This is the accepted manuscript version of the contribution published as:

Reiber, L., Knillmann, S., Foit, K., Liess, M. (2020): Species occurrence relates to pesticide gradient in streams *Sci. Total Environ.* **735**, art. 138807

The publisher's version is available at:

http://dx.doi.org/10.1016/j.scitotenv.2020.138807

Species occurrence relates to pesticide gradient in streams

Lena Reiber, Saskia Knillmann, Kaarina Foit, Matthias Liess

PII:	S0048-9697(20)32324-X
DOI:	https://doi.org/10.1016/j.scitotenv.2020.138807
Reference:	STOTEN 138807
To appear in:	Science of the Total Environment
Received date:	16 February 2020
Revised date:	17 April 2020
Accepted date:	17 April 2020

Please cite this article as: L. Reiber, S. Knillmann, K. Foit, et al., Species occurrence relates to pesticide gradient in streams, *Science of the Total Environment* (2020), https://doi.org/10.1016/j.scitotenv.2020.138807

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

1

13

Species occurrence relates to pesticide gradient in streams

4 Authors

- 5 Lena Reiber_{a,b}*, Saskia Knillmann_a, Kaarina Foit_a, Matthias Liess_{a,b}*
- 6 aUFZ Helmholtz Centre for Environmental Research, Department System-Ecotoxicology,
- 7 Permoserstr. 15, 04318 Leipzig, Germany
- 8 bRWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg
- 9 1, 52056 Aachen, Germany
- 10 *Corresponding authors. UFZ Helmholtz Centre for Environmental Research, Department
- 11 System-Ecotoxicology, Permoserstr.15, 04318 Leipzig, Germany. Email address:
- 12 lena.reiber@ufz.de, matthias.liess@ufz.de

14 Keywords

15 Macroinvertebrates; Monitoring; Pesticides; Substrate preference; Oxygen; Ecological traits

16 Abstract

Freshwater communities are threatened worldwide, with pesticides being one of the main stressors for vulnerable invertebrates. Whereas the effects of pesticides on communities can be quantified by trait-based bioindicators such as SPEAR_{pesticides}, single species responses remain largely unknown.

We used the bioindicator SPEAR_{pesticides} to predict the toxic pressure from pesticides in 6942
macroinvertebrate samples from 4147 sites during the period 2004 to 2013, obtained by
environmental authorities in Germany, and classified all samples according to their
magnitude of pesticide pressure. Along this gradient of pesticide pressure, we quantified the
occurrence of 139 macroinvertebrate species.
We identified 71 species characterized by decreasing occurrence with increasing pesticide
pressure. These 'decreasing species', mainly insects, occurred at a frequency of 19.7% at

sites with reference conditions and decreased to 1.7% at sites with the highest pesticide
pressure. We further determined 55 'nonspecific species' with no strong response as well as
13 'increasing species', mainly Gastropoda, Oligochaeta and Diptera, which showed an
increase of frequency from 1.8% at sites with reference conditions to 11.4% at sites with the
highest pesticide pressure. Based on the change in frequency we determined the pesticide
vulnerability of single species, expressed as pesticide associated response (PARe).
Furthermore, a trait analysis revealed that species occurrence may additionally depend on

35 oxygen demand and, to a lesser extent on substrate preference, whereas no significant

36 effect of feeding and respiration type could be found.

37 Our results provide the first extensive pesticide vulnerability ranking for single

38 macroinvertebrate species based on empirical large-scale field data.

39 1 Introduction

All over the world pesticides have a major impact on freshwater communities. In Germany 40 more than 48,000 t of pesticides were sold in 2017 (BVL, 2018). A toxicological relevant 41 proportion of these substances enter freshwater streams worldwide (Malaj et al., 2014), 42 43 affecting freshwater communities and leading to a reduction in regional aquatic biodiversity 44 (Beketov et al., 2013), changes in ecosystem functions such as leaf litter breakdown (Schäfer et al., 2012) and an altered community structure dominated by less sensitive 45 species (Liess and von der Ohe, 2005; Schäfer et al., 2012; Knillmann et al., 2018). 46 47 At the community level, the effects of pesticides in the field can be identified by biological indicators such as SPEAR_{pesticides} (SPEcies At Risk, Liess and von der Ohe, 2005). This 48 49 indicator uses species traits including (i) the physiological sensitivity towards pesticides based on laboratory studies, (ii) the generation time, (iii) the exposure probability and (iv) the 50 dependence on refuge areas with the ability to migrate from them. According to these traits 51 52 each species is predicted to be 'at risk' (referred to as SPEAR) or 'not at risk' (referred to as 53 NotSPEAR) from pesticide pressure. Finally, SPEAR_{pesticides} reflects the pesticide impact on the community structure by the relative abundance of species 'at risk'. SPEAR_{pesticides} has 54 been shown to successfully indicate the effects of pesticides on freshwater communities in 55 different geographical regions such as Germany (Schäfer et al., 2007; von der Ohe et al., 56 2007; Liess et al., 2008; Schäfer et al., 2012; Orlinskiy et al., 2015; Münze et al., 2017), 57 elsewhere in Europe (Schäfer et al., 2007; von der Ohe et al., 2007; Liess et al., 2008; 58 Schäfer et al., 2012; Rasmussen et al., 2013) and other regions in the world (Schäfer et al., 59 2011; Schäfer et al., 2012; Chiu et al., 2016; Hunt et al., 2017). However, due to lack of data, 60 the response of single species over a gradient of pesticide pressure has never been 61 identified under field conditions. Instead species-specific responses to pesticides are usually 62 derived from laboratory toxicity tests conducted under standard test conditions. Rankings of 63 64 laboratory-based sensitivity to pesticides have been compiled for example by Von der Ohe and Liess (2004) or Rubach et al. (2010). However, the transferability of laboratory-based 65 sensitivity to pesticides to the vulnerability of species under field conditions is prone to error. 66

In particular, additional environmental stressors are known to increase the vulnerability of 67 68 species in the field and change their response to pesticides (Liess et al., 2016; Liess et al., 2019). This pertains to non-chemical stressors such as competition, changed food 69 70 availability, temperature regime (Heugens et al., 2001; Liess and von der Ohe, 2005; Stampfli et al., 2011; Foit et al., 2012; Knillmann et al., 2012; Dolciotti et al., 2014) or 71 72 additional chemical stressors (Nørgaard and Cedergreen, 2010) even though net effects of 73 stressors may be antagonistic depending on the endpoint considered (Jackson et al., 2016). 74 Because of this complex interaction between different environmental stressors, this paper empirically identifies the vulnerability of single species to pesticides in the field. Therefore, 75 76 we used German-wide macroinvertebrate monitoring data to quantify single species' 77 responses towards pesticide pressure. Due to lack of exposure data, we used the indicator 78 SPEAR_{pesticides} to predict the degree of pesticide pressure. Finally, we aimed to identify potential correlations between the species responses to pesticides and ecological traits and 79 related the species' response to pesticides with their saprobic value, substrate preference, 80 feeding type and respiration. 81

82 2 Methods

83 2.1 Study area and spatial analysis

For our analysis, we selected a total of 4147 macroinvertebrate sampling sites comprising
6942 samples in nine German federal states (see Fig. 1).

Pesticide pressure at the respective sites was calculated with SPEAR_{pesticides} (see section 2.3). This indicator is calibrated and validated for small freshwater streams without extreme morphological degradation (Bunzel et al., 2014). Hence, in order to prevent any confounding factors regarding the prediction of pesticide pressure, we excluded the following sampling sites within the site selection process:

- Sites in the low mountain ranges and the Alps, so only those sampling sites at
 elevations < 500 m were considered. Elevation levels were taken from the ASTER
 Global Digital Elevation Model v2.
- 94 Sites with a structural quality class of 6 (strongly changed) and 7 (completely
- 95 changed). Information on the structural quality class was provided by the respective
 96 official authorities (see section 2.2).
- 97 Sites within brackish water bodies, indicated by respective landscape types in the
- 98 structural quality shapefiles defined as 'marshland waters and backwater' and
- 99 'brackish water influenced inflow of the Baltic Sea' in the federal states of
- Mecklenburg-Vorpommern and Schleswig-Holstein as well as 'coastal marshlands' inNiedersachsen.
- Sites with a distance from the stream source of > 50 km. For this, available
- 103 information on the flow direction and the geometry of the water courses were

104 combined (ATKIS DLM25, GeoBasis-DE/BKG (2010).

105 Spatial analysis was conducted with ArcGIS (Version 10.3).

106 2.2 Macroinvertebrate data

Macroinvertebrate data from 2004 to 2013 was provided by the official authorities of the 107 108 respective German federal states comprising of Bayerisches Landesamt für Umwelt (LfU, 109 Augsburg), Hessisches Landesamt für Naturschutz, Umwelt und Geologie (HLNUG, Wiesbaden), Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-110 Holstein (LLUR, Flintbek), Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-111 Westfalen (LANUV, Recklinghausen), Landesamt für Umwelt, Naturschutz und Geologie 112 Mecklenburg-Vorpommern (LUNG, Güstrow), Landesbetrieb für Hochwasserschutz und 113 Wasserwirtschaft Sachsen-Anhalt (LHW, Magdeburg), Niedersächsischer Landesbetrieb für 114 115 Wasserwirtschaft, Küsten- und Naturschutz (NLWKN, Norden), Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG, Dresden) and Thüringer Landesanstalt für 116 Umwelt und Geologie (TLUG, Jena). 117

118 Data was collected by the authorities according to the Water Framework Directive (European

119 Commission, 2000) or by using similar sampling procedures.

120 To reduce the effect of seasonal variations of the species present in a sample, we

121 furthermore only included samples taken during the main season of insecticide application

122 (April to June).

To reduce errors during sampling and identification, we excluded the following entries fromthe dataset:

125 - Insects in the stage of pupae or imago (in case of emerging adults)

- Species declared as 'uncertain' at the time of identification by the respective authority

127 - Samples with a low number of species, namely less than five aggregated species

128 according to SPEAR_{pesticides} (For the calculation of SPEAR_{pesticides}, the level of

129 taxonomic determination in the raw data is standardized by means of species

aggregation. Information on species aggregation was derived from the website

131 www.systemecology.eu/indicate, version 1.0.0, June 2019).

After these selections, the dataset included 1733 taxa on species, genus, family and order level. In a final step we reduced our dataset on 1163 taxa only on species and sub-species level to account for the known variability of pesticide effects between species of the same genus or family (Wiberg-Larsen et al., 2016).

