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Abstract  

Hydrological model parameters are important during representation of the hydrological 

characteristics of a watershed. The West Seti River Basin (WSRB), a prominent Himalayan 

Basin of Nepal, is a major source of fresh water in the western region of the country. We used 

the Soil and Water Assessment Tool (SWAT) for hydrological modelling and identified the most 

sensitive hydrological parameters, while the Sequential Uncertainty Fitting (SUFI-2) technique 

was employed for model calibration. The model was calibrated for the study period (1999–2005) 

with a three-year warm-up period (1996–1998). Subsequently, it was validated for three years 

(2006–2008). The results show that the large number of Hydrological Response Units (HRUs) 

for model simulation took a considerable time, without improving the performance statistics. 

Importantly, significant improvements were observed during both calibration and validation 

periods when elevation bands (EBs) were taken into consideration. The p-factor, r-factor, 

coefficient of determination (R
2
), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), Root 
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mean square error (RMSE)-observations, and standard deviation (STDEV) ratio (RSR) were 

used to measure the performance between observed and simulated values. The values of p-factor, 

r-factor, R
2
, NSE, PBIAS, and RSR during the calibration were 0.82, 0.80, 0.84, 0.82, 7.2, and 

0.42, respectively, whereas during validation they were 0.79, 0.72, 0.83, 0.82, 11.8, and 0.42, 

respectively. The calibrated model was then used to assess the anticipated river discharge. This 

study used four regional climate models (RCMs) for precipitation and six for temperature, 

together with their arithmetical average as multi-model ensembles (MMEs) under two 

representative concentration pathways (RCPs). We analysed the changes in precipitation, 

temperature, and river discharge for three future time frames: Future1 (F1: 2020–2044), Future2 

(F2: 2045–2069), and Future3 (F3: 2075–2099) with respect to the baseline (1996–2005). The 

magnitude of changes varied according to the different climate models and warming scenarios. 

In general, the MMEs showed slightly increasing precipitation (higher during the F2 period), 

significantly increasing temperature (continuous rising trend), and moderately increasing river 

discharge (higher during the F2 period). Information such as the anticipated shift in the flow 

duration curve may be helpful to stakeholders across different water sectors for effective water 

resource management in the future. From the modelling perspective, the results show greater 

significance for EBs than HRUs during the modelling of high mountain basins with SWAT. This 

take-home message would be useful to hydrologists and other stakeholders in evaluating 

different scenarios over a short duration, without iteratively spending higher computational time. 

Keywords:  West Seti River Basin, Climate change, Hydrological modelling, Soil and Water 

Assessment Tool 

1. Introduction  
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The hydrological cycle has a strong link with both the surface and subsurface processes of the 

earth. The SWAT is widely acknowledged as a robust tool for interdisciplinary watershed-

modelling and is a physically-based semi-distributed model (Abbaspour et al., 2015). According 

to Gassman & Yingkuan (2015), SWAT is a suitable model for predicting land management, the 

long-term impact on sediment, agricultural yield, and streamflow simulation based on their study 

conducted in a large and very complex watershed, with varying land use, management practices 

and soil conditions. Krysanova & White (2015) investigated the performance of various models 

including SWAT, the Dynamic Watershed Simulation Model (DWSM), and Hydrological 

Simulation Program-Fortran (HSPF). Their study showed SWAT to be an extremely useful tool 

in agricultural watersheds to simulate streamflow. However, SWAT is not recommended for use 

in extreme hydrological events like floods. The SWAT model has been extensively used in 

various countries for discharge prediction (Bajracharya et al., 2018; Lenderink et al., 2007; 

Shrestha et al., 2018; Khadka et al., 2014; Abbaspour et al., 2015). 

Hydrological models contain uncertainty for various reasons including poor input data quality 

or/and the simplification of complex physical processes with underlying assumptions and 

limitations. Therefore, it is necessary to calibrate the models to significantly decrease the 

chances of uncertainty in predictions (Chaibou et al., 2016; Croton et al., 2016). By 

implementing sensitivity and uncertainty analysis, the parameterisation and calibration of 

hydrological models can be examined (Refsgaard, 1997). Uncertainty is associated with several 

factors including input-output parameters and model structure. Therefore, predictions for 

uncertainty must be in an acceptable range (Shen et al., 2012). A detailed explanation of 

different sources and types of uncertainty can be found in Yang et al. (2008). 
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In order to verify the applicability of SWAT, it is a routine step to conduct careful calibration 

followed by validation (Arnold et al., 2012). Generally, the performance measures are examined 

using graphical and statistical methods. The performance evaluation range may vary from 

satisfactory to very good, corresponding to the quantitative threshold for different performance 

indicators (Moriasi et al., 2007). After ensuring its reliability, the model is then deemed fit to 

simulate all future conditions (Zhang et al., 2015) or different scenarios. 

Generalised Likelihood Uncertainty Estimation (GLUE), SUFI-2, Parameter solutions (ParaSol), 

and Markov Chain Monte Carlo (MCMC) are the four most commonly-used sensitivity analyses 

and optimisation algorithms for this model. These algorithms assist in determining the 

uncertainty in SWAT predictions (Yang et al., 2008). The SWAT-CUP procedure connects all 

the aforementioned algorithms to the SWAT model, thereby enabling uncertainty and sensitivity 

analysis. Wu & Chen (2015) utilised ParaSol, GLUE, and SUFI-2 wherein they assessed the 

applicability and performance of SWAT to predict streamflow in the Lake Tana Basin. Shrestha 

et al. (2018) conducted an uncertainty analysis and model calibration of SWAT using SUFI-2 to 

estimate nitrate nitrogen and runoff in the Songkhram River Basin in Thailand. The SUFI-2 

algorithm consists of statistical and graphical performance measures to evaluate the robustness 

of a model. Yang et al. (2008) reported that the SUFI-2 algorithm must have a minimum number 

of simulations to make it easier to attain high-quality uncertainty analysis and calibration.  

The Karnali River, one of the main rivers in Western Nepal, drains almost one-third of the 

country’s catchment. Only a few studies have been carried out in the Karnali River and its 

tributaries (e.g. Gladfelter 2018; Mishra et al., 2018; Liu et al., 2018; Smith et al., 2017; Dhami 

et al., 2018; Shiwakoti, 2017). None of the previous studies, to the best of our knowledge, have 

evaluated the influence of hydrological parameters on runoff simulation, considering 
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computational time, in the western region of Nepal. The West Seti is a major tributary of the 

Karnali River and has great importance in fulfilling the food security and energy demand of the 

area. In addition, the West Seti River Basin (WSRB) is one of the top four most vulnerable 

basins in Nepal when it comes to climate change. Karki (2012) analysed the uncertainty in the 

WSRB using SWAT and underscored the importance of a monthly or seasonal performance 

check. Gurung et al. (2013, 2015) employed SWAT in the WSRB to simulate the water balance 

in different cropping patterns under current and future climates. Pradhan et al. (2019) assessed 

the performance of SWAT and Artificial Neural Network (ANN) models in three different river 

basins (including the WSRB) and confirmed the applicability of SWAT in the WSRB.  

Similarly, a few available studies have focused on model input structures and their performances 

in Nepalese watersheds. For instance, Gautam et al. (2019) assessed the impact of digital 

elevation model (DEM) source, resolution, and area threshold values on the SWAT-generated 

stream network and streamflow in two different catchments of Nepal. Their study highlights the 

assumption that the SWAT model performance improvement with DEM resolution does not hold 

true. However, Gautam et al. (2019) suggested using a higher resolution DEM (30 m or finer) to 

achieve the best model performance based on the temporal sensitivity of the runoff. Bhatta et al. 

(2019) assessed the SWAT model performance under different scenarios based on drainage area 

(DA) threshold, sub-basins (SBs), HRUs, and EBs, paying careful attention to computational 

time over the eastern Himalayan region of Nepal. In general, upon the creation of a large number 

of SBs and HRUs, the model performs comparatively better, although it consumes expensive 

computational time. The modelling becomes more complex when the topography and climate are 

highly heterogeneous.  
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There is a huge gap in the unravelling of issues related to model performance in the western 

region of the country. The country’s climatic condition in the western region is quite different 

from eastern Nepal, especially during the winter season (snowfall at higher altitude) due to the 

dominance of westerly disturbance (Talchabhadel et al., 2018). The SWAT model is equally 

applicable in snow-dominated basins (Azmat et Al., 2018; Shrestha and Wang, 2018; Dhami et 

al., 2018; Pradhanang et al., 2011). Spatial variation in the accumulation and melting of snow 

could be replicated in the model by sub-dividing the SB into different zones based upon 

elevation (Shrestha et al., 2017; Pradhanang et al., 2011). The model allows the SBs to be sub-

divided into a maximum of ten EBs. Pradhanang et al. (2011) examined the effects of 

parameterising the SWAT snowmelt sub-model using a number of EBs for comparison measured 

snow and streamflow. They found that a snow configuration choice greater than three EBs had 

little effect on the SWAT simulation of streamflow in the Cannonsville Watershed, USA. 

