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Abstract 

Soil organic carbon (SOC) and soil total nitrogen (STN) are important indicators of soil health and 

play a key role in the global carbon and nitrogen cycles. High-resolution radar Sentinel-1 and 

multispectral Sentinel-2 images have the potential to investigate soil spatial distribution 

information over a large area, although Sentinel-1 and Sentinel-2 data have rarely been combined 

to map either SOC or STN content. In this study, we applied machine learning techniques to map 

both SOC and STN content in the southern part of Central Europe using digital elevation model 

(DEM) derivatives, multi-temporal Sentinel-1 and Sentinel-2 data, and evaluated the potential of 

different remote sensing sensors (Sentinel-1 and Sentinel-2) to predict SOC and STN content. 

Four machine-learners including random forest (RF), boosted regression trees (BRT), support 

vector machine (SVM) and Bagged CART were used to construct predictive models of SOC and 

STN contents based on 179 soil samples and different combinations of environmental covariates. 

The performance of these models was evaluated based on a 10-fold cross-validation method by 

three statistical indicators. Overall, the BRT model performed better than RF, SVM and Bagged 

CART, and these models yielded similar spatial distribution patterns of SOC and STN. Our results 

showed that multi-source sensor methods provided more accurate predictions of SOC and STN 

contents than individual sensors. The application of radar Sentinel-1 and multispectral Sentinel-2 

images proved useful for predicting SOC and STN. A combination of Sentinel-1/2-derived 

predictors and DEM derivatives yielded the highest prediction accuracy. The prediction accuracy 

changed with and without the Sentinel-1/2-derived predictors, with the R
2
 for estimating both 

SOC and STN content using the BRT model increasing by 12.8% and 18.8%, respectively. 

Topographic variables were the main explanatory variables for SOC and STN predictions, where 
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elevation was assigned as the variable with the most importance by the models. The results of this 

study illustrate the potential of free high-resolution radar Sentinel-1 and multispectral Sentinel-2 

data as input when developing SOC and STN prediction models. 

Keywords: soil organic carbon, soil total nitrogen, Sentinel-1, Sentinel-2, digital soil 

mapping, machine learning 

1. Introduction 

Soil is one of the most important carbon and nitrogen pools in terrestrial ecosystems, playing a 

key role in the global carbon and nitrogen cycles (Lal, 2008; Lausch et al., 2019). Soil organic 

carbon (SOC) and soil total nitrogen (STN) are important attributes of soil quality and fertility, 

and understanding their spatial variability is necessary to maintain food security and improve 

environmental quality in the context of global environmental change (Gholizadeh et al., 2018; 

Zeraatpisheh et al., 2019). Unfortunately, traditional soil mapping methods that rely on 

ground-based surveys are time consuming and expensive (Forkuor et al., 2017). Therefore, an 

accurate prediction of SOC and STN based on robust and cost-effective approaches is essential 

(Bou Kheir et al., 2010). 

Digital soil mapping provides an efficient and convenient technique for obtaining reliable 

predictions of soil properties. Based on the numerical relationship between soil properties and 

predictor variables, digital soil mapping uses spatial analysis and mathematical methods to 

understand the spatial patterns of soil properties (Wadoux, 2019). Based on the digital soil 

mapping framework proposed by McBratney et al. (2003), numerous machine learning algorithms 

have been successfully used to predict soil properties. Machine learning methods learn the 
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relationship between soil properties and predictor variables, and then apply the learned 

relationships to areas where there is no soil data (Heung et al., 2016). Among these methods, 

tree-based models are probably the most commonly used learners and have been reported to have 

good performance in predicting SOC and STN, including classification and regression trees 

(CART) (Wiesmeier et al., 2011), boosted regression trees (BRT) (Bian et al., 2019), and random 

forest (RF) (Zhang et al., 2019). Other machine learning algorithms that have been applied to map 

soil properties include k-nearest neighbor (kNN) (Suominen et al., 2013), artificial neural 

networks (ANN) (Behrens et al., 2005), and support vector machines (SVM) (Morellos et al., 

2016; Wu et al., 2018). However, choosing the best modeling technique for a given landscape has 

always been a challenge for soil property mapping. 

Predictor variables from various sources can be combined with predictive models to map soil 

properties, including digital elevation models (DEM) and their derivatives, remote sensing images, 

and other sources of environmental variables (such as climate variables). A large number of 

existing DEM data sets (e.g., SRTM DEM and Aster GDEM) (Hu et al., 2017; Patel et al., 2016) 

can be used to extract a variety of readily available terrain parameters (e.g., elevation, slope, and 

the wetness index) as predictors for predicting soil properties. Remote sensing images provide an 

attractive source of data for the qualitative and quantitative study of soil properties and have been 

successfully applied to map various properties such as soil moisture (e.g., Peng et al., 2017; 

Sadeghi et al., 2017), pH (e.g., Roelofsen et al., 2015), texture (e.g., Gomez et al., 2019), bulk 

density (e.g., Ramcharan et al., 2018), cation exchange capacity (e.g., Keshavarzi et al., 2017), soil 

total phosphorus (e.g., Shen et al., 2019), available potassium (e.g., Dong et al., 2019), SOC (e.g., 

Ceddia et al., 2017), and STN (e.g., Kalambukattu et al., 2018). Previous studies of predicting 
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SOC and STN primarily utilized multispectral optical sensors, including Landsat (e.g., Yang et al., 

2015), MODIS (e.g., Sreenivas et al., 2016), SPOT (e.g., Vaudour et al., 2013), RapidEye (e.g., 

Forkuor et al., 2017), and Pleiades-1A (e.g., Xu et al., 2018). However, optical sensors used to 

predict soil properties are limited due to their vulnerability to cloudy and rainy weather (Lausch et 

al., 2016; Zhou et al., 2018a).  

