This is the accepted manuscript version of the contribution published as:

Konschak, M., Zubrod, J.P., Baudy, P., **Fink, P.**, Kenngott, K., Lüderwald, S., Englert, K., Jusi, C., Schulz, R., Bundschuh, M. (2020): The importance of diet-related effects of the antibiotic ciprofloxacin on the leaf-shredding invertebrate *Gammarus fossarum* (Crustacea; Amphipoda) *Aquat. Toxicol.* **222**, art. 105461

The publisher's version is available at:

https://doi.org/10.1016/j.aquatox.2020.105461

1	The importance of diet-related effects of the antibiotic ciprofloxacin on the leaf-shredding
2	invertebrate Gammarus fossarum (Crustacea; Amphipoda)
3	Marco Konschak ^{a,*} , Jochen P. Zubrod ^{a,b} , Patrick Baudy ^a , Patrick Fink ^{c,d} , Kilian Kenngott ^a ,
4	Simon Lüderwald ^a , Katja Englert ^a , Cynthia Jusi ^a , Ralf Schulz ^{a,b} , Mirco Bundschuh ^{a,e,**}
5	^a iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße
6	7, D-76829 Landau, Germany
7	^b Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13,
8	D-76857 Eußerthal, Germany
9	^c Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Zülpicher Straße
10	47b, D-50674 Köln, Germany
11	^d Helmholtz-Centre for Environmental Research – UFZ, Department River Ecology and
12	Department Aquatic Ecosystem Analysis, Brückstrasse 3a, 39114 D-Magdeburg, Germany
10	
13	eDepartment of Aquatic Sciences and Assessment, Swedish University of Agricultural
14	Sciences, Lennart Hjelms väg 9, SWE-75007, Uppsala, Sweden
15	AUTHOR INFORMATION
16	Corresponding Authors
17	Marco Konschak* & Mirco Bundschuh**
18	iES Landau, Institute for Environmental Science
19	University of Koblenz-Landau
20	Fortstraße 7
21	76829 Landau/Palatinate
22	Germany
23	Email:
24	*konschak@uni-landau.de; **bundschuh@uni-landau.de

25 Abstract

Antibiotics may constitute a risk for aquatic detritivorous macroinvertebrates (i.e., shredders) via waterborne and dietary antibiotic exposure. In addition, antibiotics can alter the food quality for shredders mediated by shifts in leaf-associated decomposer (i.e., aquatic fungi and bacteria) communities. However, little is known about the relative importance of the waterborne and dietary effect pathway. Therefore, we followed a tiered testing approach aimed at assessing the relative importance of these effect pathways. We employed the antibiotic ciprofloxacin (CIP) and the shredder Gammarus fossarum as model stressor and test species, respectively. In a first step, we assessed the short-term waterborne toxicity of CIP using survival and leaf consumption of G. fossarum as response variables. Alterations in the leaf-associated decomposer community, which may be reflected by their palatability, were assessed using food choice assays. Finally, we conducted a 2×2 -factorial experiment over 24 days assessing the pathways individually and combined using energy processing (i.e., leaf consumption and feces production), growth and energy storage (i.e., neutral lipid fatty acids) as variables. Short term waterborne exposure indicated low toxicity with LC₅₀ and EC₅₀ values of 13.6 and 6.4 mg CIP/L, respectively. At the same time, shredders did not prefer any leaf material during the food choice assay. However, the fungal community was significantly affected in the highest CIP-treatments (0.5 and 2.5 mg/L) suggesting an altered food quality for shredders. This assumption is supported by the results of the long-term assay. At 0.5 mg CIP/L, gammarids' leaf consumption, growth and energy storage were increased when subjected via the dietary pathway, which was linked to changes in the leaf-associated microbial community. Our data highlight the importance of dietary effect pathways for effects on shredders, potentially impacting energy dynamics in detritus-based stream ecosystems.

50 KEYWORDS:

Aquatic fungi; Fatty acids; Fluoroquinolone; Food quality; Leaf litter breakdown

1. Introduction

Leaf litter is an important nutrient and energy source for detritus-based stream ecosystems (Nelson and Scott, 1962; Minshall, 1967, Fisher and Likens, 1973). Leaf-decomposing microorganisms (i.e., bacteria and fungi) as well as macroinvertebrate detritivores (i.e., shredders) play a pivotal role in its breakdown (Gessner et al., 1999; Graça, 2001). In this context, microbial decomposers (particularly aquatic hyphomycetes – a polyphyletic group of asexual fungi; Baschien et al., 2006) provide two important functions: first, they make organic carbon accessible for local and downstream communities (Vannote et al., 1980) by degrading leaf litter (Hieber and Gessner, 2002; Baldy et al., 2007). Second, they increase the nutritional quality and palatability of leaf litter for shredders (i.e., microbial conditioning; Bärlocher and Kendrick, 1975b, Graça et al., 1993; Aßmann et al., 2011). Shredders, in turn, play a key role in transforming leaf litter into fine particulate organic matter, an important food source for collectors (Bundschuh and McKie, 2016), and are important prey for higher trophic levels (MacNeil et al., 1999).

The functional integrity of these aquatic decomposer-detritivore systems can, however, be influenced by chemical stressors (e.g., Rasmussen et al., 2012, Peters et al., 2013). As antibiotics, driven by their mode of action, affect bacteria (Brandt et al., 2015), they can influence leaf-associated microbial communities (Maul et al., 2006; Rico et al., 2014a). Effects on bacteria, may release aquatic fungi from competitive pressure for the same resources (Bundschuh et al., 2009) potentially altering leaves' nutritious quality and palatability for shredders (i.e., dietary effect pathway; Hahn and Schulz, 2007, Bundschuh et al., 2009). Furthermore, shredders may suffer from exposure to antibiotics via the water phase (i.e., waterborne effect pathway; Bartlett et al., 2013). However, relatively little is known about the relevance of the dietary and waterborne effect pathway for antibiotics (but see for fungicides e.g., Zubrod et al., 2015c). Recently, Bundschuh et al. (2017) reported effects of an

antibiotic mixture on the feeding activity and physiology of a key shredder (i.e., *Gammarus fossarum* (Crustacea; Amphipoda)) in low-order streams of the northern hemisphere (Piscart
et al., 2009) when subjected to both effect pathways. Although it was hypothesized that the
dietary pathway was the main driver for these effects, a formal assessment of the effect
pathways' relative importance is pending.

By targeting this knowledge gap, we focused on the model antibiotic ciprofloxacin (CIP; a DNA gyrase and topoisomerase IV inhibitor; Hooper and Wolfson, 1988) and its effects on G. fossarum. CIP was selected as it belongs to the group of fluoroquinolones, which have a broad range of applications in human and veterinary medicine (van Boeckel et al., 2014, European Medicines Agency, 2018). Furthermore, due to the high excretion of the non-metabolized parent compound through urine and feces (Mompelat et al., 2009) and its persistence during the wastewater treatment process (Batt et al., 2006), CIP is frequently detected at relatively high concentrations (up to the lower µg/L range) in surface waters compared to other antibiotics and is, according to the classification system of the European Commission, toxic to very toxic for aquatic organisms (Danner et al., 2019). Using a tiered ecotoxicological testing approach, we first evaluated the waterborne toxicity of CIP recording gammarids' survival and feeding activity as response variable. Subsequently, a food choice assay was used to assess effects on the leaf-associated microbial community and the resulting impact on leaf palatability for G. fossarum. The shredder's food choice was employed as an indicator of resource quality (i.e., diet-related effects). Finally, we conducted a 24-day feeding assay to evaluate long-term waterborne and diet-related CIP effects on gammarids' energy processing (leaf consumption and feces production), growth and fatty acids of triacylglycerols (an important energy storage in invertebrates; Azeez et al., 2014) using a full-factorial (2×2) test design.

We expected that G. fossarum would be relatively insensitive towards CIP via waterborne exposure (cf. Park and Choi, 2008, Rico et al., 2014b) due to the high target specificity of antibiotics (Hooper and Wolfson, 1988). We, however, hypothesized that CIP would impair leaf-associated bacteria, which in turn release leaf-associated fungi from the competitive pressure by bacteria (Gulis and Suberkropp, 2003; Schneider et al., 2010). This would result in an increased fungal growth and hence increased palatability and resource quality for G. fossarum (Bundschuh et al., 2009), thus positively affecting the shredders' energy processing, growth and energy storage during the long-term feeding assay. 2. Materials and methods 2.1. Study designs The assays were conducted in 2015 and 2016 with gammarids of the same population consisting of the cryptic lineage B (Feckler et al., 2012) and followed largely established protocols (Zubrod et al., 2014; Bundschuh et al., 2009; Zubrod et al., 2015b). For each assay, black alder (Alnus glutinosa (L.) GAERTN.) leaves were colonized with a near-natural

microbial community serving as inoculum for the leaf material, which was used as food source for gammarids (Fig. 1). A 7-day feeding activity assay was conducted in September 2015 to assess the acute waterborne CIP toxicity towards G. fossarum. The assay comprised six CIP concentrations (incl. a control) with 30 replicates each (cf. Zubrod et al., 2014; Fig 1.A3). Nominal CIP concentrations (i.e., 0.5, 6.5, 12.5, 18.5, 24.5 mg/L) were derived from a range-finding test (a preliminary test to determine the concentration range before conducting the definite test). Although CIP concentrations are above field relevant levels, they were selected to determine toxicity parameters (e.g., the half-maximal effect concentration, i.e., EC_{50} , which supported the selection of concentrations for the following assays as well as the interpretation of their data. In order to assess CIP-induced effect on leaves' food quality for

shredders through changes in the leaf associated microbial communities, a 24-hour food choice assay was performed in September 2015. The assay consisted of five CIP concentrations (i.e., 0, 20, 100, 500, 2500 µg/L) with 49 replicates each (cf. Bundschuh et al., 2009; Fig. 1B3). The concentrations were based on reported concentrations of antibiotics showing significant effects on leaf-associated microorganisms (e.g., Maul et al., 2006, Bundschuh et al., 2009), while high concentrations were thought to enable the establishment of a dose-response relationship. Finally, an experiment using a 2×2 -factorial test design was conducted in February 2016 to address the long-term waterborne and diet-related CIP effects on energy processing, growth and energy storage of G. fossarum. Therefore, shredders were subjected to (I) CIP-free test medium and non-exposed leaves, (II) waterborne CIP exposure and non-exposed leaves, (III) CIP-free test medium and CIP exposed leaves, (IV) waterborne CIP exposure and CIP exposed leaves (Fig. 1.C3). Each treatment consisted of 65 replicates with the CIP concentration (i.e., 0.5 mg/L) being selected on the basis of the other two experiments, namely to avoid gammarid mortality but still having impacts in leaf associated microorganisms.

145 2.2. Test substance

For the preparation of stock solutions, CIP (98%, Acros Organics, Geel, Belgium) was dissolved in the respective test medium. Afterwards, the respective nominal concentrations were achieved (Table S1) by serial dilution in the respective test medium. Nominal CIP concentrations were verified by random sampling from three (feeding activity and food choice assay) or four (long-term feeding assay) replicates of the control, the lowest and highest test concentration at test start and after three days (only for long-term feeding assay). Samples were stored at -20°C until analyses using an ultra-high-performance liquid chromatography system (Thermo Fischer Sientific, Bremen, Germany). Concentrations were determined via external standard calibration using matrix-aligned standards (cf. Zubrod et al., 2015c). As all

measured CIP concentrations, except for the lowest treatment of the feeding activity assay,
deviated by less than 20 % from nominal concentrations (Table S1), the latter are reported
throughout this manuscript.

 $\frac{1}{5}$ 158 2.3. Sources of leaves, microorganisms, and gammarids

As described in Bundschuh et al. (2011), black alder leaves were handpicked from a group of trees near Landau, Germany (49°20'N; 8°09'E) in October 2015 and stored at -20°C. Before the start of each assay, defrosted black alder leaves were colonized with a near-natural lotic microbial community by deploying leaf material in mesh bags (mesh size ~ 1 mm) for 14 days in the stream Rodenbach, Germany (49°33'N; 8°02'E) upstream of agricultural land use and effluent discharges. Back in the laboratory, the microbially colonized leaves were combined with unconditioned black alder leaves in a stainless-steel container filled with 30 L of conditioning medium (Dang et al., 2005) and left at $16 \pm 1^{\circ}$ C, under permanent aeration and in total darkness for further 14 days before being used as microbial inoculum.

As described in Zubrod et al. (2010), seven days before the start of each assay, individuals of G. fossarum were collected in the stream Hainbach, Germany (49°14'N; 8°03'E) upstream of agricultural land use and effluent discharges. Back in the laboratory, gammarids were divided into size classes via a passive separation technique (Franke, 1977). To reduce withintreatment variation, only males (sex was identified by position in pre-copula pairs) with a cephalothorax length of 1.2 - 1.6 mm and uninfested by acanthocephalan parasites (Pascoe et al., 1995; Fielding et al., 2003) were used for the assays. Test organisms were gradually acclimatized at $16 \pm 1^{\circ}$ C in total darkness to the amphipod culture medium SAM-5S (Borgmann, 1996), which was used as test medium. Gammarids were fed ad libitum with microbially conditioned black alder leaves. To stimulate their appetite for the food choice assays, gammarids were not fed 96 hours before test start.

179 2.4. Feeding activity assay

Leaf discs of 20 mm diameter were cut from unconditioned black alder leaves using a cork borer, inserted into mesh bags and conditioned at $16 \pm 1^{\circ}$ C in total darkness by using 15-L aquaria containing 12 L of conditioning medium and 50 g (wet weight) of microbial inoculum as described by Zubrod et al. (2014). After 10 days, leaf discs were dried at 60°C for 24 hours, autoclaved (to avoid unintended indirect, diet-related effects on *G. fossarum*; model DE-65[®], Systec, Linden, Germany), dried again for 24 hours and weighed in sets of two discs to the nearest 0.01 mg. Before the start of the assay, discs were re-soaked with autoclaved SAM-5S for 48 hours to reduce buoyancy.