Therefore, in circumstances where observation-based snow data is lacking, the selection of EBs 

is also crucial. 

It is equally important to understand the projected impact of climate change on the hydrological 

regime especially in the Himalayan region (Singh & Bengtsson, 2004) for sustainable water 

resources management (Nepal, 2016). Numerous studies have been conducted to assess the 

impact of climate change on various disciplines including water resources management using 

different models on the global (Alcamo et al., 2003, 2007; Hagemann et al., 2013; Hanasaki et 

al., 2013; Hirabayashi et al., 2008, 2013), regional (Immerzeel et al., 2010, 2013; Piman et al., 

2015; Portoghese et al., 2015), national (Chaulagain, 2006; Talchabhadel & Karki, 2019) and 

local scale (Agarwal et al., 2015; Aryal et al., 2018; Bhatta et al., 2019; Dahal et al., 2016; 

Gautam et al., 2019; Gurung et al., 2015; Mishra et al., 2018; Nepal 2016; Pandey et al., 2019). 
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In a Himalayan river basin like the WSRB, an unequivocal, accelerating, warming trend could 

significantly alter the hydrological regime (Bajracharya et al., 2018).  

There are two objectives to our study. Firstly, to analyse the model behaviour by setting it 

against a range of modelling scenarios, emphasising the treatment complexities related to 

topography and climate. The output of this objective is to construct a model with optimum 

computational time and model performance. The second objective is to apply the model for 

climate change impact assessment. The model setup using the best “performance-and-runtime” 

from objective one was fed with different climate models and their ensembles (McSweeney et 

al., 2015) under two warming scenarios (RCP 4.5, a medium stabilising scenario and RCP 8.5, a 

very high emission scenario) until the end of 2100. Though the current application of the model 

is limited to an impact assessment of climate change, we believe researchers and practitioners 

can benefit from this study since it provides a more detailed assessment of adaptation measures 

in mountainous environments. 

This paper is organised as follows: The study area is discussed in section 2, together with a 

description of meteorological data (observed and projected), and other relevant data. The entire 

methodology of this study is discussed in section 3. The results and relevant discussions are 

presented in section 4, while section 5 concludes the study. 

2. Study Area and Data Collection 

2.1 Study area 

Located in the far western region of Nepal, the WSRB is an important source of fresh water in 

the region (Fig. 1). According to existing studies, the WSRB is the most vulnerable watershed of 

all the 135 in Nepal (Maharjan, 2012). In recent years, the WSRB has come under even greater 

scrutiny due to a 750 MW hydropower project being proposed by the Government of Nepal 
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(GoN, 2018). West Seti is one of the major tributaries of the Karnali River (507 km); the longest 

river in Nepal. The West Seti River originates from the glaciers and snowfields around the twin 

peaks of Nampa and Api in the main Himalayas, facing towards the South. The area lies within 

the longitudes 80° 35' - 81°36' and latitudes 29° 02' - 29° 41'. The catchment area of the WSRB 

at Gopaghat is 4,342 km
2
. As with most of the Himalayan basins in Nepal, the WSRB has large 

elevation, ranging from 610 m asl (above sea level) to 7,019 m asl. A major part of this area 

(about 63.26%) is forest, with 28.17% agricultural land (ICIMOD, 2010).  

Precipitation in the study area is dominated by summer monsoon, which starts in June and lasts 

until September. Climatic variations (temperate to polar) are observed with higher altitudes 

located high in the Himalayas (Karki et al., 2016). Average rainfall of 1921 mm was recorded in 

the study area from 1996 to 2008, at least 75% of which occurred during the monsoon. During 

the same period, the minimum temperature in the area varied from -23.4 to +31.3 °C with the 

maximum temperature varying from -17.3 to +46.7 °C. Gurung et al. (2015) reported that on 

average, the nights have become colder and the days hotter in this region.   

2.2 Data collection 

Meteorological forcings, streamflow gauges, land use/land cover (LULC), DEM, and soil data 

were collected for this study and are briefly described here. For DEM, the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM) of 30 m resolution 

was used, retrieved from https://tahoe.usgs.gov/DEM.html. The DEM was used to delineate the 

watershed and generate the river stream. The land use map of the WSRB, with a spatial 

resolution of 1:25,000 was obtained from the Department of Survey, Nepal. Each LULC type is 

described in brief in Table 1, along with descriptions of each class. The most prominent land 
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cover is forest. Urban coverage in the region is insignificant, comprising a few scattered cities. 

The LULC consists of mixed forest, pasture, barren land, water body, range-brush, agricultural 

land, and snow/glacier. The soil data was obtained from the Soil and Terrain database (SOTER) 

website (https://www.isric.org/explore/soter) on a scale of 1:1,000,000, with the WSRB containing 

eight types (Table 1). Hydrological and precipitation data was collected from the Department of 

Hydrology and Meteorology (DHM). Table 2 shows the duration and sources of the collected 

hydro-meteorological data. 

Fig. 1.  

Table 1 

Fig. 2  

Table 2 

Three future time periods are considered in this study: F1 (2020–2044), F2 (2045–2069), and F3 

(2075–2099). We used six RCMs, individual members of the Conformal-Cubic Atmospheric 

Model (CCAM). The CCAM is a popular Coordinated Regional Climate Downscaling 

Experiment (CORDEX) for South Asia RCMs, downscaled using different GCM forcings 

(Table 3) at a horizontal resolution of 0.44
o
 (~50 km). The projected data was downloaded from 

the Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-

IITM, a nodal agency for coordinating CORDEX modelling activity in South Asia). Linear 

scaling (LS) was employed for bias correcting the projected data. Even though LS is the simplest 

bias correction method, it is equally effective for assessing water resources of coarser temporal 

resolution compared to more complex bias correction methods (Shrestha et al., 2017). In LS, the 

average monthly correction factors were determined for both climate variables (i.e. precipitation 
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and temperature) with reference to observed climate data. The monthly correction factors were 

then applied in additional (or multiplication) form to obtain the bias-corrected temperature 

(precipitation). 

Table 3 

3. Research Methodology 

In this study, 18 SWAT models were developed under different scenarios, considering the DA 

threshold, population of HRU, and population of EB. Calibration and validation were performed 

for all models using the SUFI-2 algorithm. The calibration runtime varied, depending on the 

number of SBs and HRUs. Meteorological forcings were kept constant while HRUs, SBs, and 

EBs were treated as variables to develop the modelling scenarios, and the time required for each 

modelling scenario compared. Fig. 3 illustrates the overall methodology applied. After 

calibration and validation, future bias-corrected climate data in different climate scenarios was 

fed into the model to analyse the projected river discharge. 

Fig.3  

3.1 SWAT modelling 

 

The SWAT is a physically-based semi-distributed continuous hydrological model (Arnold et al., 

2012) developed by the USDA (United States Department of Agriculture). Please refer to 

Gassman et al. (2007) for a detailed description of the historical development, application, and 

future research direction of the SWAT model. The major model components of SWAT comprise 

weather, hydrology, soil properties, plant growth, nutrients, pesticides, bacteria and pathogens, 

and land management (Arnold et al., 2012). The model can be used to simulate and predict water 

quality/quantity, soil erosion, sediment yield, impacts of land use/cropping pattern change, and 
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so on. This study employed the SWAT model to simulate the historical river discharge. The 

validated model was then used to make predictions under changing climate. Theoretical 

information on SWAT is available at https://swat.tamu.edu/media/99192/swat2009-theory.pdf. 

3.2 The SUFI-2 algorithm in SWAT-CUP 

The SWAT-CUP is a complementary tool for facilitating sensitivity analysis, calibration, 

validation, and uncertainty analysis of the SWAT models. Of the various procedures available, 

the SUFI-2 is arguably the most popular algorithm inside SWAT-CUP. In the SUFI-2, the 

uncertainty in parameters accounts for uncertainty in the conceptual model, such as from driving 

variables, measured data, and parameters (Abbaspour et al., 2015). The 95% range of uncertainty 

(95PPU) is calculated at the 97.5% and 2.5% levels of cumulative distribution. The output 

variable is obtained using Latin hypercube sampling after disallowing 5% of poor simulations 

that cannot be taken into account (Abbaspour, 2007). Detailed information on the conceptual 

basis of the SUFI-2 uncertainty analysis routine is available in Abbaspour et al. (2007). The r-

factor and p-factor are used to determine the strength of model calibration (Arnold et al., 2012). 