136 **2.3 Prediction of pesticide pressure**

Whereas the monitoring data within the WFD offers biological data in excellent quality, the availability of associated chemical measurements indicating ecological relevant pesticide exposure is limited. In current government monitoring, biological and chemical study sites are often poorly synchronized in space and time (Brinke et al., 2015). In addition, chemical measurements often underestimate the pesticide load when using grab samples from routine monitoring programs, whereas event-driven samples would be preferable (Liess et al., 1999; LUWG, 2011). Moreover, routine monitoring programs often only include a limited number of

pesticides (Moschet et al., 2014). To overcome this lack of ecologically relevant data of 144 pesticide exposure, we predicted the pesticide pressure for each macroinvertebrate sample 145 146 using the indicator SPEAR_{pesticides} (Liess and von der Ohe, 2005), updated by Knillmann et al. (2018). The indicator determines the relative abundance of species at risk towards pesticides 147 within a community whereby the vulnerability of a species is defined by ecological traits. 148 SPEAR_{pesticides} is calculated as follows: 149 $SPEAR_{j} = \frac{\sum_{i=1}^{n} log(4x_{i}+1) \cdot y}{\sum_{i=1}^{n} log(4x_{i}+1)}$ 150 (1) where n is the total number of species in a sample j, x_i is the abundance of species i, and y is 151 152 set to 1 for SPEAR (species at risk) and set to 0 for NotSPEAR (species not at risk). Abundance data was log(4x+1)-transformed to decrease the influence of populations with 153 mass developments (Knillmann et al., 2018). In a second step, the values of SPEAR pesticides 154

155 are normalized to reference conditions as follows:

156 SPEAR_{pesticides} =
$$\frac{SPEAR_j}{SPEAR_{reference}}$$
 (2)

where SPEAR_j is the indicator value of a sample j, and SPEAR_{reference} refers to the mean
indicator value assumed under reference conditions with no or negligible pesticide pressure.
The value of SPEAR_{reference} is set to 0.27 based on the evaluation of German monitoring data.
For more details on the calculation see Liess and von der Ohe (2005), Liess et al. (2008),
Knillmann et al. (2018) and the website www.systemecology.eu/indicate (version 1.0.0, June
2019).

trends. Each class indicates a different level of predicted pesticide pressure (PP), whereas
level PP1 reflects reference condition and level PP5 indicates samples with the highest
pesticide pressure.

The number of samplings per site is 2.2 on average for the selected time period (from April to June) and for all of the years included in the analysis. The maximum number of samples taken at one site was 19. These repeated measurements are negligible because of the high total number of samples included in this analysis.

2.4 Calculation of invertebrate frequency

Along the gradient of predicted pesticide pressure, for each species we calculated the response related to its frequency in order to determine the respective vulnerability. We assessed the frequency for each species and level of predicted pesticide pressure as follows:

181 frequency_{p,i} =
$$\frac{n_{p,i}}{n_p} \cdot 100$$
 (3)

where i is the respective species, p is the level of pesticide pressure, $n_{p,i}$ is the number of samples for species i and pesticide pressure p, and n_p is the total number of samples for pesticide pressure p. If a species was not present at a certain level of pesticide pressure, the frequency was set to 0.

To reduce uncertainty within data analysis related to species with low data availability, only those species were taken into account that i) occurred at least in 100 samples, ii) showed a maximal frequency of > 5% at one of the 5 levels of pesticide pressure, iii) occurred in at least 10 samplings at each of 3 consecutive levels of pesticide pressure.

Applying these criteria, we reduced the species in the dataset from originally 1163 to 269
(step i), 156 (step ii) and 139 (step iii) species, for which frequency was finally determined.
Step iii also lead to the exclusion of potentially extremely vulnerable species, which were

only present at reference sites. This was done in order to ensure that we exclude species
that are potentially dependent on landscape conditions typical of reference sites.
To enable frequency patterns to be compared, species' frequencies were converted to
relative values by setting the highest value, irrespective of the level of pesticide pressure, to
100%. The relative frequency was calculated as:

198 relative frequency_{p,i} =
$$\frac{frequency_{p,i}}{max. frequency_i} \cdot 100$$
 (4)

where i is the respective species, p is the level of pesticide pressure, frequency_{p,i} is the frequency of species i at pesticide pressure p and max. frequency_i is the highest frequency value of species i, irrespective of the level of pesticide pressure.

To generalize the response pattern of the species, in a next step, the change of the relative frequency between the reference condition (PP1) and the highest level of pesticide pressure (PP5), referred to as Pesticide Associated Response (PARe), was calculated for each species as:

206
$$PARe_i = relative frequency (PP5)_i - relative frequency (PP1)_i$$
 (5)

where i is the respective species, PP1 indicates reference conditions and PP5 is the highest
level of pesticide pressure. With this calculation we intended to identify species with a clear
negative or positive trend in frequency along the gradient of pesticide pressure.

To group species with similar response patterns, we defined the following three speciesgroups according to PARe:

- 212 Decreasing species group: species with PARe \leq -70
- Nonspecific species group: species with PARe > -70 and < 70
- Increasing species group: species with PARe ≥ 70

215 2.5 Selection of ecological traits

The pesticide vulnerability of single species, expressed as pesticide associated response
(PARe), was related to the laboratory based physiological sensitivity according to the index
SPEAR_{pesticides}, derived from www.systemecology.eu/indicate (version 1.0.0, June 2019). The
PARe-value of each species was additionally compared to the classification of species as
SPEAR and NotSPEAR.

Finally, we investigated the influence of ecological traits not included in SPEAR_{pesticides} on 221 222 PARe. This analysis was conducted separately for species classified as SPEAR and 223 NotSPEAR to avoid any potential confounding influence of the traits already included in 224 SPEAR_{pesticides}. Ecological trait values for the 139 selected species were derived from the 225 website www.freshwaterecology.info (version 7, November 2018). Available trait data 226 originated from two types of sources: first from Tachet et al. (2010) and second from a 227 compilation of different sources (Aspöck, 1995; Bauernfeind et al., 1995; Car et al., 1995; 228 Eder et al., 1995; Graf et al., 1995a; Graf et al., 1995b; Hörner et al., 1995; Jäch et al., 1995; 229 Janecek et al., 1995a; Janecek et al., 1995b; Moog, 1995; Nesemann and Moog, 1995; Nesemann and Reischütz, 1995; Zettel, 1995; Schmedtje and Colling, 1996; AQEM expert 230 consortium, 2002; Graf et al., 2008; Buffagni et al., 2009; Graf et al., 2009; Tachet et al., 231 232 2010; Brabec et al., 2018; Buffagni et al., 2018; Graf et al., 2018a; Graf et al., 2018b).

233 Those traits were selected for which a link to pesticide vulnerability or sensitivity was to be 234 expected or indicated by other studies (Rubach et al., 2010; Rico and Van den Brink, 2015; 235 Wiberg-Larsen et al., 2016; Knillmann et al., 2018) and according to the data availability for the 139 species. To reduce the uncertainty of the trait analysis, only those traits were taken 236 into account where a minimum of 30 data points were available for species at risk and not at 237 risk respectively. The following traits were selected (n indicates the number of species for 238 which trait information was available): (a) saprobic value (n=108), (b) substrate preference 239 (n=75), (c) feeding type (n=131) and (d) respiration (n=82). Due to limited data availability, 240

the ecological traits maximum potential size, resistance forms, life cycles and reproductioncould not be included in the analysis.

Trait data for substrate preference, feeding type and respiration was available in a fuzzy 243 coded way, whereas the height of the number determines the preference for the respective 244 trait class. For each species and for each of the two sources, the trait class with the 245 246 maximum number was extracted separately. When the maximum trait class of both sources 247 was not identical, both trait classes were considered for the respective species in the analysis. In case the maximum number was assigned to several trait classes within one 248 249 source, all of these trait classes were extracted for the respective species. Finally, a dataset 250 was compiled which contained the trait class, or classes if applicable, indicated by the 251 maximum number for each species. Trait data for the saprobic value for Germany was 252 available in numbers (DEV, 2003). Due to the cumulative occurrence of single values and for a better comparability with other traits, we defined three classes for the saprobic value. 253

254 **2.6 Statistical analysis**

To test for differences between frequencies at the five different levels of pesticide pressure 255 within the decreasing, unspecific and increasing species groups respectively, data was first 256 tested for the homogeneity of variances (Levene's Test) and normal distributions of the 257 258 residuals (Shapiro-Wilk Normality Test). The frequency was log-transformed. Differences in the means of the average frequency were tested with an analysis of variance (one-way 259 ANOVA) followed by a post-hoc test (Tukey's HSD Test). Data was tested at influential data 260 points (Cook's Distance). A trend analysis according to Jonckheere (1954) was conducted for 261 each species group to test whether frequency significantly follows a specific pattern 262 263 (Jonckheere-Terpstra Test, package 'DescTools'). This test is specifically designed to identify trends and their direction. It indicates whether an assumed trend (monotonic, 264 increasing or decreasing) of class means is significant. 265

To identify whether the ecological traits of species (see section 2.5) have a significant impact 266 267 on the Pesticide Associated Response (PARe) both for species at risk and species not at risk from pesticide pressure according to SPEAR_{pesticides}, data was tested for the homogeneity of 268 269 variances (Levene's Test) and the normal distributions of the residuals (Shapiro-Wilk 270 Normality Test). As the assumptions were not met, a non-parametric Kruskal-Wallis test was then applied to test the explained variance of PARe by the respective trait. If PARe was not 271 272 significantly different between several categories of a respective trait, the categories were 273 grouped to simplify the model. In case of more than two categories for one trait (as for the saprobic value), a non-parametric pairwise test for multiple comparisons of mean rank sums 274 275 (Dunn's-Test) was conducted to test for significant differences of PARe between the categories. 276

As for the physiological sensitivity according to SPEAR_{pesticides}, a Spearman's Rank
 correlation with PARe was performed. All statistical tests were performed with R Studio

279 (version 1.1.463).

280 **3 Results**

281 3.1 Pesticide Associated Response (PARe) of single species

The available monitoring data from the field enabled the Pesticide Associated Response to be assessed (PARe, see section 2.4) for 139 macroinvertebrates (Table 2 and Fig. A.1). Based on this change in relative frequency, we were able to distinguish between (i) 71 'decreasing species' with a PARe of -70 or less, (ii) 13 'increasing species' with a PARe of

+70 or more and (iii) 55 'nonspecific species' with a PARe between -70 and +70.