The 7-days assay was conducted in total darkness and at $16 \pm 1^{\circ}$ C. Each replicate comprised a permanently aerated 250-mL glass beaker containing 200 mL of SAM-5S, a set of two autoclaved leaf discs, and one gammarid. Five additional beakers were set up without animals to allow the quantification of microorganism-induced and handling-related leaf mass loss. After 7 days, dead animals were recorded. Animals and leaf disc remains from replicates with surviving gammarids were dried and weighed as described above.

⁴⁵⁰₄₅₁ 194 2.5. Food choice assay

As described by Bundschuh et al. (2009), sets of four leaf discs of 16 mm diameter were cut from single unconditioned black alder leaves and subsequently dried for 24 hours at 60°C, weighed individually to the nearest 0.01 mg, and re-soaked with autoclaved SAM-5S for 48 hours. Afterwards, two discs of each set were placed into pockets of an individually labeled mesh bag and were microbially colonized (at $16 \pm 1^{\circ}$ C and in total darkness) for 12 days in 5-L aquaria containing 4 L of CIP-free aerated conditioning medium (i.e., control) and 10 g (wet weight) of microbial inoculum. The remaining two discs of the same set were conditioned under the same conditions, but in the presence of one of four CIP concentrations

(n = 7). To ensure a continuous exposure over the 12-day conditioning phase, the conditioning medium as well as the respective CIP concentration were renewed every third day. At the end of the conditioning process, leaf discs were rinsed for 30 min in CIP-free SAM-5S and immediately introduced into the food choice assays or preserved for microbial analyses.

Each food choice assay (cf. Bundschuh et al., 2009) comprised 49 crystallization dishes filled with 100 mL of SAM-5S. In each dish, one gammarid was offered one leaf disc microbially colonized under control conditions and one disc of the same leaf disc set, which was colonized in presence of one of the four CIP concentrations. The remaining two leaf discs of the same set, which were inaccessible for the gammarid in the crystallization dish (see Bundschuh et al., 2009 for a schematic representation of a feeding arena), served for the quantification of microbial leaf litter decomposition over the whole experimental duration (i.e., conditioning phase and food choice assay). Assays lasted for 24 hours and were performed at $16 \pm 1^{\circ}$ C in total darkness. At the end of each experiment, surviving animals and leaf disc remains were dried for 24 hours at 60°C and subsequently weighed to the nearest 0.01 mg. Replicates with gammarids that had died or escaped from the test arena were excluded from further analyses.

2.6. Long-term feeding assay

As described by Zubrod et al. (2015b), leaf strips ($\sim 10 \times 5$ cm) were cut from unconditioned black alder leaves. Enclosed in mesh bags, the strips were microbially colonized for 12 days under the same conditions as described for the feeding activity assay in absence (i.e., control) or presence of 0.5 mg CIP/L (n = 3). The conditioning medium was renewed every third day to ensure a continuous antibiotic exposure. After 12 days, one set of two leaf discs of 20 mm diameter was cut from each of the 130 strips per aquarium excluding the leaves' midrib and three sets (one per aquarium) were immediately introduced into each test vessel of the assay. To ensure *ad libitum* feeding on fresh leaf material over the 24 days, four independent 12-day

 leaf conditionings were started at intervals of 6 days. During each food renewal, additional leaf discs of 16 mm diameter were cut and preserved for fatty acid and microbial analyses.

Using a 2×2 -factorial test design (cf. Zubrod et al., 2015b), gammarids were either subjected to a control treatment (Control), to waterborne CIP exposure (Water), a treatment, where the animals received leaves that were microbially conditioned in the presence of CIP (Diet), or a combination of the two effect pathways (Combined; see Fig. 1). Replicates of each treatment (n = 65) comprised a 250-mL glass beaker filled with 200 mL of SAM-5S that was continuously aerated. Each beaker was equipped with one gammarid kept in a cylindrical mesh cage made from stainless steel with a mesh size of 0.5 mm (to guarantee a careful transfer of the animals into new test vessels during medium exchanges). Animals were allowed to feed on three leaf discs from different sets. The three corresponding leaf discs from the same sets were deployed in the beakers within rectangular stainless steel mesh cages that prevented feeding by the gammarids and hence allowed to control for microbial and handling-related leaf mass loss. The two cages were separated by a watch glass to prevent the interaction of animal's feces with the leaf discs in the rectangular cage (see Zubrod et al., 2015b for a schematic representation of an assay replicate). Every third day, SAM-5S as well as the CIP concentration in the respective treatment was renewed, to guarantee a chronic exposure, and dead animals were recorded and discarded. In addition, to quantify the amount of gammarids' feces, the 3-day old SAM-5S containing the animals' feces was filtered through pre-weighed glass fiber filters (GF/6, Whatman, Dassel, Germany), which were used twice within each 6-day interval and stored at 60°C. Every sixth day, leaf disc remains of both cages were replaced by freshly conditioned leaf discs. Leaf disc remains and filters were dried and weighed as described above. To correct for changes in filter weight by handling and microbial and physico-chemical leaf mass loss (as both can cause the formation of fine particulate organic matter), three additional replicates without test organism were set up per

treatment. At the end of the experiment, gammarids were shock-frozen in liquid nitrogen and stored at -80 °C before being freeze-dried and weighed to the nearest 0.01 mg. Replicates containing dead animals (8, 5, 14 and 8% in the Control, the Water, the Diet and the Combined treatment, respectively) were excluded from further statistical analyses.

257 2.7. Microbial analyses

To shed light on mechanisms underlying CIP-induced alterations of the microorganism-mediated food quality for Gammarus (i.e., indirect effects), microbial parameters (i.e., ergosterol content, bacterial densities and hyphomycete community structure) were analyzed. During the food choice and long-term feeding assay, 15 leaf discs of 16 mm diameter and five leaf strips, respectively, of each aquarium (i.e., N = 35 = 7 replicates $\times 5$ treatments and N =24 = 3 replicates $\times 2$ treatments $\times 4$ independent leaf conditionings) were stored at -20°C for analysis of ergosterol. Moreover, during both assays, three leaf discs (diameter = 16 mm) per aquarium were preserved in a 2 % formaldehyde/0.1 % sodium pyrophosphate solution and stored at 4°C for quantification of bacterial densities. Furthermore, for the determination of the hyphomycete community structure, five leaf discs (diameter = 16 mm) were shaken (120 rpm) in deionized water for 96 hours (at $16 \pm 1^{\circ}$ C and in total darkness) to stimulate sporulation of fungi and preserved in a 2 % formaldehyde/0.5 % polysorbate 80 (Tween[®] 80, Carl Roth, Karlsruhe, Germany) solution at 4°C for later analysis.

Ergosterol content was analyzed according to Gessner and Schmitt (1996). This sterol occurs in cell membranes of Eumycota and is considered as a proxy for leaf-associated fungal biomass (e.g., Gessner, 2007). Ergosterol was extracted via solid-phase extraction (Sep-Pak[®] Vac RC tC₁₈ 500 mg sorbent, Waters, Milford, US-MA) and measured by high-performance liquid chromatography (1200 Series, Agilent Technologies, Santa Clara, US-CA) using a LiChrospher[®] 100 RP-18 column (250 mm × 4.6 mm, particle size 5 μ m, Merck Millipore,

Billerica, US-MA). Ergosterol concentration was quantified via external calibration curve and
normalized to leaf dry mass.

Bacterial densities were quantified according to Buesing (2007). Briefly, bacterial cells were detached from the discs using ultrasonication and subsequently stained via SYBR® Green II (Molecular Probes, Eugene, US-OR). The number of cells was determined by using a fluorescence microscope and the software AxioVision (Axio Scope.A1, AxioCam MRm and AxioVision Rel. 4.8, Carl Zeiss MicroImaging, Jena, Germany). The mean number of 20 digital photographs was extrapolated to the total sample volume and normalized to leaf dry mass by drying and weighing (as described above) of three additional leaf discs per sample from the same aquarium and the same leaf strips for the food choice and long-term feeding assay, respectively.

Following Pascoal and Cássio (2004), the hyphomycete community structure was determined by identifying species via spore morphology. Therefore, fungal spores were fixed on a cellulose filter (S-Pak Filters 0.45 μm, 47 mm white gridded, Merck Millipore, Billerica, US-MA) and stained with a cotton blue solution. Subsequently, spores were identified using a microscope as well as various identification keys (e.g., Ingold, 1975). Afterwards spores were extrapolated to the total sample volume and normalized to leaf dry mass.

294 2.8. Fatty acid analyses

We quantified triacylglycerol (TAG) fatty acids (i.e., neutral lipid fatty acids, NLFAs) in gammarids, as they constitute the major energy storage in invertebrates (Azeez et al., 2014) and their composition can be affected relatively quickly (compared to phospholipid fatty acids) by changes in the diet (Iverson, 2012). Additionally, we analyzed NLFAs of conditioned leaf materials to determine fungi-mediated alterations in the food quality for shredders (fungi pose a crucial quality parameter to the shredder's diet; e.g., Graça et al.,

1993), since TAGs constitute the major lipid class in fungi (Harwood and Russell, 1984). Although many prokaryotes are incapable to store energy in this form (Alvarez and Steinbüchel, 2002), background NLFA concentrations originating from bacteria cannot be completely excluded (Bååth, 2003).

For NLFA quantification, ten gammarids of each treatment and portions of five different leaf strips (in total ~40 mg leaf dry weight) per aquarium (N = 40 and N = 24, respectively) were freeze-dried and weighed as described above. The extraction and purification of lipids were performed according to Bligh and Dyer (1959) with slight alterations: gammarids were homogenized in a chloroform/methanol/water mixture (1:2:0.8) using an Ultra-Turrax blender (at 6500 rounds/min for few seconds; T25 basic, IKA® Werke GmbH & Co. KG, Staufen, Germany) and leaf material was crushed manually before the chloroform/methanol/water mixture was added. Afterwards, a TAG with three deuterated 18:0 FAs (Tristearin-D105, Larodan, Solna, Sweden) as internal standard as well as chloroform and water (to obtain the mixture ratio of 2:2:1.8; cf. Bligh and Dyer, 1959) were added to each sample and the samples were stored overnight at 4°C. TAGs were separated from glycolipids and phospholipids by elution with 4 ml chloroform through conditioned (with 4 ml chloroform) solid phase extraction columns (Chromabond[®] easy polypropylene columns, Macherey-Nagel, Düren, Germany). Afterwards, the solvent was evaporated under nitrogen in a dry heat incubator (VLM Metallblockthermostate, VLM GmbH, Bielefeld, Germany) at 40°C and TAGs were subsequently solved in 100 µl of chloroform. According to Butte (1983), NLFAs were transesterified by trimethylsulfonium hydroxide (Sigma-Aldrich, St. Louis, US-MO) and the resulting fatty acid methyl esters (FAMEs) were analyzed using a gas chromatograph (CP-3800, Varian, Palo Alto, US-CA) equipped with a flame ionization detector and a DB-225 GC column (30 m, ID 0.25 mm, film thickness 0.25 µm, J&W Scientific, Folsom, US-CA; cf. Fink, 2013). Nitrogen was used as carrier gas. FAMEs in each sample were determined using

the retention times of FAME standards (Sigma-Aldrich, St. Louis, US-MO) and FAs were quantitatively analyzed via external standard calibration (i.e., μg FA/mL). NLFA concentrations were adjusted for FA traces originating from solvents using extraction blanks. Furthermore, concentrations of the FAs were corrected using the respective internal standard's recovery rate. The corrected FA concentrations were extrapolated to the total sample volume and normalized to sample weight (i.e., mg FA/g dry sample mass).

332 2.9. Calculations and statistics

The leaf material consumed by G. fossarum during the feeding activity and food choice assays was expressed as mg consumed leaf material/mg individual/day and calculated as described by Naylor et al. (1989) and Bundschuh et al. (2009), respectively. Microbial decomposition of the inaccessible leaf discs for G. fossarum during the food choice assay was expressed as mg leaf mass loss/day and calculated according to Zubrod et al. (2015a). For the 24-days long-term feeding assay, leaf consumption in mg/day was calculated as per Zubrod et al. (2011). Gammarid growth in µg/day was defined as dry mass gain and derived by subtracting the mean dry mass of 48 gammarids shock-frozen at the test start from the final dry mass of each individual divided by 24 days.

Effect concentrations resulting in 20 and 50 % of mortality and inhibition of leaf consumption $(LC_{20}/EC_{20} \text{ and } LC_{50}/EC_{50} \text{ values})$ were determined by fitting various concentration-response models to the feeding activity assay's data. The models with the best fit were selected based on Akaike's information criterion (Table S2). Prior to null hypothesis significance testing (NHST), extreme values were detected by visual inspection of boxplots (with a 1.5 imesinterquartile range) and excluded from further analyses only when they differed considerably from the main trend of data (Field et al., 2012). Normality and homoscedasticity were tested using the Shapiro-Wilk test and Levene's test, respectively, as well as visual inspection. When both presumptions of parametric testing were met, unpaired data from one-way designs with two factor levels and at least three factor levels were analyzed using Student's t-test and analysis of variance (ANOVA) followed by Dunnett's test, respectively. Data from the 2×2 -factorial design of the long-term feeding assay were analyzed via two-way ANOVA. Paired data were evaluated using paired *t*-tests. When one of the assumptions for parametric testing was violated, Wilcoxon rank-sum and Wilcoxon signed-rank tests were used for unpaired and paired data from one-way designs, respectively, followed by a Bonferroni correction for multiple comparisons if more than two factor levels were tested (Zar, 2010). For non-parametric data from the long-term feeding assay, data were rank-transformed before performing a two-way ANOVA (Conover and Iman, 1981) or the Brunner-Dette-Munk test (sensu Aho, 2019) was applied, if the assumption of homoscedasticity was still violated after ranking (Brunner et al., 1997). Multivariate data were square-root transformed, to decrease the discriminatory power of dominant sporulating fungal species and NLFAs (Happel et al., 2017), and tested via permutational multivariate analysis of variance (PERMANOVA). For the visualization of (dis-)similarities of the hyphomycete communities as well as NLFA composition, data were displayed via non-metric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity. Fungal sporulation data were zero-adjusted by adding a dummy species with an abundance of one to each replicate (Clarke et al., 2006) to determine Bray-Curtis dissimilarities.