The p-factor value varies from 0 to 1 and the r-factor from 0 to infinity. For the p-value, the 

highest value (1) indicates a 100% match between the observations and simulated data. Its lowest 

value (0) represents a higher chance of uncertainty in model outputs (Setegn et al., 2010). The p-

factor provides an answer to “What percentage of measured data is covered in the envelope of 

the 95PPU?” It also accounts for all uncertainties associated with the SWAT model. On other 

hand, the r-factor represents the average thickness of the 95PPU band. To obtain less uncertainty, 

a lower r-factor value is required (Abbaspour et al., 2015). Both p and r-factors need to be 

balanced since a higher p-factor value is obtained through a greater r-factor value. Further details 

of the SUFI-2 are available in the SWAT-CUP user manual (Abbaspour, 2011). 
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3.3 Performance metrics 

Five metrics, namely PBIAS, NSE, R
2
, r-factor, and p-factor are employed for evaluating the 

performance of model results. The R
2 

(Eq. 1) estimates the combined dispersion against a single 

dispersion of the observed and simulated series (Krause et al., 2005). The NSE is a measure for 

best fit and ranges from (-∞) to (1). The optimal value of the NSE is (1), calculated using Eq. 2. 

                R² = (
(∑(𝑋𝑖−𝑋𝑎𝑣𝑔)(𝑌𝑖−𝑌𝑎𝑣𝑔))2

 ∑(𝑋𝑖−𝑋𝑎𝑣𝑔)2 ∑(𝑌𝑖−𝑌𝑎𝑣𝑔)2 ,                    (1) 

                NSE = 1 −
∑(𝑋𝑖−𝑌𝑖)2

∑(𝑋𝑖−𝑋𝑎𝑣𝑔)2 ,                                                              (2) 

              PBIAS = 100 (
∑ 𝑌𝑖−∑ 𝑋𝑖

∑ 𝑋𝑖
)                                   (3) 

              RSR =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
 (

√∑ (𝑋𝑖
𝑜𝑏𝑠− 𝑌𝑖

𝑠𝑖𝑚)
2

𝑛
𝑖=1    

√∑ (𝑋𝑖
𝑜𝑏𝑠− 𝑋𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

)                    (4) 

where, 𝑋𝑖 represents the measured values, 𝑋𝑎𝑣𝑔 represents the mean of measured values, 𝑌𝑖 

represents the simulated values, and 𝑌𝑎𝑣𝑔 represents the average simulated values. The PBIAS 

(Eq. 3) is arguably the most commonly-used indicator for quantifying errors in water balance. 

Additionally, it also indicates poor performance in a model when deviation from the observed 

data is high. The average tendency of simulated data can be measured using this technique. The 

optimal value of PBIAS is (0), and low values generally indicate accuracy in model simulation. 

When a positive value is obtained, it indicates underestimation bias, while a negative indicates 

overestimation bias (Moriasi et al., 2007). Along with the above-mentioned metrics, the RSR is 

another important statistical performance metric. It is the ratio of the RMSE and STDEV of 

measured data (Eq. 4), and a complementary indicator to the RMSE. The RSR varies from the 
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optimal value of 0 to ∞, where zero indicates perfect model simulation, and a higher value 

represents lower model performance. 

 

3.4 Model calibration and validation 

High elevation variance remains a complex riddle in the SWAT modelling community. The 

WSRB has high heterogeneity in elevation with an altitudinal range of 610 to 7,019 m asl. 

Preliminary results show variations in the curve number from 36 to 92, indicating that modelling 

of the basin is perplexing. To overcome the model uncertainties incorporated with the physical 

structure of the SWAT model, 18 different modelling scenarios have been developed for this 

study, including DAs, HRUs, and EBs, while considering computational time as another 

dominating factor.  

The WSRB is located in the Himalayan region of Nepal and this study could be beneficial for 

other similar Himalayan river basins. Three different values were used for the DA threshold: 25, 

10, and 2.5K, with three different systems (10xSB, 5xSB, SB) for HRU generation. In the 

Himalayan region, the distribution of rainfall and temperature is not uniform, therefore, the 

addition of EBs to the model is crucial (Bhatta et al., 2019; Shrestha et al., 2017). Two different 

scenarios were considered—without EBs, and with EBs. The spatial variability of precipitation 

and temperature could be represented in the model by including EBs. The model allows for the 

consideration of lapse rates in temperature (TLAPS) and precipitation (PLAPS), in order to 

include elevation dependency. The model treats precipitation as either rainfall or snowfall, 

depending on air temperature with respect to the snowfall temperature, SFTMP (Shrestha et. al., 

2017; Pradhanang et al., 2011). 
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Table 4 shows the calibration and validation results of different scenarios. Many researchers 

have suggested that the number of simulations for one iteration could be set between 500 and 

1000. In this research, two iterations were performed—one with 500 model runs and another 

with 1000 model runs, to analyse the uncertainty effects from different numbers of DA 

thresholds, HRUs, and EBs. For both iterations and all model development scenarios, NSE was 

selected as an objective function with a value greater than 0.5. We carefully calibrated 

parameters such as Manning’s constant for overland flow, Manning’s constant for tributary 

channels, the average slope of tributary channels, and other hydraulic/geometric-related 

parameters by considering practical values. Detailed hydraulic modelling is needed to precisely 

estimate hydraulic parameters such as Manning’s roughness coefficient (Ardiclioglu & Kuriqi, 

2019). Since the focus of this study is on rainfall-runoff modelling rather than river analysis, no 

other hydraulic models are used. 

4. Results and Discussions 

4.1 Assessment of the SWAT model under different modelling scenarios 

Table 4 shows the runtime for 1500 optimisation model runs in different modelling scenarios. 

The runtime for the model calibration is seen to be unaffected by EBs but varies considerably 

with the DA threshold and HRUs. It is obvious that a fewer number of SBs is generated by a 

higher DA threshold value and vice versa. The calibration runtime drastically increases with a 

rise in the number of SBs. In this study, three different SB population scenarios viz. 7, 27, and 73 

showed that the runtime expeditiously increased from 0.74 to 19.43 hr. The model was simulated 

under three different HRU scenarios: 1) HRU = SB, 2) HRU = 5xSB, and 3) HRU = 10xSB. 

Under the 10xSB HRU scenario, the scenario with a large number of SBs produced better results 

but the runtime for model simulation was too high. From Table 4 it is evident that an increase in 
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the number of HRUs is highly sensitive to the runtime for model calibration. Surprisingly, an 

increase in the number of HRUs did not lead to a significant change in model performance.  

Thus, a larger population of SBs and HRUs did not lead to longer runtimes in any of the EB 

scenarios without improving model performance. It is noteworthy that the modelling scenario for 

HRU = SB in the case of SB = 73 took only 1.51 hr. and HRU = 5xSB or 10xSB took 10.33 and 

19.43 h, respectively but produced almost similar results. In the SWAT model, runoff from all 

HRUs within an SB are summed and enter the main reach of the SB before being routed through 

the channel network to the outlet of the watershed. The increase in the number of SBs 

significantly affects channel routing but the increase in the number of HRUs simply increases 

different hydrological responses inside the SB. If the geological, soil, and land use conditions are 

almost similar, then increasing the number of HRUs might go towards increasing the 

computational time rather than model performance. The selection of HRUs plays a pivotal role in 

replicating the unique hydrological response inside the SB. Consequently, we should be aware of 

the time required for model calibration, the number of HRUs and SBs and their impacts on 

model performance during the setup phase. This study provides some ideas on model 

development, runtime, and the impact of varying numbers of SBs and HRUs on model 

performance.  

Next, we included EBs and conducted a second set of the previous nine scenarios. After adding 

the maximum EB, the model performance showed significant improvement when compared to 

the model without EB. This is attributed to the fact that the model (SWAT) attempts to capture 

the hydrology of the modelling domain using HRUs as its computational units. The assumption 

in SWAT is that the HRUs explain most of the variations in the basin’s physical (and thus 

climatic) characteristics. However, in regions with large topographical gradients such as the 
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WSRB, the computational units (HRUs) themselves vary considerably in elevation. This results 

in high spatial temperature and precipitation variability which the HRUs, as individual units, are 

not able to simulate completely. Thus, each HRU itself requires further grouping based on 

elevation, which is exactly what the EB in SWAT does. With adequate representation of the 

lapse in temperature and precipitation with elevation, HRUs with EBs produce results concurring 

to reality via correct snow-rain distribution along the elevation. This greatly improves the overall 

water balance and hydrology representation of the model. Thus, in the Himalayan region (or any 

region with large topographical relief for that matter), the EB is very important for improving the 

SWAT model performance. This result is similar to that reported by Bhatta et al. (2019) for the 

eastern Himalayan region of Nepal.  

