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Abstract 9 

Microbial communities are indispensable for future biotechnology to produce valuable platform 10 

chemicals and reduce the exploitation of fossil resources. Yet, the stability of microbial communities in 11 

classical continuous reactor set ups is best brief or non-existent. This is due to ecological forces such as 12 

stochastic and deterministic properties of communities that contribute to rapid changes in structure and 13 

function to varying degrees. The review highlights the differences between these two properties, provides 14 

tools for their estimation and gives an outlook on overcoming instabilities of microbial communities in 15 

biotechnological reactor systems. 16 

 17 

Corresponding author:  18 

Susann Müller 19 

Email: susann.mueller@ufz.de 20 

Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, 21 

Permoserstr. 15, 04318 Leipzig 22 

Cell phone: 49 341 235 1318 23 

 24 

Key words: microbial communities, single cell analysis, microbial flow cytometry, ecology of microbial 25 

communities 26 

 27 

 28 

 29 

 30 

 31 

 32 

mailto:susann.mueller@ufz.de


2 
 

Introduction 33 

Microbial communities are increasingly used as biocatalysts in biotechnological processes due to the 34 

multifunctional properties of their members. In contrast to genetically engineered so-called superbugs, 35 

which are engineered to perform the desired steps of a biochemical transformation as a pure culture, 36 

microbial communities distribute the necessary transformation steps among different cell types. The 37 

involvement of microbial communities in biotechnological production processes have at least two 38 

advantages: One is that superbugs require expensive and specifically refined substrates to produce 39 

valuable products. Instead, microbial communities can convert cheap complex materials from agriculture 40 

and forestry as well as waste materials, which significantly reduces production costs. Such approaches 41 

also lead to reduced use of fossil resources for the production of valuable chemicals and support the shift 42 

to a circular economy. Second, the functional capacity in communities is vast, mostly redundant or 43 

evolving, and thus offers a huge library of possible metabolic transformation pathways [1, 2]. But despite 44 

these great benefits, there is a reluctance to use microbial communities more intensively in 45 

biotechnology. With the exception of well-known processes such as biogas production, wastewater 46 

treatment or the use of microbial communities in the food industry, there are no significant new 47 

applications beyond these. In our opinion, the reason for this could be the inability to control complex 48 

microbial communities in biotechnological processes. In this statement, we aim to identify the probable 49 

causes of process instabilities caused by microbial communities as catalysts and pave the way for solutions 50 

to overcome this problem. 51 

 52 

The ecology of microbial communities 53 

Ecological paradigms have not yet been considered in the control of biotechnological processes. 54 

However, microbial communities are subject to ecological rules, just like any other population on earth, 55 

e.g. the organisms of a forest or of a water body. Following macro-ecology theory, we seek to understand 56 

the ecological mechanisms that govern the coexistence of microorganisms in biotechnologically exploited 57 

communities. 58 

Mostly, the biocatalysts themselves are not measured and evaluated as segregated values according to 59 

their share and function, but rather treated as bulk biomass parameters. In addition, substrate turnover 60 

and product synthesis are of interest, as well as abiotic operational parameters such as temperature, pH 61 

and off-gas values, which are indispensable for conventional process control. This classical control scheme 62 

originates from biotechnological processes, where the biocatalysts are pure populations with well-known 63 

physiological properties. But already here the heterogeneity of the population contributed to unstable 64 



3 
 

processes and was therefore an issue in many studies [e.g., 3]. Triggers include cell cycle stages, age 65 

distributions, plasmid copy numbers, or gene expression noise [4-8]. Of course, the degree of 66 

heterogeneity is much higher in natural and also artificial communities, which affects the stability and 67 

efficiency of the processes. To understand what drives assembly of and heterogeneity in microbial 68 

communities, ecological theory can be of great help.  The main ecological forces affecting the proportions 69 

of cell types in communities are stochastic (neutral) and deterministic forces (Figure 1). 70 

 71 

Stochastic forces in biotechnological systems 72 

Stochastic behavior is an important ecological property that occurs in communities of any taxonomic level. 73 

