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25 Abstract

26 Antibiotics may constitute a risk for aquatic detritivorous macroinvertebrates (i.e., shredders) 

27 via waterborne and dietary antibiotic exposure. In addition, antibiotics can alter the food 

28 quality for shredders mediated by shifts in leaf-associated decomposer (i.e., aquatic fungi and 

29 bacteria) communities. However, little is known about the relative importance of the 

30 waterborne and dietary effect pathway. Therefore, we followed a tiered testing approach 

31 aimed at assessing the relative importance of these effect pathways. We employed the 

32 antibiotic ciprofloxacin (CIP) and the shredder Gammarus fossarum as model stressor and test 

33 species, respectively. In a first step, we assessed the short-term waterborne toxicity of CIP 

34 using survival and leaf consumption of G. fossarum as response variables. Alterations in the 

35 leaf-associated decomposer community, which may be reflected by their palatability, were 

36 assessed using food choice assays. Finally, we conducted a 2 × 2-factorial experiment over 24 

37 days assessing the pathways individually and combined using energy processing (i.e., leaf 

38 consumption and feces production), growth and energy storage (i.e., neutral lipid fatty acids) 

39 as variables. Short term waterborne exposure indicated low toxicity with LC50 and EC50 

40 values of 13.6 and 6.4 mg CIP/L, respectively. At the same time, shredders did not prefer any 

41 leaf material during the food choice assay. However, the fungal community was significantly 

42 affected in the highest CIP-treatments (0.5 and 2.5 mg/L) suggesting an altered food quality 

43 for shredders. This assumption is supported by the results of the long-term assay. At 0.5 mg 

44 CIP/L, gammarids’ leaf consumption, growth and energy storage were increased when 

45 subjected via the dietary pathway, which was linked to changes in the leaf-associated 

46 microbial community. Our data highlight the importance of dietary effect pathways for effects 

47 on shredders, potentially impacting energy dynamics in detritus-based stream ecosystems.

48
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56 1. Introduction

57 Leaf litter is an important nutrient and energy source for detritus-based stream ecosystems 

58 (Nelson and Scott, 1962; Minshall, 1967, Fisher and Likens, 1973). Leaf-decomposing 

59 microorganisms (i.e., bacteria and fungi) as well as macroinvertebrate detritivores (i.e., 

60 shredders) play a pivotal role in its breakdown (Gessner et al., 1999; Graça, 2001). In this 

61 context, microbial decomposers (particularly aquatic hyphomycetes – a polyphyletic group of 

62 asexual fungi; Baschien et al., 2006) provide two important functions: first, they make organic 

63 carbon accessible for local and downstream communities (Vannote et al., 1980) by degrading 

64 leaf litter (Hieber and Gessner, 2002; Baldy et al., 2007). Second, they increase the nutritional 

65 quality and palatability of leaf litter for shredders (i.e., microbial conditioning; Bärlocher and 

66 Kendrick, 1975b, Graça et al., 1993; Aßmann et al., 2011). Shredders, in turn, play a key role 

67 in transforming leaf litter into fine particulate organic matter, an important food source for 

68 collectors (Bundschuh and McKie, 2016), and are important prey for higher trophic levels 

69 (MacNeil et al., 1999).

70 The functional integrity of these aquatic decomposer-detritivore systems can, however, be 

71 influenced by chemical stressors (e.g., Rasmussen et al., 2012, Peters et al., 2013). As 

72 antibiotics, driven by their mode of action, affect bacteria (Brandt et al., 2015), they can 

73 influence leaf-associated microbial communities (Maul et al., 2006; Rico et al., 2014a). 

74 Effects on bacteria, may release aquatic fungi from competitive pressure for the same 

75 resources (Bundschuh et al., 2009) potentially altering leaves’ nutritious quality and 

76 palatability for shredders (i.e., dietary effect pathway; Hahn and Schulz, 2007, Bundschuh et 

77 al., 2009). Furthermore, shredders may suffer from exposure to antibiotics via the water phase 

78 (i.e., waterborne effect pathway; Bartlett et al., 2013). However, relatively little is known 

79 about the relevance of the dietary and waterborne effect pathway for antibiotics (but see for 

80 fungicides e.g., Zubrod et al., 2015c). Recently, Bundschuh et al. (2017) reported effects of an 
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81 antibiotic mixture on the feeding activity and physiology of a key shredder (i.e., Gammarus 

82 fossarum (Crustacea; Amphipoda)) in low-order streams of the northern hemisphere (Piscart 

83 et al., 2009) when subjected to both effect pathways. Although it was hypothesized that the 

84 dietary pathway was the main driver for these effects, a formal assessment of the effect 

85 pathways’ relative importance is pending.