Detailed information on NHST (i.e., p-values, F-statistics, sum and mean of squares as well as group means or medians with 95 % confidence intervals) of the assays are provided in Tables 1 and S3–S9. Modeling, statistics and figures were conducted with R Version 3.5.1 for Windows (R Core Team, 2014) as well as the add-on packages, "asbio", drc", "multcomp", "plotrix" and "vegan". Note that the term "significant" refers to statistical significance throughout the study.

- 882 375 3. Results and discussion

376 3.1. Short-term waterborne effects

During the 7-day feeding activity assay, exposure to CIP resulted in a concentration-dependent increase and reduction in mortality and leaf consumption of G. fossarum, respectively (Fig. 2, Table S3). The EC_{50} values for survival and leaf consumption were 13.6 and 6.4 mg CIP/L and the respective EC_{20} values were 9.5 and 0.5 mg CIP/L. Since the acute CIP toxicity for G. fossarum is in the mg/L range, which is comparable with reported toxicity data for Daphnia spp. (Martins et al., 2012; Dalla Bona et al., 2014), crustaceans, in general, seem to be relatively tolerant towards waterborne CIP exposure. However, prokaryotes and unicellular eukaryotes are often more sensitive towards antibiotics than invertebrates (Danner et al., 2019). Consequently, we expected effects on leaf-associated microorganisms at lower CIP concentrations during microbial conditioning.

⁹¹³ 387 3.2. Food choice – a proxy for dietary effects

In line with our expectations, leaf-associated microorganisms were affected at CIP concentrations, which were five-fold below those negatively affecting the leaf-shredding invertebrate (Table S4). Contrary to our hypothesized release of competitive pressure for leaf associated fungi, however, fungal biomass (measured as ergosterol) was significantly reduced by ~55 and ~60 % at 500 and 2500 µg CIP/L, respectively, while bacterial density was not significantly affected (Table S4). The latter may be explained by the unexpected negative impact on aquatic fungi, which probably reduced the competitive pressure for bacteria. This relief of competition coupled with a relatively fast adaptation of the bacterial community to chemical stress (e.g., replacement of sensitive species and evolutionary acquisition of CIP resistance; Brandt et al., 2015), may explain the results at the highest CIP concentrations. Moreover, the community composition of hyphomycetes was significantly shifted when exposed to 100 µg CIP/L (Fig. 3, Table S4). Similar to fungal biomass, these alterations in the community structure constitute an indicator for chemical stress-induced shifts in the

palatability of leaf litter as well as its quality for shredders (Bundschuh et al., 2011). This can be assumed as fungal species vary in their palatability and nutritional value for amphipod shredders (Bärlocher and Kendrick, 1973, Arsuffi and Suberkropp, 1989, Aßmann et al., 2011). The significant community shift was mainly driven by direct effects on *Fusarium* sp., the most prevalent hyphomycete species associated with leaves during the food choice assay (Table S5). Indeed, fluoroquinolones show antifungal activities on the same genus (causing fungal keratitis) by inhibiting type II topoisomerase DNA gyrase and topoisomerase IV (e.g., Day et al., 2009).

In contrast to our hypotheses and despite these CIP-induced shifts in the microbial community, G. fossarum did not show significant preferences during the food choice assay (Fig. 4, Table S4) indicating that the reduction in *Fusarium* sp. is not mirrored in the leaves' palatability. However, consumption of this fungus was shown to increase the nutritional value of leaves and affect shredders' growth positively (Bärlocher and Kendrick, 1973, Bärlocher and Kendrick, 1975a). Accordingly, we expected indirect negative implications on the gammarids' growth and energy storage via the dietary pathway over the long run triggered by a lower nutritious quality.

983 417 3.3. Long-term waterborne and diet-related CIP effects

In accordance with our initial hypothesis but contrary to the results of the food choice assay (see 3.2), 0.5 mg CIP/L significantly elevated the leaf consumption (~20 %) of G. fossarum via the dietary pathway, while feces production was not affected (Fig. 5, Table 1). The increased leaf consumption might be explained by a CIP-induced higher food quality, as, in this assay, ergosterol content (i.e., a proxy for fungal biomass) was significantly increased when leaves were conditioned in presence of CIP (Table S6). The higher fungal biomass might have stimulated the leaf consumption of gammarids (Foucreau et al., 2013), ultimately resulting in a tendency to higher growth (~50%) and energy storage (i.e., NLFA content,

 \sim 15%; Figure 3 and 4, Table 1) of gammarids. As originally hypothesized, the observed responses in the leaf-associated microbial community and ultimately G. fossarum may be driven by giving the leaf-associated fungi a competitive advantage through the impact of CIP on bacteria. This hypothesis could be (alongside the increased ergosterol content) supported by a non-significant reduction of the leaf associated bacterial density (~25 %; Table S6). However, the increased fungal biomass was not reflected by typical fungal FA markers $(18:1\omega9 \text{ and } 18:2\omega6; \text{ Båath, } 2003; \text{ Table S9})$. This might be explained by fungi investing energy preferably in growth rather than in energy storage under the provided conditions (i.e., a surplus of carbon, nitrogen, and phosphorus from both leaves and the conditioning medium; Bååth, 2003).

The contrasting effects on the leaf-associated microbial communities in this experiment compared to the food choice assay (see 3.2) are likely related to the utilization of microbial inocula from different seasons leading to a different species composition (Nikolcheva and Bärlocher, 2005). While there were no adverse effects on any of the hyphomycete species in the long-term feeding assay (Table S6 and S7), sporulation of *Fusarium* sp. was substantially affected during the food choice assay and ergosterol content was significantly reduced at 0.5 mg CIP/L. These differing effects observed with the field collected leaf associated microbial community point towards their high plasticity motivating further studies targeting the underlying mechanisms.

Moreover, CIP tends to adsorb to organic carbon (log K_{OC} of ~4 - 5 L/kg at neutral pH, Cardoza et al., 2005; Belden et al., 2007), which may ultimately increase internal CIP concentrations in G. fossarum via the dietary uptake. Through this pathway, a shift in the microbiome of the shredder's gut may have been induced (see for antibiotic effects on the invertebrates' gut microbiome Gorokhova et al., 2015 and Zhu et al., 2018). The gut microbiome is involved in energy harvest by transforming the components of the diet into

easily digestible substances (Cani et al., 2008) and in the regulation of appetite hormones (Mu et al., 2016). A potential stimulation of the appetite (Perić-Mataruga et al., 2009) and thus leaf consumption may have enhanced growth and energy storage. Moreover, the positive effects on G. fossarum could also be explained by antibiotics actively dampening immune responses, thereby reducing energy costs of the animal's immune system (see for vertebrates e.g., Niewold, 2007 and Brown et al., 2017). Thus, the energy surplus (due to the reduction of immune responses) could have resulted in increased energy allocation to gammarids' (feeding) activity and growth. However, the immunobiology (Loker et al., 2004) and the gut microbiome-host interactions (Lee and Hase, 2014) in invertebrates are not understood well enough yet to draw final conclusions on CIP as growth promoter in G. fossarum. Contrary to the diet-related effect pathway, waterborne CIP exposure did not affect the

gammarids' leaf consumption, feces production or growth (Fig. 5, Table 1). The content of saturated fatty acids (SAFAs) – mainly those with a shorter carbon chain length (i.e., 12:0 – 17:0; Table S8) - were reduced non-significantly (mono- (MUFAs) and polyunsaturated fatty acids (PUFAs) were not affected; Fig. 6, Table 1). These shorter FAs tend to be mobilized relatively quickly in situations of energy shortage (e.g., during starvation; Werbrouck et al., 2016; Price and Valencak, 2012). As CIP can induce the production of reactive oxygen species (ROS; Wang et al., 2018), defense mechanisms could increase the organism's energy demand (Sokolova et al., 2012), which would explain the observed lower SAFA levels. Proteomic analyses (e.g., via mass spectrometry-based proteomics; Sokolowska et al., 2011) may help to link CIP-exposure with the induction of respective stress proteins unraveling the underlying physiological mechanisms.

When the dietary pathway acted jointly with waterborne CIP exposure, a significant synergistic interaction was observed for gammarids' leaf consumption (no interactions were observed for the remaining endpoints Fig. 5 and 6, Table. 1). This synergism was derived

from the fact that the change in leaf consumption in the Combined treatment cannot be explained by summing up the effects induced by the individual pathways alone. It is likely that CIP originating from the water phase additionally adsorbed to the food already conditioned in the presence of CIP. Consequently, the gammarids' exposure through the gut was potentially further increased, thus exacerbating the effects on the gut microbiome and shredder's immune system. This hypothesized effect cascade is supported by the measured water concentrations, showing a 30 % reduction of CIP between water exchanges (measured in Water treatment; Table S1). Therefore, adsorbed CIP may have resulted in an intensification of the diet-related effects in G. fossarum. Moreover, positive diet-related effects seem to even cancel out the negative waterborne effects, since no significant reduction of the energy storage was observed (Fig. 6, Table. 1). In summary, our data suggest that CIP can affect growth and energy storage, respectively, of G. fossarum via waterborne and dietary exposure as well as via CIP-induced alterations of the microorganism-mediated food quality and the shredder's gut microbiome. Furthermore, diet-related effects outweigh waterborne effects, when both pathways act jointly.

3.4. Environmental relevance

The present study shows that CIP concentrations altering leaf-associated microbial communities and thus potentially affecting *G. fossarum* via the dietary pathway are in the high μ g/L range, while CIP concentrations at least one order of magnitude higher are needed to induce direct effects through waterborne exposure. As experimental concentrations are several orders of magnitude beyond concentrations usually detected in European surface waters (Danner et al., 2019), the present study suggests a low risk for decomposer-detritivore systems. Nonetheless, Bundschuh et al. (2017) showed that comparable effects can be induced by an antibiotics mixture at 2 μ g/L and thus at typical exposure scenario nowadays (e.g., Riva et al., 2019). Moreover, antibiotic concentrations in surface waters are projected to increase due to the growing population, increasing economic growth, and the expansion of the medical sector (van Boeckel et al., 2014; Klein et al., 2018). At the same time, inadequate wastewater management, particularly of pharmaceutical industries, lead in extreme cases to concentrations in the mg/L range (e.g., 2.5 mg CIP/L; Fick et al., 2009). All in all, these insights warrant the consideration of antibiotics as a potential stressor interacting with decomposer-detritivore systems and thus to understand the underlying mechanisms leading to effects.

4. Conclusion

The present study shows that effects of the model antibiotic CIP via the dietary pathway seem to be more relevant for G. fossarum than waterborne antibiotic effects. The dietary pathway in isolation and both effect pathways in combination resulted in a higher turnover rate of leaf litter by the shredders, which may influence carbon and energy dynamics in detritus-based ecosystems due to their bottom-up regulation (Wallace et al., 1997, Johnson and Wallace, 2005). As leaf litter input to streams occurs mainly in autumn and serves as between-year food storage for decomposers and detritivores (e.g., Richardson, 1992), an elevated turnover rate exacerbate energy shortage from spring until autumn for the entire community.

518 ACKNOWLEDGMENTS

The authors thank Therese Bürgi for the HPLC analyses and Zacharias Steinmetz for his advisory role regarding the GC analyses. Moreover, we thank Lara Brozio, Dominic Englert, Lisa Friedrichs, Bianca Frombold, Nadine Kämmer, Kymberly Newton and Nina Röder for laboratory assistance. This study was funded by the German Research Foundation, Project AQUA-REG (DFG; SCHU2271/14-1).

1240		
1241		
1242	526	
1243	020	
1244		
1245	527	References
1246		
1247		
1248 1249	528	Aho, K., 2019. Package 'asbio': Community ecology package. Version 1.5-5. https://cran.r-
1249		
1251	529	project.org/web/packages/vegan/vegan.pdf.
1252		
1253	530	Alvarez, H.M., Steinbüchel, A., 2002. Triacylglycerols in prokaryotic microorganisms. Appl.
1254	550	Alvarez, 11.101., Stembucher, A., 2002. Thatyigiyeerois in prokaryotic incroorganishis. Appi.
1255	531	Microbiol. Biotechnol. 60, 367–376.
1256	551	1000001. Biotechnol. 00, $307-370$.
1257		
1258	532	Arsuffi, T.L., Suberkropp, K., 1989. Selective feeding by shredders on leaf-colonizing stream
1259		
1260	533	fungi: comparison of macroinvertebrate taxa. Oecologia 79, 30–37.
1261		
1262		
1263	534	Aßmann, C., Rinke, K., Nechwatal, J., Elert, E.v., 2011. Consequences of the colonisation of
1264 1265		
1265	535	leaves by fungi and oomycetes for leaf consumption by a gammarid shredder. Freshw.
1267		
1268	536	Biol. 56, 839–852.
1269		
1270	537	Agong O.I. Mainting P. Chamunanya I.P. 2014 Eathody, fat and and adjunce tinguagin
1271	337	Azeez, O.I., Meintjes, R., Chamunorwa, J.P., 2014. Fat body, fat pad and adipose tissues in
1272	538	invertabrates and vertabrates; the nerves Lipids Health Dis 12, 1, 12
1273	330	invertebrates and vertebrates: the nexus. Lipids Health Dis. 13, 1–13.
1274		
1275	539	Bååth, E., 2003. The use of neutral lipid fatty acids to indicate the physiological conditions of
1276		
1277	540	soil fungi. Microb. Ecol. 45, 373–383.
1278		
1279 1280		
1281	541	Baldy, V., Gobert, V., Guerold, F., Chauvet, E., Lambrigot, D., CHarcosset, JY., 2007. Leaf
1282		
1283	542	litter breakdown budgets in streams of various trophic status: effects of dissolved
1284		
1285	543	inorganic nutrients on microorganisms and invertebrates. Freshw. Biol. 52, 1322-1335.
1286		
1287	511	Dörlocher E. Vandrick D. 1072 Euroi in the dist of Commonwa near deliminary
1288	544	Bärlocher, F., Kendrick, B., 1973. Fungi in the diet of Gammarus pseudolimnaeus
1289	515	(A multiplicate) Oilreg 24, 205, 200
1290	545	(Amphipoda). Oikos 24, 295–300.
1291		
1292	546	Bärlocher, F., Kendrick, B., 1975a. Assimilation efficiency of Gammarus pseudolimnaeus
1293 1294		
1294	547	(Amphipoda) feeding on fungal mycelium or autumn-shed leaves. Oikos 26, 55–59.
1295		
1297		22
1298		

