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Abstract 
What is the impact of cellular heterogeneity on process performance? How do individual cells 

contribute to averaged process productivity? Single-cell analysis is a key technology for answering such 

key questions of biotechnology, beyond bulky measurements with populations. The analysis of cellular 

individuality, its origins, and the dependency of process performance on cellular heterogeneity has 

tremendous potential for optimizing biotechnological processes in terms of metabolic, reaction, and 

process engineering. Microfluidics offer unmatched environmental control of the cellular environment 

and allow massively parallelized cultivation of single cells. However, the analytical accessibility to a 

cell´s physiology is of crucial importance for obtaining the desired information on the single-cell 

production phenotype. Highly sensitive analytics are required to detect and quantify the minute 

amounts of target analytes and small physiological changes in a single cell. For their application to 

biotechnological questions, single-cell analytics must evolve towards the measurement of kinetics and 

specific rates of the smallest catalytic unit, the single cell. In this chapter, we focus on an introduction 

to the latest single-cell analytics and their application for obtaining physiological parameters in a 

biotechnological context from single cells. We present and discuss recent advancements in single-cell 

analytics that enable the analysis of cell-specific growth, uptake, and production kinetics, as well as 

the gene expression and regulatory mechanisms at a single-cell level. 

  



Introduction 
Cells are used as living catalysts for the efficient production of chemicals and energy carriers [1,2]. In 

whole-cell biocatalysis, the efficiency of the catalytic conversion of a substrate to the desired product 

is a result of cell physiology [3,4]. At the population level, the performance of microbial biocatalysts is 

typically determined by analyzing kinetic parameters in physiological key experiments, where 

substrate uptake and production rates are used to quantify cell physiology in terms of growth rate, 

production, gene expression, and regulation (see Figure 1) [5,6].  

 

Figure 1: Quantitative physiology and performance characterization of whole-cell biocatalysts in biotechnology 

based on cell kinetics and yield coefficients. 

With advanced analytical concepts, such as transcriptome and proteome profiling, as well as metabolic 

flux analysis, these links can be further refined to obtain a global picture of biocatalyst physiology and 

to establish a systems-level understanding of the functioning of living cells that serve as catalytic units 

[7-9]. This holistic approach for the analytical dissection of producer cell physiology is often termed 

systems biotechnology. This systems-level approach relies, however, on averaged data from 

populations and does not consider the individual cell dynamics and heterogeneities due to the lack of 

true quantitative data on the physiology of single cells [10]. It is therefore of utmost interest to make 

use of the latest analytical concepts to bring single-cell analysis to the next level for realizing single 

cell-based system biotechnology.  

The current situation underlines the increasing discrepancy between the rapid evolution of 

microfluidic cultivation and the lack of analytical concepts for microfluidics and single cells [11]. 

However, this is not without reason – single-cell analysis poses tremendous analytical challenges in 

terms of dimension, analyte amounts, and resulting concentrations. These challenges can be 

exemplified with the corresponding numbers in terms of cell size, volume, and single-cell specific 

uptake rates and productivities, as well as product and biomass yield coefficients of microbial 

biocatalysts (see Figure 2). 



 

Figure 2: Key numbers for analyzing the physiology of whole-cell biocatalysts at the single-cell level. The numbers 

are given for cell diameter, cell volume, cell wet weight, cell dry weight, specific growth rates µ, specific substrate 

uptake rate qS, and product formation rates rP of Escherichia coli, Synechocystis sp. PCC6803 and Saccharomyces 

cerevisiae [12-18]. 

As can be deduced from these key figures, the analytical and conceptual challenges for quantitatively 

analyzing these biotechnologically relevant parameters at a single-cell level are tremendous 

[13,10,19]. This is why, microscopic technologies, such as time-lapse microscopy in combination 

fluorescent markers or biosensors, are still the analytical tool of choice for obtaining quantitative and 

time-resolved data of single cells. Optical analytics and imaging technologies are relatively simple to 

use and can be sensitive down to the single-molecule level with technologies such as super-resolution 

microscopy [20,21]. Even with standard microscopy equipment, smaller cell types, such as coccoid 

bacteria, can be easily visualized. Cell dynamics and heterogeneities in terms of growth, morphology, 

gene expression, or regulation can be assessed via fluorescence time-lapse microscopy imaging [22-

25]. However, obtaining truly quantitative data with absolute numbers is still difficult via imaging. Even 

simple global physiological parameters, such as specific growth rates and biomass cannot be easily 

deduced from microscopy, although growth is one the key parameters when it comes to the 

characterization of cells in technical processes [26-29]. Yet, data on growth kinetics and biomass 

formation provide the basis for the holistic description of whole-cell biocatalysts at a single-cell level. 

This lack of analytical concepts for assessing producer cells at the microscale is the reason why 

microfluidic single-cell analysis is given little consideration in biotechnology [11]. Rendering 

microfluidic analysis more meaningful for biotechnology hence starts with making growth kinetics 

available at the single-cell level. In the following section, we describe fundamental technologies 

beyond visualization that enable us to quantitatively assess growth and biomass with high accuracy of 

single microbes in microfluidic bioreactors. 

Growth analysis of single cells 
Cell growth is a pivotal descriptor for global cell physiology. The kinetics of biomass formation, the 

specific growth rate µ, provides information about cellular fitness and the functional state of the cell. 

