical transformations in
569 dissolved organic matter from ten world rivers. *Frontiers in Earth Science* 2016, *4*, 85.

570 10. Kellerman, A. M.; Kothawala, D. N.; Dittmar, T.; Tranvik, L. J. Persistence of
571 dissolved organic matter in lakes related to its molecular characteristics. *Nature*572 *Geoscience* 2015, *8* (6), 454-U52.

573 11. Gonsior, M.; Schmitt-Kopplin, P.; Bastviken, D. Depth-dependent molecular 574 composition and photo-reactivity of dissolved organic matter in a boreal lake under 575 winter and summer conditions. *Biogeosciences* **2013**, *10* (11), 6945-6956.

576 12. Herzsprung, P.; von Tumpling, W.; Hertkorn, N.; Harir, M.; Buttner, O.;

577 Bravidor, J.; Friese, K.; Schmitt-Kopplin, P. Variations of dom quality in inflows of a 578 drinking water reservoir: Linking of van Krevelen diagrams with EEMF spectra by

579 rank correlation. *Environmental Science & Technology* **2012**, *46* (10), 5511-5518.

580 13. Evans, C. D.; Monteith, D. T.; Cooper, D. M. Long-term increases in surface
581 water dissolved organic carbon: Observations, possible causes and environmental
582 impacts. *Environ. Pollut.* 2005, *137*(1), 55-71.

14. Raeke, J.; Lechtenfeld, O. J.; Tittel, J.; Oosterwoud, M. R.; Bornmann, K.;
Reemtsma, T. Linking the mobilization of dissolved organic matter in catchments and
its removal in drinking water treatment to its molecular characteristics. *Water Res.*2017, *113*, 149-159.

15. Lavonen, E. E.; Kothawala, D. N.; Tranvik, L. J.; Gonsior, M.; SchmittKopplin, P.; Kohler, S. J. Tracking changes in the optical properties and molecular
composition of dissolved organic matter during drinking water production. *Water Res.*2015, *85*, 286-294.

Lavonen, E. E.; Gonsior, M.; Tranvik, L. J.; Schmitt-Kopplin, P.; Kohler, S. J.
Selective chlorination of natural organic matter: identification of previously unknown
disinfection byproducts. *Environmental Science & Technology* 2013, *47* (5), 22642271.

595 17. Andersson, A.; Lavonen, E.; Harir, M.; Gonsior, M.; Hertkorn, N.; Schmitt596 Kopplin, P.; Kylin, H.; Bastviken, D. Selective removal of natural organic matter

during drinking water production changes the composition of disinfection by-products. *Environmental Science-Water Research & Technology* **2020**, *6* (3), 779-794.

599 18. Phungsai, P.; Kurisu, F.; Kasuga, I.; Furumai, H. Molecular characterization

600 of low molecular weight dissolved organic matter in water reclamation processes

601 using Orbitrap mass spectrometry. *Water Res.* **2016**, *100*, 526-536.