1299		
1300		
1301 1302	548	Bärlocher, F., Kendrick, B., 1975b. Leaf-conditioning by microorganisms. Oecologia 20,
1303	549	359–362.
1304	019	567 562.
1305		
1306 1307	550	Bartlett, A.J., Balakrishnan, V.K., Toito, J., Brown, L.R., 2013. Toxicity of four sulfonamide
1308 1309	551	antibiotics to the freshwater amphipod Hyalella azteca. Environ. Toxicol. Chem. 32, 866-
1310	552	875.
1311	552	675.
1312		
1313 1314	553	Baschien, C., Marvanová, L., Szewzyk, U., 2006. Phylogeny of selected aquatic
1315		
1316	554	hyphomycetes based on morphological and molecular data. Nova Hedw. 83, 311-352.
1317		
1318	<i></i>	Dett A.J. Duran I.D. And D.C. 2006 Evelopting the seclar ashility of surface surfaces to
1319	555	Batt, A.L., Bruce, I.B., Aga, D.S., 2006. Evaluating the vulnerability of surface waters to
1320	556	antibiotic contamination from varying wastewater treatment plant discharges. Environ.
1321	550	antibiotic containination nom varying wastewater treatment plant disenarges. Environ.
1322 1323	557	Pollut. 142, 295–302.
1323	557	1 onut. 1+2, 275 502.
1325		
1326	558	Belden, J.B., Maul, J.D., Lydy, M.J., 2007. Partitioning and photodegradation of
1327		
1328	559	ciprofloxacin in aqueous systems in the presence of organic matter. Chemosphere 66,
1329	5.00	1200 1205
1330	560	1390–1395.
1331 1332		
1333	561	Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can.
1334		
1335	562	J. Biochem. Physiol. 37, 911–917.
1336		
1337	5.60	
1338	563	Borgmann, U., 1996. Systematic analysis of aqueous ion requirements of <i>Hyalella azteca</i> : a
1339	561	standard artificial medium including the accortical bramids ion. Arch. Environ. Contam
1340 1341	564	standard artificial medium including the essential bromide ion. Arch. Environ. Contam.
1342	565	Toxicol. 30, 356–363.
1343	505	TOXICOL 50, 550-505.
1344		
1345	566	Brandt, K.K., Amézquita, A., Backhaus, T., Boxall, A., Coors, A., Heberer, T., Lawrence,
1346		
1347	567	J.R., Lazorchak, J., Schönfeld, J., Snape, J.R., Zhu, YG., Topp, E., 2015.
1348 1349		
1350	568	Ecotoxicological assessment of antibiotics: A call for improved consideration of
1351	5(0)	
1352	569	microorganisms. Environ. Int. 85, 189–205.
1353		
1354		
1355		23
1356 1357		23
1007		

1358		
1359		
1360 1361	570	Brown, K., Uwiera, R.R.E., Kalmokoff, M.L., Brooks, S.P.J., Inglis, G.D., 2017.
1362 1363	571	Antimicrobial growth promoter use in livestock: a requirement to understand their modes
1364 1365 1366	572	of action to develop effective alternatives. Int. J. Antimicrob. Agents 49, 12-24.
1367 1368	573	Brunner, E., Dette, H., Munk, A., 1997. Box-type approximations in nonparametric factorial
1369 1370 1371	574	designs. J. Am. Stat. Assoc. 92, 1494–1502.
1372 1373	575	Buesing, N., 2007. Bacterial counts and biomass determination by epifluorescence
1374 1375	576	microscopy, in: Graça, M.A.S., Bärlocher, F., Gessner, M.O. (Eds.), Methods to study
1376 1377 1378	577	litter decomposition. A practical guide, vol. 27. Springer, Dordrecht, London, pp. 203-
1379 1380	578	208.
1381 1382 1383	579	Bundschuh, M., Hahn, T., Gessner, M.O., Schulz, R., 2009. Antibiotics as a chemical stressor
1384 1385	580	affecting an aquatic decomposer-detritivore system. Environ. Toxicol. Chem. 28, 197-
1386 1387 1388	581	203.
1389 1390	582	Bundschuh, M., Hahn, T., Gessner, M.O., Schulz, R., 2017. Antibiotic mixture effects on
1391 1392	583	growth of the leaf-shredding stream detritivore Gammarus fossarum. Ecotoxicology 26,
1393 1394 1395	584	547–554.
1396 1397	585	Bundschuh, M., McKie, B.G., 2016. An ecological and ecotoxicological perspective on fine
1398 1399 1400	586	particulate organic matter in streams. Freshw. Biol. 61, 2063–2074.
1401 1402	587	Bundschuh, M., Zubrod, J.P., Kosol, S., Maltby, L., Stang, C., Duester, L., Schulz, R., 2011.
1403 1404	588	Fungal composition on leaves explains pollutant-mediated indirect effects on amphipod
1405 1406 1407	589	feeding. Aquat. Toxicol. 104, 32–37.
1408 1409	590	Butte, W., 1983. Rapid method for the determination of fatty acid profiles from fats and oils
1410 1411 1412 1413	591	using trimethylsulphonium hydroxide for transesterification. J. Chrom. A 261, 142–145.
1414 1415 1416		24

1417		
1418		
1419 1420	592	Cani, P.D., Delzenne, N.M., Amar, J., Burcelin, R., 2008. Role of gut microflora in the
1421 1422	593	development of obesity and insulin resistance following high-fat diet feeding. Pathol. Biol.
1423 1424 1425	594	56, 305–309.
1426 1427	595	Cardoza, L.A., Knapp, C.W., Larive, C.K., Belden, J.B., Lydy, M., Graham, D.W., 2005.
1428 1429 1430	596	Factors affecting the fate of ciprofloxacin in aquatic field systems. Water Air Soil Pollut.
1431 1432	597	161, 383–398.
1433 1434 1435	598	Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure.
1435 1436 1437	599	Austral. Ecol. 18, 117–143.
1438 1439	600	Clarke, K.R., Somerfield, P.J., Chapman, M.G., 2006. On resemblance measures for
1440 1441 1442	601	ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis
1443 1444	602	coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55-80.
1445 1446 1447	603	Conover, W.J., Iman, R.L., 1981. Rank transformations as a bridge between parametric and
1448 1449	604	nonparametric statistics. Am. Stat. 35, 124–129.
1450 1451 1452	605	Dalla Bona, M., Di Leva, V., Liguoro, M. de, 2014. The sensitivity of Daphnia magna and
1453 1454	606	Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures.
1455 1456 1457	607	Chemosphere 115, 67–74.
1458 1459	608	Dang, C.K., Chauvet, E., Gessner, M.O., 2005. Magnitude and variability of process rates in
1460 1461 1462	609	fungal diversity-litter decomposition relationships. Ecol. Lett. 8, 1129–1137.
1463 1464	610	Danner, MC., Robertson, A., Behrends, V., Reiss, J., 2019. Antibiotic pollution in surface
1465 1466 1467	611	fresh waters: occurrence and effects. Sci. Total. Environ. 664, 793-804.
1468 1469	612	Day, S., Lalitha, P., Haug, S., Fothergill, A.W., Cevallos, V., Vijayakumar, R., Prajna, N.V.,
1470 1471	613	Acharya, N.R., McLeod, S.D., Lietman, T.M., 2009. Activity of antibiotics against
1472 1473 1474	614	<i>Fusarium</i> and <i>Aspergillus</i> . Br. J. Ophthalmol. 93, 116–119.
1475		

1476		
1477		
1478 1479	615	European Medicines Agency, 2018. Sales of veterinary antimicrobial agents in 30 European
1479		
1481	616	countries in 2016: Trends from 2010 to 2016.
1482		
1483	617	https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-30-
1484	(10	
1485	618	european-countries-2016-trends-2010-2016-eighth-esvac_en.pdf.
1486		
1487 1488	619	Feckler, A., Thielsch, A., Schwenk, K., Schulz, R., Bundschuh, M., 2012. Differences in the
1400	•	, ,
1490	620	sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci. Total.
1491		
1492	621	Environ. 439, 158–164.
1493		
1494	(22	Field L. Sädensträm II. Lindhang D.U. Dhan C. Twaklind M. Langeon, D.C. L. 2000
1495	622	Fick, J., Söderström, H., Lindberg, R.H., Phan, C., Tysklind, M., Larsson, D.G.J., 2009.
1496 1497	623	Contamination of surface, ground, and drinking water from pharmaceutical production.
1498	025	Containination of surface, ground, and drinking water from pharmaceutical production.
1499	624	Environ. Toxicol. Chem. 28, 2522–2527.
1500	•= ·	
1501		
1502	625	Field, A., Miles, J., Field, Z., 2012. Discovering statistics using R. SAGE Publications.
1503		
1504 1505	626	Fielding, N.J., MacNeil, C., Dick, J.T.A., Elwood, R.W., Riddell, G.E., Dunn, A.M., 2003.
1506	020	Therang, The, Theorem, C., Diek, V. T. H., Diwood, R. W., Redden, C.D., Dunn, Thin, 2005.
1507	627	Effects of the acanthocephalan parasite <i>Echinorhynchus truttae</i> on the feeding ecology of
1508		
1509	628	Gammarus pulex (Crustacea Amphipoda). J. Zoology 261, 321-325.
1510		
1511 1512	629	Fink, P., 2013. Invasion of quality: high amounts of essential fatty acids in the invasive
1512	029	This, F., 2015. Invasion of quanty. Ingli amounts of essential fatty actus in the invasive
1514	630	Ponto-Caspian mysid Limnomysis benedeni. J. Plankton Res. 35, 907–913.
1515	050	Tonto Cuspiun mysia Emmonysis bonouoni. v. Thankon Ros. 55, 907-915.
1516		
1517	631	Fisher, S.G., Likens, G.E., 1973. Energy flow in Bear Brook, New Hampshire: an integrative
1518	(22	
1519 1520	632	approach to stream ecosystem metabolism. Ecol. Monogr. 43, 421–439.
1521		
1522	633	Foucreau, N., Puijalon, S., Hervant, F., Piscart, C., 2013. Effect of leaf litter characteristics on
1523		
1524	634	leaf conditioning and on consumption by Gammarus pulex. Freshw. Biol. 58, 1672–1681.
1525		
1526	(25	
1527 1528	635	Franke, U., 1977. Experimentelle Untersuchungen zur Respiration von Gammarus fossarum
1529	636	in Abhängigkeit von Temperatur, Sauerstoffkonzentration und Wasserbewegung. Arch.
1530	050	in Abhangigken von Temperatur, Sauerstoffkonzentration und wasserbewegung. Alen.
1531	637	Hydrobiol., 369–411.
1532		
1533		26
1534		

1535		
1536 1537		
1538 1539	638	Gessner, M.O., 2007. Ergosterol as a measure of fungal biomass, in: Graça, M.A.S.,
1540	639	Bärlocher, F., Gessner, M.O. (Eds.), Methods to study litter decomposition. A practical
1541 1542 1543	640	guide, vol. 67. Springer, Dordrecht, London, pp. 189–195.
1544 1545	641	Gessner, M.O., Chauvet, E., Dobson, M., 1999. A perspective on leaf litter breakdown in
1546 1547 1548	642	streams. Oikos 85, 377–384.
1549 1550	643	Gessner, M.O., Schmitt Anja L., 1996. Use of solid-phase extraction to determine ergosterol
1551 1552 1553	644	concentrations in plant tissue colonized by fungi. Appl. Environ. Microbiol. 62, 415–419.
1554 1555	645	Gorokhova, E., Rivetti, C., Furuhagen, S., Edlund, A., Ek, K., Breitholtz, M., 2015. Bacteria-
1556 1557 1558	646	mediated effects of antibiotics on Daphnia nutrition. Environ. Sci. Technol. 49, 5779-
1559 1560 1561	647	5787.
1562 1563	648	Graça, M.A.S., 2001. The role of invertebrates on leaf litter decomposition in streams - a
1564 1565 1566	649	review. Internat. Rev. Hydrobiol. 86, 383–393.
1567 1568	650	Graça, M.A.S., Maltby, L., Calow, P., 1993. Importance of fungi in the diet of Gammarus
1569 1570	651	pulex and Asellus aquaticus : II. Effects on growth, reproduction and physiology.
1571 1572 1573	652	Oecologia 96, 304–309.
1574 1575	653	Gulis, V., Suberkropp, K., 2003. Interactions between stream fungi and bacteria associated
1576 1577	654	with decomposing leaf litter at different levels of nutrient availability. Aquat. Microb.
1578 1579 1580	655	Ecol. 30, 149–157.
1581 1582	656	Hahn, T., Schulz, R., 2007. Indirect effects of antibiotics in the aquatic environment: a
1583 1584	657	laboratory study on detritivore food selection behavior. Hum. Ecol. Risk Assess. 13, 535-
1585 1586 1587 1588 1589 1590	658	542.
1591 1592 1593		27