86 By targeting this knowledge gap, we focused on the model antibiotic ciprofloxacin (CIP; a 

87 DNA gyrase and topoisomerase IV inhibitor; Hooper and Wolfson, 1988) and its effects on G. 

88 fossarum. CIP was selected as it belongs to the group of fluoroquinolones, which have a broad 

89 range of applications in human and veterinary medicine (van Boeckel et al., 2014, European 

90 Medicines Agency, 2018). Furthermore, due to the high excretion of the non-metabolized 

91 parent compound through urine and feces (Mompelat et al., 2009) and its persistence during 

92 the wastewater treatment process (Batt et al., 2006), CIP is frequently detected at relatively 

93 high concentrations (up to the lower µg/L range) in surface waters compared to other 

94 antibiotics and is, according to the classification system of the European Commission, toxic to 

95 very toxic for aquatic organisms (Danner et al., 2019). Using a tiered ecotoxicological testing 

96 approach, we first evaluated the waterborne toxicity of CIP recording gammarids’ survival 

97 and feeding activity as response variable. Subsequently, a food choice assay was used to 

98 assess effects on the leaf-associated microbial community and the resulting impact on leaf 

99 palatability for G. fossarum. The shredder’s food choice was employed as an indicator of 

100 resource quality (i.e., diet-related effects). Finally, we conducted a 24-day feeding assay to 

101 evaluate long-term waterborne and diet-related CIP effects on gammarids’ energy processing 

102 (leaf consumption and feces production), growth and fatty acids of triacylglycerols (an 

103 important energy storage in invertebrates; Azeez et al., 2014) using a full-factorial (2 × 2) test 

104 design.
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105 We expected that G. fossarum would be relatively insensitive towards CIP via waterborne 

106 exposure (cf. Park and Choi, 2008, Rico et al., 2014b) due to the high target specificity of 

107 antibiotics (Hooper and Wolfson, 1988). We, however, hypothesized that CIP would impair 

108 leaf-associated bacteria, which in turn release leaf-associated fungi from the competitive 

109 pressure by bacteria (Gulis and Suberkropp, 2003; Schneider et al., 2010). This would result 

110 in an increased fungal growth and hence increased palatability and resource quality for G. 

111 fossarum (Bundschuh et al., 2009), thus positively affecting the shredders’ energy processing, 

112 growth and energy storage during the long-term feeding assay.

113

114 2. Materials and methods

115 2.1. Study designs 

116 The assays were conducted in 2015 and 2016 with gammarids of the same population 

117 consisting of the cryptic lineage B (Feckler et al., 2012) and followed largely established 

118 protocols (Zubrod et al., 2014; . Bundschuh et al., 2009; Zubrod et al., 2015b). For each assay, 

119 black alder (Alnus glutinosa (L.) GAERTN.) leaves were colonized with a near-natural 

120 microbial community serving as inoculum for the leaf material, which was used as food 

121 source for gammarids (Fig. 1). A 7-day feeding activity assay was conducted in September 

122 2015 to assess the acute waterborne CIP toxicity towards G. fossarum. The assay comprised 

123 six CIP concentrations (incl. a control) with 30 replicates each (cf. Zubrod et al., 2014; Fig 

124 1.A3). Nominal CIP concentrations (i.e., 0.5, 6.5, 12.5, 18.5, 24.5 mg/L) were derived from a 

125 range-finding test (a preliminary test to determine the concentration range before conducting 

126 the definite test). Although CIP concentrations are above field relevant levels, they were 

127 selected to determine toxicity parameters (e.g., the half-maximal effect concentration, i.e., 

128 EC50), which supported the selection of concentrations for the following assays as well as the 

129 interpretation of their data. In order to assess CIP-induced effect on leaves’ food quality for 
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130 shredders through changes in the leaf associated microbial communities, a 24-hour food 

131 choice assay was performed in September 2015. The assay consisted of five CIP 