Dhami et al. (2018) used the SWAT and snowmelt runoff model (SRM) in the Karnali River 

Basin. Their study reported that about 20% of precipitation falls as snowfall, 60% of which melts 

away, while more than 12% of river discharge is contributed by snowmelt runoff. Moderate 

Resolution Imaging Spectroradiometer (MODIS) snow cover products were used to derive the 

percentage of snow cover area in their study. A similar result was observed in another study 

(Shiwakoti, 2017) conducted in the Karnali River Basin using the HBV Light Model, where the 

contribution of snowmelt to annual flow was found to be about 11% with a maximum monthly 

contribution of almost 30% in May and a minimum of 2% in January. Shiwakoti (2017) reported 

a significant inter-annual variation in the snowmelt contribution. For instance, in the Seti River, 

snowmelt varied by up to a maximum of 27% in 1987 and a minimum of 11% in 1997.  

These studies highlighted the spatio-temporal variability of snow accumulation and melt in the 

Himalayan watersheds. Currently, we limit our study of snowmelt and snow accumulation 

processes for a precise analysis, although simulated by considering EBs. We attempted to 
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calibrate the parameters using a single site-based calibration of streamflow discharge. However, 

this study explores the spatio-temporal changes in snow cover areas developed by Muhammad & 

Thapa (2020). Snow, acting as water storage, is one of the crucial components of the 

hydrological cycle. The field measurement of a vast spatial extent of snow cover, especially in 

the Himalayan basin as in the study area, is quite a challenging task (Immerzeel et al., 2009). 

Therefore, the use of satellite-based information is common for assessing the snow extent. 

However, passive satellite remote sensing is constrained by persistent cloud. In order to 

minimise persistent cloud cover and obtain information under such conditions, eight-day 

composite snow cover products from MODIS were developed. Although the eight-day composite 

products reduced cloud cover, a significant amount of clouds remained which need to be 

removed. Muhammad & Thapa (2020) improved the MODIS onboard Terra and Aqua snow 

cover by employing different filters (seasonal, temporal, spatial, and different combinations) and 

validated using Landsat 8 for ground-truth. Their final product covers the period from mid-2002 

to 2018 This study used the data from 2003 to 2009 to assess the association between snow cover 

changes and downstream streamflow (both observed and simulated). 

Fig. 4 shows the model performance metrics and runtime to simulate 18 different scenarios 

conducted using the SWAT-CUP model and employing the SUFI-2 algorithm. Clearly, the 

performance metrics are better for scenarios in which EBs are included, compared to 

corresponding scenarios without EBs. Noticeably, the runtime did not differ significantly.  

For hydrological prediction, great care is required to develop an acceptable model. Random 

generation of SB and HRUs will always lead to poor model performance with high levels of 

uncertainty. For good modelling practice, it is better to suggest the potential uncertainties 

associated with the number of SBs, HRUs, and EBs in the prediction of streamflow. In this 
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study, different scenarios were calibrated using discharge data (1999 to 2005) and SUFI-2 at 

each station. Model structure and parameter uncertainties always exist, so fixing the number of 

SBs and HRUs is a great deal better for model calibration and achieving a better runtime. For 

further analysis in the subsequent section, the case with the highest number of SBs and HRUs is 

applied. 

Fig.4  

Table 4 

4.2 Sensitivity analysis 

The initial set of parameters considered (39 in total) for model calibration is shown in Table 6. 

This study employed the global sensitivity analysis method. The purpose of calibration is to 

adjust the value of the sensitive parameters so that the simulated flows match the observed. The 

graphical user interface details are available in the SWAT-CUP manual (Abbaspour, 2011). 

Sensitivity analysis was executed with 1500 model runs in two phases using the SWAT-CUP 

model. In the first phase, 500 model runs were made. Sensitive parameters were confirmed by 

looking at the p-value and t-stat. The parameters with the smallest p-value and the largest t-stat 

were considered as the most sensitive. The most sensitive parameters were (in decreasing order 

of sensitivity) LAT_TTIME.hru, CH_K2.rte, ALPHA_BNK.rte, and CN2.mgt. The new range 

for each parameter was once again adjusted and used for the next round of iterations (remaining 

1000 model runs) and uncertainty analysis. The model parameters, including the final fitted 

value, new maximum and minimum values, t-stat, rank of sensitivity, p-values, together with an 

explanation of each are displayed in Table 5.  
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Table 5 

4.3 Model performance during calibration and validation 

To minimise the uncertainty in prediction, effort is required to parameterise the model for 

calibration and uncertainty analysis. The range of each parameter is crucial for calibrating the 

model for better agreement between observed and simulated values. The simulated and observed 

discharges were compared at the Gopaghat flow-gauging station (outlet) during calibration (1999 

to 2005). The strength of calibration is shown by the shaded area in Fig. 5, as explained by r-

factor. Upon close examination of the 95PPU band, the prediction bandwidth was considered to 

be very high (especially for peak discharges), indicating significant uncertainty. The p-factor and 

r-factor values obtained during calibration were 0.82 and 0.80, respectively. Similarly, the values 

for R
2
, NSE, RSR, and PBIAS were observed as 0.84, 0.82, 0.42, and 10.5, respectively during 

calibration, representing better performance for simulation than observed. 

Validation establishes the strength of the calibrated model for practical applications and if the 

objective functions are not achieved for the validation dataset, the calibration and/or model 

assumptions will need to be revisited. The observed and simulated flow, including precipitation 

patterns are plotted in Fig. 6 during calibration and validation, showing good agreement during 

low and high flows. Moriasi et al. (2007) suggested the general performance of objective 

functions. Fig. 7 shows the relationship between observed and simulated variables with good 

correlation (R² = 0.84) for both calibration and validation phases. A closer look into the temporal 

variation of river discharge (Fig. 6) and scatter plots (Fig. 7) indicates that the model effectively 

captured both low flow and high flow in an agreeable manner. Some of the observed high flows 

were not effectively captured by the model. The model performance during calibration and 

validation is presented in Table 6. The p-factor, r-factor, R
2
, NSE, RSR, and PBIAS values 
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during validation were 0.79, 0.72, 0.84, 0.83, 0.42, and 12.6, respectively. Overall, the model 

was found to be appropriate for water resource assessment. Importantly, if the model is to be 

used for extreme flow analysis such as flood forecasting then careful calibration remains 

necessary, focusing on the precise simulation of peak flow. In addition, a daily simulation time 

step and continuous time marching, limit the application of SWAT for detailed, event-based 

flood simulation. 

Fig. 5  

Fig. 6  

Fig. 7  

Table 6 

4.4 Snow cover and its association with streamflow 

Fig. 8 shows the spatial distributions of snow cover across the study area for different months 

with ≥20 (up to 24) MODIS eight-day composite images available for different months in the 

period from 2003–2008. The occurrences of snow in each MODIS eight-day composite image 

were normalised by the number of composite images in that month, expressed in percentage 

terms. The areas with 100% values indicate the extent of monthly snow cover in the study area. 

From the beginning of May, the snow cover starts to decrease, indicating the significant 

contribution of snowmelt. During the monsoon season (Jun–Sep), the extent of snow cover is 

limited to only high altitudes. On a monthly scale, the mean monthly snow cover area is found to 

be the highest (~1700 km
2
) in February followed by March, with June the lowest (~650 km

2
) 

followed by August. A temporal intra-annual fluctuation of almost 1000 km
2
 significantly 

influences the downstream streamflow. The inter-annual variation shows that 2005 exhibited the 
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highest extent of snow cover (~1200 km
2
), with adjacent years 2004 and 2006 having the lowest 

(~1000 km
2
) across the study area during the analysis period from 2003–2008. Highly dynamic 

intra- and inter-annual variations in snow cover are integral characteristics of the study area. 

Hydrological monitoring stations at immediate outlets of snow-covered sub-catchments are 

necessary for a detailed analysis of snow accumulation and melting mechanisms, and their effect 

on streamflow. 