Synthetic aperture radar (SAR) technology has great prospects for soil mapping due to its 

all-weather, day and night imaging advantages. SAR images have been widely used in the 

mapping of soil properties, especially physical properties such as soil moisture (e.g., Hosseini and 

McNairn, 2017) and texture (e.g., Gorrab et al., 2015). We noticed that recent studies (e.g., Ceddia 

et al., 2017; Poggio and Gimona, 2017; Yang and Guo, 2019a; Yang and Guo, 2019b) of soil 

mapping have explored the potential of radar sensors to predict soil chemical properties through 

SAR techniques, suggesting that SAR data might be useful in predicting soil chemical properties. 

However, the application of SAR images has not been well developed in digital soil mapping 

compared to optical images, in part because of the complexity, diversity and availability of SAR 

data (Ma et al., 2017; Veloso et al., 2017). In addition, the limited availability of free and open 

high-resolution multispectral and SAR images limits the development of remote sensing-based 

soil mapping. The newly released Sentinel satellites developed by the European Space Agency 

(ESA) provide a large number of free remote sensing data with high spatial resolution for soil 

mapping. Sentinel-1 (S1) (6-day revisit) and Sentinel-2 (S2) (5-day revisit) are equipped with high 

spatial resolution SAR (5-20 m) and multispectral (10-60 m) sensors, respectively (Byrd et al., 

2018; Wang et al., 2019b), providing new opportunities for the quantitative estimation of soil 

properties. The relatively high spatial resolution of S1 and S2 images helps us to undersatnd the 
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local scale variability of soil properties. Some soil mapping studies have explored the potential of 

S2 data in predicting SOC and STN (e.g., Castaldi et al., 2019b; Gholizadeh et al., 2018; Vaudour 

et al., 2019a; Zhang et al., 2019). The use of S1 data for mapping SOC and STN has also been 

carried out by several scholars (e.g., Ma et al., 2017; Yang and Guo, 2019b; Yang et al., 2019). 

Some authors have predicted soil properties based on combinations of remotely sensed images 

with different characteristics and found that multi-sensor methods can improve soil mapping 

(Alexakis et al., 2017; Bousbih et al., 2019; Zeng et al., 2019). Although some progress has been 

made in mapping SOC and STN using S1 and S2 data, few studies have combined S1 and S2 data 

to predict both SOC and STN content.  

The main purpose of this study was to map the SOC and STN contents in the southern part of 

Central Europe using DEM derivatives, S1 and S2 data by comparing four machine learning 

methods, and in particular to assess the capability of different remote sensing sensors to map SOC 

and STN content. For this purpose, DEM, multi-temporal S1 and S2 images were obtained for 

generating environmental variables, including DEM derivatives and Sentinel-1/2-derived 

predictors. We used RF, BRT, SVM, and Bagged CART models to compare the prediction 

accuracy of different combinations of these predictor variables in predicting SOC and STN. At the 

same time, we compared and evaluated the potential of different remote sensing sensors (i.e. the 

S1 sensor, the S2 sensor, and multi-source sensors (i.e. S1 and S2) to map SOC and STN. We then 

investigated the importance of the generated predictor variables and the spatial variability of the 

SOC and STN maps of the study area. 
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2. Materials and methods 

2.1. Study area 

The study area is located in the southern part of Central Europe (latitude: 45.61°-47.08° N, 

longitude: 12.93°-16.27° E) mostly covering Slovenia and a small part of Austria and Italy (Fig. 1). 

Considering the availability of Sentinel-1 data, we designed the extent of the study area based on 

the coverage of the Sentinel-1 image covering the study area with a path of 22 and frames from 

437 to 438. Forests and cultivated land are the main types of land use, accounting for 55.3% and 

34.5% of the study area, respectively. Cultivated land is mainly distributed in the southwest and 

northeast of the study area, where the main crops are cereals (e.g., corn and wheat), potatoes, 

sugar beets and fruits. The average altitude of the study area is 644 m with very complex terrain. 

The northwestern part of the study area is an Alpine region with high altitudes, while the east and 

northeast are fertile Subpannonia. Diverse climates are found in the study area: the coastal and 

northeastern regions have Mediterranean and continental climates, respectively, while the high 

mountain regions have an alpine climate (Dolšak et al., 2016; Gosar et al., 2016). The average 

annual precipitation and average annual temperature of the study area are 8.3 °C and 1380 mm, 

respectively (https://www.worldclim.org/). The main soil types in this study area are Cambisols 

and Leptosols (Vrščaj et al., 2017; Wrb, 2015). 

2.2. Soil data source 

A total of 179 topsoil samples were collected from the Land Use and Coverage Area Frame 

Survey (LUCAS) topsoil dataset provided by the “European Soil Data Centre (ESDAC)” (Panagos 
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et al., 2012). These 179 samples with SOC and STN data were all available soil data covering the 

entire study area in LUCAS topsoil dataset, all used to map both SOC and STN content. LUCAS 

is an in-situ survey project initiated by the Statistical Office of the European Union (EUROSTAT) 

(Panagos et al., 2013). In the 2009 LUCAS survey, approximately 20,000 topsoil (0-20 cm) 

samples were collected from 25 member states of the European Union (Ward et al., 2019). 

LUCAS soil data is one of the largest soil databases in the world and is available from ESDAC 

(Orgiazzi et al., 2018). The LUCAS topsoil samples were taken from all land use types and were 

mainly concentrated in agricultural areas (Stevens et al., 2013). The LUCAS topsoil sample has a 

density of about 1 per 199 km
2
 (Ballabio et al., 2014) and its physical and chemical properties are 

analyzed by international standard methods (Tóth et al., 2013). The samples collected at each 

sampling point included 5 topsoil (0-20 cm) subsamples which were then mixed to form a single 

500 g final sample (Silva et al., 2019). The final soil samples were air-dried and then analyzed in 

an ISO-certified laboratory.  