It assumes that members of a community share the same equivalence and fitness within a community, 74 

which implies that they have the same prospects of reproduction and mortality [9]. Under this 75 

assumption, deterministic factors like environmental parameters play no role in shaping communities, 76 

because all individuals respond in the same way. Although this assumption is clearly counterintuitive to 77 

our daily experience, most neutrality-based models provide reliable predictions [10, 11]. In ecology 78 

theory, random birth and death of organisms are typical stochastic events. Moreover, systems governed 79 

by stochastic forces exhibit intermediate frequencies, i.e., less extreme distributions of community 80 

members, which behave therefore largely uniform with respect to each other. Interactions between 81 

members of such communities are considered to be small. 82 

We want to understand how these stochastic forces affect microbial communities in bioreactor systems 83 

and how they can influence the efficiency of production processes. Typical bioreactors are stand-alone 84 

systems operated in continuous cultivation modes. We do not consider batch systems here because 85 

community lifetimes are limited in such systems (i.e., only a few generation times of contained organisms) 86 

due to rapid onset of nutrient, carbon, and energy scarcity and rapid succession of harvesting steps, and 87 

thus ecological forces have less influence. Instead, continuously operated bioreactor systems are 88 

constantly fed with carbon and energy sources and contain a community that randomly loses community 89 

members due to the dilution rate. This process can be considered as extinction (or cell death). In systems 90 

with high stochasticity, there is high functional redundancy in otherwise taxonomically diverse 91 

communities. Under these conditions, because cell types with similar functions are present in equal 92 

abundance, different cell types with the same function can be easily interchanged. This inevitably leads 93 

to structural changes in community composition. Therefore, functional redundancy is a major contributor 94 

to changes in the dominance of particular cell types in a bioreactor, which leads to significant structural 95 

instability [12-14]. Instability can be such that any given species becomes dominant because there are no 96 
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interactions among members of the community that would support a lasting dominance of a particular 97 

cell type.  98 

We also suspect that bioreactor systems operated at low cell densities are more prone to stochasticity. 99 

The relative influence of coincidences such as random birth or death of a cell is greater in less dense 100 

communities. Therefore, continuous cultivation systems with low cell densities containing a highly diverse 101 

community with random functions are highly susceptible to stochastic events and to structural and 102 

consequently functional instability. 103 

 104 

Deterministic forces in biotechnological systems 105 

Deterministic behavior is also an important ecological trait that occurs in communities at every taxonomic 106 

level. Based on the concept of niche it assumes that members of a community are different from each 107 

other, have different characteristics and functions within a community, and are often interdependent. 108 

The two aspects of the niche concept relate either to the environmental needs of species ("requirement 109 

niche") or to the impacts of species on their environment ("impact niche"), such as the consumption of 110 

resources that leads to competition among species [15]. The competitive exclusion principle highlights 111 

that a pair of species cannot stably coexist if they feed upon exactly the same resources under the same 112 

environmental conditions [16]. Only species with different requirement niches are able to coexist, but 113 

whether stable coexistence will be achieved depends on different impact niches. Both aspects indicate 114 

that there are trade-offs between species to determine whether stability of a microbial community is 115 

reached [17]. In multi-species systems of microbial communities, niche requirements can be highly 116 

variable but also highly similar, so niche overlap cannot be avoided. 117 

Considering again at the continuous cultivation mode, we can state that the dilution rate not only 118 

promotes cell extinction as a stochastic feature, but also causes selection of cells with a reduced average 119 

fitness difference. All cells with a growth rate below the dilution rate are lost, which over time leads to 120 

selection of cells that grow equal to or faster than the dilution rate. Thus, the dilution rate contributes to 121 

equalizing but not to stabilizing because the niche overlap is not reduced. The dilution rate can also be 122 

considered as disturbance that favors faster-growing cells. 123 

In macro-ecology theory, disturbances are called deterministic factors because they shape the 124 

environment and communities. Deterministic factors, then, are those that have traditionally been used to 125 

steer bioprocesses in desired directions. These are any operating parameters that help select specific cell 126 

types through temperature and pH optima, through types of carbon sources and specific nutrient mixtures 127 

or agitation rates. Strong deterministic features support interdependencies between cell types of 128 
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different requirement niches, such as when a substrate is used by one strain and the resulting 129 

intermediate serves as a substrate for another strain to produce something. Interdependence lowers the 130 

likelihood of monodominant communities with limited function and ensures continuous coexistence 131 

among interconnected partners. In highly diverse communities, many such links may exist, but the 132 

extinction of one of the partners may also lead to the extinction of the other. Unlike stochastically 133 

controlled systems, the system is dominated especially by non-replaceable, abundant microorganisms. 134 