602	19.	Phungsai, P.; Kurisu, F.; Kasuga, I.; Furumai, H. Changes in dissolved
603	organic matter composition and disinfection byproduct precursors in advanced	
604	drinking water treatment processes. Environmental Science & Technology 2018, 52	
605	(6), 3392-3401.	
606	20.	Wunsch, U. J.; Acar, E.; Koch, B. P.; Murphy, K. R.; Schmitt-Kopplin, P.;
607	Stedmon, C. A. The molecular fingerprint of fluorescent natural organic matter offers	
608	insight into biogeochemical sources and diagenetic state. Anal. Chem. 2018, 90 (24),	
609	14188-14197.	
610	21.	Raeke, J.; Lechtenfeld, O. J.; Seiwert, B.; Meier, T.; Riemenschneider, C.;
611	Reemtsma, T. Photochemically induced bound residue formation of carbamazepine	
612	with dissolved organic matter. Environmental Science & Technology 2017, 51 (10),	
613	5523-5530.	
614	22.	Lechtenfeld, O. J.; Hertkorn, N.; Shen, Y.; Witt, M.; Benner, R. Marine
615	sequestration of carbon in bacterial metabolites. Nature Communications 2015, 6,	
616	6711.	
617	23.	Kamjunke, N.; Nimptsch, J.; Harir, M.; Herzsprung, P.; Schmitt-Kopplin, P.;
618	Neu, T. R.; Graeber, D.; Osorio, S.; Valenzuela, J.; Reyes, J. C.; Woelfl, S.;	
619	Hertkorn, N. Land-based salmon aquacultures change the quality and bacterial	
620	degradation of riverine dissolved organic matter. Scientific Reports 2017, 7, 43739	
621	24.	Rossel, P. E.; Vahatalo, A. V.; Witt, M.; Dittmar, T. Molecular composition of
622	dissolved organic matter from a wetland plant (Juncus effusus) after photochemical	
623	and microbial decomposition (1.25 yr): Common features with deep sea dissolved	
624	organi	ic matter. <i>Org. Geochem.</i> 2013, <i>60</i> , 62-71.
625	25.	Mesfioui, R.; Abdulla, H. A. N.; Hatcher, P. G. Photochemical alterations of
626	natura	I and anthropogenic dissolved organic nitrogen in the York River.
627	Enviro	onmental Science & Technology 2015, 49(1), 159-167.
628	26.	Medeiros, P. M.; Seidel, M.; Powers, L. C.; Dittmar, T.; Hansell, D. A.; Miller,
629	W. L.	Dissolved organic matter composition and photochemical transformations in the
630	northern North Pacific Ocean. <i>Geophysical Research Letters</i> 2015, 42(3), 863-870.	
631	27.	Mostovaya, A.; Hawkes, J. A.; Dittmar, T.; Tranvik, L. J. Molecular
632	determinants of dissolved organic matter reactivity in lake water. Frontiers in Earth	
633	Scien	<i>ce</i> 2017, <i>5</i> , 106.

- 634 28. Stubbins, A.; Spencer, R. G. M.; Chen, H. M.; Hatcher, P. G.; Mopper, K.;
- 635 Hernes, P. J.; Mwamba, V. L.; Mangangu, A. M.; Wabakanghanzi, J. N.; Six, J.
- 636 Illuminated darkness: Molecular signatures of Congo River dissolved organic matter
- and its photochemical alteration as revealed by ultrahigh precision mass
- 638 spectrometry. *Limnology and Oceanography* **2010**, *55* (4), 1467-1477.
- 639 29. Wilske, C.; Herzsprung, P.; Lechtenfeld, O. J.; Kamjunke, N.; von Tumpling,
- 640 W. Photochemically induced changes of dissolved organic matter in a humic-rich and
- 641 forested stream. *Water* **2020**, *12*(2), 331.
- 642 30. Stubbins, A.; Lapierre, J. F.; Berggren, M.; Prairie, Y. T.; Dittmar, T.; del
- 643 Giorgio, P. A. What's in an EEM? Molecular signatures associated with dissolved
- 644 organic fluorescence in Boreal Canada. *Environmental Science & Technology* 2014,
- 645 *48* (18), 10598-10606.
- 646 31. Kellerman, A. M.; Dittmar, T.; Kothawala, D. N.; Tranvik, L. J. Chemodiversity
- 647 of dissolved organic matter in lakes driven by climate and hydrology. *Nature*
- 648 *Communications* **2014**, *5*, 3804.
- 649 32. Ohno, T.; Parr, T. B.; Gruselle, M. C. I.; Fernandez, I. J.; Sleighter, R. L.;
- 650 Hatcher, P. G. Molecular composition and biodegradability of soil organic matter: A
- 651 case study comparing two New England forest types. *Environmental Science &*
- 652 *Technology* **2014,** *48* (13), 7229-7236.
- 653 33. Martinez-Perez, A. M.; Nieto-Cid, M.; Osterholz, H.; Catala, T. S.; Reche, I.;
- 654 Dittmar, T.; Alvarez-Salgado, X. A. Linking optical and molecular signatures of
- dissolved organic matter in the Mediterranean Sea. *Scientific Reports* 2017, *7*.
- 656 34. Roullier-Gall, C.; Hemmler, D.; Gonsior, M.; Li, Y.; Nikolantonaki, M.; Aron,
- A.; Coelho, C.; Gougeon, R. D.; Schmitt-Kopplin, P. Sulfites and the wine
- 658 metabolome. *Food Chem.* **2017**, *237*, 106-113.
- 659 35. Kamjunke, N.; Hertkorn, N.; Harir, M.; Schmitt-Kopplin, P.; Griebler, C.;
- Brauns, M.; von Tumpling, W.; Weitere, M.; Herzsprung, P. Molecular change of
- 661 dissolved organic matter and patterns of bacterial activity in a stream along a land-
- 662 use gradient. Water Res. 2019, 164., 114919
- 663 36. Rinke, K.; Kuehn, B.; Bocaniov, S.; Wendt-Potthoff, K.; Buttner, O.; Tittel,
- 564 J.; Schultze, M.; Herzsprung, P.; Ronicke, H.; Rink, K.; Rinke, K.; Dietze, M.;
- 665 Matthes, M.; Paul, L.; Friese, K. Reservoirs as sentinels of catchments: the