Many cellular parameters, such as plasmid copy number, mRNA and ribosome abundance, protein 



synthesis, and hence cell productivity are tightly linked to the specific growth rate of a cell [30-32]. In 

steady-state growth, the environmental influences are directly manifested in the growth rate itself and 

directly reflect the impact of extracellular conditions on the cellular machinery and its efficiency for 

performing catalytic conversions [33]. The power of single-cell growth analysis for answering questions 

of biotechnological relevance has been demonstrated in countless studies. These studies investigated 

fundamental characteristics of microbial growth that are indispensable for optimizing cell performance 

and efficiency in a technical context. The topics investigated encompass compensation auxotrophy in 

mixed-species microcultures [34], cell aging in yeast [35] and bacteria [36], linking growth rate and 

extracellular environment [37], linking growth kinetics and gene expression [38] growth dynamics 

upon nutrient shifts [39] and the impact of spatial confinement in cell growth [40]. In nature, 

heterogeneity in growth across an isogenic population is a simple, but most effective measure to cope 

with environmental changes or threatening conditions such as the presence of antibiotics [41-46]. 

Determining specific growth rates of single cells, its dynamics, and heterogeneities is hence of utmost 

interest for understanding the physiological structure of a productive population under distinct growth 

or process conditions (see Figure 3). 

  



 

Figure 3: A) Analytical methods, readouts, and deducible kinetic parameters for growth rate analysis at a single-

cell level. B) Time-lapse imaging of single C. glutamicum cells grown in different microfluidic cultivation systems. 

C) Image-based analysis of single cell-specific volumetric growth rates in the different microfluidic cultivation 

systems [47] - Published by The Royal Society of Chemistry . 

For determining growth at the level of populations, the experimenter can rely on numerous 

standardized methods, such as optical density measurements, weighing of wet and dry biomass, 

manual or automated cell counting with a microscope, a flow cytometer, or Coulter counter devices 



[29,48,49]. With knowledge on cell or biomass concentration, important performance descriptors such 

as uptake and synthesis rates can be specified and normalized to the respective concentration 

measure, allowing for an absolute and laboratory-independent evaluation of the catalytic efficiency of 

populations [28]. As can be inferred from this information, proper analytics for growth and mass 

profiling are a basal prerequisite for characterizing single cells in a biotechnology context. In the 

following, we will discuss current state-of-the-art analytics for single-cell growth and biomass analysis 

and review cutting-edge methods that hold the potential for becoming standard methods for the 

precise determination of cell wet and dry weights in future.  

Cell counting, morphometrics, and segmentation  
Microscopy is the simplest, but also one of the most powerful methods for analyzing single cells and 

their physiology. Quantitative morphometric analyses of single microbes have been established more 

than a century ago, but almost vanished during the last decades [50-53]. It was only with the 

introduction of automated time-lapse microscopy and powerful image processing routines that made 

microscopy the measure of choice for single-cell analysis. Enabled by narrow microfluidic structures 

that force the cells to grow in monolayers or even as separated single cells, a large number of cells can 

optically be analyzed without artifacts arising from cell overlapping [54,36,55]. Arguably, the simplest 

measure to determine cellular growth kinetics at the microscale is cell counting [56-58]. Recording cell-

division kinetics enables the experimenter to normalize physiological parameters, such as induction or 

adaption kinetics, to obtain cell-specific values [24]. Tracking cell divisions in bacteria can be performed 

with the bare eye and represents an excellent measure to compare division kinetics at the microscale 

with the increase in cell numbers of a population [59,60]. Only such comparative studies reveal 

environmental effects on growth that remain hidden at a population scale. In a significant exemplary 

study, Unthan et al. used manual cell counting in micropopulations of Corynebacterium glutamicum 

cells and revealed that the cells divided much faster in the microfluidic perfusion environment as 

compared to division kinetics of populations, although the same defined growth medium was used 

[26]. This observation was the kick-off for a systems-level study that disclosed the reasons for the 

observed elevated growth rates at the microscale. Based on single cell-cultivations, bioreactor 

experiments at extremely low cell densities, as well as transcriptomics, metabolomics, and integrative 

in silico analysis, it was disclosed that protocatechuic acid was utilized as a hidden co-substrate that 

drove C. glutamicum cells to higher specific growth rates than ever observed before in minimal CGXII 

medium [26]. Cell counting can also be used to assess single-cell growth of more uncommon cell types. 

Helingwerf et al. applied cell counting of phototrophic Synechocystis sp. PCC6803 for determining 

growth in massively parallelized droplet cultivations. In conjunction with an enzyme-based assay for 

the quantification of lactate in the individual droplets, an enrichment of high-producing lactate forming 

strains could be realized [61]. 



Determining growth kinetics via cell counting assumes that all observed cells are similar in length and 

volume [62]. While this is often true for balanced growth under steady-state conditions, environmental 

fluctuations and stress in production setups often entail a diversification in cell size, which has to be 

considered when calculating growth kinetics from cell counts [63,64]. For many investigations, such as 

in silico models of growth in populations based on single-cell data or analyses that focus on growth 

kinetics in between two cell divisions, the need for data on growth kinetics of individual cells arises. 

Here, morphometric analysis is the measure of choice. Quantitative measurements of cell dimensions, 

such as cell area, length volumes are more precise than cell counting and can be better compared to 

optical density measurements or cell dry matter determination performed at the population scale. 