Fig. 9 shows the temporal variations in the eight-day snow cover area (data available in the 

supplemental section), basin-averaged daily temperature (average, maximum and minimum), and 

mean daily discharge (both observed and simulated) at the Gopaghat hydrological monitoring 

station, which is far downstream of snow-fed SBs. Though a clear association is difficult to find 

between temporal changes in the extent of snow cover and streamflow due to the larger 

proximity, a general indication of a greater snowmelt contribution is shown during the late pre-

monsoon time (around May). Almost 90% of annual precipitation occurs in the period from May 

to October and only about 10% in the remaining six months. Due to an increase in temperature 

from May, precipitation normally occurs in the form of liquid (i.e. rainfall) except in high land (> 

5000 m asl). Precipitation during late post-monsoon and winter contributes as snow 

accumulation, and increased snow cover (Figs 8-9) also demonstrated the same mechanism. 

From the start of April, the snow cover slowly begins to reduce with the rate peaking by May 

with an increase in temperature. Normally, precipitation also noticeably increases from April, 

becoming even more noticeable by the end of May before the onset of monsoon around June. 

4.5 Projection of precipitation, temperature, and discharge 
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Fig. 10 shows the inter-annual variations of the projected annual precipitation from 2020 to 2099 

under two warming scenarios with fluctuating deviations. There was no clear difference in the 

tendency of annual precipitation to fluctuate under the two warming scenarios. However, a clear 

indication of the incremental frequency of extreme precipitation (both drier and wetter events) 

was depicted by all selected climate models. The RCPs represent the range of greenhouse gas 

(GHG like CH4, CO2, N20, and S02) emissions which have a clear proportional relationship with 

temperature. Changes in precipitation for a warming world will not be uniform. The MME of 

selected climate models showed a slightly increasing trend of annual precipitation, with monsoon 

precipitation likely to intensify. The rate of increase was slightly higher for the RCP 8.5 scenario. 

Time-sliced average analyses were conducted for three time periods (F1, F2, and F3) under two 

warming scenarios (RCPs 4.5 and 8.5). The deviations of mean annual precipitation with respect 

to the baseline for different cases are shown in Fig. 11, derived from individual climate models 

and the MME of selected climate models.  

Fig. 10  

Fig. 11  

Except for ACCESS1-0, all selected climate models showed an increasing trend for mean annual 

precipitation in different future scenarios. The GFDL-CM3 showed a moderate increasing trend 

whereas CNRM-CM5 and MPI-ESM-LR showed larger increasing trends. According to the 

MME of four selected climate models, the mean annual precipitation could increase by 9.65% 

(9.66) during the F1 time period, 10.45% (10.53) during the F2 time period, and 6.94% (7.64) 

during the F3 time period under RCP 4.5 (RCP 8.5) with respect to the baseline. The F2 time 

period was found to be the wettest among the three selected time periods (F1, F2, and F3). 
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Fig. 12 shows the inter-annual variations of the projected annual Tavg from 2020 to 2099 under 

two warming scenarios. Unlike precipitation, the projection showed a clear rising trend in the 

annual Tavg. This is a similar result to that reported by Pandey et. al (2019) in the Chamelia 

watershed—a tributary of Mahakali. Mahakali is an adjacent watershed located to the west of the 

WSRB. As expected, the rate of increase in the Tavg was higher under RCP 8.5 than RCP 4.5. 

Time-sliced average deviations with respect to the baseline were conducted for the six different 

cases mentioned above (shown in Fig. 13), derived from individual climate models and the 

MME of selected climate models. All selected climate models clearly indicated rises in 

temperature. The MME of the six selected climate models showed that the mean annual Tavg 

could increase by 0.76 °C (varying from 0.44 to 1.45) during the F1 time period, 1.14 °C 

(varying from 0.92 to 1.5) during the F2 time period, and 1.55 °C (varying from 1.2 to 2.17) 

during the F3 time period under RCP 4.5 with respect to the baseline. The ACCESS1-0 showed 

the projected highest mean annual Tavg for F2 and F3 time periods, and CCSM4 for the F1 time 

period under RCP 4.5. The CNRM-CM5 projected the lowest mean annual Tavg for F1 and F2 

time periods, and CCSM4 for the F3 time period under RCP 4.5. 

Under RCP 8.5, the MME showed that the mean annual Tavg could increase by 0.92 °C (varying 

from 0.57 to 1.33) during the F1 time period, 2.11 °C (varying from 1.55 to 3.24) during the F2 

time period, and 3.9 °C (varying from 3.06 to 5.34) during the F3 time period with respect to the 

baseline. The GFDL-CM3 showed the highest mean annual Tavg for all three time periods under 

RCP 8.5. In similarity to the warming scenario RCP 4.5, CNRM-CM5 provided the projected 

lowest mean annual Tavg for F1 and F2 time periods, and CCSM4 for the F3 time period under 

RCP 8.5. 

Fig. 12  
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Fig. 13  

Fig. 14 shows the mean monthly precipitation and temperature (Tmax, Tmin, and Tavg) for the 

baseline (dashed) and different projected scenarios. The patterns of precipitation and temperature 

were almost congruous with the baseline. In the case of temperature, a linear upward shift, 

meaning an anticipated rising temperature, was visible for all future scenarios. The increments 

were higher under RCP 8.5 than RCP 4.5, and could continue with the evolution of time. During 

the F1 time period, the mean annual Tmax (Tmin) could increase by 0.81 °C (0.71) under RCP 4.5 

and 0.9 °C (0.94) under RCP 8.5 with respect to the baseline. During the F2 time period, the 

mean annual Tmax (Tmin) could increase by 1.05 °C (1.23) under RCP 4.5 and 2.01 °C (2.22) 

under RCP 8.5 with respect to the baseline. Similarly, During the F3 time period, the mean 

annual Tmax (Tmin) could increase by 1.44 °C (1.66) under RCP 4.5 and 3.72 °C (4.09) under RCP 

8.5 with respect to the baseline. The rate of increase was higher for Tmin than Tmax
 
except in the 

case of RCP 4.5 F1. The MME showed that the deviation in mean monthly Tavg could be highest 

in November, i.e. +5.0 °C (varying from +4.1 to +6.2), and the lowest in June, i.e. +2.7 °C 

(varying from +1.6 to +4.2) in the F3 time period under RCP 8.5 with respect to the baseline. In 

general, the rate of increase in temperature was found to be higher from October to February. 

Therefore, the WSRB is expected to see comparatively warmer winters in the coming decades.  

In the case of precipitation, various climate models showed different projections (larger spreads 

including both positive and negative deviations with respect to the baseline can be found in Fig. 

14). The MME of selected climate models showed a slight increasing deviation with respect to 

the baseline in the coming days. On a monthly scale, both positive and negative deviations with 

respect to the baseline were found for different future scenarios.  

Fig. 14  
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Noticeably, the highest rainfall month could shift from July to August for the baseline time 

period, with a greater chance of increasing precipitation during Jan–Mar and Oct–Nov in the 

coming days than the baseline condition. On a seasonal scale, the deviation with respect to the 

baseline could be +14.7% (from -48.7 to +114.1) for the winter (DJF), +50.2% (from -12.2 to 

+136.6) for the pre-monsoon (MAM), -2.5% (from -21.8 to +22.3) for the monsoon (JJAS), and 

+124.8% (from +95.1 to +155.5) for the post-monsoon (ON) under RCP 4.5 during the F3 time 

period. Similarly, under RCP 8.5, the deviation with respect to the baseline could be -12.6% 

(from -56.0 to +43.3) for the winter, +68.1% (from +8.5 to +123.3) for the pre-monsoon, -2.4% 

(from -16.8 to +14.7) for the monsoon, and +152.9% (from +126.6 to +174.6) for the post-

monsoon under RCP 8.5. The combination of projected changes in precipitation and temperature 

would significantly affect the water balance. The likely impacts on water scarcity and river 

floods mandate proper water resources management under changing climate. 

Fig. 15  

Fig. 15 shows the mean monthly river discharge of the baseline (dashed) and different projected 

scenarios. In general, wet seasons would be even wetter and dry seasons even drier in the coming 

days. According to the MME, on a monthly scale, the mean monthly river discharge could 

deviate by +24.8% (-9.2) in Jan, +88.4% (+76.2) in Feb, +69.7% (+87.7) in Mar, +44.7% (+66.5) 

in Apr, +45.7% (+54.6) in May, +68.7% (+75.6) in Jun, +20.6% (+25.9) in Jul, +2.5% (+7.6) in 

Aug, -5.0% (+6.3) in Sep, -28.2% (-22.6) in Oct, -53.2% (-51.8) in Nov, and -59.5% (-59.7) in 

Dec with respect to the baseline in the F3 time period under RCP 4.5 (RCP 8.5). Lower 

percentage deviations were observed for the months of August and September. However, one 

important factor needs to be addressed, namely that the river flow during the monsoon season is 

very high and a +10% increment in mean monthly discharge indicates a higher absolute value for 
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river discharge. In addition, the large ranges displayed by different climate models (coloured 

blue in Fig. 15) represent higher uncertainties, depending on climate model selection. 