The dynamics of the mean frequencies of all investigated species are shown for each of the

three species groups separately in Fig. 2. For the decreasing and increasing species groups,

the change in frequency over the gradient of pesticide pressure was statistically significant

290 (Jonckheere-Terpstra Test, p = 0.001), whereas nonspecific species showed no common

monotone change in frequency (Jonckheere-Terpstra Test, p > 0.05). In the following, p-291 values in parentheses indicate significant differences from reference conditions (PP1). 292 293 Decreasing species show a maximum frequency of 19.7% at PP1, from where the frequency 294 decreases to 11.0%, 7.1%, 4.1% and 1.7% at the four levels of increasing PP (Tukey's HSD 295 Test, p < 0.001 for all comparisons). The frequency of nonspecific species increases at 296 moderate PP (Tukey's HSD Test, p < 0.01 at PP3 and p < 0.05 at PP4). However, no 297 difference at the highest PP could be found compared to the reference conditions (Tukey's 298 HSD Test, p > 0.05). Increasing species show an increase in frequency from 1.8% at PP1 to 4.7% (Tukey's HSD Test, p < 0.05), 7.6%, 9.0%, 11.4% (Tukey's HSD Test, p < 0.001) at the 299 four levels of increasing PP. 300

Fig. 3a shows the relation of the Pesticide Associated Response (PARe) and the 301 classification according to SPEAR_{pesticides} as species at risk (SPEAR) and not at risk 302 (NotSPEAR) towards pesticide pressure. A significant difference of PARe between SPEAR 303 304 and NotSPEAR could be found (Kruskal-Wallis Test, p < 0.001). The classification system 305 according to SPEAR_{pesticides} was also compared with our classification of species as decreasing, nonspecific and increasing (see Fig. 3b). For SPEAR, both classification 306 307 systems show similar results (35 decreasing species, 11 nonspecific species). However, 308 NotSPEAR are distributed over all three species groups (36 decreasing, 44 nonspecific and 309 13 increasing species). This difference in classification indicates that other traits or stressors, 310 which co-occur with pesticide pressure, might affect species occurrence (see also section 3.2). 311

Moreover, the distribution of decreasing, nonspecific and increasing species within different taxonomic groups was analyzed (Fig. 3c). Decreasing species are composed of species from eleven taxonomic groups (order or higher level of taxonomy), seven of them belonging to the class of insects. The taxonomic groups where decreasing species are predominant are Plecoptera (80%), Ephemeroptera (78%), Trichoptera (74%) and Coleoptera (71%). All other taxonomic groups are dominated by nonspecific species with the largest percentages

identified for Bivalvia (100%), Heteroptera (100%) and Hirudinea (86%). The nonspecific
species group contains species from all investigated 14 systematic orders and classes and
therefore shows the highest diversity. Increasing species pertain to seven taxonomic groups
with the highest shares of Oligochaeta (38%), Gastropoda (36%) and Diptera (29%).

322 **3.2** Link between PARe and ecological traits

We identified a moderately negative but significant relationship of the Pesticide Associated
Response (PARe) and the laboratory based physiological sensitivity according to
SPEAR_{pesticides} with a high variance (Spearman's Rank correlation, r = -0.44, p < 0.001, Fig.
A.2). Hence, high values of physiological sensitivity indicate a relatively high vulnerability of
the given species. Accordingly, we observed a decrease in the PARe-value with increasing
physiological sensitivity. However, the high variance of the relationship indicates that PARe
may also be influenced by other traits.

In a second step the relationship between PARe and different ecological traits namely (a) the saprobic value, (b) the substrate preference, (c) feeding type and (d) respiration were analyzed in order to investigate whether the traits have an impact on species' occurrence in the field in addition to the traits included in the index SPEAR_{pesticides}. Therefore, the analysis was conducted separately for SPEAR and NotSPEAR according to SPEAR_{pesticides} (see also section 2.5). Values of the traits for each species as well as their classification according to SPEAR_{pesticides} can be found in Table A.1.

For NotSPEAR a significant increase in PARe could be found with increasing saprobic value
(Dunn's-Test, p < 0.001, see Fig. 4, 1b). Similarly, NotSPEAR preferring macrophytes or mud
as a substrate were found to have a comparatively high PARe (Kruskal-Wallis Test, p < 0.01,
see Fig. 4, 2b). Hence, the frequency of NotSPEAR with high saprobic values or preferring
macrophytes/mud as a substrate is more likely to increase or remain about constant, while
NotSPEAR with low saprobic values or preferring any other substrate will show a decrease in
frequency.

For SPEAR, the variance of PARe cannot be explained by substrate preference (see Fig. 4,
2a). However, similar to NotSPEAR, a significant increase in PARe could be found with an
increasing saprobic value from 1-1.9 to 2-2.4 (Dunn's-Test, p < 0.05, see Fig. 4, 1a). Hence,
SPEAR with high saprobic values will show a less decreasing frequency.

No significant relation could be identified between PARe and the traits 'feeding type' and 'respiration' (Kruskal-Wallis Test, p > 0.05, see Fig. A.3). The ecological traits 'maximum potential size', 'resistance forms', 'life cycles' and 'reproduction' had to be excluded from the analysis due to limited data availability.

352 4 Discussion

We ranked the vulnerability of 139 aquatic macroinvertebrate species, expressed as 353 354 Pesticide Associated Response (PARe) along a gradient of predicted pesticide pressure (PP) using large-scale monitoring data from 4147 stream sites. The predicted pesticide pressure 355 was determined with the trait-based bioindicator SPEAR_{pesticides} which is known for its general 356 robustness against other environmental factors that often co-occur with pesticide pressure 357 (Liess et al., 2008; Knillmann et al., 2018). Hence, we assume that the calculated 358 SPEAR_{pesticides} values largely result from pesticide pressure. Both variables, PARe and PP, 359 are based on evaluations of the macroinvertebrate occurrence. By this, the general problem 360 of circular reasoning arises. For example, sites with a low PP according to SPEAR_{pesticides} will 361 also have a high proportion of species at risk. We circumvent this issue by calculating the 362 response to pesticide pressure (PARe) solely on the species level. Accordingly, the pesticide 363 364 pressure - the independent variable - is determined by the whole community at a given site and the occurrence of single species only marginally influences the calculated pesticide 365 366 pressure (PP). Therefore, the vulnerability ranking of each single species – the dependent variable - is largely independent from its contribution to the pesticide pressure. 367

The field response of the investigated 139 species related to pesticide pressure ranged from a complete disappearance in frequency with a PARe of -100 to a maximal increase with a

PARe of +100, enabling us to group species into roughly 50% 'decreasing species', 10% 370 371 'increasing species' and 40% 'nonspecific species'. We compared the PARe-value of 372 investigated species with their given classification according to SPEAR_{pesticides}. Species, 373 which are classified as 'at risk' from pesticide pressure (referred to as SPEAR) mainly belonged to the 'decreasing species' with a mean PARe of -80 (SD = 69.8). For example, 374 Plecoptera, which is the order with the highest number of 'decreasing species', was identified 375 376 in laboratory based sensitivity rankings as containing very sensitive or even the most 377 sensitive species towards pesticides (Von der Ohe and Liess, 2004; Rubach et al., 2010; Rico and Van den Brink, 2015). By contrast, those species which are classified as 'not at risk' 378 379 from pesticide pressure (referred to as NotSPEAR) showed no clear agreement with their 380 PARe and only partially belonged to the group of 'increasing species'. The mean PARe of all 381 NotSPEAR is -12.5 (SD = 33.4) with more than one third even belonging to the group of 'decreasing species' with a PARe of < -70. The decreasing NotSPEAR group mainly 382 comprised Coleoptera, Hydropsyche (Trichoptera) and 'refuge taxa' as described by 383 384 Knillmann et al. (2018). Out of 21 investigated refuge species, 15 are classified as 385 decreasing in our analysis with a mean PARe of -92.4 (SD=9.5). Hence, our analysis 386 demonstrated their typically high physiological sensitivity towards pesticides. These species are nevertheless classified as pesticide-invulnerable according to SPEAR_{pesticides} because 387 they are able to quickly recolonize from forested or grassland upstream sections (Knillmann 388 389 et al., 2018). The monitoring data investigated in this study does not contain information on 390 the presence of refuge areas close to the sampling sites. However, the observed decline in refuge species might be due to the fact that also the nearby presence of refuge areas is 391 392 declining with the increase of pesticide pressure or agricultural intensity.

The decline of other NotSPEAR apart from refuge species may be attributed to the occurrence of multiple stressors in streams with an agricultural influence. Species responses in the field may depend on several co-occurring environmental factors (Sundermann et al., 2015). Rasmussen et al. (2012) showed that an increase of pesticide pressure in the field often co-occurs with the reduction of oxygen and the increasing presence of soft substrates.

Hence, species' requirements towards parameters as the habitat or their sensitivity towards 398 399 other stressors such as oxygen deficiency could be associated with PARe. To identify the 400 potential additional effect of other stressors on the species' occurrence, we performed a trait 401 analysis. We showed that many Coleoptera, which represent a large share of decreasing 402 NotSPEAR, are characterized by a comparatively low saprobic value (www.freshwaterecology.info, November 2018) and hence by an expected high oxygen 403 demand of species. The latter has also been recorded in several studies: In a review of the 404 405 family Elmidae, Elliott (2008) stated that especially adult species require water with high 406 amount of dissolved oxygen, as they rely upon plastron respiration. The relation to high 407 oxygen supply was also supported by Jacobsen and Marín (2008) who found the density of 408 Elmidae populations to be closely related to minimum oxygen saturation based on a field 409 investigation in a Bolivian stream. Kolar and Rahel (1993) tested the effect of hypoxia of Hydaticus modestus from the family Dytiscidiae in experimental chambers and showed the 410 larvae to be intolerant towards low oxygen. Hence, a high oxygen demand could be one 411 412 factor associated with the observed decrease in frequency, as shown for Coleoptera in this 413 study.

414 Furthermore, the trait analysis of our study revealed a significant relationship between the PARe-value of NotSPEAR and the trait 'substrate preference'. Species, such as from the 415 416 genus Hydropsyche and the majority of refuge species, preferring organic substrates, sand, 417 gravel, stones or root substrates are characterized by a significantly lower PARe than those species preferring mud or macrophytes. However, the impact of the structural quality on the 418 419 derivation of SPEAR_{pesticides} has been considered in several field studies and only explained a minor share of community response (Bunzel et al., 2014; Knillmann et al., 2018). Hence, we 420 assume the habitat quality to be intercorrelated with the pesticide pressure but not primarily 421 422 cause the field response of the mentioned species.