Following the dynamics of individual cell geometry, such as the cell projection area or cell volumes 

calculated from cell dimension, enable us to quantify the growth of individual cells, even between two 

cell divisions or budding events [65]. Moreover, this type of image-based growth analysis can also 

account for cell proliferation mechanisms other than binary fission, such as budding in yeast or 

asymmetric cell division [62]. The most straightforward approach to determine the growth of 

individual cells between division or budding events is to measure the area and volume of cells via 

manual segmentation from microscopic images. Several studies demonstrated the applicability and 

use of this method for determining specific growth rates and their heterogeneities of single microbes 

and comparing the obtained values to populations [27,37,66]. With the assumption that the density of 

the cells remains constant at balanced growth, the cell volume is a suitable proxy for cell mass and can 

be directly compared to cell dry matter concentrations in lab-scale cultivations. Manual cell volume 

approximation has been shown to deliver solid results with several distinct microfluidic bioreactor 

concepts such as microfluidic monolayer growth chambers and cell traps based on negative 

dielectrophoresis [27,66,37]. A striking insight of microfluidic growth analyses was that the volumetric 

growth rates of single cells consistently exceeded population growth rates by up to 50% and 

demonstrated the biological potential in terms of maximal possible growth rates [37]. Realizing such 

high growth rates at the bulk scale might improve biocatalyst formation and averaged volumetric 

productivities in bioprocesses. Morphometric analyses revealed that division rates, division angles, and 

division symmetry of cells were influenced by the specific microfluidic habitat. These results suggest a 

careful choice of the microfluidic cultivation format to avoid artifacts stemming from the respective 

microenvironments. One of the most striking studies of the past years on single-cell growth revealed 

the basic laws of bacterial size control in Escherichia coli [67]. Taheri-Araghi et al. monitored the cell 

length during the cell cycle of individual E. coli cells upon the shift of growth media. Based on the 

imaged cell length, the authors calculated cell volumes and found that the average cell volume scales 

exponentially with DNA replication and growth rate. However, in such high-throughput growth 



experiments, manual determination of cell dimension is virtually impossible and demands automated 

cell segmentation algorithms. 

Manual image processing is tedious and time-consuming. When the number of observed cells is high 

or cell reproduction has to be tracked in colonies of hundreds of single cells, manual cell counting is 

not a viable option anymore. With advanced image processing algorithms, automated cell 

segmentation can be conveniently performed at high-throughput [63,64]. However, due to the huge 

variety of microbial morphology within isogenic populations and across different microbial strains, 

error rates of segmentation algorithms can be high and require extensive adaption of the 

segmentation codes to the strain of interest [68,69]. Next to morphological challenges, segmentation 

algorithms have to robust against poor image quality, out of focus images, overlapping of neighboring 

and noise [68]. 

Available image segmentation algorithms such as Schnitzcells, Oufti, or MicrobeTracker are optimized 

for tracking certain types of microbes [70-72]. It is not of surprise that the detection of cell boundaries 

and the corresponding morphological traits has been adapted to rod-shaped bacteria such as E. coli, 

C. glutamicum, Bacillus subtilis, or Pseudomonas sp. and other commonly used model strains [70,22]. 

As the natural variety of cell morphology is overwhelming, the growth of many uncommon 

microorganisms cannot be quantified out-of-the-box with available software packages. However, 

recent image analysis algorithms such as Oufti are tackling this problem and offer extensive 

customization options to segment cells with uncommon or even irregular shapes [73,74]. Oufti allows 

the quantification of various cell morphologies, irregular shapes, and even the identification of 

individual cells that form confluent monolayers by using powerful and flexible segmentation 

algorithms for high-content imaging. The algorithm includes for example mathematical routines for 

the identification of differential growth behavior among single cells such significantly slower or faster 

growth of cells. MicrobeJ is another recent image-processing framework for extracting grey-value, cell 

dimension, and morphological routines, as well as subcellular analysis of fluorescence localization from 

microscopy images [75]. A powerful code for data integrity validation has been integrated as well. 

Among the wealth of image analysis algorithms, highly customized solutions exist as well. An important 

example constitutes the tool Molyso, which has been specifically developed to extract growth data 

from mother machine time-lapse [76]. 

In general, this is only a small excerpt from the many image analysis tools available. It is recommended 

to cross-check the available tools for specific scientific strains, scientific questions, and experimental 

setups. The above-described algorithms pose universally applicable tools that enable automated high-

throughput analyses of single-cell traits from images and are invaluable for processing the massive 

data amounts from time-lapse experiments. However, automated image analysis algorithms are error-



prone and supervision of segmentation results is still indispensable. As a possible remedy, deep-

learning and AI-based algorithms might allow higher accuracy and handling of challenging image sets 

for determining growth kinetics at the single-cell level. 

Mass imaging 
Mass imaging has the potential to become the next evolutionary stage in single-cell growth analysis 

[11]. In contrast to the extraction of spatial data from images for growth analysis, novel phase imaging 

concepts promise the fast, accurate, and non-invasive optical profiling of single-cell dry weights with 

sub-pg resolution [77-80]. Tracking growth at such resolution is the only measure to accurately analyze 

specific growth rates, as the growth rate is defined as the mass increase in a given biological system 

over time. Time-resolved data on cell mass enables us to directly normalize physiological parameters 

to single-cell dry matter and render them comparable to population data by that [62]. Mass imaging is 

based on interferometry and quantitative phase microscopy. By measuring the phase shift of light that 

passes a cell, the refractive index of the cell can be determined and related to cell mass. While mass 

imaging has been extensively applied to profile growth and density of mammalian cells, corresponding 

examples for bacteria or yeast are rare [81-83]. Nevertheless, mass imaging enabled profiling mass and 

calculating specific growth rates of individual E. coli cells [84]. In this study, significant heterogeneity 

in terms of cell mass increase was observed and demonstrated for the first time the contribution of 

individual bacteria growth to the macroscopic growth of populations. Two studies performed density 

mapping of individual E. coli cells with a lateral resolution of 90 nm by integrating super resolution 

microscopy and phase microscopy for [85] or visualized subcellular structure via tomography [86]. As 

can be seen, mass imaging is not widespread in microfluidic single-cell analysis for biotechnology, 

despite its huge potential for unraveling process-relevant growth mechanisms and heterogeneities at 

the smallest possible scale. Nonetheless, we are convinced that this will change in the future, as mass 

imaging technologies are universally applicable, compatible with other modalities such as fluorescence 

microscopy and require merely the upgrade of a time-lapse microscope with a simple camera. By now, 

many companies offer commercialized calibration-free mass imaging solutions that are sufficiently 

sensitive and accurate to profile mass and growth kinetics at the single microbe-level. 