Anticipated changes in monthly river discharge can significantly impact on water consumption 

planning. For instance, a decrease in the available discharge during the winter season will 

increase pressure on the water supply, irrigation, and hydropower plants. While an increase in 

discharge during the monsoon season will not provide any significance for water resources 

projects because the flow above the design discharge is generally spilled out.     

Fig. 16  

Fig. 16 a–b shows the flow duration curves of mean daily discharge for the baseline and three 

different future time periods under two warming scenarios. A clear upward shift could be seen in 

time flow, equal to or exceeding 10 to 35%, in the coming days in all future scenarios. Under 

RCP 4.5, Q10 = 507 m
3
/s in the baseline time period could increase to about 590 m

3
/s during F1 

and F2 time periods and about 560 m
3
/s during the F3 time period. While Q20 = 326 m

3
/s in the 

baseline time period could increase to about 450 m
3
/s during F1 and F2 time periods and about 

425 m
3
/s during the F3 time period under RCP 4.5. Similarly, Q30 = 202 m

3
/s in the baseline time 

period could increase to about 290 m
3
/s during F1 and F3 time periods and about 300 m

3
/s 

during the F2 time period under RCP 4.5. A similar tendency was observed under RCP 8.5. 

Water resources projects are expected to depend significantly on the length of time the available 

flow is around 20–30% (for instance, runoff, river type, and hydropower) and could get 

increased river discharge. There are seven licensed hydropower projects across the study area 

(Fig. 16 c–d) with a capacity of >500 MW and a few proposed hydropower projects, including 

one >750 MW (not shown). These projects are likely to be significantly affected under changing 

climate. 
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At the same time, the length of time the available flow is equal to or more than 80% (low or base 

flow) may reduce under the future projection which might have a negative impact on water 

resource projects depending on perennial long-term low flows such as water supply, irrigation, 

agriculture, aquaculture, and other environmental/aquatic systems. A better understanding of the 

anticipated change in the timing of streamflow (low, medium, and high) and trends under 

changing climate is necessary for effective water resources management (Dinpashoh et al., 

2019). 

Fig. 17  

Fig. 17 shows the mean annual river discharge of the baseline and various projected scenarios 

using different climate models. According to the climate models, the mean annual river 

discharge could decrease for ACCESS1-0 under RCP 4.5 in the F3 time period with respect to 

the baseline. Different climate models exhibited variations in the level of river discharge. The 

CNRM-CM5 and MPI-ESM-LR showed a greater increase, ACCESS1-0 a lesser increase, and 

GFDL-CM3 a moderate increase in river discharge in the coming days with respect to the 

baseline. The MME showed that a larger discharge could occur in the F2 time period compared 

to the F1 and F3. Under RCP 4.5, the mean annual river discharge would increase by 15.2% in 

the F1 time period, 17.3% in the F2 and 12.5% in F3 with respect to the baseline. Similarly, 

under RCP 8.5, the mean annual river discharge would increase by 16.4% in the F1 time period, 

19.9% in F2, and 18.3% in F3 with respect to the baseline. Overall, increased streamflow is 

projected in the coming days. The planning of future water resources projects may benefit from 

this information. 

Fig. 18  
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Fig. 18 shows the mean seasonal river discharge for the MME of the baseline and different 

future scenarios. We found that the mean seasonal river discharge could decrease during the 

post- monsoon for all scenarios, and during winter under RCP 8.5 in F3 with respect to the 

baseline. The MME showed an increasing pattern of mean seasonal river discharge for pre-

monsoon. Under RCP 4.5, the pre-monsoon river discharge could increase by 11.9% in the F1 

time period, 30.0% in F2, and 50.6% in F3 with respect to the baseline. Similarly, under RCP 

8.5, pre-monsoon river discharge could increase by 12.4% in the F1 time period, 37.5% in F2, 

and 65.5% in F3 with respect to the baseline. In contrast, post-monsoon river discharge would 

continuously decrease in the coming days. The monsoon river discharge is more likely to 

increase to the maximum during the F2 time period than in the F1 and F3. The projected change 

in winter river discharge is comparatively low. 

In the future, there may be various water resources projects (small to large scale) in the study 

area. Our study suggests that changing streamflow should be considered during the planning 

process. The results of this study may provide a benchmark for water availability in the basin. 

With potential hydropower development across the study area, water balance quantification is 

crucial. Our future work would include calibrating water balance components such as the soil 

moisture content and quantifying the anticipated impacts of changing climate on individual water 

balance components (infiltration, subsurface flow, soil moisture content, percolation, and others). 

5. Conclusions 

The first objective of this study was to analyse model uncertainty resulting from various 

modelling scenarios i.e. the number of SBs, HRUs, and EBs. The model SUFI-2 in SWAT-CUP 

was applied for calibration/uncertainty analysis, validation, and sensitivity analysis. To simulate 

daily streamflow, the SWAT model was calibrated and validated for 18 different modelling 
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scenarios using the SUFI-2 algorithm. The SWAT hydrological model was applied to a 

mountainous watershed in Western Nepal (WSRB). First, 18 different modelling scenarios were 

developed to analyse model uncertainty in daily simulations.  

The performance of different scenarios was compared through evaluating the p-factor, r-factor, 

R
2
, NSE, and PBIAS to achieve the best simulation. Model calibration performance and 

parameter sensitivity were evaluated using four objective functions (R
2
, NSE, PBAIS, and RSR) 

applying SUFI-2. The p-factor, r-factor, R
2
, NSE, PBIAS, and RSR values during calibration 

were 0.82, 0.80, 0.84, 0.82, 7.2, and 0.42, respectively, and 0.79, 0.72, 0.83, 0.82, 11.8, and 0.42, 

respectively during validation. The results indicate that the parameters LAT_TTIME, CH_K2, 

ALPHA_BNK, CN2, PLAPS, and TLAPS were the most sensitive and significantly impacted 

the streamflow simulations in Himalayan catchments. The SUFI-2 algorithm was successfully 

employed to calibrate and validate the daily streamflow of SWAT in the mountainous region. It 

can be concluded that the inclusion of EBs during the SWAT model setup is of paramount 

importance for high mountain basins, improving model performance without compromising 

runtime. By applying the results of this study, we believe that hydrologists and other 

stakeholders can quickly evaluate various management scenarios and make effective and 

optimum decisions. 

As part of the second objective, we applied the model to assess the anticipated river discharge 

under the changing climate. We used four RCMs for precipitation, six RCMs for temperature, 

and their MMEs under two RCPs for projected analysis. Three future time periods (F1, F2, and 

F3) were analysed. The CNRM-CM5 and MPI-ESM-LR showed greater increases, ACCESS1-0 

showed a lesser increase and GFDL-CM3 showed a moderate increase in river discharge for the 

coming days with respect to the baseline. The MME showed that a larger discharge could occur 
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in the F2 time period compared to the F1 and F3. Under RCP 8.5, the mean annual river 

discharge could increase by 16.4% in the F1 time period, 19.9% in F2, and 18.3% in F3 with 

respect to the baseline. Notably, pre-monsoon river discharge could increase by 12.4% in the F1 

time period, 37.5% in F2, and 65.5% in F3 with respect to the baseline under RCP 8.5. In 

general, our results show that precipitation could increase slightly (higher during the F2 time 

period), with the temperature rising significantly (continuous rising trend), and the river 

discharge moderately increasing (higher during the F2 period).  