1594 1595		
1596 1597	659	Happel, A., Czesny, S., Rinchard, J., Hanson, S.D., 2017. Data pre-treatment and choice of
1598 1599	660	resemblance metric affect how fatty acid profiles depict known dietary origins. Ecol. Res.
1600 1601 1602	661	32, 757–767.
1603 1604	662	Harwood, J.L., Russell, N.J., 1984. Lipids in plants and microbes. Springer Netherlands,
1605 1606 1607	663	Dordrecht.
1608 1609	664	Hieber, M., Gessner, M.O., 2002. Contribution of stream detrivores, fungi, and bacteria to leaf
1610 1611 1612	665	breakdown based on biomass estimates. Ecology 83, 1026–1038.
1613 1614	666	Hooper, D.C., Wolfson, J.S., 1988. Mode of action of the quinolone antimicrobial agents.
1615 1616 1617	667	Clin. Infect. Dis. 10, 14-21.
1618 1619	668	Ingold, C.T., 1975. An illustrated guide to aquatic hyphomycetes. Freshwater Biological
1620 1621 1622	669	Association.
1623 1624	670	Iverson, S.J., 2012. Tracing aquatic food webs using fatty acids: from qualitative indicators to
1625 1626 1627	671	quantitative determination, in: Arts, M.T., Brett, M.T., Kainz, M.J. (Eds.), Lipids in
1628 1629	672	aquatic ecosystems, vol. 465. Springer, New York, London, pp. 281-308.
1630 1631 1632	673	Johnson, B.R., Wallace, J.B., 2005. Bottom-up limitation of a stream salamander in a detritus-
1633 1634 1635	674	based food web. Can. J. Fish. Aquat. Sci. 62, 301-311.
1635 1636 1637	675	Klein, E.Y., van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens,
1638 1639	676	H., Laxminarayan, R., 2018. Global increase and geographic convergence in antibiotic
1640 1641 1642	677	consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U.S.A. 115, 3463-3470.
1643 1644	678	Lee, WJ., Hase, K., 2014. Gut microbiota-generated metabolites in animal health and
1645 1646 1647 1648	679	disease. Nat. Chem. Biol. 10, 416–424.
1649 1650 1651 1652		28

1653			
1654			
1655 1656	680	Loker, E.S., Adema, C.M., Zhang, SM., Kepler, T.B., 2004. Invertebrate immune systems -	
1657 1658 1659	681	not homogeneous, not simple, not well understood. Immunol. Rev. 198, 10-24.	
1660 1661	682	MacNeil, C., Dick, J.T.A., Elwood, R.W., 1999. The dynamics of predation on Gammarus	
1662 1663 1664	683	spp. (Crustacea: Amphipoda). Biol. Rev. 74, 375-395.	
1665 1666	684	Martins, N., Pereira, R., Abrantes, N., Pereira, J., Gonçalves, F., Marques, C.R., 2012.	
1667 1668	685	Ecotoxicological effects of ciprofloxacin on freshwater species: data integration and	
1669 1670 1671	686	derivation of toxicity thresholds for risk assessment. Ecotoxicology 21, 1167–1176.	
1672 1673 1674	687	Maul, J.D., Schuler, L.J., Belden, J.B., Whiles, M.R., Lydy, M.J., 2006. Effects of the	
1674 1675 1676	688	antibiotic ciprofloxacin on stream microbial communities and detritivorous	
1677 1678 1679	689	macroinvertebrates. Environ. Toxicol. Chem. 25, 1598–1606.	
1679 1680 1681	690	Minshall, G.W., 1967. Role of allochthonous detritus in the trophic structure of a woodland	
1682 1683 1684	691	springbrook community. Ecology 48, 139–149.	
1685 1686	692	Mompelat, S., Le Bot, B., Thomas, O., 2009. Occurrence and fate of pharmaceutical products	5
1687 1688 1689	693	and by-products, from resource to drinking water. Environ. Int. 35, 803-814.	
1690 1691	694	Mu, C., Yang, Y., Zhu, W., 2016. Gut microbiota: the brain peacekeeper. Front. Microbiol. 7	,
1692 1693 1694	695	1–11.	
1695 1696	696	Naylor, C., Maltby, L., Calow, P., 1989. Scope for growth in <i>Gammarus pulex</i> , a freshwater	
1697 1698 1699	697	benthic detritivore. Hydrobiologia 188-189, 517–523.	
1700 1701	698	Nelson, D.J., Scott, D.C., 1962. Role of detritus in the productivity of a rock-outcrop	
1702 1703 1704	699	community in a Piedmont stream. Limnol. Oceanogr. 7, 396–413.	
1705 1706	700	Niewold, T.A., 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth	
1707 1708	701	promoters, the real mode of action? A hypothesis. Poult. Sci. 86, 605-609.	
1709 1710 1711		2	29

1712		
1713		
1714	702	Nikolcheva, L.G., Bärlocher, F., 2005. Seasonal and substrate preferences of fungi colonizing
1715	102	Trikoleneva, E.G., Danoener, T., 2005. Seasonal and substrate preferences of fungi colonizing
1716	703	leaves in streams: traditional versus molecular evidence. Environ. Microbiol. 7, 270-280.
1717	703	leaves in succins. Inductional versus molecular evidence. Environ. Microbiol. 7, 270–280.
1718		
1719	704	Park, S., Choi, K., 2008. Hazard assessment of commonly used agricultural antibiotics on
1720	704	Tark, S., Choi, R., 2000. Hazard assessment of commonly used agricultural antioiotics on
1721	705	aquatic ecosystems. Ecotoxicology 17, 526–538.
1722	105	aquatic cosystems. Ecotoxicology 17, 520–558.
1723		
1724	706	Pascoal, C., Cássio, F., 2004. Contribution of fungi and bacteria to leaf litter decomposition in
1725	700	r useour, c., cussio, r., 2004. contribution of rungi and bucteria to real ritter accomposition in
1726	707	a polluted river. Appl. Environ. Microbiol. 70, 5266–5273.
1727	/0/	a politica fiver. Appl. Elivitoli. Microbiol. 70, 5200–5275.
1728		
1729	708	Pascoe, D., Kedwards, T.J., Blockwell, S.J., Taylor, E.J., 1995. Gammarus pulex (L.) feeding
1730	100	Tuseoe, D., Redwards, T.S., Brockwen, S.S., Taylor, E.S., 1995. Summarius puren (E.) redaing
1731	709	bioassay - Effects of parasitism. Bull. Environ. Contam. Toxicol. 55, 629–632.
1732	10)	bloassay - Effects of parasitism. Bun. Environ. Contain. Toxicol. 55, 027–052.
1733		
1734	710	Perić-Mataruga, V., Mircić, D., Vlahović, M., Mrdaković, M., Todorović, D., Stevanović, D.,
1735	/10	
1736	711	Milosević, V., 2009. Effects of ghrelin on the feeding behavior of Lymantria dispar L.
1737	/ 1 1	whosevie, v., 2009. Effects of glifelin on the feeding behavior of <i>Lymann ta disput</i> L.
1738	712	(Lymantriidae) caterpillars. Appetite 53, 147–150.
1739	712	(Lymanunuae) caterpinais. Appente 55, 147–150.
1740		
1741	713	Peters, K., Bundschuh, M., Schäfer, R.B., 2013. Review on the effects of toxicants on
1742	/15	Teters, R., Bundsenun, M., Senurer, R.D., 2015. Review on the effects of toxicults on
1743	714	freshwater ecosystem functions. Environ. Pollut. 180, 324–329.
1744	/14	100, 524-527.
1745		
1746	715	Piscart, C., Genoel, R., Doledec, S., Chauvet, E., Marmonier, P., 2009. Effects of intense
1747	, 10	
1748	716	agricultural practices on heterotrophic processes in streams. Environ. Pollut. 157, 1011–
1749	/10	agriculturul practices on heterotrophic processes in streams. Environ, 1 onat, 197, 1011
1750 1751	717	1018.
	/1/	1010.
1752 1753		
1753	718	Price, E.R., Valencak, T.G., 2012. Changes in fatty acid composition during starvation in
1755	/10	Theo, E.R., Fullioun, T.O., 2012. Changes in hang usin composition during surfacion in
1756	719	vertebrates: mechanisms and questions, in: McCue, M.D. (Ed.), Comparative physiology
1757	/1/	vertebrates. meenamisms and questions, m. weede, wi.D. (Ed.), comparative physiology
1758	720	of facting starvation and food limitation Springer Parlin New Verk nr. 227, 255
1750	720	of fasting, starvation, and food limitation. Springer, Berlin, New York, pp. 237–255.
1760		
1761	721	R Core Team, 2014. R: a language and environment for statistical computing. http://www.R-
1762	, _ 1	2 core 2 can, 201 re. a language and environment for statistical comparing. http://www.re
1763	722	project.org/.
1764	144	
1765		
1766		
1767		
1768		
1769		30
1770		

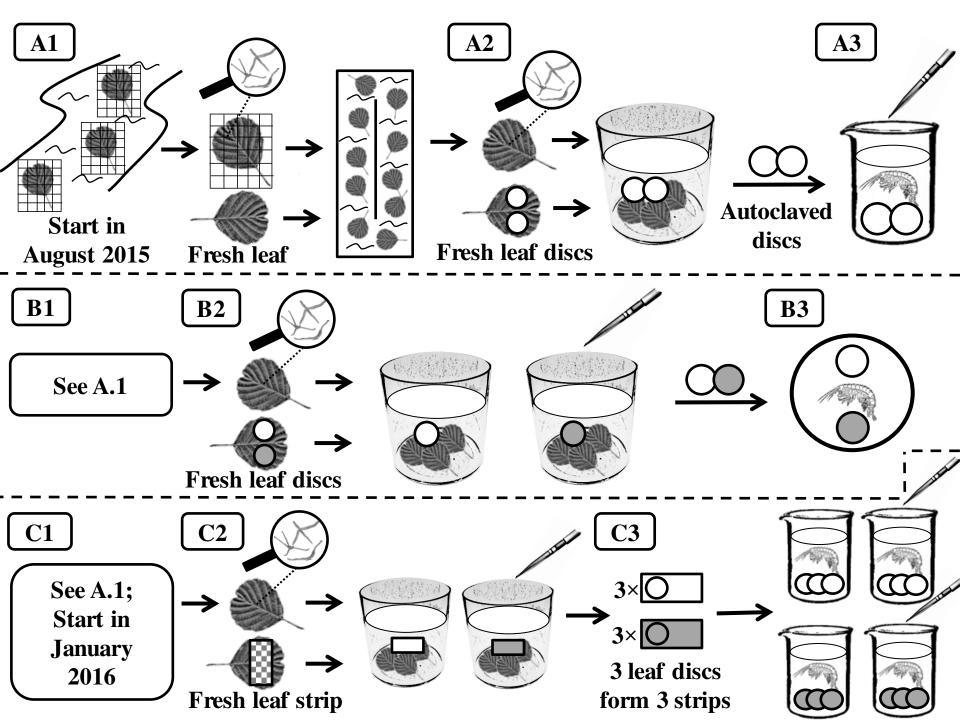
1771 1772		
1773 1774	723	Rasmussen, J.J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Monberg, R.J., Kronvang, B.,
1775 1776	724	2012. Impacts of pesticides and natural stressors on leaf litter decomposition in
1777 1778 1779	725	agricultural streams. Sci. Total. Environ. 416, 148–155.
1780 1781	726	Richardson, J.S., 1992. Coarse particulate detritus dynamics in small, montane streams
1782 1783 1784	727	southwestern british Columbia. Can. J. Fish. Aquat. Sci. 49, 337–346.
1785 1786	728	Rico, A., Dimitrov, M.R., van Wijngaarden, R.P.A., Satapornvanit, K., Smidt, H., van den
1787 1788 1789	729	Brink, P.J., 2014a. Effects of the antibiotic enrofloxacin on the ecology of tropical
1790 1791	730	eutrophic freshwater microcosms. Aquat. Toxicol. 147, 92-104.
1792 1793 1794	731	Rico, A., Oliveira, R., McDonough, S., Matser, A., Khatikarn, J., Satapornvanit, K., Nogueira,
1795 1796	732	A.J.A., Soares, A.M.V.M., Domingues, I., van den Brink, P.J., 2014b. Use, fate and
1797 1798	733	ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ. Pollut.
1799 1800 1801	734	191, 8–16.
1802 1803	735	Riva, F., Zuccato, E., Davoli, E., Fattore, E., Castiglioni, S., 2019. Risk assessment of a
1804 1805	736	mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J.
1806 1807 1808	737	Hazard. Mater. 361, 103–110.
1809 1810	738	Schneider, T., Gerrits, B., Gassmann, R., Schmid, E., Gessner, M.O., Richter, A., Battin, T.,
1811 1812	739	Eberl, L., Riedel, K., 2010. Proteome analysis of fungal and bacterial involvement in leaf
1813 1814 1815	740	litter decomposition. Proteomics 10, 1819–1830.
1816 1817	741	Sokolova, I.M., Frederich, M., Bagwe, R., Lannig, G., Sukhotin, A.A., 2012. Energy
1818 1819	742	homeostasis as an integrative tool for assessing limits of environmental stress tolerance in
1820 1821 1822	743	aquatic invertebrates. Mar. Environ. Res. 79, 1–15.
1823 1824	744	Sokolowska, I., Woods, A.G., Wagner, J., Dorler, J., Wormwood, K., Thome, J., Darie, C.C.,
1825 1826 1827	745	2011. Mass Spectrometry for Proteomics-Based Investigation of Oxidative Stress and
1828 1829		31