Picobalances 
Microfluidic resonators based on dynamic cantilevers can be used as picobalances for weighing single 

cells and enables us to measure the buoyant mass of a cell with extreme precision [87,88]. 

Sophisticated resonator designs exist that swing in a vacuum and can be perfused with cell suspension 

[89,90]. The passing cells influence the cantilever resonance frequency and allow to measure cell mass 

with a resolution in the low fg-range, which makes the analytical concepts applicable to even the 

smallest know types of microbial cells [91]. Microfluidic resonators have been applied for the detection 

of single E. coli already two centuries ago [92]. As the cells are suspended, this microfluidic resonator 



enables the investigation of physicochemical perturbations on cell mass and growth [93,94]. Due to 

the high precision, correlations between growth rate and cell mass could be revealed [89]. A 

comparison between mass and volume growth kinetics in single yeast cells was achieved by combining 

a Coulter Counter with a microfluidic resonator [95]. Mass and density profiles of viable, stressed, and 

dead E. coli cells could be investigated with resonator structures at high throughput for the first time 

and demonstrated that dead cells have a larger density, but a lower cell mass [96]. Suspended 

microfluidic resonators were used to determine the weight of single marine bacteria and these results 

from the microscale were used to estimate the total amount of marine biomass on earth for calculating 

global oceanic carbon fluxes [93]. The examples demonstrate the usefulness of picobalances for 

fundamental research. However, questions of biotechnological interest have not been approached 

with picobalances yet. This is mostly due to the complicated and extensive microfabrication that is 

needed. Moreover, combining resonators with other imaging techniques might be difficult. It can be 

stated that microfluidic resonators are well suited for high precision measurements of single-cell mass, 

but always involves a trade-off between the time-period of tracking and the number of cells that can 

be tracked. 

Substrate Uptake  
Next to growth, the kinetics of substrate utilization, namely the specific substrate uptake rate qS, is of 

utmost interest when analyzing the performance of whole-cell biocatalysts. Bioprocesses are often 

controlled by limited substrate feeding to prevent the formation of bioproducts or limit growth [97-

100]. Moreover, specific yield coefficients of biomass on the substrate can be calculated with on qS, 

and the specific growth rate µ. Measuring specific substrate uptake is therefore of mandatory to 

identify the efficiencies of substrate to biomass and product conversions and its heterogeneities at a 

single-cell level (see Figure 4). 

  



 

Figure 4: A) Analytical methods, readouts, and deducible kinetic parameters for substrate uptake rates at a 

single-cell level. B) NanoSIMS-based chemical microscopy of carbon and nitrogen stable isotope ratios in single 

cells . C) Cell-volume- and cell-specific carbon uptake rates of single P. putida cells calculated from isotope ratios 

[101].  

Fluorescence analysis 
To date, quantitative studies of substrate uptake in single cells mostly rely on specific labels, such as 

fluorescence, stable isotopes, or radiolabels [102-105]. Label-free analytical concepts for measuring 

uptake in single cells comprise genetically encoded fluorescence biosensors, mostly basing on 

intracellular and extracellular substrate-sensitive Förster resonance electron transfer (FRET) probes, 

transcriptional reporters or specific binding motifs of fluorescent proteins have been utilized to study 

substrate uptake [106-109]. However, most of the published studies on substrate uptake in single 

microbes can be found in the field of environmental microbiology for characterizing carbon, 

phosphorous, and nitrogen assimilation processes in natural environments [110,101,111]. Studies 

focusing specifically on single-cell substrate uptake for tackling biotechnological questions are still rare. 

Nevertheless, promising analytical concepts have been developed and will be discussed in the 

following. 

One of the simplest concepts for following substrate uptake in live single cells is to use fluorescently 

labeled substrate conjugates. Hehemann et al. used fluorescent glycan-conjugates to image and 

quantify its uptake in intestinal bacteria [103]. Another study by Straeuber et al. used N-(7-nitrobenz-

2-oxa-1,3-diazol-4-yl)amino (NBD)-labelled toluene to visualize its incorporation into different live 

Pseudomonas strains and E. coli [112]. However, the uptake data obtained with such modified 

substrates have to be carefully evaluated, as the chemical changes might lead to significant differences 

in transmembrane transport kinetics Vmax and KS in comparison to the unmodified compounds. 

Natarajan et al. demonstrated a noteworthy concept for quantifying glucose uptake in single E. coli 



cells [113,114]. By exploiting the competitive inhibition of the fluorescent glucose analog 2-(N-(7-

nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) on glucose uptake, the authors used 

flow cytometry measure specific uptake rates in single cells from populations grown in chemostat 

cultures. This elegant concept for quantifying cell-specific substrate uptake rates shows that it is not 

compulsory to label the substrate of interest but exploit the competition of a fluorescent analog at the 

transport porin. However, following the temporal dynamics of glucose incorporation in specific single 

cells is not possible with this method due to the snapshot character of flow cytometer analyses. It 

rather exploits the characteristics of the uptake mechanism and its kinetics for indirectly determining 

glucose uptake. Due to the need for fast medium exchange and recording of fluorescence increase, 

this concept has never been transferred to microfluidic cultivations.  