132 concentrations (i.e., 0, 20, 100, 500, 2500 µg/L) with 49 replicates each (cf. Bundschuh et al., 

133 2009; Fig. 1B3). The concentrations were based on reported concentrations of antibiotics 

134 showing significant effects on leaf-associated microorganisms (e.g., Maul et al., 2006, 

135 Bundschuh et al., 2009), while high concentrations were thought to enable the establishment 

136 of a dose-response relationship. Finally, an experiment using a 2 × 2-factorial test design was 

137 conducted in February 2016 to address the long-term waterborne and diet-related CIP effects 

138 on energy processing, growth and energy storage of G. fossarum. Therefore, shredders were 

139 subjected to (I) CIP-free test medium and non-exposed leaves, (II) waterborne CIP exposure 

140 and non-exposed leaves, (III) CIP-free test medium and CIP exposed leaves, (IV) waterborne 

141 CIP exposure and CIP exposed leaves (Fig. 1.C3). Each treatment consisted of 65 replicates 

142 with the CIP concentration (i.e., 0.5 mg/L) being selected on the basis of the other two 

143 experiments, namely to avoid gammarid mortality but still having impacts in leaf associated 

144 microorganisms. 

145 2.2. Test substance

146 For the preparation of stock solutions, CIP (98%, Acros Organics, Geel, Belgium) was 

147 dissolved in the respective test medium. Afterwards, the respective nominal concentrations 

148 were achieved (Table S1) by serial dilution in the respective test medium. Nominal CIP 

149 concentrations were verified by random sampling from three (feeding activity and food choice 

150 assay) or four (long-term feeding assay) replicates of the control, the lowest and highest test 

151 concentration at test start and after three days (only for long-term feeding assay). Samples 

152 were stored at -20°C until analyses using an ultra-high-performance liquid chromatography 

153 system (Thermo Fischer Sientific, Bremen, Germany). Concentrations were determined via 

154 external standard calibration using matrix-aligned standards (cf. Zubrod et al., 2015c). As all 
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155 measured CIP concentrations, except for the lowest treatment of the feeding activity assay, 

156 deviated by less than 20 % from nominal concentrations (Table S1), the latter are reported 

157 throughout this manuscript.

158 2.3. Sources of leaves, microorganisms, and gammarids

159 As described in Bundschuh et al. (2011), black alder leaves were handpicked from a group of 

160 trees near Landau, Germany (49°20´N; 8°09´E) in October 2015 and stored at -20°C. Before 

161 the start of each assay, defrosted black alder leaves were colonized with a near-natural lotic 

162 microbial community by deploying leaf material in mesh bags (mesh size ~1 mm) for 14 days 

163 in the stream Rodenbach, Germany (49°33´N; 8°02´E) upstream of agricultural land use and 

164 effluent discharges. Back in the laboratory, the microbially colonized leaves were combined 

165 with unconditioned black alder leaves in a stainless-steel container filled with 30 L of 

166 conditioning medium (Dang et al., 2005) and left at 16 ± 1°C, under permanent aeration and 

167 in total darkness for further 14 days before being used as microbial inoculum.

168 As described in Zubrod et al. (2010), seven days before the start of each assay, individuals of 

169 G. fossarum were collected in the stream Hainbach, Germany (49°14´N; 8°03´E) upstream of 

170 agricultural land use and effluent discharges. Back in the laboratory, gammarids were divided 

171 into size classes via a passive separation technique (Franke, 1977). To reduce within-

172 treatment variation, only males (sex was identified by position in pre-copula pairs) with a 

173 cephalothorax length of 1.2 – 1.6 mm and uninfested by acanthocephalan parasites (Pascoe et 

174 al., 1995; Fielding et al., 2003) were used for the assays. Test organisms were gradually 

175 acclimatized at 16 ± 1°C in total darkness to the amphipod culture medium SAM-5S 

176 (Borgmann, 1996), which was used as test medium. Gammarids were fed ad libitum with 

177 microbially conditioned black alder leaves. To stimulate their appetite for the food choice 

178 assays, gammarids were not fed 96 hours before test start.
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179 2.4. Feeding activity assay

180 Leaf discs of 20 mm diameter were cut from unconditioned black alder leaves using a cork 

181 borer, inserted into mesh bags and conditioned at 16 ± 1°C in total darkness by using 15-L 