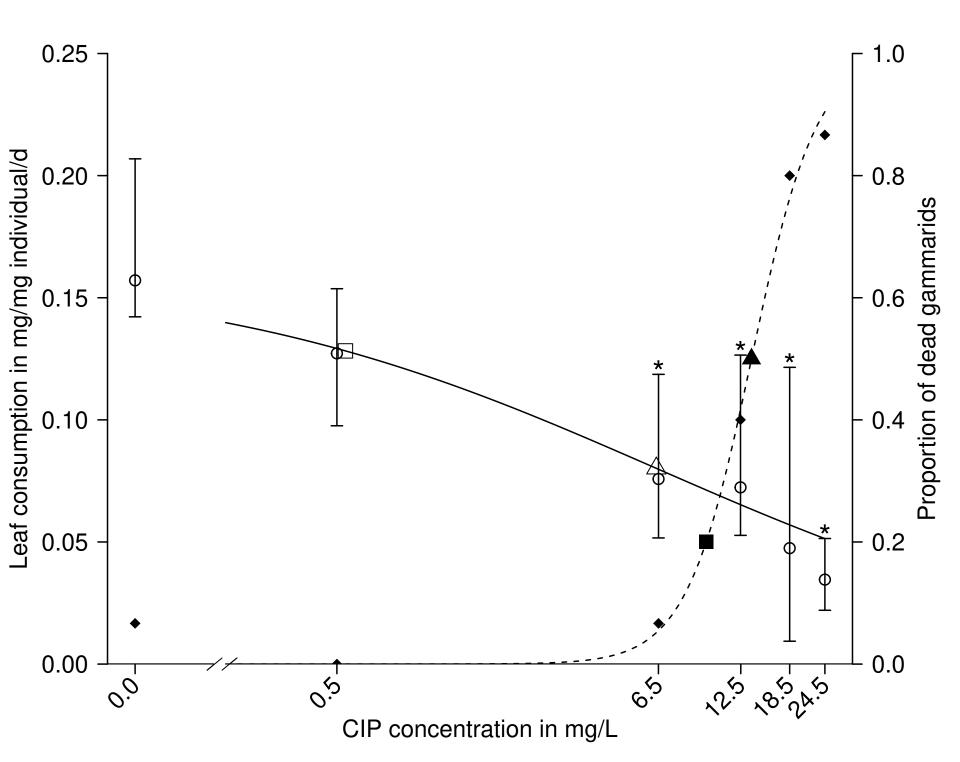
1830		
1831 1832		
1833	746	Heat Shock Proteins, in: Andreescu, S., Hepel, M. (Eds.), Oxidative Stress: Diagnostics,
1834 1835	747	Prevention, and Therapy, vol. 1083. American Chemical Society, Washington, DC,
1836 1837 1838	748	pp. 369–411.
1839 1840	749	van Boeckel, T.P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B.T., Levin, S.A.,
1841 1842	750	Laxminarayan, R., 2014. Global antibiotic consumption 2000 to 2010: an analysis of
1843 1844 1845	751	national pharmaceutical sales data. Lancet Infect. Dis. 14, 742-750.
1846 1847	752	Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., Cushing, C.E., 1980. The river
1848 1849 1850	753	continuum concept. Can. J. Fish. Aquat. Sci. 37, 130-137.
1851 1852	754	Wallace, J.B., Eggert, S.L., Meyer, J.L., Webster, J.R., 1997. Multiple trophic levels of a
1853 1854 1855	755	forest stream linked to terrestrial litter inputs. Science 277, 102–104.
1856 1857 1858	756	Wang, C., Rong, H., Liu, H., Wang, X., Gao, Y., Deng, R., Liu, R., Liu, Y., Di Zhang, 2018.
1859 1860	757	Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm
1861 1862	758	Eisenia foetida exposed to ciprofloxacin-polluted soils. Sci. Total. Environ. 612, 442-449.
1863 1864 1865	759	Werbrouck, E., van Gansbeke, D., Vanreusel, A., Troch, M. de, 2016. Temperature affects the
1866 1867	760	use of storage fatty acids as energy source in a benthic copepod (Platychelipus littoralis,
1868 1869 1870	761	Harpacticoida). PLoS ONE 11, 1-16.
1870 1871 1872	762	Zar, J.H., 2010. Biostatistical analysis: Books a la carte edition. Prentice Hall, [Place of
1873 1874 1875	763	publication not identified].
1876 1877	764	Zhu, D., An, XL., Chen, QL., Yang, XR., Christie, P., Ke, X., Wu, LH., Zhu, YG.,
1878 1879	765	2018. Antibiotics disturb the microbiome and increase the incidence of resistance genes in
1880 1881 1882 1883 1884	766	the gut of a common soil collembolan. Environ. Sci. Technol. 52, 3081–3090.
1885 1886 1887 1888		32

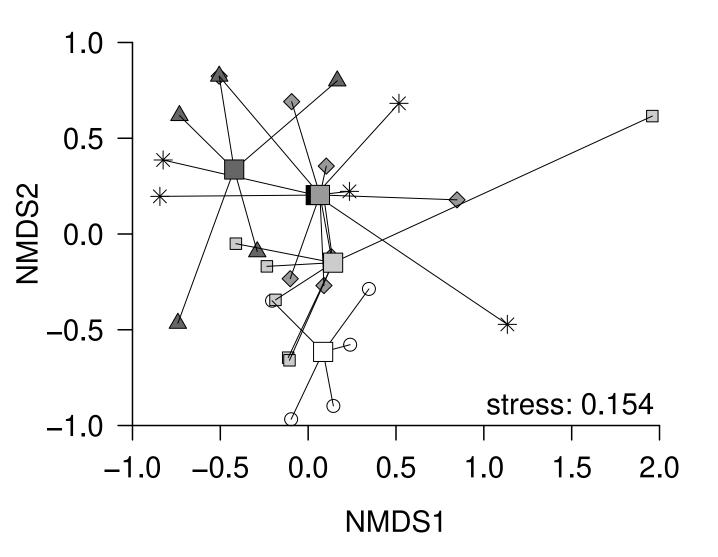
1889		
1890		
1891	767	Zubrod, J.P., Baudy, P., Schulz, R., Bundschuh, M., 2014. Effects of current-use fungicides
1892 1893		
1893	768	and their mixtures on the feeding and survival of the key shredder Gammarus fossarum.
1895		
1896	769	Aquat. Toxicol. 150, 133–143.
1897		
1898	770	Zubrod, J.P., Bundschuh, M., Feckler, A., Englert, D., Schulz, R., 2011. Ecotoxicological
1899 1900		
1901	771	impact of the fungicide tebuconazole on an aquatic decomposer-detritivore system.
1902		
1903	772	Environ. Toxicol. Chem. 30, 2718–2724.
1904		
1905 1906	773	Zubrod, J.P., Bundschuh, M., Schulz, R., 2010. Effects of subchronic fungicide exposure on
1907		
1908	774	the energy processing of Gammarus fossarum (Crustacea; Amphipoda). Ecotoxicol.
1909		
1910	775	Environ. Saf. 73, 1674–1680.
1911 1912		
1913	776	Zubrod, J.P., Englert, D., Feckler, A., Koksharova, N., Konschak, M., Bundschuh, R.,
1914		
1915	777	Schnetzer, N., Englert, K., Schulz, R., Bundschuh, M., 2015a. Does the current fungicide
1916		
1917 1918	778	risk assessment provide sufficient protection for key drivers in aquatic ecosystem
1919	779	functioning? Environ. Sci. Technol. 49, 1173–1181.
1920	11)	
1921		
1922	780	Zubrod, J.P., Englert, D., Rosenfeldt, R.R., Wolfram, J., Lüderwald, S., Wallace, D.,
1923 1924	701	
1925	781	Schnetzer, N., Schulz, R., Bundschuh, M., 2015b. The relative importance of diet-related
1926	782	and waterborne effects of copper for a leaf-shredding invertebrate. Environ. Pollut. 205,
1927	102	and wateroome encets of copper for a fear smeature invertebrate. Environ: 1 onat. 200,
1928	783	16–22.
1929 1930		
1931	784	Zubrad I.B. Englart D. Walfram I. Wallaga D. Sabnatzar N. Baudy D. Kansabak M.
1932	/04	Zubrod, J.P., Englert, D., Wolfram, J., Wallace, D., Schnetzer, N., Baudy, P., Konschak, M.,
1933	785	Schulz, R., Bundschuh, M., 2015c. Waterborne toxicity and diet-related effects of
1934	100	
1935 1936	786	fungicides in the key leaf shredder Gammarus fossarum (Crustacea: Amphipoda). Aquat.
1937		
1938	787	Toxicol. 169, 105–112.
1939		
1940 1941	788	
1941		
1943		
1944		
1945		
1946 1947		33
107/		

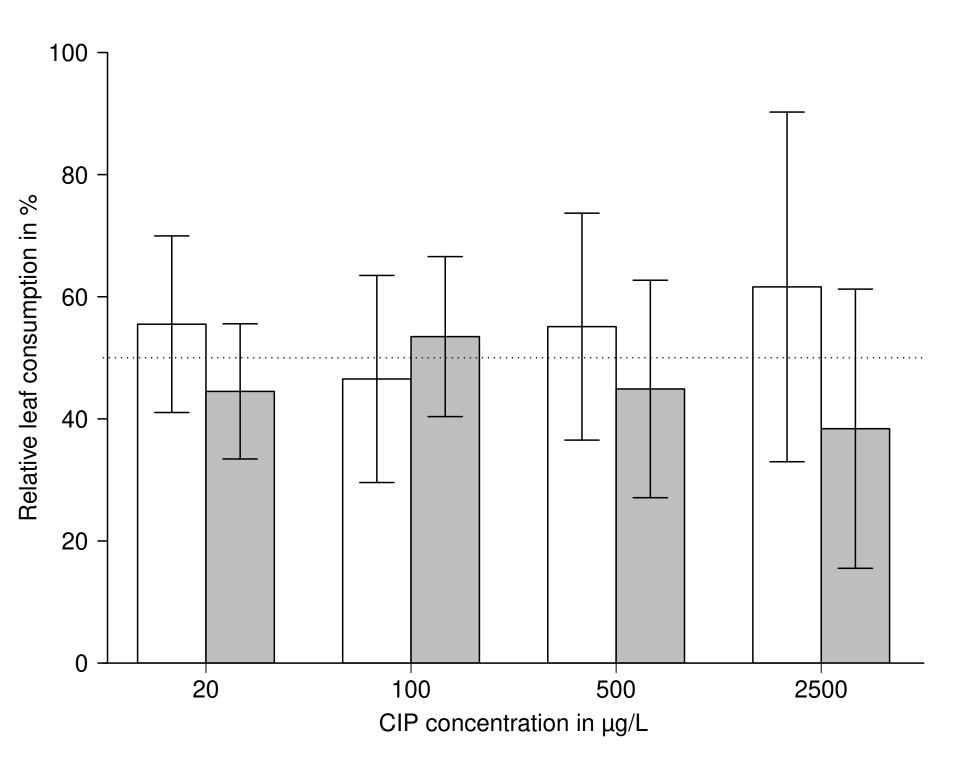
Figure 1 Schematic overview of the three test designs (A, B and C). Before starting each assay, fresh leaves were deployed for 14 days in a stream (to establish a leaf-associated microbial community) followed by a 14-day conditioning process with microbially colonized and fresh leaves in a stainless-steel container under laboratory conditions (A1, B1 and C1). A2, B2 and C2 describe the conditioning process of leaf discs or strips (cut from fresh leaves) in the absence and presence (denoted by the pipette) of CIP. A3, B3 and C3 display the experimental setup of each assay: A3 illustrates the experimental setup of the 7-day feeding activity assay where G. fossarum was subjected to waterborne CIP exposure (denoted by the pipette). **B3** displays the 24-hour food choice assay where G. fossarum was offered leaf discs, which were microbially conditioned in the absence or presence of CIP (denoted by white and grey discs, respectively). C3 shows the 2×2 -factorial test design of the 24-day long-term feeding assay with the first factor being the absence or presence of waterborne CIP exposure (denoted by the absence or presence of the pipette). The second factor was leaves serving as food for G. fossarum, which were microbially colonized in the absence or presence of CIP (denoted by white and grey discs, respectively).

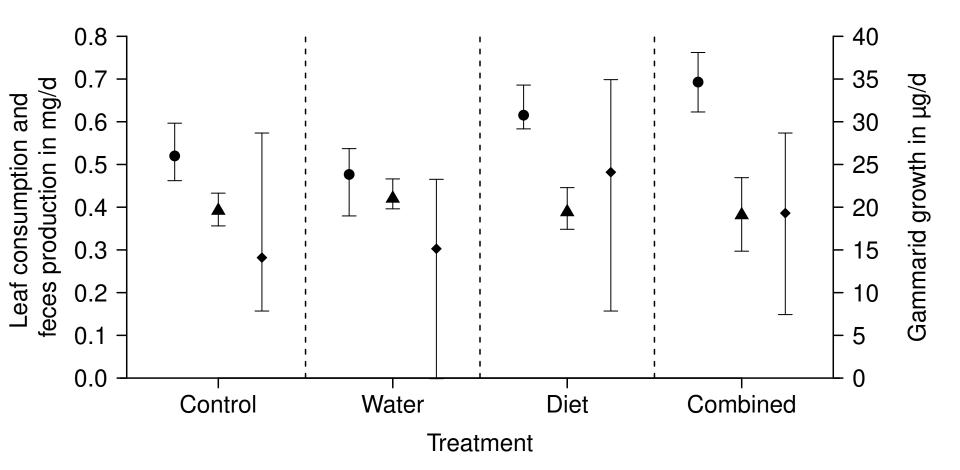
805

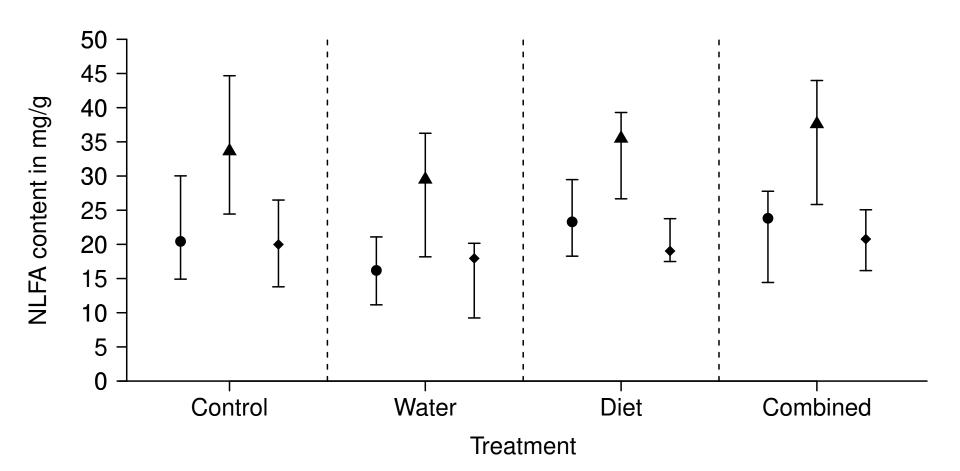

Figure 2 Median leaf consumption (open circles with 95% CIs) of *G. fossarum* and proportion of dead gammarids (solid diamonds) when subjected to increasing CIP concentrations. Moreover, the models with the best fit (solid line for leaf consumption and dashed line for mortality) as well as the EC_{20}/LC_{20} (transparent and solid squares, respectively) and EC_{50}/LC_{50} values (transparent and solid triangles, respectively) are displayed. Asterisks indicate a statistically significant difference to the control.