Next to fluorescence labeling, quantifying the intracellular accumulation of radio-labeled 18F-

fluorodeoxyglucose is a common method to approximate glucose uptake in single cells [102,104,115]. 

Using radioluminescence microscopy, which can be integrated into common light microscopes, 

multimodal analysis of single-cell substrate incorporation and other physiological parameters such as 

growth is possible.  

FRET-based sensors, exploiting conformational changes or energetic interactions of two fluorescent 

proteins by binding of a substrate molecule, are useful for monitoring intracellular substrate 

concentrations in individual cells [116-118]. The uptake of several different hydrocarbons by living 

microbes could be realized with genetically-encoded FRET-probes. A highly responsive CFP/YFP-based 

FRET sensor was demonstrated to facilitate the visualization of intracellular glucose accumulation in 

Saccharomyces cerevisiae uptake mutants [119]. Based on a similar FRET design, maltose uptake in 

single S. cerevisiae cells could be quantified [108]. Visualization of arabinose and maltose influx was 

also demonstrated for single E. coli cells [120]. Purified FRET-probes can be also used ex vivo. Purified 

FRET-based glucose biosensors could be applied to measure extracellular glucose concentrations in an 

E. coli culture [107]. Although this concept has not been implemented in microfluidic cultivation 

devices, it has the potential to enable substrate measurements in microbioreactors in the future.  

Other genetic elements, such as transcriptional regulators can be exploited as indirect reporters for 

the capacity of single cells to process and take up nutrients. Such transcriptional reporters were applied 

to control GFP expression in E. coli cultures [109]. The obtained results indicated the heterogeneous 

expression of genes involved in glucose uptake. 

Mass spectrometry 
Label-free mass spectrometry-based methods such as NanoSIMS can be used to study the assimilation 

of isotope-labeled substrates into microbial cells. Nikolic et al. applied 13C- and 2H-labelled glucose to 

characterize glucose uptake in a clonal E. coli population via Nano-SIMS analysis [121]. This method 



enabled to identify the magnitude of metabolic heterogeneity in terms of glucose uptake in the 

cultures, Glucose uptake rates did not correlate with gene expression profiles. Furthermore, the 

experimental results suggest a metabolic specialization of subpopulations in terms of sugar 

metabolism. The applications of NanoSIMS are manifold in single-cell analysis and allows assessing 

phenomena that are not analytically accessible otherwise. In mixed-species systems, NanoSIMS could 

be used to the nutrient transfer between fungi and bacteria [122]. Despite its sensitivity and spatial 

resolution, it is difficult to obtain quantitative data on cell-specific uptake kinetics [123]. Nevertheless, 

Stryhanyuk et al. succeeded in determining cell-specific glucose uptake rates of Pseudomonas cells 

based on a comprehensive mathematical framework [101]. Unfortunately, SIMS analysis destroys the 

cell during analysis and does not enable to follow individual cell dynamics in glucose uptake.  

Inferring kinetic constants of substrate uptake 
Kinetic parameters such as the affinity of transporter enzymes towards the substrate govern the 

cellular uptake. To date, there is only a little knowledge about whole-cell kinetics and its heterogeneity. 

A notable example that demonstrates how substrate affinities of microbial cells could be determined 

in microfluidics was recently presented by Lindemann et al. [124]. The authors applied carbon-limiting 

conditions in perfusion microfluidics and quantified growth of C. glutamicum cells and its 

heterogeneity in response to the extracellular substrate availability. At extremely limiting carbon 

conditions, it was found that the variability in cell-specific division times increased significantly. These 

results suggest a strong individuality among isogeneic microbes in terms of glucose uptake and 

metabolization. Moreover, the authors could approximate KS values from single-cell cultivations for 

the first time. 

The presented studies impressively demonstrate the significant advancements of analytical 

technologies for quantifying substrate uptake at a single-cell level. It must be stated, however, that 

there is no universally applicable analytical concept available for quantifying substrate utilization in 

single cells. Rather, it has to be decided depending on the biological questions which the analytical 

method can be applied to for obtaining meaningful data. For the future, advances in single-cell mass 

spectrometry might deliver remedies for the current situation and enable us to determine substrate 

concentrations in microfluidic bioreactors and cell-specific uptake rates with high accuracy. 

Product formation 
The efficiency and kinetics of product formation are the most important performance parameters in 

bioprocesses. Maximizing the specific product formation rate rP of the whole-cell biocatalyst is the 

central goal of strain and process engineering endeavors (see Figure 5). But what is the effect of 

physiological heterogeneity and cell dynamics with regards to individual product formation on the 

performance of a process? To date, many indications exist that suggest a significant influence of 



phenotypic heterogeneity on the productivity of a process. Understanding the activity structure of 

population-based on single cell-specific performance analyses is important and might lead to novel 

engineering targets for process improvement in the future [125]. 

 

Figure 5: A) Analytical methods, readouts, and deducible kinetic parameters for product formation rates at a 

single-cell level. B) Quantifying lactate production by phototrophic cyanobacteria cultivated in microfluidic 

droplets via a pico-injected enzymatic assay [61]. 