This study provides a rigorous analysis of the computational aspect of hydrological modelling 

together with useful insight for practitioners involved in the operation of the SWAT for which 

model runtime is critical. In addition, the case study under focus here has been conducted in one 

of the top four most vulnerable basins to climate change in Nepal and the area also includes a 

major storage-type hydropower project. Our conclusions regarding the anticipated shift of the 

flow duration curve in the case study will be helpful to various stakeholders such as 

hydropower/water resource planners for effective water resource management. The results of this 

paper thus have additional contemporary significance which will definitely benefit decision-

making in scientific circles. 
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Table 1 Description of land use/ land cover and soil types 

 

 

Table 2 List of meteorological and hydrological stations in study area 

Station Number Name of Station Data Type Data frequency  

104 Dadeldhura (Prcp, Temp) Daily (1996 - 2008) 

201 Pipalkot (Prcp) Daily (1996 - 2008) 

202 Chainpur (west) (Prcp, Temp) Daily (1996 - 2008) 

211 Khaptad (Prcp) Daily (1996 - 2008) 

218 Dipayal (doti) (Prcp, Temp) Daily (1996 - 2008) 

259.2 Gopaghat Discharge Daily (1996 - 2008) 

 

  

SN SWAT class Description Area (km
2
) Area (%) 

Land use types 

1 FRST Forest mixed 1725.34 39.74 

2 RNGB Range-brush 192.18 4.43 

3 PAST Pasture (Grassland) 887.24 20.43 

4 AGRL Agricultural land 736.10 16.95 

5 BARR Barren 622.08 14.33 

6 WATR Water body 13.42 0.31 

7 SNGL Snow/glacier 165.65 3.82 

8 URBN Residential  0.09 0.00 

Soil types 

1  GLACIER 28.39 0.65 

2  Gleyic CAMBISOLS 6.38 0.15 

3  Chromic CAMBISOLS 215.27 4.96 

4  Eutric CAMBISOLS 983.24 22.65 

5  Dystric REGOSOLS 1002.52 23.09 

6  Humic CAMBISOLS 562.33 12.95 

7  Eutric REGOSOLS 58.13 1.34 

8  Gelic LEPTOSOLS 1485.70 34.22 
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Table 3 Detail of selected climate models of fifth phase of the Coupled Model Inter-comparison 

Project (CMIP5) 

CMIP5 Model Institute Country GCM Resolution 

ACCESS1-0 
Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM) 
Australia 1.25o x 1.875o 

CCSM4  National Center for Atmospheric Research (NCAR) USA 0.94o x 1.25o 

CNRM-CM5 Centre National de Recherches Me´te´orologiques (CNRM)  France 1.4o x 1.4o 

GFDL-CM3 
National Oceanic and Atmospheric Administration (NOAA), 

Geophysical Fluid Dynamics Laboratory (GFDL) 
USA 2o x 2.5o 

MPI-ESM-LR  
Max-Planck-Institut für Meteorologie /Max Planck Institute for 

Meteorology (MPI-M) 
Germany 1.865o x 1.875o 

NorESM1-M Norwegian Climate Centre (NCC) Norway 1.895o x 2.5o 

 

Table 4 Model performance statistics during calibration and validation under different scenarios 

considering the time factor 

 
Drainage 

Area 

threshold  

Time for 

1500 

simulation 

(hr.) 

Number 

of sub-

basin 

HRU 

Calibration Validation 

No. NSE R
2
 PBIAS NSE R

2
 PBIAS 

 No elevation band 

1 25K 0.74 7 
10 X 

SB 
0.70 0.74 9.8 0.69 0.73 7.40 

2 25K 0.45 7 5 X SB 0.61 0.77 37.5 0.63 0.79 36.1 

3 25K 0.18 7 1 X SB 0.6 0.77 38 0.61 0.79 36.7 

4 10K 5.65 27 
10 X 

SB 
0.76 0.82 26.6 0.79 0.86 27.0 

5 10K 1.90 27 5 X SB 0.76 0.83 26.0 0.77 0.85 27.4 

6 10K 0.5 27 1 X SB 0.77 0.80 17.1 0.77 0.81 18.2 

7 2.5K 19.43 73 
10 X 

SB 
0.76 0.82 25.0 0.79 0.86 26.5 

8 2.5K 10.33 73 5 X SB 0.79 0.82 18.4 0.80 0.85 21.8 

9 2.5K 1.51 73 1 X SB 0.77 0.80 16.1 0.77 0.81 17.9 

 Maximum elevation band 

10 25K 0.83 7 
10 X 

SB 
0.79 0.81 16.0 0.82 0.84 16.8 

11 25K 0.43 7 5 X SB 0.79 0.82 15.9 0.82 0.84 16.6 

12 25K 0.17 7 1 X SB 0.81 0.83 11.8 0.84 0.84 7.9 

13 10K 3.88 27 
10 X 

SB 
0.83 0.84 11.0 0.83 0.84 12.1 

14 10K 1.99 27 5 X SB 0.83 0.85 12.9 0.83 0.85 12.9 
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15 10K 0.56 27 1 X SB 0.82 0.84 9.3 0.84 0.84 8.8 

16 2.5K 19.61 73 
10 X 

SB 
0.82 0.84 10.5 0.83 0.84 12.6 

17 2.5K 10.70 73 5 X SB 0.83 0.84 12.3 0.83 0.85 13.4 

18 2.5K 1.33 73 1 X SB 0.82 0.84 7.2 0.82 0.83 11.8 

 

Table 5 Explanation of each sensitive SWAT parameter during calibration, with t-Stat, p-value, 

fitted value, and new minimum and maximum value 

Parameter Name Description t - Stat 
P-

value 
Rank 

Fitted 

value 

New min 

value 

New 

max 

value 

V__EPCO.hru 
Plant uptake compensation 
factor 

-0.09 0.93 35 0.236 0.000 0.564 

V__ESCO.hru 
Soil evaporation compensation 

factor 
3.95 0.00 13 0.622 0.359 1.000 

V__CANMX.hru Maximum canopy storage 4.74 0.00 9 55.583 27.740 83.260 

R__SOL_ALB (...).sol Moist soil albedo -1.80 0.07 22 0.152 -0.061 0.216 

V__SURLAG.bsn Surface runoff lag time 0.05 0.96 38 4.013 0.050 5.847 

R__CN2.mgt SCS runoff curve number 22.03 0.00 4 -0.021 -0.254 -0.018 

R__SLSUBBSN.hru Average slope length -0.85 0.40 31 0.132 -0.117 0.150 

R__OV_N.hru 
 Manning's "n" value for 

overland flow 
-0.38 0.70 32 4.863 4.292 13.881 

R__CH_S1.sub 
Average slope of tributary 
channels 

-1.26 0.21 26 -0.087 -0.090 0.129 

V__CH_N1.sub 
Manning's "n" value for the 

tributary channels 
-1.39 0.16 25 0.557 0.343 1.010 

R__CH_L1.sub 
Longest tributary channel length 

in subbasin 
-0.97 0.33 30 0.261 -0.026 0.321 

V__SLSOIL.hru 
Slope length for lateral 

subsurface flow 
-7.70 0.00 7 7.379 0.000 78.090 

V__LAT_TTIME.hru Lateral flow travel time 
-

100.50 
0.00 1 16.274 0.000 98.930 

R__HRU_SLP.hru Average slope steepness 2.12 0.03 20 -0.433 -0.456 0.015 

V__ALPHA_BF.gw Base flow alpha factor (days -1.15 0.25 27 0.629 0.415 1.000 

V__GW_DELAY.gw Groundwater delay (days) 2.93 0.00 15 76.598 34.201 344.799 

V__GWQMN.gw 
Threshold depth of water in the 
shallow aquifer required for 

return flow to occur (mm 
-2.65 0.01 16 428.264 101.401 700.599 

V__RCHRG_DP.gw 
Deep aquifer percolation 

fraction 
2.56 0.01 18 0.523 0.258 0.776 

V__REVAPMN.gw 
Threshold depth of water in the 
shallow aquifer for "revap" to 

occur (mm) 
0.12 0.91 34 201.901 139.320 418.080 

V__GW_REVAP.gw 
Groundwater "revap" 

coefficient 
-1.14 0.26 28 0.108 0.073 0.179 

R__SOL_K(..).sol Saturated hydraulic conductivity 4.66 0.00 10 3.131 1.906 6.719 

R__SOL_Z(..).sol 
Depth from soil surface to 

bottom of layer 
4.36 0.00 11 1.482 0.212 1.635 

R__SOL_AWC(..).sol 
Available water capacity of the 
soil layer 

-0.06 0.96 37 0.154 -0.007 0.180 

V__ALPHA_BNK.rte 
Base flow alpha factor for bank 

storage 
22.64 0.00 3 0.946 0.326 0.980 
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Table 6 Model performance during calibration and validation 

 

  