423 Moreover, the decline of some NotSPEAR species may also be a result of indirect effects 424 following the impact of pesticide pressure, such as changed ecological interactions with

species directly affected by pesticides. Indirect effects can lead to negative or positive
responses of species and have been shown to play an important role for toxicant effects in
communities in previous studies such as Peterson (2001), Preston (2002), Fleeger et al.
(2003), Knillmann et al. (2012), and Sundermann et al. (2015).

Finally, it should also be noted that the trait values themselves are subject to uncertainties, 429 430 which could have led to a misclassification of species as NotSPEAR. Except for refuge species, most decreasing NotSPEAR are classified as NotSPEAR because of their low 431 physiological sensitivity. This trait value is based on only a limited number of laboratory 432 toxicity tests that will in several cases not reflect pesticide vulnerability under field conditions. 433 434 Also, for a majority of species sensitivity information needed to be aggregated at a higher 435 taxonomic level as species specific values are often not available. One example is the genus 436 Hydropsyche, where low physiological sensitivity is assigned to all respective decreasing 437 NotSPEAR species. However, studies show that even species of the same genus can differ 438 in their physiological sensitivity. While Wiberg-Larsen et al. (2016) confirmed a comparatively 439 high insensitivity for *H. angustipennis* towards a pyrethroid within a laboratory study, Rico 440 and Van den Brink (2015) identified that several species of the genus Hydropsyche were sensitive towards organophosphates, pyrethroids and carbamates. This shows the urgent 441 need for more detailed physiological sensitivity values at species level from standard 442 laboratory toxicity tests. For a more sound information basis, we further recommend a 443 detailed comparison of laboratory based sensitivity values with species occurrence related to 444 pesticide pressure in the field, as has been done for salinity tolerance by Kefford et al. 445 446 (2004). The uncertainty caused by the current lack of species specific sensitivity data is one 447 reason for the binary classification of species within SPEAR_{pesticides}. As SPEAR_{pesticides} indicates effects based on several species, the indicator is relatively robust towards mis-448 449 classification of single species.

Overall, we conclude that our ranking of species regarding their field response can in mostcases be traced back to pesticide effects. This applies especially for sensitive species

according to SPEAR_{pesticides}. In comparison, the decrease of frequency of species classified
 as insensitive according to SPEAR_{pesticides} may be explained by confounding factors and
 insufficient information on their vulnerability.

455 In the present study we revealed detailed knowledge about single species' responses to pesticides in the field. This ranking of species' vulnerability may be useful to determine 456 457 particularly threatened species. Although all of the species analyzed in our study belong to macroinvertebrates with a comparatively high occurrence throughout Germany, we identified 458 42 (mostly insect) species, which were not present at any sampling site assigned to high or 459 highest level of pesticide pressure. This leads to the conclusion that these species are 460 461 particularly at risk due to current agricultural practices with high pesticide usage. A comparison of the above mentioned 42 species with the red list of threatened species in 462 463 Germany (BfN, 2018) shows surprisingly little consistency. Only the Limnephilidae Drusus annulatus is categorized as 'near threatened', and another 23 species are not even listed in 464 the data base. Therefore, we suggest complementing the classification of endangered 465 species with a calculation-based approach using macroecological monitoring investigations 466 as presented in this study. 467

468 Acknowledgement

This work was supported by the Helmholtz long-range strategic research funding (POF III). 469 470 We cordially thank the following authorities for providing data: Bayerisches Landesamt für Umwelt (LfU, Augsburg), Hessisches Landesamt für Naturschutz, Umwelt und Geologie 471 (HLNUG, Wiesbaden), Landesamt für Landwirtschaft, Umwelt und ländliche Räume 472 473 Schleswig-Holstein (LLUR, Flintbek), Landesamt für Natur, Umwelt und Verbraucherschutz 474 Nordrhein-Westfalen (LANUV, Recklinghausen), Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern (LUNG, Güstrow), Landesbetrieb für Hochwasserschutz 475 und Wasserwirtschaft Sachsen-Anhalt (LHW, Magdeburg), Niedersächsischer Landesbetrieb 476 für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN, Norden), Sächsisches Landesamt 477

- 478 für Umwelt, Landwirtschaft und Geologie (LfULG, Dresden), Thüringer Landesanstalt für
- 479 Umwelt und Geologie (TLUG, Jena) and Bundesamt für Kartographie und Geodäsie (BKG,
- 480 Frankfurt am Main).
- 481 We sincerely thank Lea Schubert for her excellent contribution to the spatial analysis with
- 482 ArcGIS. We are very greatful to Oliver Kaske for his advice regarding ecological traits and life
- 483 cycles of macroinvertebrates. In addition, our special thanks goes to Kim Pack for her
- 484 support with designing the graphical abstract.
- 485 Appendix
 486 Fig. A.1
 487 Fig. A.2
 488 Fig. A.3
 489 Table A.1

490 **References**

491 AQEM expert consortium. Ecological classifications by AQEM expert consortium, <u>www.aqem.de</u>, 492 2002. 493 Aspöck U. Megaloptera. In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 1995, 2002. 494 Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien 1995. 495 Bauernfeind E, Moog O, Weichselbaumer P. Ephemeroptera. In: Moog, O. (ed.): Fauna Aquatica 496 Austriaca, Lieferung 1995. Wasserwirtschaftskataster, Bundesministerium für Land-und 497 Forstwirtschaft, Wien 1995. 498 Beketov MA, Kefford BJ, Schäfer RB, Liess M. Pesticides reduce regional biodiversity of stream 499 invertebrates. Proceedings of the National Academy of Sciences 2013; 110: 11039-11043. 500 BfN. Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands 2009ff. Bundesamt für 501 Naturschutz (BfN), 2018. 502 BKG. Digitales Landschaftsmodell (DML) 25. Deutschland AdVdLdB (Hrsg.), Amtliche Topographisch-503 Kartographische Informationssystem (ATKIS). Bundesamt für Kartographie und Geodäsie 504 (BKG), 2010. 505 Brabec K, Janecek BFU, Rossaro B, Spies M, Bitusik P, Syrovatka V, et al. Dataset "Chironomidae", 506 www.freshwaterecology.info - the taxa and autecology database for freshwater organisms, 507 version 7.0, 2018. 508 Brinke M, Szöcs E, Foit K, Bänsch-Baltruschat B, Liess M, Schäfer RB, et al. Umsetzung des Nationalen 509 Aktionsplans zur nachhaltigen Anwendung von Pestiziden – Bestandsaufnahme zur Erhebung 510 von Daten zur Belastung von Kleingewässern der Agrarlandschaft. Umweltforschungsplan 511 des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit, 2015. 512 Buffagni A, Armanini DG, Cazzola M, Alba-Tercedor J, López-Rodríguez MJ, Murphy J, et al. Dataset "Ephemeroptera", www.freshwaterecology.info - the taxa and autecology database for 513 514 freshwater organisms, version 7.0, 2018. 515 Buffagni A, Cazzola M, López-Rodríguez MJ, Alba-Tercedor J, Armanini DG, Schmidt-Kloiber A, et al. 516 Distribution and ecological preferences of European freshwater organisms: Volume 3 517 Ephemeroptera. Vol 3: Pensoft Publishing, 2009. 518 Bunzel K, Liess M, Kattwinkel M. Landscape parameters driving aquatic pesticide exposure and 519 effects. Environmental Pollution 2014; 186: 90-97. 520 BVL. Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland - Ergebnisse der Meldungen 521 gemäß § 64 Pflanzenschutzgesetz für das Jahr 2017. Bundesamt für Verbraucherschutz und 522 Lebensmittelsicherheit (BVL), Braunschweig, 2018. 523 Car M, Mohrig W, Moog O, Oosterbroek P, Reusch H, Wagner R, et al. Diptera (except Chironomidae) 524 (authors depending on family). In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 525 1995, 2002. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, 526 Wien 1995. 527 Chiu M-C, Hunt L, Resh VH. Response of macroinvertebrate communities to temporal dynamics of 528 pesticide mixtures: A case study from the Sacramento River watershed, California. 529 Environmental pollution 2016; 219: 89-98. 530 DEV. Biologisch-ökologische Gewässergüteuntersuchung: Bestimmung des Saprobienindex 531 (revidierte Fassung). Deutsche Einheitsverfahrenzur Wasser-, Abwasser- und 532 Schlammuntersuchung. Biologisch-ökologische Gewässeruntersuchung (Gruppe M). 533 Deutsches Institut für Normung e.V. (DEV), Berlin, 2003. 534 Dolciotti I, Foit K, Herkelrath A, Liess M. Competition impedes the recovery of Daphnia magna from 535 repeated insecticide pulses. Aquat Toxicol 2014; 147: 26-31. 536 Eder E, Hödl W, Moog. O, Nesemann H, M. P, Wittmann K. Crustacea (authors depending on 537 taxagroup). In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 1995, 2002. 538 Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien 1995. 539 Elliott JM. The ecology of riffle beetles (Coleoptera: Elmidae). Freshwater Reviews 2008; 1: 189-204.