2.3. Predictor variables 

The predictor variables used in this paper included Sentinel-1/2-derived predictors and DEM 

derivatives. These variables were all continuous predictor variables obtained from various sources 

and converted to raster data (25 m resolution) in ArcGIS 10.4. The observed SOC and STN 

content and all predictor variables were transfered to a geographic information system in the 

UTM/WGS84 projection for future analysis. 

2.3.1. Topographic variables 

The 25-m resolution DEM data (EU-DEM v1.1) covering the entire study area was obtained from 
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the Copernicus land portal. This DEM is an upgrade of EU-DEM v1.0 generated by SRTM and 

ASTER GDEM data. Seven DEM derivatives were calculated, including topographic wetness 

index (TWI), slope, elevation, valley depth (VD), length-slope factor (LSF), channel network base 

level (CNBL), and catchment slope (CS). These terrain variables derived from DEM data were 

calculated using ArcGIS 10.4 and SAGA GIS software. 

2.3.2. Remote sensing variables and processing 

The remote sensing data used for modeling included S1 and S2 images downloaded from ESA. S1 

consists of Sentinel-1A and Sentinel-1B (Zhou et al., 2018b), where Sentinel-1A has four imaging 

modes with different resolutions and provides C-band images. This paper acquired five 

Sentinel-1A images covering the entire study area, and the specific parameter information is 

shown in Table 1. The multispectral high-resolution instrument on Sentinel-2A has 13 spectral 

bands with different spatial resolutions: 10 m (B2-496.6 nm, B3-560.0 nm, B4-664.5 nm and 

B8-835.1 nm), 20 m (B5-703.9 nm, B6-740.2 nm, B7-782.5 nm, B8A-864.8 nm, B11-1613.7 nm 

and B12-2202.4 nm) and 60 m (B1-443.9 nm, B9-945.0 nm and B10-1373.5 nm). Nine cloudless 

Sentinel-2A (Level-1C level product) images captured on July 11, 2015 were collected.  

The following pre-processing of SAR data was performed using SARscape 5.2: multi-look, 

coregistration, speckle filtering (a Lee filter with a 13 × 13 window (Lee, 1986)), geocoding, and 

radiometric calibration (Zhou et al., 2018a). The S1 data was geocoded using GMTED2010 

(Danielson and Gesch, 2011); digital number (DN) values were transformed to a dB scale 

backscatter coefficient with a resolution of 25 m. The processing of Level-1C S2 data was based 

on Level-1B products by applying radiometric and geometric corrections with sub-pixel accuracy. 
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We used ENVI 5.5 software to pre-process S2 images through the FLAASH atmospheric model, 

including radiometric calibration and atmospheric correction (Cai et al., 2018; Stratoulias et al., 

2015). These S2 images were then mosaiced and clipped to obtain an optical image covering the 

study area.  

The backscatter coefficients of the VH and VV polarizations from the S1 images were 

calculated as environmental variables. The nine bands of S2 data were extracted for subsequent 

studies, including B2, B3, B4, B5, B6, B7, B8A, B11, and B12. In addition, three spectral indices 

were calculated as predictors, which were reported to be strongly correlated with SOC 

(Gholizadeh et al., 2018). These spectral indices were NDVI (Normalized Difference Vegetation 

Index), Enhanced Vegetation Index (EVI) (Huete et al., 1997) and Soil Adjusted Total Vegetation 

Index (SATVI) (Marsett et al., 2006), and their formulas are as follows: 

NDVI =  NIR−REDNIR+RED                                                              (1) 

EVI = 2.5 × NIR−REDNIR+6×RED−7.5×BLUE+1                                               (2) 

SATVI = SWIR1−REDSWIR1+RED+1 × 2 − SWIR22                                                 (3) 

where BLUE, RED, NIR, SWIR1 and SWIR2 correspond to the B2, B4, B8, B11, and B12 bands of 

the S2 image, respectively. 

2.4. Modelling techniques 

In this section four machine learning techniques for SOC and STN mapping were described. The 

attribute values (corresponding to soil data points) of the predictor variables in the raster format 

generated in Section 2.3 were extracted in ArcGIS 10.4 to build these models. We used R software 

(R Development Core Team, 2011) to optimize the parameters that need to be defined for the 
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prediction model. Then, the performance of prediction models with the best parameters based on 

different combinations of predictor variables was evaluated and compared.  

2.4.1. Random forest 

Developed from CART, the RF model is a tree-based ensemble machine learning technique 

applied to classification and regression (Breiman, 2001). A large number of trees are produced in 

the RF algorithm (Kim and Grunwald, 2016). The unique bootstrap sample (with replacement) 

from the original training data independently builds each tree in the forest. The use of bootstrap 

sampling makes RF less sensitive to overfitting and allows general errors to be estimated based on 

the remaining test sets (Out-Of-Bag (OOB) sample) (Wiesmeier et al., 2014).  

There are two parameters in RF modeling that need to be defined by the user: (i) the number 

of regression trees generated in the forest (ntree), and (ii) the number of predictors randomly 

selected at each node (mtry). We performed a grid search through the “caret” package (Kuhn, 

2015) in the R software to select the optimal model. The parameters that produced the lowest 

prediction error were set in the final model (Gholizadeh et al., 2018).                                                                                                                              

2.4.2. Boosted regression trees 

The BRT model combines two powerful statistical techniques (boosting techniques and decision 

tree algorithms) to optimize predictive performance. It constructs regression trees to predict target 

variables and uses boosting techniques to improve predictive power by minimizing the risk of 

overfitting (Akpa et al., 2016; Lawrence et al., 2004). The purpose of the boosting technique is to 

randomly select a subset of data to iteratively fit the new tree model to minimize the loss function 

(Elith et al., 2008). 
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   There are three key parameters that need to be defined in the BRT model: tree complexity 

(TC), the number of trees (NT) and the learning rate (LR) (Ottoy et al., 2017; Wang et al., 2018a). 