- 1999 812


2007 2008		
2009 2010	813	Figure 3 Non-metric multidimensional scaling (NMDS) plot for hyphomycete communities
2011 2012	814	associated with leaf material conditioned under control conditions (white circles) and in the
2013 2014 2015	815	presence of 20 (light grey squares), 100 (grey diamonds), 500 (dark grey triangles) and 2,500
2013 2016 2017	816	(black asterisks) μg CIP/L during the food choice assay. A stress value is provided as a
2018 2019	817	measure of "goodness-of-fit" for NMDS with reasonable fits indicated when below 0.2
2020 2021	818	(Clarke, 1993)
2022 2023 2024	819	
2025 2026 2027	820	Figure 4 Mean relative leaf consumption (with 95% CIs) of G. fossarum on leaves
2027 2028 2029	821	microbially colonized under control conditions (white bars) or in the presence of increasing
2030 2031	822	CIP concentrations (grey bars). The dotted line indicates the no-effect level (i.e., 50%
2032 2033	823	consumption on both leaf types).
2034 2035 2036 2037	824	
2037 2038 2039	825	Figure 5 Median (with 95% CIs) leaf consumption (points), feces production (triangles) and
2040 2041	826	growth (diamonds) of G. fossarum subjected to different effect pathways during the long-term
2042 2043	827	feeding assay with CIP. Statistical analyses are displayed in Table 1.
2044 2045 2046	828	
2047 2048	829	Figure 6 Median (with 95% CIs) saturated (SAFA; points), monosaturated (MUFA; triangles)
2049 2050	830	and polysaturated (PUFA; diamonds) fatty acid content of G. fossarum subjected to different
2051 2052	831	effect pathways during the long-term feeding assay with CIP. Statistical analyses are
2053 2054 2055	832	displayed in Table 1.
2055 2056 2057	011	
2058 2059	833	
2060 2061		
2062 2063		
2064 2065		35


Endpoint	Factor	df1	SS/df2	MS/R2	F-value	<i>p</i> -value	ANOVA type
Leaf consumpti	on Water	1	0.016	0.0163	0.295	0.588	Two-way
	Diet	1	1.478	1.4783	26.764	<0.001	ANOVA
	Water × Diet	1	0.260	0.2598	4.703	0.031	
	Residuals	233	12.869	0.0552			
Feces production	n Water	1	222.6602	-	0.187	0.666	Brunner-Dette-
-	Diet	1	222.6602	-	1.015	0.315	Munk test
	Water × Diet	1	222.6602	-	1.456	0.229	
	Residuals	-	-	-			
Growth	Water	1	0.00000	0.000001	0.000	0.983	Rank
	Diet	1	0.00361	0.003611	2.959	0.087	transformed
	Water × Diet	1	0.00046	0.000457	0.374	0.541	two-way
	Residuals	232	0.28311	0.001220			ANOVA
Total FA conter	nt Water	1	539	539.2	1.747	0.195	Two-way
	Diet	1	1190	1190.0	3.856	0.057	ANOVA
	Water × Diet	1	711	711.3	2.305	0.138	
	Residuals	36	11110	308.6			
SAFA content	Water	1	128.0	128.01	3.492	0.070	Two-way
	Diet	1	174.1	174.12	4.750	0.036	ANOVÁ
	Water × Diet	1	49.9	49.87	1.360	0.251	
	Residuals	36	1319.7	36.66			
MUFA content	Water	1	61.4	61.44	0.965	0.333	Two-way
	Diet	1	197.4	197.37	3.099	0.087	ANOVA
	Water × Diet	1	190.6	190.55	2.992	0.092	
	Residuals	36	2293.0	63.69			
PUFA content	Water	1	16.6	16.55	0.865	0.358	Two-way
	Diet	1	52.6	52.59	2.749	0.106	ANOVA
	Water × Diet	1	33.7	33.69	1.761	0.193	
	Residuals	36	688.7	19.13			
FA composition	water	1	0.012946	0.05297	2.312	0.111	PERMANOVA
of gammarids	Diet	1	0.020477	0.08379	3.656	0.047	
-	Water × Diet	1	0.009353	0.03827	1.670	0.193	
	Residuals	36	0.244392	0.82497			


2068 835 Table 1 ANOVA-tables for all gammarid-related endpoints during the long-term feeding



The importance of diet-related effects of the antibiotic ciprofloxacin on the leaf-shredding invertebrate *Gammarus fossarum* (Crustacea; Amphipoda)

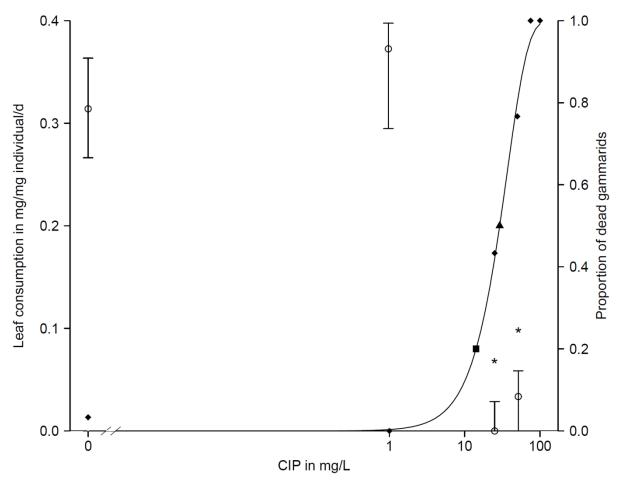
Marco Konschak^{a,*}, Jochen P. Zubrod^{a,b}, Patrick Baudy^a, Patrick Fink^{c,d}, Kilian Kenngott^a, Simon Lüderwald^a, Katja Englert^a, Cynthia Jusi^a, Ralf Schulz^{a,b}, Mirco Bundschuh^{a,e,**}

^aiES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße7, D-76829 Landau, Germany

^bEußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857 Eußerthal, Germany

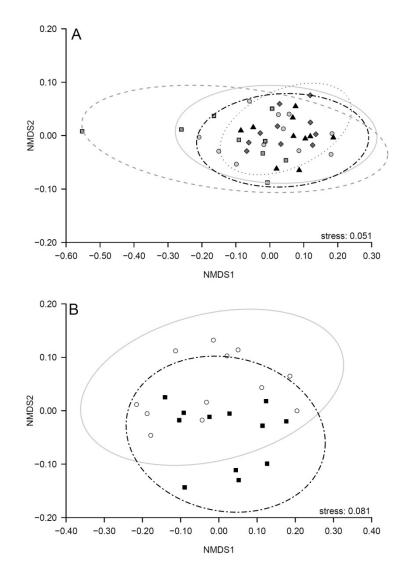
^cAquatic Chemical Ecology, Institute for Zoology, University of Cologne, Zülpicher Straße47b, D-50674 Köln, Germany

^dHelmholtz-Centre for Environmental Research – UFZ, Department River Ecology and Department Aquatic Ecosystem Analysis, Brückstrasse 3a, 39114 D-Magdeburg, Germany


^eDepartment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007, Uppsala, Sweden

AUTHOR INFORMATION

Corresponding Authors


Marco Konschak* & Mirco Bundschuh** iES Landau, Institute for Environmental Science University of Koblenz-Landau Fortstraße 7 76829 Landau/Palatinate Germany Email: *konschak@uni-landau.de; **bundschuh@uni-landau.de

Preliminary feeding activity assay with Gammarus fossarum

Figure S1 Median leaf consumption (open circles with 95% CIs; n = 30) of *G. fossarum* and proportion of dead gammarids (solid diamonds) when exposed to increasing ciprofloxacin (CIP) concentrations (0, 1, 25, 50, 75, 100 mg/L) for seven days. Moreover, the model with the best fit for mortality (see Table S2) as well as the LC₂₀ and LC₅₀ values (solid square = 14 mg/L [95% CI 9.5 – 19] and triangle = 29 mg/L [95% CI 24.5 – 34], respectively) are displayed. Asterisks indicate a statistically significant difference relative to the control. The experiments were statistically evaluated using Wilcoxon rank-sum tests (*p*-values were adjusted using Bonferroni's adjustment for multiple comparisons).

Multivariate evaluation of the fatty acid composition of gammarids and leaves during the long-term feeding assay

Figure S2 Non-metric multidimensional scaling (NMDS) plots for the NLFA composition of **A** gammarids subjected to four treatments during the long-term feeding assay with 500 μ g CIP/L: a CIP-free control (i.e., Control; light grey circles), gammarids being directly exposed to CIP (i.e., Water; grey squares), gammarids receiving leaves conditioned in the presence of CIP (i.e., Diet; dark grey diamonds), and a combination of both treatments (i.e., Combined; black triangles) and **B** leaf material conditioned under control conditions (white circles) and in the presence of 500 μ g CIP/L (black squares) during the long-term feeding assay. Stress values are provided as a measure of "goodness-of-fit" for NMDS with reasonable fits indicated when below 0.2 (Clarke, 1993) and 95% confidence ellipses (based on standard deviations) denote the dispersion of the data of each treatment.

Results of antibiotic analyses

Table S1 Nominal and measured (means with 95% CIs) CIP concentrations for the respective bioassays with the respective lowest calibration level (LCL).

Assay	Test medium	Treatment	LCL (µg/L)	Nominal (µg/L)	Fresh medium (µg/L)	3-day-old medium (µg/L)
Feeding activity	SAM-5S	Control	0.50	0	<lcl< td=""><td>-</td></lcl<>	-
5		CIP		500	629.0 (484.1 to 774.5)	-
				24500	25100.8 (20168.3 to 30033.4)	-
Food choice	Conditioning	Control	1.00	0	<lcl< td=""><td>-</td></lcl<>	-
		CIP		20	19.77 (5.81 to 33.72)	-
				2500	2460.7 (1945.0 to 2868.3)	-
Long-term	Conditioning	Control	1.00	0	<lcl< td=""><td>-</td></lcl<>	-
feeding		CIP		500	445.3 (417.3 to 473.3)	-
	SAM-5S	Control	1.00	0	<lcl< td=""><td>-</td></lcl<>	-
		Water		500	408.1 (320.0 to 495.2)	271.6 (255.0 to 288.3)
		Diet		-	-	18.76 (14.49 to 23.03)
		Combined		500	See Water	286.7 (264.5 to 309.0)

Concentration-response models for feeding activity data

Table S2 Models used for concentration-response modeling and their respective coefficients

 for each feeding activity assay.

Test	Endpoint	Model	Parameter	'S ^a	
Preliminary experiment	Mortality	Weibull (type 2 with 2 parameters)	b=1.57	e=36807.35	-
Main experiment	Leaf consumption	Log-logistic (type 2 with 3 parameters)	b=0.559	d=0.16	e=1.854
	Mortality	Log-logistic (type 2 with 2 parameters)	b=-3.84	e=13.65	-

^a Parameterization according to Ritz and Streibig (2005)

Statistical evaluations of the data of the respective bioassay

Table S3 Mortality of test organisms and group medians (with 95% CIs) for leaf consumption for the main experiment of the two feeding activity assays (n = 30). Moreover, statistical tests used as well as *p*-values from statistical comparisons of CIP treatments with the control (*p*values below 0.05 are printed in bold) and effect concentrations resulting in 20 and 50% of mortality and inhibition of leaf consumption (LC₂₀/EC₂₀ and LC₅₀/EC₅₀ values) in mg CIP/L (with 95% CIs) for mortality and leaf consumption are shown.

Endpoint	Concen- tration (mg/L)	Mortality (%) or Median	±95% CI	Statistical test	<i>p</i> -value (after Bonferroni adjustment)	LC_{20} or EC_{20}	LC ₅₀ or EC ₅₀
Mortality	0	6.7	0.82 to 22.07	Proportion		9.5	13.6
	0.5	0	0.00 to 11.57	test	1.000	(7.6 to	(12.2 to
	6.5	6.7	0.82 to 22.07		1.000	11.4)	15.0)
	12.5	40	22.66 to 59.40		0.003		
	18.5	80	61.43 to 92.29		<0.001		
	24.5	86.7	69.28 to 96.24		<0.001		
Leaf	0	0.16	0.14 to 0.21	Wilcoxon		0.5	6.4
consumption	0.5	0.13	0.10 to 0.15	rank-sum	0.134	(0.4 to	(5.8 to
	6.5	0.08	0.05 to 0.12		<0.001	0.7)	7.0)
	12.5	0.07	0.05 to 0.13		0.002		
	18.5	0.05	0.01 to 0.12		<0.001		
	24.5	0.03	0.02 to 0.05		0.003		

Table S4 Number of analyzed replicates and group means or medians (with 95% CIs) for the endpoints analyzed during the food choice assay. Moreover, statistical tests used as well as *p*-values from statistical comparisons of CIP treatments with the respective control are shown. All *p*-values below 0.05 are printed in bold.

Endpoint	Concentration (µg/L)	п	Median	±95% CI	Statistical test	<i>p</i> -value
Leaf	0 (for 20)	42	0.61	0.46 to 0.78	Student's t	0.127
consumption in	20		0.50	0.40 to 0.62	(paired)	
mg/mg individual/d	0 (for 100)	43	0.41	0.12 to 0.76		0.477
marviaual/a	100		0.52	0.46 to 0.68		
	0 (for 500)	44	0.27	0.14 to 0.44		0.396
	500		0.32	0.15 to 0.41		
	0 (for 2500)	43	0.22	0.11 to 0.32		0.218
	2500		0.09	0.04 to 0.18		
Microbial leaf	0 (for 20)	44	0.12	0.09 to 0.17	Wilcoxon	1.000
decomposition in mg/d	20		0.17	0.11 to 0.21	signed-rank	
	0 (for 100)	44	0.19	0.17 to 0.22		<0.001
	100		0.22	0.19 to 0.24		
	0 (for 500)	44	0.21	0.19 to 0.22		0.986
	500		0.20	0.19 to 0.23		
	0 (for 2500)	44	0.23	0.21 to 0.26		<0.001
	2500		0.19	0.16 to 0.22		
Fungal	0	7	0.28	0.16 to 0.36	Dunnett's t	
biomass in mg	20	7	0.31	0.15 to 0.37		0.634
ergosterol/g leaf dry mass	100	6	0.21	0.13 to 0.28		0.298
ical di y mass	500	7	0.13	0.11 to 0.19		<0.001
	2500	7	0.12	0.06 to 0.15		<0.001
Bacterial	0	7	0.52	0.14 to 0.88	Wilcoxon rank-	
density in 10 ⁹	20	7	0.22	0.11 to 0.52	sum (with	0.389
cells/g leaf dry mass	100	7	0.39	0.29 to 0.78	Bonferroni adjustment)	1.000
IIIass	500	7	0.57	0.19 to 0.81	aujustinent)	1.000
	2500	7	0.29	0.09 to 0.55		1.000
Fungal spores/mg leaf	0	5	40.72	12.66 to 102.21	Wilcoxon rank- sum (with	
dry mass	20	7	11.68	4.49 to 180.62	Bonferroni	0.808
	100	7	6.90	4.13 to 11.57	adjustment)	0.020
	500	5	1.88	1.31 to 14.51		0.063
	2500	5	3.88	1.34 to 146.33		0.603
Hyphomycete	0	5	-	-	PERMANOVA	
community	20	7	-	-	(with	0.703
composition	100	7	-	-	Bonferroni adjustment)	0.012
	500	5	-	-	aujustiiteitt <i>)</i>	0.030
	2500	5	-	-		0.069

Table S5 Median number of sporulating fungal species per sample (with minima & maxima). SIMPER displays the contribution of spores (i.e., fungal spores/mg leaf dry mass) of each species to the dissimilarities between fungicide treatments and the respective control.