Structural change is therefore less likely, while nesting, which describes the persistence of particular cell 135 

types, is definitely high in deterministic systems [18, 19]. In high-density systems, only small, albeit 136 

continuously provided, resources are available and they are therefore not susceptible to change. Overall, 137 

deterministically organized systems appear to be more stable than those under the rule of stochasticity. 138 

 139 

Stochasticity vs. determinism 140 

Following the above reasoning, it can be assumed that setting up a bioreactor system in a way where only 141 

deterministic forces act can lead to stability and also enable control. However, it is known from many 142 

studies that stand-alone systems are almost never stable [12, 20], even though short-term stability is 143 

sometimes reported. The rationale for these findings is that in any self-contained system involving living 144 

organisms, stochasticity and determinism are simultaneously prevalent, and that in systems involving 145 

multiple species, there will always be niche overlaps and uncertain impact niches which can be influenced 146 

but never excluded. There are tools that make it possible to determine the proportion of one force or the 147 

other, which can give an indication of the chance of setting a system further to the deterministic side for 148 

control. However, there is a fundamental recognition that controlling communities in stand-alone 149 

bioreactors appears to be impossible. 150 

 151 

Determination of stochastic and deterministic shares in microbial communities 152 

To determine the shares of deterministic and stochastic forces the measurement of the individual 153 

organisms is necessary. Similar to counting and describing plants in a forest to understand active 154 

ecological paradigms also microbial communities needs to be resolved to the individual cell level. This is 155 

possible using microscopic technologies among them flow cytometry which allows a fast and cost effective 156 

recording of dynamics in microbial community behavior. Microbial communities grown in bioreactors can 157 

be routinely analysed according to abundancies of cell types over long periods of time using fingerprinting 158 

approaches. Cell types are characterized related to cell size (forward scatter, FSC) and numbers of 159 

chromosomes per cell (DNA fluorescence) or nucleic acid contents [21-24]. According to these 160 
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characteristics, cells are gathering as Gaussian distributions in subcommunities (SC). The changes in 161 

numbers of SCs, the position of SCs in a 2D-plot and the numbers of cells per SC inform on community 162 

dynamics over time (Figure 2). To determine the proportions of deterministic and stochastic forces in a 163 

community, such information can be evaluated using the tool NST (Normalized Stochasticity Ratio; 25). 164 

According to theory, the forces of determinism are the stronger the lower is the niche overlap and the 165 

higher the niche impact (Figure 2). The niche impact is commonly estimated by correlation or network 166 

analyses, with higher determinism indicated by tight correlations or compact networks (26; and only for 167 

sequencing data, e.g. 27, 28). Other tools like QPEN and iCAMP use interspecies phylogenetic relationship 168 

to estimate their similarity in niches [29, 30], however these methods also rely still only on sequencing 169 

data. 170 

 171 

Outlook 172 

Multiple-species communities in stand-alone bioreactors would not be able to overcome stochastic forces 173 

and create non-overlapping requirement niches and influence impact niches in ways that promote 174 

coexistence. As a result, we will not be able to control such systems. And yet, there are system in the 175 

environment that are stable over long periods of time, as can be observed in macro-ecology, but also in 176 

certain connected basins of wastewater treatment plants and even in the microbiomes of human or 177 

animal origin [31, 32]. The fundamental mechanism supporting this stability is dispersal. Recent data 178 

indicate that the use of dispersal in loop designed continuous bioreactors greatly contributes to the 179 

stability and synchrony of connected complex microbial communities [33]. This research is promising, but 180 

more ideas and further consideration of ecological paradigms in biotechnological processes are needed 181 

before implementation can be made possible. This may also require that new reactor designs be created 182 

for stable and structurally and functionally controlled cultivation of microbial communities. 183 
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Figures 284 

Figure 1: Ecological forces shape the individual cell proportions in microbial communities. Blue: stochastic 285 

forces and Orange: deterministic forces that are common in microbial communities that are cultivated in 286 

continuous stand-alone bioreactors. These two forces have different influences on the structure and 287 
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function of communities and affect the productivity of biotechnological processes to varying degrees. (SC: 288 

subcommunity) 289 

 290 

Figure 2: Analyses of the type of ecological forces that shape the properties of microbial communities. 291 

Cells are cultivated in continuous bioreactor systems and samples are taken within generation time and 292 

analysed on the individual cell level by flow cytometry. Fingerprints per sample are generated and 293 

dominant SCs are determined by cell abundance calculation. Networks and co-occurrences are visualized 294 

by correlation analyses and proportions of stochastic and deterministic forces are calculated. (SC: 295 

subcommunity) 296 