LR determines the contribution of each tree to the final model. TC controls the order of 

interactions that can be fitted. The combination of LR and TC determines the TN (Mosleh et al., 

2016). In a similar way to the RF model, these three parameters were optimized by performing a 

grid search through the “caret” package (Ottoy et al., 2017). The combination of parameters 

yielding the lowest root mean square error was set for modeling. 

2.4.3. Bagged classification and regression trees 

CART is a nonparametric data mining technique for regression or classification problems that has 

continuously been improved (Hamze-Ziabari and Bakhshpoori, 2018). This modeling technique 

has been widely used for the prediction of soil properties (Guo et al., 2015; Heung et al., 2016). 

Based on the binary partitioning algorithm, CART recursively splits data to explore the 

relationship between the response variables and the predictors (Aertsen et al., 2010; Wiesmeier et 

al., 2011). Bagged CART is an improved CART algorithm that combines CART with bagging 

techniques to enhance the performance of predictive models and reduce overfitting (Deng et al., 

2019; Lee et al., 2010; Ranaie et al., 2018). We used the “ipred”, “plyr” and “e1071” packages to 

fit the Bagged CART algorithm through the “treebag” method of the “caret” package. Parameters 

did not have to be defined when using the “treebag” method.  

2.4.4. Support vector machine 

Proposed by Cortes and Vapnik (1995), SVM is a popular supervised learning technique for 

classification and regression that can be generalized to nonlinear models using kernel functions. 
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The SVM model projects the data into the new hyperspace with the help of kernel functions. In the 

new hyperspace, the SVM searches for a hyperplane, which separates the classes and leaves the 

largest possible margin between the classes (Were et al., 2015). There are four kernel function 

types: polynomial, sigmoid, linear and radial basis function (RBF) (Pradhan, 2013). The choice of 

kernel functions and their parameters affects the accuracy of the analysis results of the SVM 

model. The RBF kernel, which has been widely used in soil mapping research (Ahmad et al., 2010; 

Taghizadeh-Mehrjardi et al., 2017; Wang et al., 2018a), was selected as the kernel model of the 

SVM algorithm. There are two parameters that need to be defined for the RBF kernel, including 

penalty (cost) and kernel width (sigma) (Jebur et al., 2015). These parameters were optimized 

using the grid search method in the "caret" package of the R software. 

2.5. Statistical analyses 

We used SPSS 24 software to perform descriptive statistical analysis of SOC and STN and 

Pearson correlation analysis to detect collinearity between predictor variables and their correlation 

with SOC and STN (Kempen et al., 2019). Highly correlated predictor variables (r ≥ 0.8) with 

high variance inflation factors (VIF ≥ 10) were removed from modeling (Lombardo et al., 2018; 

Were et al., 2015; Zhang et al., 2019). In this study, the “gbm” (Elith et al., 2008), “randomForest” 

(Liaw and Wiener, 2002), and “kernlab” (Karatzoglou et al., 2018) packages of the R software 

were used to develop the BRT, RF, and SVM models, respectively.  

2.6. Methods for evaluating model performance  

We constructed SOC and STN content models based on four machine learning techniques using 

different combinations of predictor variables (Table 2). Model A, Model B, and Model D included 
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only S2 images, S1 images, and DEM derivatives, respectively. Model B was a combination of S1 

and S2 data, while Model E included all predictor variables. This study used a ten-fold 

cross-validation method to evaluate the predictive performance of these models. The 

cross-validation method builds some train/test splits in the observed data and ensures that each 

data point occurs at least once in the test set (Taghizadeh-Mehrjardi et al., 2016). For the ten-fold 

cross-validation, the observed data sets were randomly divided into 10 groups (Aitkenhead, 2017). 

In each of the 10 folds, one group was selected as the test data set and the other nine groups were 

used as the training set (Ottoy et al., 2017). When compared to using data splitting methods for 

validation, repeated splitting in cross-validation makes it more efficient than data splitting (Brus et 

al., 2011). Three validation criteria were calculated to evaluate the performance of the model: the 

root mean square error (RMSE), the mean absolute error (MAE) and the coefficient of 

determination (R
2
). These validation criteria are calculated from (Wang et al., 2018b)： 
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where n represents the number of samples; Pi and Oi represent the predicted and 

observed SOC and STN at site i, respectively. 

    In order to evaluate the prediction uncertainty, we selected the model that performed best in 

the four machine learning algorithms from the results of the prediction accuracy to produce one 
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hundred SOC and STN maps, respectively. Based on these SOC and STN maps obtained by 

running the model a hundred times, we calculated the mean and standard deviation (SD) of each 

pixel as their final map and prediction uncertainty, respectively. Similarly, SD maps have been 

used as indicators of uncertainty associated with model predictions in many previous soil mapping 

studies (Jeong et al., 2017; Song et al., 2018; Wang et al., 2019c).  

3. Results 

3.1. Descriptive analysis of SOC 

Descriptive statistics of both SOC and STN content are shown in Table 3. Both SOC and STN 

content showed a strongly skewed distribution; their skewness coefficients were 3.75 and 2.63, 

respectively. For all prediction models, we converted the SOC content and the STN content by 

using a natural logarithm; the skewness coefficients of both SOC and STN content were reduced 

to 0.67 and 0.12, respectively. The mean SOC content and STN content were 49.99 g/kg (ranging 

from 4.70 to 439.10 g/kg) and 3.50 g/kg (ranging from 0.30 to 19.70 g/kg), respectively. The SD 

values of the STN content (2.60 g/kg) and the SOC (55.60 g/kg) content were lower and higher 

than their mean values, respectively; the SOC content was more variable than the STN content. 