540 European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 541 October 2000 establishing a framework for Community action in the field of water policy. 542 Official Journal of the European Communities, 2000. 543 Fleeger JW, Carman KR, Nisbet RM. Indirect effects of contaminants in aquatic ecosystems. Science 544 of The Total Environment 2003; 317: 207-233. 545 Foit K, Kaske O, Liess M. Competition increases toxicant sensitivity and delays the recovery of two 546 interacting populations. Aquat Toxicol 2012; 106-107: 25-31. 547 Graf W, Grasser U, Waringer J. Trichoptera. In: Moog, O. (ed.): Fauna Aquatica Austriaca, Lieferung 548 1995. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien 549 1995a. 550 Graf W, Grasser U, Weinzierl A. Plecoptera. In: Moog, O. (ed.): Fauna Aquatica Austriaca, Lieferung 551 1995. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien 552 1995b. 553 Graf W, Lorenz A, de Figueroa JMT, Lücke S, López-Rodríguez MJ, Davies C. Distribution and 554 ecological preferences of European freshwater organisms: Volume 2 Plecoptera. Vol 2: 555 Pensoft Publishing, 2009. 556 Graf W, Lorenz AW, Tierno de Figueroa JM, Lücke S, López-Rodríguez MJ, Murphy J, et al. Dataset 557 "Plecoptera", www.freshwaterecology.info - the taxa and autecology database for 558 freshwater organisms, version 7.0, 2018a. 559 Graf W, Murphy J, Dahl J, Zamora-Munoz C, Lopez-Rodriguez MJ. Distribution and ecological 560 preferences of European freshwater organisms. Volume 1. Trichoptera. Vol 1: Pensoft 561 Publishing, 2008. 562 Graf W, Murphy J, Dahl J, Zamora-Muñoz C, López-Rodríguez MJ, Schmidt-Kloiber A. Dataset 563 "Trichoptera", <u>www.freshwaterecology.info</u> - the taxa and autecology database for 564 freshwater organisms, version 7.0, 2018b. 565 Heugens EHW, Hendriks AJ, Dekker T, Straalen NMv, Admiraal W. A Review of the Effects of Multiple 566 Stressors on Aquatic Organisms and Analysis of Uncertainty Factors for Use in Risk 567 Assessment. Critical Reviews in Toxicology 2001; 31: 247-284. 568 Hörner K, Moog O, Sporka F. Oligochaeta. In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 569 1995, 2002. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, 570 Wien 1995. 571 Hunt L, Bonetto C, Marrochi N, Scalise A, Fanelli S, Liess M, et al. Species at Risk (SPEAR) index 572 indicates effects of insecticides on stream invertebrate communities in soy production 573 regions of the Argentine Pampas. Science of the Total Environment 2017; 580: 699-709. 574 Jäch M, Kodada J, Moog. O, Paill W, Schödl. S. Coleoptera (authors depending on family). In: Moog, 575 O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 1995, 2002. Wasserwirtschaftskataster, 576 Bundesministerium für Land-und Forstwirtschaft, Wien 1995. 577 Jackson MC, Loewen CJ, Vinebrooke RD, Chimimba CT. Net effects of multiple stressors in freshwater 578 ecosystems: a meta-analysis. Global change biology 2016; 22: 180-189. 579 Jacobsen D, Marín R. Bolivian Altiplano streams with low richness of macroinvertebrates and large 580 diel fluctuations in temperature and dissolved oxygen. Aquatic Ecology 2008; 42: 643-656. 581 Janecek BFU, Moog O, Moritz C, Orendt C, Saxl R. Chironomidae (authors depending on subfamily). 582 In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferung 1995. Wasserwirtschaftskataster, 583 Bundesministerium für Land-und Forstwirtschaft, Wien 1995a. 584 Janecek BFU, Moog O, Waringer J. Odonata. In: Moog, O. (Ed.): Fauna Aquatica Austriaca, 585 Lieferungen 1995, 2002. Wasserwirtschaftskataster, Bundesministerium für Land-und 586 Forstwirtschaft, Wien 1995b. 587 Jonckheere AR. A Distribution-Free k-Sample Test Against Ordered Alternatives. Biometrika 1954; 41: 588 133-145. 589 Kefford BJ, Papas PJ, Metzeling L, Nugegoda D. Do laboratory salinity tolerances of freshwater 590 animals correspond with their field salinity? Environmental Pollution 2004; 129: 355-362.

591	Knillmann S, Orlinskiy P, Kaske O, Foit K, Liess M. Indication of pesticide effects and recolonization in
592	streams. Science of The Total Environment 2018; 630: 1619-1627.
593	Knillmann S, Stampfli NC, Noskov YA, Beketov MA, Liess M. Interspecific competition delays recovery
594	of Daphnia spp. populations from pesticide stress. Ecotoxicology 2012; 21: 1039-49.
595	Kolar CS, Rahel FJ. Interaction of a biotic factor (predator presence) and an abiotic factor (low
596	oxygen) as an influence on benthic invertebrate communities. Oecologia 1993; 95: 210-219.
597	Liess M, Foit K, Knillmann S, Schäfer RB, Liess H-D. Predicting the synergy of multiple stress effects.
598	Scientific Reports 2016; 6: 32965.
599	Liess M, Henz S, Knillmann S. Predicting low-concentration effects of pesticides. Scientific Reports
600	2019; 9: 15248.
601	Liess M, Schafer RB, Schriever CA. The footprint of pesticide stress in communitiesspecies traits
602	reveal community effects of toxicants. Sci Total Environ 2008; 406: 484-90.
603	Liess M, Schulz R, Liess MHD, Rother B, Kreuzig R. Determination of insecticide contamination in
604	agricultural headwater streams. Water Research 1999; 33: 239-247.
605	Liess M, von der Ohe PC. Analyzing effects of pesticides on invertebrate communities in streams.
606	Environmental Toxicology and Chemistry 2005: 24: 954-965.
607	LUWG. PSM-Wirkstoffe in Oberflächengewässern - Ergebnisse und Bewertungen der
608	Messprogramme 2008/2009. LUWG-Bericht 7/2010. Landesamt für Umwelt.
609	Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (LUWG), 2011
610	Malai F. von der Ohe PC. Grote M. Kuhne R. Mondy CP. Usseglio-Polatera P. et al. Organic chemicals
611	ieopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci U
612	S A 2014: 111: 9549-54
613	Moog O Fauna aquatica austriaca. Wasserwirtschaftskataster, Bundesministerium für Land-und
614	Forstwirtschaft Wien 1995
615	Moschet C. Wittmer I. Simovic I. Junghans M. Piazzoli A. Singer H. et al. How a complete pesticide
616	screening changes the assessment of surface water quality. Environ Sci Technol 2014: 48:
617	5423-32
618	Münze R. Hannemann C. Orlinskiv P. Gunold R. Paschke A. Foit K. et al. Pesticides from wastewater
619	treatment plant effluents affect invertebrate communities. Science of The Total Environment
620	2017: 599–600: 387-399.
621	Nesemann H, Moog O. Hirudinea. In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 1995,
622	2002. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien
623	1995.
624	Nesemann H, Reischütz PL, Gastropoda. In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen
625	1995, 2002. Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft.
626	Wien 1995.
627	Nørgaard KB. Cedergreen N. Pesticide cocktails can interact synergistically on aquatic crustaceans.
628	Environmental Science and Pollution Research 2010: 17: 957-967.
629	Orlinskiv P. Münze R. Beketov M. Gunold R. Paschke A. Knillmann S. et al. Forested headwaters
630	mitigate pesticide effects on macroinvertebrate communities in streams: Mechanisms and
631	quantification. Science of the Total Environment 2015: 524: 115-123.
632	Peterson CH. The "Exxon Valdez" oil spill in Alaska: Acute, indirect and chronic effects on the
633	ecosystem. Advances in Marine Biology 2001: 39: 1-103.
634	Preston BL. Indirect Effects in Aquatic Ecotoxicology: Implications for Ecological Risk Assessment.
635	Environmental Management 2002: 29: 311-323
636	Rasmussen II. McKnight US, Loinaz MC, Thomsen NI, Olsson MF, Bierg PL, et al. A catchment scale
637	evaluation of multiple stressor effects in headwater streams. Sci Total Environ 2013: 442:
638	420-31
639	Rasmussen II. Wiberg-Larsen P. Baattrun-Pedersen A. Friherg N. Kronvang R. Stream habitat
640	structure influences macroinvertebrate response to pesticides. Environmental Pollution
6 <u>4</u> 1	2012. 164. 142-149
041	LUIL, IUH, IHL-IHJ.

- Rico A, Van den Brink PJ. Evaluating aquatic invertebrate vulnerability to insecticides based on
 intrinsic sensitivity, biological traits, and toxic mode of action. Environmental toxicology and
 chemistry 2015; 34: 1907-1917.
- Rubach MN, Baird DJ, Van den Brink PJ. A new method for ranking mode-specific sensitivity of
 freshwater arthropods to insecticides and its relationship to biological traits. Environmental
 Toxicology and Chemistry 2010; 29: 476-487.
- Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M. Effects of pesticides on community
 structure and ecosystem functions in agricultural streams of three biogeographical regions in
 Europe. Sci Total Environ 2007; 382: 272-85.
- Schäfer RB, Pettigrove V, Rose G, Allinson G, Wightwick A, von der Ohe PC, et al. Effects of pesticides
 monitored with three sampling methods in 24 sites on macroinvertebrates and
 microorganisms. Environmental science & technology 2011; 45: 1665-1672.
- Schäfer RB, von der Ohe PC, Rasmussen J, Kefford BJ, Beketov MA, Schulz R, et al. Thresholds for the
 effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems.
 Environ Sci Technol 2012; 46: 5134-42.
- 657 Schmedtje U, Colling M. Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte 658 des Bayerischen Landesamtes für Wasserwirtschaft 1996; 4: 543 pp.
- Stampfli NC, Knillmann S, Liess M, Beketov MA. Environmental context determines community
 sensitivity of freshwater zooplankton to a pesticide. Aquat Toxicol 2011; 104: 116-24.
- Sundermann A, Leps M, Leisner S, Haase P. Taxon-specific physico-chemical change points for stream
 benthic invertebrates. Ecological indicators 2015; 57: 314-323.
- Tachet H, Richoux P, Bournard M, Usseglio-Polatera P. Invertébrés d'eau douce: systématique,
 biologie, écologie Paris: CNRS éditions. 2010.
- Von der Ohe PC, Liess M. Relative sensitivity distribution of aquatic invertebrates to organic and
 metal compounds. Environmental Toxicology and Chemistry 2004; 23: 150-156.
- von der Ohe PC, Prüß A, Schäfer RB, Liess M, de Deckere E, Brack W. Water quality indices across
 Europe—a comparison of the good ecological status of five river basins. Journal of
 Environmental Monitoring 2007; 9: 970-978.
- Wiberg-Larsen P, Graeber D, Kristensen EA, Baattrup-Pedersen A, Friberg N, Rasmussen JJ. Trait
 Characteristics Determine Pyrethroid Sensitivity in Nonstandard Test Species of Freshwater
 Macroinvertebrates: A Reality Check. Environmental Science & Technology 2016; 50: 4971 4978.
- Zettel H. Heteroptera. In: Moog, O. (Ed.): Fauna Aquatica Austriaca, Lieferungen 1995, 2002.
 Wasserwirtschaftskataster, Bundesministerium für Land-und Forstwirtschaft, Wien 1995.

676 **Figure captions**

Fig. 1: Sampling sites, provided for the analysis by the German federal state authorities,

sampled during the period 2004-2013 and selected according to our criteria for site selection.