Fluorescence analysis 
Analytical concepts have been developed to analyze productivity in microfluidic cultivation 

experiments. As extreme sensitivity is required to accomplish quantitative product analysis at a single 

cell-level, optical methods are dominating and often the measure of choice [12]. A recently published 

key study impressively demonstrated the massive effect of phenotypic heterogeneity on the output of 

a productive process [126]. Xiao et al. applied fluorescence staining to visualize and quantify free fatty 

acid and tyrosine production in isogenic E. coli mutants. Their investigations confirmed the existence 

of high and low producer cell variants and showed that only 15% of the cell population was responsible 

for more than 50% of product formation. Based on this knowledge, a molecular population control 

strategy was developed and implemented, which led to a significantly enhanced productivity of the 

controlled populations. However, simple fluorescence staining methods cannot be used to cover the 

wealth of microbial products.  



Another prevalent method to determine productivities at a single-cell level is the application of 

fluorogenic substrates [127]. A wealth of non-fluorescent substrate compounds exist that turn 

fluorescent upon microbial conversion. The class of fluorogenic substrates is restricted to the detection 

of hydrolytic activity, by amylases, cellulases, xylanases, lysozyme, and phosphatases. One of the most 

widely applied and most sensitive substances of this class are fluorogenic β-galactosidase substrates 

such as fluorescein di-β-D-galactopyranoside (FDG).  

Next to the application of fluorogenic substrates, relative intracellular product levels can also be 

visualized by exploiting titratable regulatory circuits that control the expression of a fluorescent 

indicator gene in response to metabolite abundance. A prominent example was demonstrated by 

Binder et al. who coupled the concentration-dependent expression of fluorescent genes to 

transcription factors in E. coli and C. glutamicum [128]. Based on this concept, transcription factor-

based product sensors for several different amino acids were established and validated. In a follow-up 

study, t l-lysine, l-arginine, and l-histidine sensors were applied for rerouting metabolic fluxes towards 

the desired products in C. glutamicum [129]. Although this approach does not allow determining 

absolute cytosolic product concentrations or even production at a single-cell level, it is a valuable tool 

for strain improvement and mutant-screening using microfluidics. In the future, such intracellular 

sensors might be calibrated to determine absolute cytosolic product concentrations or even product 

formation kinetics. 

Some examples also demonstrate the direct visualization of cell products via antibody assays in 

microfluidic cultivations. In pioneering studies, Love and coworkers implemented microarray 

technology to microfluidics to quantify secreted protein of single or few Pichia pastoris cells cultivated 

in nanowells [130,131]. For protein quantification, a glass slide was functionalized with an antibody 

specific to a human FC fragment and was bonded to the nanowell array. After a specific incubation 

time, the glass slide was removed and bound protein was quantified via fluorescence microscopy. With 

this concept, the authors were able to determine volumetric protein secretion rates in the nanowells. 

Based on this technology, the authors could disclose a stochastic protein secretion in single yeast cells 

[130]. A comprehensive follow-up study revealed that the secretory capacity of single yeast cells is the 

productivity-determining bottleneck in the production of heterologous protein in P. pastoris [131].  

It was also demonstrated that enzymatic assays can be used in microfluidic cultivation devices for 

product quantification. Hammar et al. performed the on-chip analysis of lactate production by 

phototrophic Synechocystis sp. PCC6803 cells cultivated in microdroplets [61]. The produced lactate 

served as a substrate for a subsequent enzymatic reaction that yielded a fluorescent product. The 

enzyme assay solution was pico-injected into the microdroplets after cell incubation. Based on the 

intensity of the fluorescent signal, the droplets were sorted and subcultivation to yield a population 



with improved lactate-production characteristics. Next to this prominent study, other concepts have 

been developed to quantify products such as antibodies in microfluidics, but these mostly focus on the 

analysis of yeast, mammalian cells, or enzyme mutants [132-136]. 

Mass spectrometry 
Modern mass spectrometry is sensitive enough to detect and quantify products from single whole-cell 

biocatalysts. The power of single-cell mass spectrometry for analyzing mammalian cell systems was 

demonstrated already, but for the analysis of microbes and their catalytic products, mass spectrometry 

is still in its infancy [137-139]. However, several key studies recently illustrated the power of mass 

spectrometry analysis for productivity analyses at the single-cell level and will be reviewed and 

discussed in the following.  

Electrospray Ionization- Fourier Transform Ion Cyclotron (ESI-FTICR) mass spectrometry coupled to 

microfluidic cell cultivation enabled for the first time to detect and quantify the productivity of 

microbial cell factories at a single cell-level without the need for labeling [140]. In this key study, a few 

living L-lysine producing C. glutamicum were trapped via negative dielectrophoresis with the Envirostat 

microfluidic single-cell bioreactor [141,66,142]. The cell supernatant was continuously sampled in chip-

coupled fused-silica capillaries and analyzed via nanospray-ESI-FTICR mass spectrometry. The 

produced lysine was accurately quantified by spiking the cell medium with a stable isotope-labeled 

internal standard. Cell-specific L-lysine production rates rP ranged from 2 -20 fmol-1 cell h-1. Despite the 

analytical power of mass spectrometry, this study is the first example of how specific product 

formation rates in microbes can be obtained from microfluidic single cell-experiments. Ion suppression 

caused by the high salt cargo of standard growth and production media for microbes were recently 

identified as the key reason for this lack of successful studies. The development of a volatile, 

ammonium salt-based reaction medium, that was causing low ion suppression, but enabled high 

cellular activity was the key to success for realizing single-cell product analysis via mass spectrometry 

[140]. Microfluidics interfaced with ultrasensitive label-free mass spectrometry might become one of 

the key concepts for unraveling strain productivity and its heterogeneity based on single-cell data.  