    We found some collinearity of predictor variables through collinearity analysis. To avoid 

collinearity, the predictor variables used for SOC and STN prediction were reduced from 29 to 19. 

Pearson correlation coefficients of these selected predictor variables (Figure S1) with SOC and 

STN are shown in Figure S2. No collinearity problems were observed during further modeling 

because the VIFs of all selected predictor variables were less than 10 (Table S1).  
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3.2. Evaluation and comparison of different models 

This study built the following five models using Sentinel-1/2 images and DEM derivatives: Model 

A, Model B and Model D represent Sentinel-2-derived predictors, Sentinel-1-derived predictors 

and topographic variables, respectively; Model C and Model E represent remote sensing variables 

(Sentinel-1/2-derived predictors) and all environmental variables, respectively. The performances 

of Bagged CART, RF, BRT and SVM based on these models in predicting both SOC and STN 

content are shown in Table 4. Our comparative analysis based on prediction accuracy showed that 

the choice of modeling techniques, the type of predictor variables (different combinations 

constructed by environmental variables) significantly affected the predictive performance of both 

SOC content and STN content. For example, for predicting SOC using SVM and RF, Model D (R
2 

= 0.39 vs. R
2 
= 0.35, respectively) and Model E (R

2 
= 0.43 vs. R

2 
= 0.40, respectively) were better 

predicted by the former, while SVM and RF methods performed similarly in Model A (R
2
 = 0.19 

vs. R
2
 = 0.20, respectively), Model B (R

2
 = 0.16), and Model C (R

2
 = 0.25). On the other hand, in 

terms of STN prediction, the RF method performed better than the SVM in Model A (R
2
 = 0.15 vs. 

R
2
 = 0.10, respectively), Model B (R

2
 = 0.15 vs. R

2 
= 0.11, respectively), Model C (R

2
 = 0.18 vs. 

R
2
 = 0.12, respectively) and Model E (R

2
 = 0.38 vs. R

2
 = 0.35, respectively), while the latter 

showed better prediction performance in Model D (R
2
 = 0.28 vs. R

2
 = 0.33, respectively). For 

SOC prediction, overall, the BRT method showed the best performance; the three machine 

learning techniques (Bagged CART, RF and SVM) had similar prediction performance when using 

Model A and Model B; BRT and SVM obtained similar prediction accuracy in Model D and 

Model E. Among the four modeling techniques, BRT performed best in STN mapping from Model 

A to Model E, whereas RF in Model E showed similar levels of prediction accuracy as the BRT 
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method. This suggests that different predictive models might suit different environmental variables 

and soil properties.  

Among the three types of predictors, DEM derivatives obtained higher prediction accuracy 

than S1 and S2 data. For the BRT model, S1 data achieved slightly higher prediction accuracy 

than S2. However, for the remaining prediction models (Bagged CART, RF and SVM), overall, S2 

data yielded better predictions than S1. Although there was a strong difference in predictive 

performance across all predictive models and predictor types, the combination of S1 and S2 

improved prediction accuracy compared to using a single type of remote sensing data. For 

example, the addition of S1 data increased the R
2
 of the BRT model from 0.19 to 0.27 in 

predicting SOC and from 0.16 to 0.21 in predicting STN. This result indicates that S1 data 

contains valuable information that is not captured and that the inclusion of S1 improves overall 

predictive performance. This improvement was also verified using RF, Bagged CART and SVM 

models.  

As we expected, the highest prediction accuracy was achieved when DEM derivatives, S1 

and S2 images were applied together. The R
2
 of the BRT model increased by 12.8% in predicting 

SOC (from 0.39 to 0.44) and by 18.8% in predicting STN (from 0.32 to 0.38). Similar 

improvements can be observed for other machine learning methods. This result further 

demonstrates that remote sensing variables extracted from multi-source sensors are critical for the 

efficient modeling and prediction of soil properties. The combination of all predictors had the best 

predictive performance, with the STN prediction obtained from the BRT (R
2
 = 0.38, RMSE = 0.50, 

and MAE = 0.39) and RF (R
2
 = 0.38, RMSE = 0.51, and MAE = 0.39) models and the SOC 

mapping generated by the BRT (R
2
 = 0.44, RMSE = 0.57, and MAE = 0.45) and SVM (R

2
 = 0.43, 
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RMSE = 0.57, and MAE = 0.45). The R
2
 values indicated that these models could explain 

approximately 44% and 38% of the variability of SOC and STN, respectively. 

 

3.3. Relative importance of predictor variables 

For SOC and STN mapping using Model E, the rankings of predictor variables ordered by relative 

importance are shown in Figure 2 (the importance was converted to a percentage). The importance 

of variables in the RF and BRT models was slightly different, revealing different dominating 

environmental features in these models. For both RF and BRT models, DEM derivatives were the 

main explanatory variables for SOC and STN predictions (more than 50% of total relative 

importance), followed by S1 and S2 images. Although the three models exhibited different 

ranking characteristics of importance, among all predictors, elevation was the most important in 

SOC and STN predictions. The importance of elevation in all models ranked first, with a relative 

importance of more than 25%. In addition, S1 images in the RF and BRT models explained 39% 

and 29% of SOC variation and 40% and 37% of STN variation, respectively. This result reveals 

the potential application of S1 images for predicting SOC and STN in this study area.    