V__CH_K2.rte 
Effective hydraulic conductivity 

in main channel alluvium 
-35.26 0.00 2 42.303 -0.010 258.786 

R__CH_S2.rte Average slope of main channel 2.60 0.01 17 0.047 -0.153 0.082 

V__CH_N2.rte 
Manning's "n" value for the 

main channel 
-0.09 0.93 36 0.321 0.421 0.300 

R__CH_L2.rte Length of main channel -4.29 0.00 12 0.045 -0.016 0.351 

V__SFTMP.bsn Snowfall temperature -7.15 0.00 8 -0.106 -0.130 3.610 

V__SMTMP.bsn Snow melt base temperature -1.41 0.16 24 -0.013 -1.966 0.678 

V__SMFMX.bsn 

Maximum melt rate for snow 

during year (occurs on summer 

solstice) 
0.33 0.74 33 6.145 5.590 8.770 

V__SMFMN.bsn 

Minimum melt rate for snow 

during the year (occurs on 

winter solstice) 
2.15 0.03 19 3.733 2.742 4.914 

V__TIMP.bsn 
Snow pack temperature lag 
factor 

1.59 0.11 23 0.361 0.000 0.638 

V__SNOCOVMX.bsn 

Minimum snow water content 

that corresponds to 100% snow 

cover 
3.68 0.00 14 122.512 0.000 317.800 

V__SNO50COV.bsn 
Snow water equivalent that 
corresponds to 50% snow cover 

-0.01 0.99 39 0.503 0.430 0.890 

V__TLAPS (..).sub 
Temperature lapse rate (for 

higher elevation) 
10.18 0.00 6 -6.716 -6.290 -7.430 

V__PLAPS (..).sub 
Precipitation lapse rate (for 

higher elevation) 
15.22 0.00 5 -30.749 -296.300 111.300 

V__TLAPS (..).sub 
Temperature lapse rate (for 

lower elevation) 
-1.02 0.31 29 -7.477 -7.022 -7.674 

V__PLAPS (..).sub 
Precipitation lapse rate (for 

lower elevation) 
2.00 0.05 21 54.050 -238.799 253.799 

R_Parameter Name = the existing parameter value is multiplied by (1 + a given value) 

V_Parameter Name = replace the existing parameter value by the new value  

Objective function value during the model calibration 

Method p-factor r-factor R
2
 NSE RSR PBIAS 

SUFI-2 0.82 0.80 0.84 0.82 0.42 10.5 

Objective function value during the model validation 

SUFI-2 0.79 0.72 0.84 0.83 0.42 12.6 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

43 
 

Fig. 1. Location map of the West Seti River basin (WSRB ) showing river network, and hydro-

meteorological stations.  Shaded is the topography of the study area. 

Fig. 2 Spatial distribution of land use land cover (LULC) within the study area. 

Fig.3 Schematic diagram of overall research methodology adopted in this study. DEM: Digital 

Elevation Model, RCP: Representative Concentration Pathway, HRUs: Hydrological Response 

Units, RCM: Regional climate Model 

Fig.4 Model performance statistics and time required to simulate different scenarios. Red bars 

represent cases with no elevation band (EB) and blue bars represent EB inclusive cases. SB 

denotes sub basin and HRU denotes Hydrological Response Unit. NSE, R
2
 and PBIAS are model 

performance metrics. 

Fig. 5 Comparison of observed versus 95PPU (95% range of uncertainty) plot of mean daily 

discharge during the calibration at Gopaghat hydrological monitoring station. The red line shows 

the best simulated one. NSE and R
2
 are model performance metrics. 

Fig. 6 Comparison of daily observed and simulated discharge for the calibration period (1999-

2005) and validation period (2006-2008) at Gopaghat hydrological monitoring stations. The 

inverted bar represents basin averaged daily precipitation. NSE and R
2
 are model performance 

metrics. 

Fig. 7 Scatter plots of observed versus simulated daily discharge during calibration (left panel) 

and validation (right panel). The solid lines represent the perfect correlation (R
2
 = 1 or y=x), and 

dashed lines represent the correlation between observed and simulated data. 

Fig. 8 Spatial distributions of snow cover areas across the 5 km buffer zone of West Seti River 

basin for different months. Muhammad and Thapa (2020) improved a raw MODIS 8-day 

composite product of snow cover and validated with Landsat 8 data. N is the no. of 8-day 

composite images in the month for the period of 2003 - 2008 and % value indicates the 

frequency of time snow was observed in that month.  

Fig. 9 Temporal variations of a) snow cover area (8-day temporal resolution) across the study 

area, b) basin-averaged daily maximum temperature (Tmax), daily minimum temperature 

(Tmin), and daily average temperature [Tavg = (Tmax+Tmin)/2], and c) observed and simulated 

mean daily discharge at Gopaghat hydrological monitoring stations for the period of 2003 – 

2009. 

Fig. 10 Inter annual variation of projected annual precipitation across the study area under two 

warming scenarios: 1) under RCP 4.5 (top panel), and 2) under RCP 8.5 (bottom panel). The 

solid lines represent the multi model ensemble (MME) of selected climate models and the 

spreads represent the range of selected climate models. Three selected time periods in our study 

are F1 (2020-2044), F2 (2045-2069), and F3 (2075-2099). 

Fig. 11 Deviation of mean annual precipitation (expressed in %) with respect to the baseline for 

different future scenarios based on individual climate models and multi model ensemble (MME) 
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of selected climate models. There are two warming scenarios: 1) under RCP 4.5 (blue), and 2) 

under RCP 8.5 (red) for three time periods (F1: 2020-2044, F2:2045-2069, and F3:2075-2099) 

Fig. 12 Inter annual variation of projected annual Tavg across the study area under two warming 

scenarios: 1) under RCP 4.5 (top panel), and 2) under RCP 8.5 (bottom panel). The solid lines 

represent the multi model ensemble (MME) of selected climate models and the spreads represent 

the range of selected climate models. Three selected time periods in our study are F1 (2020-

2044), F2 (2045-2069), and F3 (2075-2099). 

Fig. 13 Deviation of mean annual Tavg (expressed in 
o
C) with respect to the baseline for different 

future scenarios based on individual climate models and multi model ensemble (MME) of 

selected climate models. There are two warming scenarios: 1) under RCP 4.5 (blue), and 2) 

under RCP 8.5 (red) for three future time periods (F1: 2020-2044, F2:2045-2069, and F3:2075-

2099) 

Fig. 14 Mean monthly precipitation and temperature (Tmax, Tmin, and [Tavg = (Tmax + Tmin)/2)]) 

across the study area of the baseline (dashed), and different future scenarios based on multi 

model ensemble, MME (solid), and range of selected climate models (respective color spreads). 

Corresponding labels are depicted in their respective colors. The spreads for Tmax and Tmin are 

not shown. Similarly, Tmax and Tmin of the baseline period are also not shown. Left panels are 

under RCP 4.5 and right panels are under RCP 8.5. Similarly, top two panels are for the F1 

(2020-2044) period, middle two panels are for the F2 (2045-2069) period, and bottom tow panels 

are for the F3 (2075-2099) period. 

Fig. 15 Mean monthly river discharge of the baseline (dashed), different future scenarios based 

on MME (solid), and range of selected climate models (blue spread). Left panels are under RCP 

4.5 and right panels are under RCP 8.5. Similarly, top two panels are for the F1 (2020-2044) 

period, middle two panels are for the F2 (2045-2069) period, and bottom tow panels are for the 

F3 (2075-2099) period. 

Fig. 16 Flow duration curves of mean daily discharge of the baseline and different future 

scenarios (F1: 2020-2044, F2:2045-2069, and F3:2075-2099) under a) RCP 4.5 and b) RCP 8.5. 

c) Location of licensed issued hydropower projects in the West Seti River basin, and d) 

description of licensed issued hydropower projects including capacity of the project in MW 

obtained from Department of Electricity Development, Government of Nepal. 

Fig. 17 Mean annual river discharge of the baseline and different future scenarios in the three 

future time periods (F1: 2020-2044, F2:2045-2069, and F3:2075-2099) under RCP 4.5 (blue) and 

RCP 8.5 (red) based on individual climate models and multi model ensemble (MME) of selected 

climate models. 

Fig. 18 Mean seasonal river discharge of the baseline and different future scenarios in the three 

future time periods (F1: 2020-2044, F2:2045-2069, and F3:2075-2099) under RCP 4.5 (blue) and 

RCP 8.5 (red) based on multi model ensemble (MME) of selected climate models. 
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Graphical abstract 

 

 

We used SWAT for hydrological modeling and identified the most sensitive parameters. 

Significant improvements were observed when elevation bands were considered. 

The projection showed increasing precipitation, temperature and river discharge. 
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Highlights 

 We used SWAT for hydrological modeling and identified the most sensitive parameters.  

 Significant improvements were observed when elevation bands were considered.  

 The projection showed increasing precipitation, temperature and river discharge. 
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