Next to FTICR-MS, a Chip-MS interface based in droplet microarrays and subsequent ionization via 

Matrix-assisted Laser Desorption Ionization (MALDI) was demonstrated the multi-modal analysis of 

protein secretion and enzymatic activity with only 50-100 living Komagataella phaffii cells [143,144]. 

Via MADLI-MS and the application of a fluorogenic substrate, the multistep conversion of phytic acid 

by secreted phytase could be monitored with several modalities [143]. The approach was further 

refined and even allowed the separation of yeast cells and droplet supernatant for subcultivation of 

the analyzed micropopulations based on the results obtained from the multimodal analysis of the 

secreted enzyme [144]. Noteworthy, these studies were also enabled by the application of volatile salt 



buffers as reaction media [140]. The developed analytical concept has a broad range of applications 

and can be adapted to on-chip microfluidic droplet cultivations, but also interfaced with any other 

microbioreactor concepts, such as perfusion reactors. 

The above described high-density droplet arrays for interfacing microfluidics and mass spectrometry 

were designed to aliquot droplets of solutions or cell suspensions. With this concept, high-throughput 

analyses of intracellular metabolites in single S. cerevisiae cells were realized with a detection limit 

down to 10 fmol total analyte amount [145,146]. Intrinsic heterogeneity in terms of relative 

intracellular metabolite concentration could be revealed, that correlated with cell size, cell age, or cell 

cycle stage. Based on these intracellular levels of the glycolytic metabolite fructose-1,6-bisphosphate, 

two distinct metabolic phenotypes could be identified [145]. Another study intensified the application 

of the high-density droplet arrays and disclosed that yeast cells exhibited a more active pentose 

phosphate pathway upon perturbation of glycolysis [146]. The authors used 13C-labelled glucose to 

infer the pathway activity of single cells via MALDI-MS. The pioneering studies demonstrate how the 

analysis of metabolic fluxes can be accomplished with single cells and mark the first steps towards 

systems biotechnology with single microbial cells. 

Product analysis and quantification for determining synthesis kinetics of single cells are close. Optical 

methods, basing on fluorescence readouts, cover a broad range of important microbial products and 

concepts like novel FRET sensors for product measurements in microfluidic cultivations are likely to 

emerge. With the latest developments in mass spectrometry, a universal and label-free analytical 

concept for detecting tiniest product amounts comes into reach. However, this requires future 

research in terms of microfluidic interfacing and media design [11]. With the discussed technologies, 

cellular heterogeneities and its manifestation in the catalytic efficiencies are now accessible and will 

lead to the development of novel strategies for strain development and process engineering. Indeed, 

this might enable us to perform systems-level studies with the cell as the minimal unit of 

biotechnological processes. 

Gene expression, protein synthesis, and regulation 
Fluorescence analysis of individual microbes re-awakened the field of microfluidic single-cell analysis 

a decade ago. Cell-to-cell differences in gene expression were revealed by the application of 

fluorescent proteins and microscopy and the results pointed to significant functional heterogeneity in 

isogenic populations (see Figure 6) [147]. Many comprehensive studies followed that elucidated the 

fundamental concepts of stochasticity and noise in gene expression [148-152]. The excellent control 

of extracellular conditions in microfluidics enabled to link observations of gene expression with 

environmental cues and fluctuations [151,153,154]. With the ever-increasing sensitivity of analytical 

technologies, it became even possible to track gene expression at the level of single molecules [155]. 



In biotechnological processes, the content of catalytically active enzyme comprises important 

parameters for the activity of whole-cell biocatalysts. On a population level, it is therefore a common 

procedure to characterize the expression of key enzymes for a target catalytic conversion.  

 

Figure 6: A) Analytical methods, readouts, and parameters for gene expression and regulation at a single-cell 

level. B) Measuring heterogeneity in gene expressions of the sugar metabolism in single E. colis cells via the 

expression of dual fluorescent reporter genes. Next to the synthesis of reporter proteins, carbon uptake of the 

cells were analyzed via nanoSIMS. C) Correlation between stable isotope incorporation and expression of two 

genes involved in sugr metabolism [121]. 

Analyses of gene expression can be performed at a single-cell level, mostly by molecular fusion of 

reporter genes, coding for fluorescent proteins, to the gene of interest [156,157]. With microfluidic 

cultivation, novel insight into the general mechanisms of gene expression could be obtained by the 

application of such fusion constructs. However, a fluorescent reporter can also be just simply put under 

the control of a certain regulatory element such as a promoter to study its functioning. Gefen et al. 

analyzed gene expression kinetics and magnitudes in single starving E. coli cells [158]. The microfluidic 

chip was connected to a shake flask batch culture to establish identical growth conditions in the flask 

and in on-chip cultures. Upon reaching the stationary growth phase, the majority of cells stopped 

growing due to the lack of carbon source, while approximately 7% of the cells lysed. Inducing the 

expression of genes coding for fluorescent proteins, it was found that the starving cells still maintained 

their capability to synthesize protein de novo for several days. It could be hence proven that the 

synthesis activity of E. coli in the stationary growth phase is maintained for longer periods of starvation. 

The obtained results also suggest that cells can be metabolically active, despite the absence of growth. 

However, this is only one prominent example of how gene expression analysis with fluorescent 

reporters can be accomplished. The use of fluorescent proteins and microscopy for probing cellular 

behavior, promoter activity, protein localization, gene expression dynamics, and many other cellular 



parameters is certainly the most widespread method for analyzing single cells in microfluidics [159-

164]. As an extensive discussion of these applications would exceed the scope of this chapter, we refer 

to key review papers on this topic [71,165,166]. 