3.4. Spatial characteristics of SOC and STN maps 

Based on Model E, the maps of SOC and STN predicted by the four methods are presented in 

Figure 3. The mean and SD values of the predicted SOC content were 51.40 and 27.70 g/kg for RF, 

55.07 and 34.22 g/kg for BRT, 51.93 and 33.02 g/kg for SVM, and 50.35 and 25.78 g/kg for 

Bagged CART, respectively. For the predicted STN content, the mean and SD values were 3.61 

and 1.43 g/kg for RF, 3.64 and 1.52 g/kg for BRT, 3.46 and 1.45 g/kg for SVM, and 3.61 and 1.37 
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g/kg for Bagged CART, respectively.  

     Based on the analysis of modeling accuracy, the BRT method (in Model E) was selected to 

run 100 times to evaluate prediction uncertainty (Jeong et al., 2017). We calculated the average 

(final map) and SD (prediction uncertainty) maps from these 100 runs (Fig. 4). The average 

concentrations of SOC and STN from 100 runs were 54.79 and 3.62 g/kg, respectively. Both the 

SOC and STN prediction models exhibited low levels of uncertainty, with average SDs of 1.29 

and 0.04 g/kg for the 100 predicted SOC and STN maps, respectively. The low SD values from 

Model E also indicate that the BRT has stable prediction capabilities.     

4. Discussion 

4.1. Performance of predictive models using DEM 

derivatives, Sentinel-1 and Sentinel-2 data. 

The comparison of prediction accuracy in this study showed that the choice of machine learning 

algorithms and the types and combinations of environmental variables have a large impact on the 

prediction performance of SOC and STN (Table 4). Overall, the BRT model outperformed the 

other three prediction models. Our results are consistent with the results of Beguin et al. (2017) 

who reported that the choice of predictive models and the construction of predictors have an 

impact on the prediction of soil properties. At three research sites (Germany, Belgium, and 

Luxembourg), Castaldi et al. (2019b) used different types of remote sensing images for SOC 

prediction, and found that the type of remote sensing data, the choice of predictive models, and the 

study area had an impact on prediction accuracy. In addition, there are inconsistencies in various 

previous comparative studies. For example, Siewert (2018) reported that RF performed better than 
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SVM in mapping SOC in Sweden, while Were et al. (2015) found that the latter was better than 

the former in SOC mapping in Kenya. Nussbaum et al. (2018) and Wang et al. (2018a) also 

obtained the opposite comparison results in predicting soil properties using BRT and RF models. 

Based on this, no single predictive model performs best under all circumstances (Lamichhane et 

al., 2019), so we recommend using a specific experimental data set to calibrate competitive 

predictive models. 

Our results revealed that DEM derivatives, S1 and S2 data are important for effective 

modeling of SOC and STN. Moreover, the combination of S1 and S2 data allowed us to improve 

prediction performance. Some studies have highlighted the importance of DEM derivatives 

(Tziachris et al., 2019) and S2 (Castaldi et al., 2019b; Wang et al., 2019a) images for predicting 

soil properties. However, previous studies of predicting soil properties primarily used only one 

type of sensor, mainly including Landsat and MODIS (Poggio and Gimona, 2017). For instance, 

Vaudour et al. (2019a) and Gholizadeh et al. (2018) explored the capability of S2 optical data to 

predict soil properties, but they did not consider the feasibility of radar sensors. In this study, the 

better prediction accuracy obtained from the combined S1 and S2 images demonstrates the 

usefulness of S1 radar data in predicting SOC and STN. The combination of optical and radar 

sensors has great potential for predicting soil properties, especially in areas that are susceptible to 

cloud cover. 

    In this study, the combined DEM derivatives and Sentinel-1/2-derived predictors achieved 

the highest modeling accuracy, explaining 44% and 38% of the SOC and STN variability, 

respectively (Table 4). Compared with previous studies that used LUCAS data to predict soil 

properties, the results of this study were inferior. For example, Wadoux (2019) developed an RF 
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model using LUCAS data in France that explain only 12% and 20% of SOC and STN variability, 

respectively.  de Brogniez et al. (2015) used the LUCAS data to develop a generalized additive 

model (GAM) to explain 28% of SOC variability. In a SOC mapping study conducted in Europe 

using LUCAS data, Aksoy et al. (2016) could explain 40% of the SOC variability of topsoil. 

Yigini and Panagos (2016) used regression-kriging method to explain 40% in in Europe. Our 

prediction results were better than previous studies using LUCAS data, but high prediction 

accuracy has not been obtained. These differences in prediction accuracy may result from the 

study area, the type and quality of predictor variables, prediction models, and the variability of 

SOC and STN (Mosleh et al., 2016; Were et al., 2015).  

    Although the combined S1 and S2 data proved to be more powerful than the single sensor 

approach, further improvements may be needed. The successful application of remote sensing 

technology in predicting soil properties depends largely on the availability and quality of remote 

sensing images (Forkuor et al., 2017). Unfortunately, the soil sampling time and remote sensing 

data acquisition time in this study were inconsistent due to the unavailability of S1 and S2 data, 

which often occurred in previous digital soil mapping studies (Castaldi et al., 2019a; Poggio and 

Gimona, 2017; Vaudour et al., 2019b). Land surface characteristics change dynamically, so the 

impact of remote sensing data acquisition time on SOC and STN mapping needs further 

investigation. 

4.2. Variable importance 

DEM derivatives were identified as the most influential predictor variables for both SOC and 

STN predictions in our study, followed by S1 and S2 data (Fig. 2). Topography is one of the most 
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important factors in soil formation and DEM-based topographical variables have been commonly 

used as key predictors for digitizing soil mapping. The terrain controls the flow of solutes, water 

and sediments, which in turn affects soil development and the spatial distribution of soil properties 

(Li et al., 2013). Some topographical variables have been reported to have a highly significant 

correlation (e.g., elevation, slope, and TWI) with SOC and STN contents (Obu et al., 2017; Wang 

et al., 2017) and have a significant impact on a great range of soil properties (Gerrard, 1981). 