- Rappbode Reservoir Observatory (Harz Mountains, Germany). *Environmental Earth Sciences* 2013, *69* (2), 523-536.
- 668 37. Wentzky, V. C.; Tittel, J.; Jager, C. G.; Rinke, K. Mechanisms preventing a
- 669 decrease in phytoplankton biomass after phosphorus reductions in a German
- 670 drinking water reservoirresults from more than 50 years of observation. *Freshwater*
- 671 *Biology* **2018**, *63*(9), 1063-1076.
- 672 38. van Pinxteren, M.; Barthel, S.; Fomba, K. W.; Muller, K.; von Tumpling, W.;
- 673 Herrmann, H. The influence of environmental drivers on the enrichment of organic
- 674 carbon in the sea surface microlayer and in submicron aerosol particles -
- 675 measurements from the Atlantic Ocean. *Elementa-Science of the Anthropocene* 676 **2017**, *5*, 35.
- 677 39. French, R. H., Cooper, J. J., Vigg, S. Secchi Disc Relationships1 JAWRA
- 678 *Journal of the American Water Resources Association* **1982**, *18*(1), 121-123.
- 40. Lechtenfeld, O. J.; Kattner, G.; Flerus, R.; McCallister, S. L.; Schmitt-
- 680 Kopplin, P.; Koch, B. P. Molecular transformation and degradation of refractory
- dissolved organic matter in the Atlantic and Southern Ocean. *Geochim. Cosmochim. Acta* 2014, *126*, 321-337.
- 41. Raeke, J.; Lechtenfeld, O. J.; Wagner, M.; Herzsprung, P.; Reemtsma, T.
 Selectivity of solid phase extraction of freshwater dissolved organic matter and its
 effect on ultrahigh resolution mass spectra. *Environmental Science-Processes & Impacts* 2016, *18* (7), 918-927.
- 687 42. Herzsprung, P.; Hertkorn, N.; von Tumpling, W.; Harir, M.; Friese, K.;
- 688 Schmitt-Kopplin, P. Understanding molecular formula assignment of Fourier
- 689 transform ion cyclotron resonance mass spectrometry data of natural organic matter
- 690 from a chemical point of view. *Analytical and Bioanalytical Chemistry* **2014**, *406* (30),
- 691 7977-7987.
- 43. Koch, B. P.; Kattner, G.; Witt, M.; Passow, U. Molecular insights into the
- 693 microbial formation of marine dissolved organic matter: recalcitrant or labile?
 694 *Biogeosciences* 2014, *11* (15), 4173-4190.
- 695 44. Flerus, R.; Lechtenfeld, O. J.; Koch, B. P.; McCallister, S. L.; Schmitt-
- 696 Kopplin, P.; Benner, R.; Kaiser, K.; Kattner, G. A molecular perspective on the
- ageing of marine dissolved organic matter. *Biogeosciences* **2012**, *9*(6), 1935-1955.