Gene expression analysis via fluorescent reporter enzyme gives access to relative protein amounts 

inside the cell. Absolute enzyme levels are usually determined via mass spectrometry-based 

proteomics, but proteomics with single microbes are difficult to perform due to the low number of 

enzyme copies inside a cell [12]. The amount of a target enzyme in E. coli cells could be quantified via 

a microscale enzyme-linked immunosorbent assay (ELISA) and the corresponding fluorescence read-

out [167]. For this, individual cells were trapped hydrodynamically in sealable fluidic microchambers. 

Upon cell trapping, the chambers were closed and the target enzyme β-galactosidase was liberated via 

on-chip cell lysis. The free enzyme was bound to immobilized antibodies. The enzyme quantity was 

then determined by the addition of the fluorogenic substrate fluorescein di-β-D-galactopyranoside 

(FDG), which was hydrolyzed to fluorescein and galactose. With this method, enzyme copy numbers 

as low as 200 copies per cell could be detected. The authors found that the abundance of β-

galactosidase was variable among individual E. coli cells and depended on the extracellular cultivation 

conditions, proving proteome heterogeneity in isogenic populations. 

Microfluidic single-cell analysis can also be used to unravel regulatory mechanisms that are hidden 

behind averaged values of populations. The analysis of carbon-catabolite repression in the yeast 

Ogataea polymorpha (formerly known as Hansenula polymorpha) at a single cell-level disclosed that 

threshold glucose concentrations for promoter repression differed up to four orders of magnitude at 

the microscale compared to population experiments [168]. The authors simply put the gene expression 

of a GFP under the control of the MOX promoter to unravel these intriguing insights into promoter 

repression. Optimized carbon-limited fed-batch strategies for increasing the productivity of the MOX 

promoter system could be derived from the microfluidic single-cell experiments. 

As can be seen, the analysis of gene expression and its regulation at a single cell level can contribute 

significantly to the improvement of bioprocesses and microbial cell factories via rational genetic or 

process modifications. 

Analytical pitfalls in microfluidic single-cell analysis 
Many analytical pitfalls have to be considered when analyzing cellular behavior at a microscale. Bias 

arising from the analytical method can result in biological artifacts that lead to misinterpretation of 

the obtained results. The microfluidic cultivation habitat, including the physical laws at the microscale 

and the high surface-to-volume ratios, constitute the most important sources of technical bias in 

microfluidic single-cell analysis [67,169,170,47]. It is therefore important to perform suitable control 



experiments to ensure that the physiological state of the cells to be analyzed is not a result of the 

cultivation environment.  

As discussed before, optical methods are the most widespread analytical technologies for investigating 

the behavior of single microbes. Optical analyses are generally seen as non-invasive, but can have 

tremendous impact on cellular physiology. Although optical analysis technologies are mechanically 

non-invasive, illumination transfers energy to the cells. Light-induced phototoxic effects can severely 

affect the physiology of the cells, mostly by the formation of reactive oxygen species (ROS) or radicals 

[171,172]. Such photochemical-induced toxicity can be even caused by standard white illumination for 

brightfield imaging [173,174] Photo-induced physiological effects inversely scale with the UV light 

contents of the white-light source. By using filters or LED-illumination with defined spectra, UV-

induced effects on physiology can be minimized or even circumvented. 

While phototoxicity can be critical during white-light illumination, it is mandatory to study the effects 

of phototoxicity during fluorescence imaging. As the excitation light for fluorescence analysis is typical 

of high intensity, the physiology of microbes can be strongly influenced by fluorescence excitation 

[175]. A negative correlation was found between the dose of excitation light at 488 nm (typical 

wavelength for GFP-excitation) and doubling times in single E. coli cells[176]. Minimizing of 

phototoxicity during fluorescence imaging involves a reduction of exposure times and excitation. 

Comprehensive guidelines for optimal experimental design for fluorescence imaging have been 

published [177,178]. The basic principles for avoiding the technical bias of fluorescence imaging can 

be also applied for microbes, although most work bases on cell cultures.  

Protein synthesis and degradation dynamics have to considered when using genetically-fluorescent 

probes for the visualization of dynamic processes in single cells [179]. This included maturation times 

of the fluorescent proteins, as well as their extended cytosolic half-life of often more than 24 h [180]. 

It is advisable to apply fast maturating mutants of fluorescent proteins and, if necessary, to add a 

proteasome degradation tag for decreasing the protein's half-life [181]. 

When using chemical dyes for fluorescence imaging, the experimenter has to consider that these 

compounds can intercalate DNA or alter the properties of the stained molecules [182]. These aspects 

have to be considered and its effects should be properly characterized via control experiments to 

ensure the analysis of undisturbed single-cell physiology.  

Conclusion 
The analytical concepts for microfluidic single-cell analysis now enable measuring and quantifying the 

physiology and the underlying cellular parameters of whole-cell biocatalysts at the level of individual 

cells. Advanced analytics, such as optical imaging technologies and mass spectrometry, matured and 



give access to the kinetics of biomass and product formation, as well as substrate uptake. With 

knowledge on cell-specific µ, qS, and rP, mass and energy balances of single cells can be established to 

uncover the catalytic landscape of cellular performance and efficiency. Based on such kinetic single-

cell data, we will learn about the role of individual phenotypes and their contribution to the output of 

the bioprocesses. In combination with powerful microfluidic cultivation concepts, single-cell analytics 

will uncover hidden links between environmental conditions and individual cell performance that are 

blurred by averaged values from populations. Novel engineering targets for metabolic, reaction, and 

process engineering will be derived from data on single-cell physiology.  
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