Concen- tration (µg/L)	Sporulating fungal species	SIMPER results with percentage contribution
0	3 (2 to 4)	
20	2 (2 to 4)	F (45); AA (17); TM (12); NL (11); U (10); TA (4); CL (0); FF (0)
100	2 (0 to 4)	F (58); U (11); NL(11); TM (10); TA (5); AA (5); CL (0); FF (0)
500	1 (0 to 2)	F (62); NL (10); TM (8); U (8); FF (7); TA (3); AA (2); CL (0)
2500	2 (2 to 4)	F (53); TM (18); NL (11); TA (8); U (7); FF (2); AA (2); CL (0)

Alatospora acuminata (AA); Clavatospora longibrachiata (CL); Flagellospora fusarioides (FF); Fusarium sp. (F); Neonectria lugdunensis (NL); Tetracladium marchalianum (TM); Tricladium angulatum (TA); Unknown (U)

Table S6 Number of analyzed replicates and group medians (with 95% CIs) of parameters describing leaf quality used during the long-term feeding assay. Moreover, the statistical tests used for the respective endpoint as well as the *p*-value from the statistical comparison of 500 μ g CIP/L with the control is shown. All *p*-values below 0.05 are printed in bold.

Endpoint	Concen- tration (µg/L)	n	Median	±95% CI	Statistical test	<i>p</i> -value
Fungal biomass in mg ergosterol/g leaf dry mass	0	12	0.02	0.00 to 0.06	Wilcoxon rank-	
	500	12	0.07	0.02 to 0.12	sum	0.032
Bacterial density in 10 ⁹ cells/g leaf dry mass	0	12	0.53	0.39 to 0.91	Student's t	
	500	12	0.39	0.27 to 0.76	(unpaired)	0.266
Total NLFA content in mg/g leaf dry mass	0	12	5.25	3.99 to 7.77	Student's t	
	500	12	4.69	3.80 to 6.40	(unpaired)	0.399
Sat. NLFA content in mg/g	0	12	1.98	1.31 to 2.92	Student's t	
leaf dry mass	500	12	1.99	1.50 to 2.49	(unpaired)	0.933
Monounsat. NLFA content	0	12	0.33	0.29 to 0.39	Student's t	
in mg/g leaf dry mass	500	12	0.36	0.33 to 0.44	(unpaired)	0.339
Polyunsat. NLFA content	0	12	2.82	2.37 to 4.41	Student's t	
in mg/g leaf dry mass	500	12	2.44	1.90 to 3.18	(unpaired)	0.183
FA composition of leaves	0	12	-	-	PERMANOVA	
	500	12	-	-		0.081

Neutral lipid fatty acid (NLFA); Saturated neutral lipid fatty acid (Sat. NLFA); Monounsaturated neutral lipid fatty acid (Monounsat. NLFA); Polyunsaturated neutral lipid fatty acid (Polyunsat. NLFA); Fatty acid composition (FA composition)

Table S7 Number of analyzed replicates and median number of fungal spores per mg dry mass of leaf material (with 95% CIs) of each detected species during the long-term feeding assay. Since only few species and spores were detected on leaves, all medians and most of the respective confidence limits are zero. Furthermore, as the data contains too many identical values (i.e. zeros), the *p*-values originating from statistical comparisons with the respective control are not reliable and thus not reported.

Species	Concen- tration (µg/L)	n	Median	±95% CI
Alatospora	0	12	0.00	0.00 to 0.00
acuminata	500	12	0.00	0.00 to 0.00
Mycocentro-	0	12	0.00	0.00 to 0.00
spora clavata	500	12	0.00	0.00 to 0.00
Neonectria	0	12	0.00	0.00 to 0.00
lugdunensis	500	12	0.00	0.00 to 16.34

Table S8 ANOVA-tables for all gammarid-related NLFAs (n = 10) during the long-term feeding assay. All *p*-values <0.05 are printed in bold.

Fatty acid	Factor	df1	SS	MS	F-value	<i>p</i> -value
12:0	Water	1	0.2147	0.2147	3.174	0.083
	Diet	1	0.3722	0.3722	5.501	0.025
	Water \times Diet	1	0.0548	0.0548	0.810	0.374
	Residuals	36	2.4356	0.0677		
13:0	Water	1	593	592.9	4.877	0.034
	Diet	1	360	360.0	2.961	0.094
	Water \times Diet	1	1	0.9	0.007	0.932
	Residuals	36	4376	121.6		
14:0	Water	1	10.43	10.425	4.072	0.051
	Diet	1	10.87	10.87	4.246	0.047
	Water \times Diet	1	4.46	4.455	1.740	0.196
	Residuals	36	92.18	2.56		
15:0	Water	1	0.0319	0.03190	1.724	0.198
	Diet	1	0.0830	0.08302	4.486	0.041
	Water \times Diet	1	0.0055	0.0055	0.297	0.589
	Residuals	36	0.6662	0.01851		
16:0	Water	1	42.1	42.07	3.047	0.089
	Diet	1	58.8	58.8	4.259	0.046
	Water \times Diet	1	19.6	19.6	1.419	0.241
	Residuals	36	497.1	13.81		
17:0	Water	1	0.02618	0.02618	3.608	0.066
	Diet	1	0.04691	0.04691	6.466	0.015
	Water \times Diet	1	0.00111	0.00111	0.154	0.697
	Residuals	36	0.26119	0.00726		

Fatty acid		df1	SS	MS	F-value	<i>p</i> -value
18:0	Water	1	0.534	0.5342	1.220	0.277
	Diet	1	1.165	1.1645	2.659	0.112
	Water \times Diet	1	0.026	0.0265	0.060	0.807
	Residuals	36	15.765	0.4379		
l4:1ω5	Water	1	0.001126	0.0011264	1.911	0.175
	Diet	1	0.001573	0.0015727	2.669	0.111
	Water \times Diet	1	0.002290	0.0022901	3.886	0.056
	Residuals	36	0.021214	0.0005893		
6:1ω7	Water	1	2.728	2.7277	3.740	0.061
	Diet	1	2.311	2.3109	3.168	0.084
	Water × Diet	1	1.346	1.3455	1.845	0.183
	Residuals	36	26.259	0.7294		
8:1w7	Water	1	0.994	0.9939	3.794	0.059
	Diet	1	0.635	0.6353	2.425	0.128
	Water × Diet	1	0.203	0.2031	0.775	0.384
	Residuals	36	9.431	0.262		
8:1w9	Water	1	27.0	26.97	0.581	0.451
	Diet	1	131.1	131.06	2.825	0.101
	Water × Diet	1	138.5	138.48	2.985	0.093
	Residuals	36	1669.9	46.39		
20:1ω9	Water	1	0.0014	0.00139	0.037	0.849
	Diet	1	0.0595	0.05948	1.582	0.217
	Water × Diet	1	0.1426	0.14259	3.792	0.059
	Residuals	36	1.3536	0.0376		
8:2ω6	Water	1	0.10	0.100	0.030	0.863
	Diet	1	5.43	5.428	1.644	0.208
	Water × Diet	1	3.72	3.72	1.127	0.295
	Residuals	36	118.83	3.301		
8:3ω3	Water	1	13.03	13.028	1.777	0.191
	Diet	1	20.42	20.418	2.785	0.104
	Water × Diet	1	11.12	11.119	1.516	0.226
	Residuals	36	263.95	7.332		
8:3@6	Water	1	0.000001	0.0000007	0.001	0.971
	Diet	1	0.001596	0.0015957	3.052	0.089
	Water × Diet	1	0.000001	0.00000006	0.001	0.973
	Residuals	36	0.018824	0.0005229		
0:2ω6	Water	1	0.0000	0.000011	0.001	0.981
	Diet	1	0.0139	0.013877	0.685	0.413
	Water × Diet	1	0.0268	0.026824	1.323	0.258
	Residuals	36	0.7297	0.020021		
20:3ω3	Water	1	0.0067	0.00666	0.129	0.722
	Diet	1	0.0096	0.00958	0.125	0.670
	Water × Diet	1	0.1245	0.12451	2.403	0.130
	Residuals	36	1.8651	0.05181		

Table S8 continued.

Fatty acid	Factor	df1	SS	MS	F-value	<i>p</i> -value
20:4ω6	Water	1	0.00007	0.000073	0.020	0.888
	Diet	1	0.00196	0.001958	0.547	0.465
	Water × Diet	1	0.00101	0.001007	0.281	0.599
	Residuals	36	0.12897	0.003582		
20:5ω3	Water	1	168	168.1	1.290	0.264
	Diet	1	462	462.4	3.548	0.068
	Water \times Diet	1	8	8.1	0.062	0.805
	Residuals	36	4691	130.3		
22:6w3	Water	1	0.000343	0.0003428	0.561	0.459
	Diet	1	0.001308	0.0013076	2.138	0.152
	Water \times Diet	1	0.001236	0.0012357	2.021	0.164
	Residuals	36	0.022015	0.0006115		

Table S8 continued.

Table S9 Group medians (with 95% CIs, n = 12) of NLFAs on the leaves (mg/g dry mass of leaf material) conditioned in the absence or presence of CIP during the long-term feeding assay. Moreover, the statistical test used for the respective NLFA as well as the *p*-value from the statistical comparison of 500 µg CIP/L with the control is shown. All *p*-values below 0.05 are printed in bold.

Fatty acid	Concen- tration (µg/L)	Median	±95% CI	Statistical test	<i>p</i> -value
11:0	0	0.00	0.00 to 0.00	Wilcoxon	
	500	0.00	0.00 to 0.01	rank-sum	0.106
12:0	0	0.03	0.03 to 0.05	Wilcoxon	
	500	0.02	0.02 to 0.04	rank-sum	0.017
13:0	0	0.00	0.00 to 0.00	Student's t	
	500	0.00	0.00 to 0.00	(unpaired)	0.935
14:0	0	0.09	0.08 to 0.11	Student's t	
	500	0.08	0.06 to 0.11	(unpaired)	0.335
15:0	0	0.01	0.01 to 0.01	Wilcoxon	
	500	0.01	0.01 to 0.01	rank-sum	0.242
16:0	0	1.10	0.64 to 1.45	Student's t	
	500	0.76	0.59 to 1.19	(unpaired)	0.085
17:0	0	0.04	0.03 to 0.06	Student's t	
	500	0.04	0.03 to 0.05	(unpaired)	0.156
18:0	0	0.12	0.07 to 0.13	Student's t	
	500	0.11	0.09 to 0.16	(unpaired)	0.502
20:0	0	0.19	0.14 to 0.44	Wilcoxon	
	500	0.40	0.29 to 0.48	rank-sum	0.078
21:0	0	0.02	0.01 to 0.02	Wilcoxon	
	500	0.02	0.02 to 0.03	rank-sum	0.143

Fatty acid	Concen- tration (µg/L)	Median	±95% CI	Statistical test	<i>p</i> -value
22:0	0	0.24	0.18 to 0.48	Student's t	
	500	0.38	0.31 to 0.49	(unpaired)	0.113
23:0	0	0.02	0.01 to 0.02	Wilcoxon	
	500	0.02	0.02 to 0.02	rank-sum	0.225
24:0	0	0.05	0.04 to 0.07	Wilcoxon	
	500	0.07	0.05 to 0.08	rank-sum	0.052
14:1ω5	0	0.00	0.00 to 0.00	Wilcoxon rank-sum	
	500	0.00	0.00 to 0.00		0.101
16:1ω7	0	0.13	0.10 to 0.19	Wilcoxon	
	500	0.18	0.15 to 0.25	rank-sum	0.160
18:1w7	0	0.09	0.07 to 0.11	Student's t	
	500	0.09	0.08 to 0.10	(unpaired)	0.851
18:1ω9	0	0.11	0.07 to 0.15	Student's t	
	500	0.08	0.07 to 0.12	(unpaired)	0.257
20:1ω9	0	0.00	0.00 to 0.01	Wilcoxon	
	500	0.01	0.00 to 0.01	rank-sum	0.590
18:2ω6	0	0.49	0.34 to 0.75	Student's t	
	500	0.37	0.27 to 0.60	(unpaired)	0.169
18:3 ω 3	0	2.28	1.98 to 3.68	Student's t	
	500	1.98	1.54 to 2.55	(unpaired)	0.169
20:2ω6	0	0.00	0.00 to 0.00	Wilcoxon	
	500	0.00	0.00 to 0.00	rank-sum	0.319
20:4ω6	0	0.00	0.00 to 0.00	Wilcoxon	
	500	0.01	0.00 to 0.01	rank-sum	0.024
22:2ω6	0	0.06	0.04 to 0.07	Student's t	
	500	0.07	0.05 to 0.11	(unpaired)	0.060

Table S9 continued.

References

Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Ecol. 18, 117–143.

Ritz, C., Streibig, J.C., 2005. Bioassay analysis using R. J. Stat. Soft. 12, 1–22.