Similar to our results, Wang et al. (2018b) and Grimm et al. (2008) found that topographic 

variables were the most important predictors for SOC and STN mapping. Among all DEM 

derivatives, elevation played the most important role in our SOC and STN predictions (Fig. 2). 

Altitude plays an important role in the development of microclimates (Griffiths et al., 2009), 

which in turn affects the distribution of plant communities and soil processes (Bochet, 2015; 

Lozano-García et al., 2016). In previous studies of soil property predictions (Hinge et al., 2018; 

Ramifehiarivo et al., 2017), elevation was also found to be the most effective topographic 

parameter. Other DEM derivatives were also identified as important predictors (e.g., slope, TWI, 

and LSF) affecting the spatial distribution of STN and SOC in this study. Slope controls the 

movement and accumulation of water and matter in the landscape, and then contributes to the 

spatial variation of SOC and STN (Tsui et al., 2004). LSF describes soil transport in overland flow 

(Moore and Burch, 1986) and has been found to be an important variable explaining the SOC 

variation in central Chile (Reyes Rojas et al., 2018). The contribution of TWI in predicting soil 

properties can be explained by its identification of soil moisture gradients (Siewert, 2018). The 

remaining DEM derivatives were identified as key predictors of soil properties in previous studies 

(Adhikari et al., 2014; Li et al., 2017). 
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Remote sensing data has been successfully applied to digital soil mapping studies at the 

regional and the global level (Hengl et al., 2017; Kalambukattu et al., 2018; Zhang et al., 2019). 

However, most of these previous studies only focused on optical imagery. Our results revealed that 

both optical and SAR images were effective predictors for determining SOC and STN in Model E. 

This result is similar to previous studies, which reported that Sentinel-2-derived predictors are 

important factors in predicting SOC and STN distribution (Gholizadeh et al., 2018; Vaudour et al., 

2019a). This is not surprising due to the close relationship between soil properties and vegetation 

cover, and the vegetation index captures changes in soil properties (Mahmoudabadi et al., 2017; 

Maynard and Levi, 2017). This was supported by Yang et al. (2016) and Wang et al. (2018c), who 

reported that vegetation index and remote sensing reflectance are important indicators for 

predicting soil properties. For example, as the most commonly used vegetation index for 

predicting soil properties, the NDVI has been reported to be a satisfactory predictor of SOC and 

STN (Page et al., 2013; Sumfleth and Duttmann, 2008). The contribution of SAR data to the 

model depends on the sensitivity of the backscatter coefficient to changes in land surface 

conditions and soil moisture (Kasischke et al., 1997). Although there was a weak and fluctuating 

correlation, the significant correlation between the backscatter coefficient of S1 images and soil 

properties (including SOC and STN) was observed by Yang and Guo (2019b). Yang et al. (2019) 

reported that S1 images can be used to predict soil properties through their ability to capture 

characteristics of the short-term variation of vegetation.  

4.3. Spatial characteristics of SOC and STN maps 

The maps of predicted SOC content had a similar spatial pattern to the SoilGrid product (Hengl et 
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al., 2017). Broadly speaking, the four predictive models produced similar spatial distribution 

patterns of SOC and STN (Fig. 3). High SOC and STN concentrations were concentrated in the 

central and northwestern mountainous areas of the study area mainly covered by forests where the 

altitude was high. Lower SOC content and STN content were mostly found in farmland and other 

low-altitude land in the northeast and southwest of the study area. This result reflected the effect 

of elevation and DEM derivatives on the variability of SOC and STN. The important role of 

elevation in predicting soil properties has been confirmed by recent studies (Lamichhane et al., 

2019; Song et al., 2016). Tsui et al. (2013) reported that elevation is an effective variable for 

predicting soil properties and that SOC stock increases with elevation. Differences in altitude 

gradients may indirectly affect soil carbon and nitrogen input and loss through its close 

relationship with vegetation cover, temperature and precipitation. In the mountain areas of this 

study area, relatively high rainfall and low temperatures are conducive to the accumulation of 

carbon in the soil (see de Luis et al. (2014) for rainfall and temperature distribution). Low-altitude 

land with relatively low rainfall and high temperatures in this study area had lower SOC content 

and STN content and was mainly covered by farmland, which was similar to the results of Were et 

al. (2015) who found higher SOC content in forest areas and lower SOC content in farmland areas. 

Wang et al. (2018b) found that the SOC content of farmland was lower than that of forests, which 

can be explained by the increase of organic matter decomposition and the loss by erosion and 

cultivation. 

Accurate predictions of SOC and STN are important factors in mitigating climate change, 

running various environmental models, and improving agricultural farming measures. 

High-resolution free S1 and S2 data provide unique opportunities for prediction of soil properties 
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and environmental monitoring. Therefore, our results not only provide a theoretical basis for the 

development of high-resolution digital SOC and STN products based on a large amount of 

available S1 and S2 data, but are also crucial for managing climate change and optimizing land 

use. 

5. Conclusions 

We used DEM derivatives, S1 and S2 data to investigate the spatial distribution of both SOC and 

STN content in the southern part of Central Europe by comparing four machine learning 

techniques. Our main conclusions can be summarized as follows: 

 Overall, the BRT model was superior to RF, SVM and Bagged CART in predicting SOC 

content and STN content and exhibited the best performance. The SOC and STN maps 

predicted by the four machine learning techniques had similar spatial distribution patterns. 

These maps showed significant spatial variability, with both high SOC and STN content in 

high altitude mountainous areas. 