698 R: A Language and Environment for Statistical Computing, 3.6.1; R 45. 699 Foundation for Statistical Computing: Vienna, Austria, 2019. 700 46. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate - a practical 701 and powerful approach to multiple testing. Journal of the Royal Statistical Society 702 *Series B-Statistical Methodology* **1995**, *57*(1), 289-300. 703 47. Baines, S. B.; Pace, M. L. The production of dissolved organic-matter by 704 phytoplankton and its importance to bacteria - patterns across marine and fresh-705 water systems. Limnology and Oceanography 1991, 36 (6), 1078-1090. 706 48. Breiman, L. Random forests. *Machine Learning* **2001**, *45*(1), 5-32. 707 49. Tomaschek, F.; Hendrix, P.; Baayen, R. H. Strategies for addressing 708 collinearity in multivariate linguistic data. Journal of Phonetics 2018, 71, 249-267. 709 50. Liaw, A.; Wiener, M. Classification and Regression by randomForest, 4.6-14; 710 2002. 711 51. Kuhn, M. *caret: Classification and Regression Training*, 6.0-85; **2020**. 712 52. Hertkorn, N.; Ruecker, C.; Meringer, M.; Gugisch, R.; Frommberger, M.; 713 Perdue, E. M.; Witt, M.; Schmitt-Kopplin, P. High-precision frequency 714 measurements: indispensable tools at the core of the molecular-level analysis of 715 complex systems. Analytical and Bioanalytical Chemistry 2007, 389 (5), 1311-1327. 716 Hawkes, E. A.; Patrlarca, A.; Sjoberg, P. J. R.; Tranvik, L. J.; Bergquist, J. 53. 717 Extreme isomeric complexity of dissolved organic matter found across aquatic 718 environments. Limnology and Oceanography Letters 2018, 3 (2), 21-30. 719 54. Wentzky, V. C.; Frassl, M. A.; Rinke, K.; Boehrer, B. Metalimnetic oxygen 720 minimum and the presence of Planktothrix rubescens in a low-nutrient drinking water 721 reservoir. Water Res. 2019, 148, 208-218. Seidel, M.; Yager, P. L.; Ward, N. D.; Carpenter, E. J.; Gomes, H. R.; 722 55. 723 Krusche, A. V.; Richey, J. E.; Dittmar, T.; Medeiros, P. M. Molecular-level changes 724 of dissolved organic matter along the Amazon River-to-ocean continuum. Mar. Chem. 725 **2015**, *177*, 218-231. 726 56. Gonsior, M.; Peake, B. M.; Cooper, W. T.; Podgorski, D.; D'Andrilli, J.; 727 Cooper, W. J. Photochemically induced changes in dissolved organic matter 728 identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass 729 spectrometry. Environmental Science & Technology 2009, 43 (3), 698-703.