Fig. 2: Absolute frequency over the time period April to June of (a) decreasing species, (b) nonspecific species and (c) increasing species along a predicted gradient of pesticide pressure (PP). The points indicate the mean of all species belonging to the respective species group. The error bars indicate the 25% and 75% quantiles. Asterisks indicate significant differences from PP1 (Tukey's HSD Test, significance code: * $p \le 0.05$, ** $p \le$ 0.01, *** $p \le 0.001$).

Fig. 3: Relation of the Pesticide Associated Response (PARe) and the classification as 685 species 'at risk' and 'not at risk' defined by the index SPEAR_{pesticides} (a; Kruskal-Wallis Test, p 686 < 0.001). Distribution of decreasing, nonspecific and increasing species within the two 687 classes of pesticide vulnerability according to SPEAR pesticides (b) as well as within different 688 taxonomic orders and classes (respective highest taxonomic level according to Asterics 689 (2011)), sorted by the number of decreasing species, whereas taxa marked in bold belong to 690 691 the class of insects (c). The x-axis in (b) and (c) indicates a Pesticide Associated Response (PARe) of 0. PARe is < 0 below the x-axis and > 0 above the x-axis. 692

Fig. 4: Relationship between Pesticide Associated Response (PARe) and the traits saprobic 693 694 value (1a, 1b) as well as substrate preference (2a, 2b), analyzed separately for species classified as 'at risk' (first row) and 'not at risk' (second row) according to SPEAR_{pesticides}. The 695 696 number between the category name and the box indicates the number of species belonging 697 to the category. The number [%] in the right upper corner displays the share of species for 698 which data could be included in the respective analysis in relation to all 139 species. The 699 horizontal line displays the median PARe of all species belonging to the respective category. 700 The end of the box indicates the 25th and 75th percentile respectively. The whiskers 701 represent the most extreme data point which is at maximum 1.5 times the length of the box 702 away from the box. Asterisks indicate significant differences between the different categories

or groups of categories (1a and 1b Dunn's-Test, 2a and 2b Kruskal-Wallis Test, Significance code: * $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$).

Fig. A.1: Absolute frequency (y-axis) over the time period April to June of all 139 species along a predicted gradient of pesticide pressure (PP, x-axis). PARe indicates the Pesticide Associated Response, defined as the change of relative frequency from PP1 (reference conditions) to PP5 during the main period of pesticide application (see section 2.4). The number at the top of each plot window indicates the number of the row in Table 2 and Table A.1 for the respective species.

Fig. A.2: Spearman's rank correlation of the Pesticide Associated Response (PARe) and
physiological sensitivity according to Von der Ohe and Liess (2004). Grey dots show
NotSPEAR and black dots SPEAR.

714 Fig. A.3: Relationship between the Pesticide Associated Response (PARe) and the traits 715 feeding type (1a, 1b) and respiration (2a, 2b), analyzed separately for species classified as 'at risk' (first row) and 'not at risk' (second row) according to SPEAR_{pesticides}. The number 716 717 between the category name and the box indicates the number of species belonging to that category. The number [%] in the upper right corner shows the share of species for which 718 data could be included in the respective analysis in relation to all 139 species. The horizontal 719 line shows the median PARe of all species in that category. The end of the box indicates the 720 721 25th and 75th percentile respectively. The whiskers represent the most extreme data point 722 which is a maximum of 1.5 times the length of the box away from the box.

723

- 724 1
- 725

726 Author contributions

- Lena Reiber: Conceptualization, Data collection, Methodology, Formal analysis, Software,
- 728 Writing Original Draft
- 729 Saskia Knillmann: Conceptualization, Methodology, Software, Validation, Writing Review &
- 730 Editing
- 731 Kaarina Foit: Conceptualization, Methodology, Software, Validation, Writing Review &
- 732 Editing
- 733 Matthias Liess: Conceptualization, Writing Review & Editing, Supervision
- 734

735

736 **Declaration of interests**

- 737 I The authors declare that they have no known competing financial interests or personal
- relationships that could have appeared to influence the work reported in this paper.
- 739 \Box The authors declare the following financial interests/personal relationships which may be
- 740 considered as potential competing interests:

0

742

- Table 1: Overview on five levels of predicted pesticide pressure with boundaries (in TU) and
- number of samplings in the respective class

Level of predicted pesticide pressure (PP)	Toxic Unit (TU)	number of samplings
PP1 (reference)	≤ −4	2347
PP2	> -4 to ≤ -3	1256
PP3	> −3 to ≤ −2	1413
PP4	> −2 to ≤ −1	1123
PP5	> -1	803
		R

Table 2: Species and their Pesticide Associated Response (PARe), divided into increasing,

nonspecific and decreasing species groups. No indicates the number listed in the plot

- displaying the trend of absolute frequency along pesticide pressure of the respective species
- in Fig. A.1. In column Gr, the taxonomic order or class is listed (Biv: Bivalvia, Col:
- 752 Coleoptera, Cru: Crustacea, Dip: Diptera, Eph: Ephemeroptera, Gas: Gastropoda, Het:
- Heteroptera, Hir: Hirudinea, Meg: Megaloptera, Odo: Odonata, Oli: Oligochaeta, Ple:
- Plecoptera, Tri: tricjoptera, Tur: Turbellaria). PP1 and PP5 indicate the absolute frequency at
- pesticide pressure level 1 (PP1, reference conditions) and the highest pesticide pressure
- 756 (PP5) during the main period of pesticide application.

No	Decreasing	Gr	DADo	DD1	DD5	No	Decreasing	Gr		DD1	DD5
NU	Species	Gi	PAKe	rr I	FFJ		Species	Gi	PAKG	rr I	FFJ
1	Rhithrogena	Eph	-100	54.3	0	39	Leuctra nigra	Ple	-100	6.3	0
	semicolorata				\mathbf{Q}	40	Sericostoma	Tri	-100	5.8	0
2	Polycentropus	Tri	-100	37.4	0		flavicorne				
	flavomaculatus ssp.					41	Athripsodes	Tri	-100	5.7	0
3	Habroleptoides	Eph	-100	36.5	0		albifrons				
	confusa					42	Hydropsyche	Tri	-100	5.7	0
4	Anomalopterygella	Tri	-100	31.7	0		incognita				
	chauviniana					10		<u>.</u>	00.4		
_		\mathbf{S}				43	Hydraena gracilis	Col	-96.1	36.2	1.4
5	Ecdyonurus venosus	Eph	-100	28.8	0	44	Potamophylax	Tri	-92.5	4.9	0
6	Baetis muticus	Eph	-100	28.5	0		latipennis				
7	Lepidostoma hirtum	Tri	-100	25.4	0	45	Silo pallipes	Tri	-91.2	18.1	1.6
8	Habrophlebia lauta	Eph	-100	24.8	0	46	Plectrocnemia	Tri	-90.9	16.5	1.5
9	Torleya major	Eph	-100	23.4	0		conspersa ssp.				
10	Rhyacophila nubila	Tri	-100	23.2	0	47	Serratella ignita	Eph	-89.8	28.4	2.9
11	Lepidostoma basale	Tri	-100	23.1	0	48	Limnius volckmari	Col	-89.7	37.8	3.9

12	Odontocerum	Tri	-100	23.1	0	49	Elmis maugetii	Col	-89.2	36.2	3.9
	albicorne					50	Caenis luctuosa	Eph	-89.1	4.9	0
13	Atherix ibis	Dip	-100	21.3	0	51	Hydropsyche	Tri	-88.1	25.2	3
14	Limnius perrisi	Col	-100	20.5	0		instabilis				
15	Oreodytes sanmarkii	Col	-100	19.7	0	52	Sericostoma	Tri	-88.1	10.1	1.2
16	Ephemerella	Eph	-100	19.2	0		personatum				
	mucronata					53	Paraleptophlebia submarginata	Eph	-85.1	18.1	2.7
17	Centroptilum	Eph	-100	18.9	0	54	Hydronsyche	Tri	-83.4	55 9	93
10	Ecolución torrontio	Esh	100	10 0	0	54	siltalai		00.4	00.0	5.5
10	Ecayonarus torrentis	⊑рп	-100	10.0	0	55	Orectochilus	Col	-82.8	29.6	5.1
19	Sialis fuliginosa	Meg	-100	18.3	0		villosus				
20	Brachyptera risi	Ple	-100	18.3	0	56	Oulimnius	Col	-82.6	25.8	4.5
21	Baetis scambus	Eph	-100	17.7	0		tuberculatus				
22	Baetis lutheri	Eph	-100	12.7	0	57	Ancylus fluviatilis	Gas	-81.9	43	7.8
23	Potamophylax	Tri	-100	12.4	0	58	Athripsodes	Tri	-81.3	7.5	1.4
	cingulatus/latipennis/						bilineatus ssp.				
24	Hontogonia	Enh	100	11.6	0	59	Rhyacophila fasciata ssp.	Tri	-80.6	6.2	1.2
24	sulphurea	Срп	-100	11.0	0	60	Duracia	T	70.0	44.0	0.2
25	Potamophylax	Tri	-100	11	0	60	gonocephala	TUI	-79.9	41.3	0.3
	cingulatus ssp.					61	Hydropsyche	Tri	-79.5	22.9	4.7
26	Drusus annulatus	Tri	-100	10.4	0		pellucidula				
27	Calopteryx virgo	Odo	-100	10.3	0	62	Elmis	Col	-77.3	11	2.5
28	Leuctra geniculata	Ple	-100	9.9	0		aenea/maugetii/ rietscheli/rioloides				
29	Esolus	Col	-100	9.6	0	62	Studentilue		77.0	26.9	6.1
	parallelepipedus					03	heringianus		-11.2	∠0.ŏ	0.1
30	Haplotaxis	Oli	-100	9.3	0	64	Silo nigricornis	Tri	-76.4	7.2	1.7
	gordioides										

7)

31	Silo piceus	Tri	-100	9.2	0
32	Baetis fuscatus	Eph	-100	8.4	0
33	Psychomyia pusilla	Tri	-100	7.7	0
34	Polycentropus irroratus	Tri	-100	7.3	0
35	Isoperla grammatica	Ple	-100	6.6	0
36	Oecetis testacea	Tri	-100	6.6	0
37	Agapetus fuscipes	Tri	-100	6.6	0
38	Caenis rivulorum	Eph	-100	6.3	0