 The application of radar S1 and multispectral S2 images proved useful for predicting SOC 

and STN. Multi-source sensor methods showed significantly better predictive performance 

than single sensors. A large number of free and easily accessible S1 and S2 images may 

provide more opportunities to obtain soil spatial distribution information. 

 The combination of Sentinel-1/2-derived predictors and DEM derivatives had the highest 

prediction accuracy. When comparing the prediction accuracy changes with and without 

remote sensing variables, the R
2
 for predicting both SOC and STN content using the BRT 

model was improved by 12.8% and 18.8%, respectively. 
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 DEM derivatives were the main explanatory variables for SOC and STN predictions, 

followed by S1 and S2 data. Elevation was the most important environmental variable that 

affects the spatial distribution of SOC and STN. 
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Figure Legends 

Fig. 1. The location of the study area and 179 soil samples. 

Fig. 2. The relative importance of predictor variables in Model E for predicting SOC and STN. 

Model E, DEM derivatives + Sentinel-1/2-derived predictors; TWI, topographic wetness index; 

CS, catchment slope; VD, valley depth; LSF, length-slope factor; VV_1 to VV_5 are the 

backscatter coefficients of VV polarization of five Sentinel-1 images, respectively (the meaning of 

the notations 1, 2, 3, 4, and 5 can be found in Table 1); VH_1 to VH_5 are the backscatter 

coefficients of VH polarization of five Sentinel-1 images, respectively (the meaning of the 

notations 1, 2, 3, 4, and 5 can be found in Table 1). 

Fig. 3. Maps of SOC and STN predicted in Model E using RF, BRT, SVM, and Bagged CART 

(CART) (Model E: Sentinel-1/2-derived predictors + DEM derivatives). 

Fig. 4. Mean SOC and STN maps obtained from Model E based on 100 runs of the BRT model 

and their corresponding standard deviation maps (Model E: Sentinel-1/2-derived predictors + 

DEM derivatives). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Table 1 

Sentinel-1A images obtained for predicting SOC content and STN content. 

ID Date Beam mode Polarization Incident Angle (◦) Direction 

1 23
rd

 May 2015 IW VV/VH 38.90 Descending 

2 4
th

 June 2015 IW VV/VH 38.96 Descending 

3 15
th
 August 2015 IW VV/VH 38.96 Descending 

4 2
nd

 October 2015 IW VV/VH 38.96 Descending 

5 26
th
 October 2015 IW VV/VH 38.99 Descending 

 

Table 2 

Different combinations of DEM derivatives, Sentinel-1 and Sentinel-2 data. 

NO. Model Environmental variables 

i Model A Sentinel-2 imagery 

ii Model B Sentinel-1 imagery 

iii Model C Sentinel-1 and Sentinel-2 images 

iv Model D DEM derivatives 

v Model E Sentinel-1/2-derived predictors and DEM derivatives 

 

Table 3 

Descriptive analysis of SOC and STN. 

 Minimum Maximum Mean Median SD Skewness 

SOC (g/kg) 4.70 439.10 49.99 33.40 55.60 3.75 

LnSOC (g/kg) 1.54 6.08 3.58 3.50 0.74 0.67 

STN (g/kg) 0.30 19.70 3.50 2.70 2.60 2.63 

LnSTN (g/kg) -1.20 2.98 1.05 0.99 0.62 0.12 

Notes: LnSOC, log-transformed SOC; LnSTN, log-transformed STN; SD, standard deviation. 
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Table 4 

Prediction accuracy of SOC content and STN content using different combinations of predictors. 

The most accurate results are shown in bold. 

Modeling technique Model  SOC    STN  

  MAE RMSE R
2
  MAE RMSE R

2
 

Bagged CART Model A 0.53 0.69 0.17  0.45 0.58 0.16 

 Model B 0.55 0.70 0.16  0.48 0.59 0.13 

 Model C 0.53 0.67 0.22  0.45 0.57 0.18 

 Model D 0.48 0.62 0.36  0.41 0.54 0.30 

 Model E 0.46 0.59 0.39  0.39 0.51 0.34 

RF Model A 0.52 0.68 0.20  0.45 0.58 0.15 

 Model B 0.55 0.70 0.16  0.47 0.58 0.15 

 Model C 0.52 0.67 0.25  0.45 0.57 0.18 

 Model D 0.48 0.63 0.35  0.41 0.54 0.28 

 Model E 0.46 0.59 0.40  0.39 0.51 0.38 

BRT Model A 0.52 0.68 0.19  0.44 0.57 0.16 

 Model B 0.53 0.67 0.22  0.46 0.57 0.18 

 Model C 0.51 0.65 0.27  0.44 0.56 0.21 

 Model D 0.47 0.60 0.39  0.40 0.52 0.32 

 Model E 0.45 0.57 0.44  0.39 0.50 0.38 

SVM Model A 0.52 0.68 0.19  0.46 0.58 0.10 

 Model B 0.53 0.70 0.16  0.47 0.59 0.11 

 Model C 0.51 0.67 0.25  0.46 0.58 0.12 

 Model D 0.46 0.60 0.39  0.40 0.52 0.33 

 Model E 0.45 0.57 0.43  0.39 0.51 0.35 

Notes: Model A, Sentinel-2 imagery alone; Model B, Sentinel-1 imagery alone; Model C, 
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Sentinel-1 and Sentinel-2 images; Model D, DEM derivatives; Model E, Sentinel-1/2-derived 

predictors and DEM derivatives. 
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Highlights 

 Multi-source sensor methods achieved more accurate SOC and STN predictions than 

single sensors. 

 The potential of Sentinel-1 and 2 data in predicting SOC and STN was explored.                         

 Boosted regression trees model performed best in predicting SOC and STN. 
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