- 730 57. Timko, S. A.; Maydanov, A.; Pittelli, S. L.; Conte, M. H.; Cooper, W. J.;
- Koch, B. P.; Schmitt-Kopplin, P.; Gonsior, M. Depth-dependent photodegradation of
 marine dissolved organic matter. *Frontiers in Marine Science* 2015, *2*, 66.
- 733 58. Bittar, T. B.; Stubbins, A.; Vieira, A. A. H.; Mopper, K. Characterization and
- 734 photodegradation of dissolved organic matter (DOM) from a tropical lake and its
- 735 dominant primary producer, the cyanobacteria Microcystis aeruginosa. *Mar. Chem.*
- 736 **2015**, *177*, 205-217.
- 737 59. Kujawinski, E. B.; Del Vecchio, R.; Blough, N. V.; Klein, G. C.; Marshall, A.
- 738 G. Probing molecular-level transformations of dissolved organic matter: insights on
- photochemical degradation and protozoan modification of DOM from electrospray
- ionization Fourier transform ion cyclotron resonance mass spectrometry. *Mar. Chem.*
- 741 **2004**, *92* (1-4), 23-37.
- 742 60. Waggoner, D. C.; Wozniak, A. S.; Cory, R. M.; Hatcher, P. G. The role of
- reactive oxygen species in the degradation of lignin derived dissolved organic matter. *Geochim. Cosmochim. Acta* 2017, *208*, 171-184.
- 745 61. Ward, C. P.; Cory, R. M. Complete and partial photo-oxidation of dissolved
 746 organic matter draining permafrost soils. *Environmental Science & Technology* 2016,
 747 *50* (7), 3545-3553.
- 748 62. Kamjunke, N.; von Tumpling, W.; Hertkorn, N.; Harir, M.; Schmitt-Kopplin,
- P.; Norf, H.; Weitere, M.; Herzsprung, P. A new approach for evaluating
- 750 transformations of dissolved organic matter (DOM) via high-resolution mass
- spectrometry and relating it to bacterial activity. *Water Res.* **2017**, *123*, 513-523.
- 752 63. Kellerman, A. M.; Guillemette, F.; Podgorski, D. C.; Aiken, G. R.; Butler, K.
- 753 D.; Spencer, R. G. M. Unifying concepts linking dissolved organic matter composition
- to persistence in aquatic ecosystems. *Environmental Science & Technology* 2018, *52*(5), 2538-2548.
- 756 64. Dadi, T.; Friese, K.; Wendt-Potthoff, K.; Koschorreck, M. Benthic dissolved
 757 organic carbon fluxes in a drinking water reservoir. *Limnology and Oceanography*758 **2016**, *61* (2), 445-459.
- 759 65. Lusk, M. G.; Toor, G. S. Dissolved organic nitrogen in urban streams:
- 760 Biodegradability and molecular composition studies. *Water Res.* 2016, *96*, 225-235.

- 761 66. Pisani, O.; Boyer, J. N.; Podgorski, D. C.; Thomas, C. R.; Coley, T.; Jaffe,
- 762 R. Molecular composition and bioavailability of dissolved organic nitrogen in a lake
- flow-influenced river in south Florida, USA. *Aquatic Sciences* **2017**, *79*(4), 891-908.
- 764 67. Mostovaya, A.; Hawkes, J. A.; Koehler, B.; Dittmar, T.; Tranvik, L. J.
- 765 Emergence of the reactivity continuum of organic matter from kinetics of a multitude
- of individual molecular constituents. *Environmental Science & Technology* 2017, *51*
- 767 (20), 11571-11579.
- 768
- 769

Figure 1. Rank correlation coefficients rs and p(rs) derived from MF intensity rank and chlorophyll a concentration (Chla; 60 samples) or cumulated sunlight irradiation (Rad; 13 samples). The reactivity classes as defined in Table 1 are highlighted with colors. MF classes are denoted as CHO (blue), CHNO (red), and CHOS (orange) and their rs frequency distribution is shown as marginal histograms.

141x119mm (600 x 600 DPI)

Figure 2. Van Krevelen (a, c, e) and H/C vs mass (b, d, f) diagrams for 1277 MF with colors according to their assigned reactivity class from calculated rs values. The distribution into CHO and CHNO MF into the reactivity classes is shown in Figures S6-7.For the definition of the classes, refer to Table 1.

84x110mm (600 x 600 DPI)

Figure 3. Modelled rank correlation coefficients rs and significance p(rs) for 3162 MF, detected at least once in both data sets. The reactivity classes as defined in Table 1 are highlighted with colors (same colors as in Figure 1). MF classes are denoted as CHO (blue) and CHNO (red), CHOS (orange), and CHNOS (cyan) and their modeled rs frequency distribution is shown as marginal histograms. The size of the diamonds indicates the frequency of detection (2 – 72) within the both data sets.

141x118mm (600 x 600 DPI)

Figure 4. Van Krevelen (a, c, e) and H/C vs mass (b, d, f) diagrams for 3162 MF detected at least once in both data sets. The size of the diamonds indicates the frequency of detection (2 - 72) within the both data sets. The small grey circles in a-d represent the full chemical diversity of all 3162 MF used for the model. . For the definition of the classes, refer Table 1.

84x110mm (600 x 600 DPI)