65	Halesus digitatus	Tri	-74.3	11.3	2.9
	ssp.				
66	Lype reducta	Tri	-74.1	6.3	0
67	Ephemera danica	Eph	-74	51.5	13.4
68	Hydropsyche	Tri	-73.5	11.7	3.1
	saxonica				
69	Gammarus	Cru	-73	37.4	10.1
	fossarum				
70	Elmis aenea	Col	-72.9	35.1	9.5
71	Chaetopteryx	Tri	-70.5	21	5
	villosa ssp				
	vinoca cop.				
	<u> </u>				

	Nonspecific				
No	o	Gr	PARe	PP1	PP5
	Species				
72	Aphelocheirus	Het	-67.3	3.5	0
	aestivalis				
73	Goera pilosa	Tri	-62.5	7.2	1.2
74	Baetis rhodani	Eph	-58.7	79.9	33
75	Halesus radiatus	Tri	-57.5	26.2	8.8
76	Mystacides azurea	Tri	-51	9.4	4.5
77	Eiseniella tetraedra	Oli	-45.8	32.5	17.6
78	Calopteryx	Odo	-37.7	12	3.9
	splendens				
79	Caenis horaria	Eph	-36.9	4.5	1.4
80	Athripsodes	Tri	-33.1	7.6	3.9
	cinereus				
81	Molanna angustata	Tri	-30.5	1.8	0

	Nonspecific	-			
NO	Species	Gr	PARe	PP1	PP5
	opeolee				
102	Lumbriculue	Oli	20.7	14.0	21.2
102	Lumbriculus	OII	29.7	14.9	21.2
	variegatus				
	D		~~ -		
103	Pisidium	Biv	32.7	2.5	4.2
	casertanum ssp.				
104	Erpobdella	Hir	33.8	34.5	55.3
	octoculata				
105	Radix balthica	Gas	34.5	19.9	30.4
106	Prodiamesa	Dip	35.8	24.4	40.3
	olivacea				
107	Erpobdella	Hir	36.7	9.2	15.1
	vilnensis				
108	Sphaerium	Biv	39	12.1	23.4
	corneum				

82	Baetis vernus	Eph	-30.1	25.5	12.7	109	Glossiphonia	Hir	41.1	17.6	35.9
83	Potamophylax	Tri	-29	3.6	1.4		complanata				
00	rotundipennis		20	0.0		110	Psammoryctides	Oli	42.2	4.7	9.3
						_	barbatus	-			
84	Platycnemis	Odo	-24.6	3.3	1.9						
	pennipes					111	Potamopyrgus	Gas	43.1	12.5	22.9
85	Simulium vernum	Dip	-24	4.9	3.6		antipodarum				
						112	Viviparus contectus	Gas	45.1	0.8	3.1
86	Sialis lutaria	Meg	-20.7	13.2	8.8						
87	Platambus	Col	-20	6.9	4.4	113	Pisidium	Biv	46	3.7	8.3
	maculatus						subtruncatum				
00		Dia	40.0	0.5	7	114	Laccophilus	Col	46	1.2	3.5
00	Simunum ornatum	Dip	-10.2	9.5	1		hyalinus				
89	Pisidium	Biv	-15.5	3	2.1	115	Hydronsyche	Tri	50.4	49	16.2
	henslowanum						angustipennis ssp.		50.4	4.5	10.2
90	Elodes minuta	Col	-14	53	4	0					
00	Liodoo minada	001		0.0	-	116	Gerris lacustris	Het	53.1	3.8	8.1
91	Anabolia nervosa	Tri	-8.6	25	21.5	117	Haemopis	Hir	55.2	0.9	4.1
92	Habrophlebia fusca	Eph	-4.9	2.5	2.2		sanguisuga				
								_			
93	Cloeon dipterum	Eph	-2.6	3.1	2.9	118	Asellus aquaticus	Cru	55.8	24.6	57.4
94	Pisidium amnicum	Biv	0	5.2	5.2	119	Dendrocoelum	Tur	57.5	1.8	6
							lacteum				
95	Limnephilus	Tri	0	2.9	2.9	120	Pithunia	Can	50.2	6 9	10 0
	rhombicus ssp.					120	tentaculata	Gas	50.5	0.0	10.0
96	Glossiphonia	Hir	4.9	4.8	5.2		lenaculata				
	nebulosa					121	Gyraulus albus	Gas	59.7	2.7	6.7
97	Ansectrotanyous	Din	14.8	34	42	122	Polycelis	Tur	60	2.7	8.7
01	trifascipennis	Dip	14.0	0.4	7.2		nigra/tenuis				
							-				
98	Gammarus roeselii	Cru	18.3	11.2	16.4	123	Physa fontinalis	Gas	60.6	3.1	8.8
99	Gammarus pulex	Cru	19.8	53.2	68.5	124	Nemoura cinerea	Ple	63.7	3.6	11.5
							ssp.				
100	Limnephilus lunatus	Tri	20.2	11.8	18.7					. –	
101	Erpobdella nigricollis	Hir	28	3.1	5.2	125	Nepa cinerea	Het	65.3	1.7	6.4
						1					

126

No	Increasing	Gr	DARo	DD1	DD5
NO	Species	01	IANC		
127	Lymnaea stagnalis	Gas	70.3	1.9	7.8
128	Proasellus coxalis	Cru	72.1	5.5	19.7
129	Helobdella stagnalis	Hir	74.4	5.2	20.3
130	Anisus vortex	Gas	81.4	1.8	10.1
131	Limnodrilus	Oli	82.6	3.6	20.7
	hoffmeisteri				
132	Planorbis planorbis	Gas	88.5	1	8.7
133	Limnodrilus	Oli	89.1	0.6	5.5
	claparedeanus				\circ

No	Increasing	Gr	PARe	PP1	PP5
	Species	•			
134	Chironomus	Dip	89.6	0.7	6.7
	plumosus				
135	Tubifex tubifex	Oli	90.1	1.3	13.1
136	Planorbarius	Gas	92	0.9	11.3
	corneus				
137	Chironomus	Dip	92.7	0.6	8.2
	riparius				
138	Ironoquia dubia	Tri	93.7	0.6	9.5
139	Haliplus	Col	100	0	6.6
	lineatocollis				

757

758

Dugesia Tur

lugubris/polychroa

65.7 2.3

6.7

Table A.1: Overview of the ecological traits of each species. No. indicates the number listed 759 760 in the plot showing the trend of absolute frequency along pesticide pressure of the respective 761 species in Fig. A.1. In column Gr, the taxonomic order or class is listed (Biv: Bivalvia, Col: Coleoptera, Cru: Crustacea, Dip: Diptera, Eph: Ephemeroptera, Gas: Gastropoda, Het: 762 Heteroptera, Hir: Hirudinea, Meg: Megaloptera, Odo: Odonata, Oli: Oligochaeta, Ple: 763 Plecoptera, Tri: Trichoptera, Tur: Turbellaria). Column S indicates the classification according 764 765 to SPEAR_{pesticides} as species at risk (1) or species not at risk (0). In columns SV (saprobic value for Germany), substrate preference, feeding type and respiration, the categories of the 766 respective traits are shown as included in Fig. 4 and Fig. A.3 (NA: no data available). 767

Ne	Decreasing species	0	S	sv	Substrate	Feeding	Pospiration	
NO		Gr			preference	type	Respiration	
1	Rhithrogena semicolorata	Eph	1	1.6	gravel	scraper	gill, tegument	
2	Polycentropus flavomaculatus	Tri	1	NA	NA	NA	tegument	
	ssp.							
3	Habroleptoides confusa	Eph	0	1.5	gravel	deposit feeder	gill, tegument	
4	Anomalopterygella chauviniana	Tri	1	1.5	stones, gravel	scraper	gill, tegument	
5	Ecdyonurus venosus	Eph	1	1.5	gravel	deposit feeder,	gill, tegument	
						scraper		
6	Baetis muticus	Eph	1	1.4	macrophytes	deposit feeder,	gill, tegument	
						scraper		
7	Lepidostoma hirtum	Tri	1	1.8	macrophytes, roots	scraper,	gill, tegument	
						shredder		
8	Habrophlebia lauta	Eph	0	1.7	organic	deposit feeder	gill, tegument	
9	Torleya major	Eph	0	1.8	stones,	deposit feeder,	gill, tegument	
					macrophytes,	scraper		
					organic, mud			
10	Rhyacophila nubila	Tri	1	2	stones, gravel	predator	gill, tegument	
11	Lepidostoma basale	Tri	1	1.8	sand, roots	scraper,	gill, tegument	
						shredder		
12	Odontocerum albicorne	Tri	1	1.4	gravel, stones,	scraper,	gill, tegument	
					macrophytes,	predator,		
					organic, sand, silt,	shredder		
					roots			
13	Atherix ibis	Dip	1	2	NA	predator	NA	

14	Limnius perrisi	Col	0	1.4	NA	scraper	NA
15	Oreodytes sanmarkii	Col	0	1.6	NA	predator	NA
16	Ephemerella mucronata	Eph	0	1.4	stones, gravel	deposit feeder,	gill, tegument
						scraper	
17	Centroptilum luteolum	Eph	1	2	macrophytes	deposit feeder,	gill, tegument
						scraper	
18	Ecdyonurus torrentis	Eph	1	2	gravel	deposit feeder,	gill, tegument
						scraper	
19	Sialis fuliginosa	Meg	1	2	NA	predator	NA
20	Brachyptera risi	Ple	1	1.2	gravel	scraper	tegument
21	Baetis scambus	Eph	1	2	gravel,	deposit feeder,	gill, tegument
					macrophytes	scraper	
22	Baetis lutheri	Eph	1	1.5	stones, gravel	deposit feeder,	gill, tegument
						scraper	
23	Potamophylax	Tri	1	NA	organic	shredder	gill, tegument
	cingulatus/latipennis/luctuosus						
24	Heptagenia sulphurea	Eph	1	2	gravel	deposit feeder,	gill, tegument
						scraper	
25	Potamophylax cingulatus ssp.	Tri	1	1.5	NA	shredder	gill, tegument
26	Drusus annulatus	Tri	1	1	stones	scraper	gill, tegument
27	Calopteryx virgo	Odo	1	1.8	NA	predator	NA
28	Leuctra geniculata	Ple	1	1.6	gravel, stones,	deposit feeder,	tegument
					roots	shredder	
29	Esolus parallelepipedus	Col	0	1.6	NA	scraper	NA
30	Haplotaxis gordioides	Oli	0	1.5	gravel, mud	deposit feeder	tegument
31	Silo piceus	Tri	0	1.1	stones, gravel	scraper	gill, tegument
32	Baetis fuscatus	Eph	1	2.1	gravel,	deposit feeder,	gill, tegument
					macrophytes, sand	scraper	
33	Psychomyia pusilla	Tri	1	2.1	stones, gravel	scraper	tegument
34	Polycentropus irroratus	Tri	1	1.5	stones, gravel,	predator	tegument
					macrophytes,		
					organic, roots		
35	Isoperla grammatica	Ple	1	1.6	gravel	predator	tegument
36	Oecetis testacea	Tri	0	NA	stones, gravel	predator	gill, tegument
37	Agapetus fuscipes	Tri	1	1	stones, gravel	scraper	tegument
38	Caenis rivulorum	Eph	1	2	organic	deposit feeder	gill, tegument
39	Leuctra nigra	Ple	1	1.4	organic	deposit feeder	tegument
40	Sericostoma flavicorne	Tri	0	1.5	gravel, organic,	shredder	gill, tegument

NO	Nonspecific species	Gr	5	57	preference	type	Respiration
No	Nonspecific species	Gr	ç	SV/	Substrate	Feeding	Pesniration
70	Elmis aenea	Col	0	1.5	NA	scraper	NA
69	Gammarus fossarum	Cru	0	1.5	NA	shredder	NA
68	Hydropsyche saxonica	Tri	0	1.5	stones, gravel	filter feeder	gill, tegument
67	Ephemera danica	Eph	0	1.8	sand	filter feeder	gill, tegument
66	Lype reducta	Tri	1	NA	roots	scraper	tegument
65	Halesus digitatus ssp.	Tri	1	NA	NA	NA	NA
64	Silo nigricornis	Tri	0	1.5	stones, gravel	scraper	gill, tegument
63	Stylodrilus heringianus	Oli	0	NA	gravel	deposit feeder	tegument
	maugetii/rietscheli/rioloides						
62	Elmis aenea/	Col	0	NA	NA	NA	NA
61	Hydropsyche pellucidula	Tri	0	2	stones, gravel	filter feeder	gill, tegument
60	Dugesia gonocephala	Tur	0	1.5	NA	predator	NA
59	Rhyacophila fasciata ssp.	Tri	0	NA	stones, gravel	NA	gill, tegument
58	Athripsodes bilineatus ssp.	Tri	0	NA	NA	NA	gill, tegument
57	Ancylus IIuvlatilis	Gas	0	1.9	stones	scraper	
50		Cor	0	1.9	ntonoo	sciapei	INA togument
55			0	2		preuator	
55			0	o. i د	NA		
53		∟µn Tri	0	1.0 1.9	stones gravel	filter feeder	aill teaumont
53	Paralantonhlahia submarginata	Fnh	0	1 9	macrophytes	denosit feedor	aill teaumont
52	Sencosiona personatum	111	U	с. і	graver, organic,	SILEUGEI	yılı, tegument
51	Sericostoma porsonatum	Tri	0	1.5	aravel organia	shreddor	gill tegument
50	Uudronsvoho instabilio	⊏pn Tri	1 0	2 1 5	stopos, grovel	filter fooder	gill togument
49			1	c.1		denoeit feeder	
4ð	Lininius voickman		0	1.0		scraper	
10	Limpius volekmeri	Cal	0	16	ΝΑ	scraper	ΝΔ
47	Serratella Ignita	⊨pn	U	2	macrophytes	ueposit teeder,	gill, tegument
40 47	riectrochemia conspersa ssp.	1 [] Enh	1	NA 0	INA macrophytee	NA doposit fooder	egument
40	Dio panipos	Tri	1	1.3	NA	мл	togumont
44 45		Tri	0	1.5	stones aravel	scraper	gill tegument
4J	Potamonhulav latinoppie	Tri	1	1.5	organic	shredder	aill teaument
43	Hydraena gracilis	Col	0	- 15	NA	scraper	NA
42	Hydronsyche incognite	Tri	0	<u>-</u> .1	stones gravel	filter feeder	gill tegument
<i>A</i> 1	Athrinsodes alhifrons	Tri	0	21	aravel	shredder	aill teaument
					sand		

72	Aphelocheirus aestivalis	Het	0	2	stones	piercer, predator	plastron,
							spiracle,
							tegument
73	Goera pilosa	Tri	1	2	stones, gravel	scraper	gill, tegument
74	Baetis rhodani	Eph	0	2.1	stones, gravel	deposit feeder,	gill, tegument
						scraper	
75	Halesus radiatus	Tri	1	1.9	organic, roots	shredder	gill, tegument
76	Mystacides azurea	Tri	0	2.1	macrophytes	deposit feeder	gill, tegument
77	Eiseniella tetraedra	Oli	0	NA	macrophytes	deposit feeder	tegument
78	Calopteryx splendens	Odo	1	2.2	NA	predator	NA
79	Caenis horaria	Eph	1	2	mud	deposit feeder	gill, tegument
80	Athripsodes cinereus	Tri	0	2	gravel	predator	gill, tegument
81	Molanna angustata	Tri	1	NA	mud, sand	predator	gill, tegument
82	Baetis vernus	Eph	1	2.1	gravel	deposit feeder,	gill, tegument
						scraper	
83	Potamophylax rotundipennis	Tri	1	2	organic	shredder	gill, tegument
84	Platycnemis pennipes	Odo	0	2.1	NA	predator	NA
85	Simulium vernum	Dip	0	1.5	NA	filter feeder	NA
86	Sialis lutaria	Meg	1	2.5	NA	predator	NA
87	Platambus maculatus	Col	0	2.2	NA	predator	NA
88	Simulium ornatum	Dip	0	2.5	NA	filter feeder	NA
89	Pisidium henslowanum	Biv	0	NA	NA	filter feeder	NA
90	Elodes minuta	Col	0	NA	NA	shredder	NA
91	Anabolia nervosa	Tri	0	2	macrophytes	shredder	gill, tegument
92	Habrophlebia fusca	Eph	0	1.7	gravel,	deposit feeder	gill, tegument
					macrophytes, mud,		
					organic		
93	Cloeon dipterum	Eph	1	2.3	macrophytes	deposit feeder,	gill, tegument
						scraper	
94	Pisidium amnicum	Biv	0	2	NA	filter feeder	NA
95	Limnephilus rhombicus ssp.	Tri	1	NA	NA	shredder	gill, tegument
96	Glossiphonia nebulosa	Hir	0	2	NA	predator	NA
97	Apsectrotanypus trifascipennis	Dip	0	NA	NA	predator	NA
98	Gammarus roeselii	Cru	0	2.2	NA	shredder	NA
99	Gammarus pulex	Cru	0	2	NA	shredder	NA
100	Limnephilus lunatus	Tri	1	2	macrophytes	shredder	gill, tegument
101	Erpobdella nigricollis	Hir	0	2.5	NA	predator	NA
102	Lumbriculus variegatus	Oli	0	3	NA	deposit feeder	NA

103	Pisidium casertanum ssp.	Biv	0	NA	NA	filter feeder	NA
104	Erpobdella octoculata	Hir	0	2.8	NA	predator	NA
105	Radix balthica	Gas	0	2.3	NA	deposit feeder,	NA
						scraper	
106	Prodiamesa olivacea	Dip	0	NA	NA	deposit feeder	NA
107	Erpobdella vilnensis	Hir	0	2.2	NA	predator	NA
108	Sphaerium corneum	Biv	0	2.4	NA	filter feeder	NA
109	Glossiphonia complanata	Hir	0	2.3	NA	predator	NA
110	Psammoryctides barbatus	Oli	0	NA	NA	deposit feeder	NA
111	Potamopyrgus antipodarum	Gas	0	2.3	mud	deposit feeder,	gill
						shredder	
112	Viviparus contectus	Gas	0	2	NA	scraper	NA
113	Pisidium subtruncatum	Biv	0	NA	NA	filter feeder	NA
114	Laccophilus hyalinus	Col	0	NA	NA	predator	NA
115	Hydropsyche angustipennis	Tri	0	NA	stones, gravel	NA	gill, tegument
	ssp.						
116	Gerris lacustris	Het	0	NA	NA	predator	NA
117	Haemopis sanguisuga	Hir	0	NA	stones	piercer, predator	tegument
118	Asellus aquaticus	Cru	0	2.8	macrophytes	deposit feeder,	gill
						scraper,	
						shredder	
119	Dendrocoelum lacteum	Tur	0	2.4	stones	predator	tegument
120	Bithynia tentaculata	Gas	0	2.3	NA	filter feeder	NA
121	Gyraulus albus	Gas	0	2	NA	scraper	NA
122	Polycelis nigra/tenuis	Tur	0	2	NA	predator	NA
123	Physa fontinalis	Gas	0	2	macrophytes	scraper	tegument
124	Nemoura cinerea ssp.	Ple	0	NA	NA	shredder	tegument
125	Nepa cinerea	Het	0	NA	NA	predator	NA
126	Dugesia lugubris/polychroa	Tur	0	2.1	NA	predator	NA

No	Increasing species	Gr	e	ev	Substrate	Feeding	Pospiration
NO	increasing species	O,	U	01	preference	type	Respiration
128	Proasellus coxalis	Cru	0	2.8	NA	shredder	NA
129	Helobdella stagnalis	Hir	0	2.6	macrophytes	piercer, predator	tegument
130	Anisus vortex	Gas	0	2	NA	scraper	NA
131	Limnodrilus hoffmeisteri	Oli	0	3.3	NA	deposit feeder	NA
132	Planorbis planorbis	Gas	0	2.4	NA	scraper	NA

133	Limnodrilus claparedeanus	Oli	0	3.3	NA	deposit feeder	NA
134	Chironomus plumosus	Dip	0	NA	NA	deposit feeder	NA
135	Tubifex tubifex	Oli	0	3.6	NA	deposit feeder	NA
136	Planorbarius corneus	Gas	0	2.2	macrophytes	scraper,	tegument
						shredder	
137	Chironomus riparius	Dip	0	NA	NA	deposit feeder	NA
138	Ironoquia dubia	Tri	0	2	macrophytes,	shredder	gill, tegument
					organic		
139	Haliplus lineatocollis	Col	0	NA	NA	scraper	NA

770 Highlights

- Single species' pesticide vulnerability derived from governmental monitoring data
- 71 species are threatened by pesticide pressure, 13 are profiting
- Species threatened by pesticide pressure are mostly insects

Figure 2