182 aquaria containing 12 L of conditioning medium and 50 g (wet weight) of microbial inoculum 

183 as described by Zubrod et al. (2014). After 10 days, leaf discs were dried at 60°C for 

184 24 hours, autoclaved (to avoid unintended indirect, diet-related effects on G. fossarum; model 

185 DE-65®, Systec, Linden, Germany), dried again for 24 hours and weighed in sets of two discs 

186 to the nearest 0.01 mg. Before the start of the assay, discs were re-soaked with autoclaved 

187 SAM-5S for 48 hours to reduce buoyancy.

188 The 7-days assay was conducted in total darkness and at 16 ± 1°C. Each replicate comprised a 

189 permanently aerated 250-mL glass beaker containing 200 mL of SAM-5S, a set of two 

190 autoclaved leaf discs, and one gammarid. Five additional beakers were set up without animals 

191 to allow the quantification of microorganism-induced and handling-related leaf mass loss. 

192 After 7 days, dead animals were recorded. Animals and leaf disc remains from replicates with 

193 surviving gammarids were dried and weighed as described above. 

194 2.5. Food choice assay

195 As described by Bundschuh et al. (2009), sets of four leaf discs of 16 mm diameter were cut 

196 from single unconditioned black alder leaves and subsequently dried for 24 hours at 60°C, 

197 weighed individually to the nearest 0.01 mg, and re-soaked with autoclaved SAM-5S for 

198 48 hours. Afterwards, two discs of each set were placed into pockets of an individually 

199 labeled mesh bag and were microbially colonized (at 16 ± 1°C and in total darkness) for 

200 12 days in 5-L aquaria containing 4 L of CIP-free aerated conditioning medium (i.e., control) 

201 and 10 g (wet weight) of microbial inoculum. The remaining two discs of the same set were 

202 conditioned under the same conditions, but in the presence of one of four CIP concentrations 
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203 (n = 7). To ensure a continuous exposure over the 12-day conditioning phase, the conditioning 

204 medium as well as the respective CIP concentration were renewed every third day. At the end 

205 of the conditioning process, leaf discs were rinsed for 30 min in CIP-free SAM-5S and 

206 immediately introduced into the food choice assays or preserved for microbial analyses.

207 Each food choice assay (cf. Bundschuh et al., 2009) comprised 49 crystallization dishes filled 

208 with 100 mL of SAM-5S. In each dish, one gammarid was offered one leaf disc microbially 

209 colonized under control conditions and one disc of the same leaf disc set, which was 

210 colonized in presence of one of the four CIP concentrations. The remaining two leaf discs of 

211 the same set, which were inaccessible for the gammarid in the crystallization dish (see 

212 Bundschuh et al., 2009 for a schematic representation of a feeding arena), served for the 

213 quantification of microbial leaf litter decomposition over the whole experimental duration 

214 (i.e., conditioning phase and food choice assay). Assays lasted for 24 hours and were 

215 performed at 16 ± 1°C in total darkness. At the end of each experiment, surviving animals and 

216 leaf disc remains were dried for 24 hours at 60°C and subsequently weighed to the nearest 

217 0.01 mg. Replicates with gammarids that had died or escaped from the test arena were 

218 excluded from further analyses. 

219 2.6. Long-term feeding assay

220 As described by Zubrod et al. (2015b), leaf strips (~10 × 5 cm) were cut from unconditioned 

221 black alder leaves. Enclosed in mesh bags, the strips were microbially colonized for 12 days 

222 under the same conditions as described for the feeding activity assay in absence (i.e., control) 

223 or presence of 0.5 mg CIP/L (n = 3). The conditioning medium was renewed every third day 

224 to ensure a continuous antibiotic exposure. After 12 days, one set of two leaf discs of 20 mm 

225 diameter was cut from each of the 130 strips per aquarium excluding the leaves’ midrib and 

226 three sets (one per aquarium) were immediately introduced into each test vessel of the assay. 

227 To ensure ad libitum feeding on fresh leaf material over the 24 days, four independent 12-day 
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228 leaf conditionings were started at intervals of 6 days. During each food renewal, additional 

229 leaf discs of 16 mm diameter were cut and preserved for fatty acid and microbial analyses.

230 Using a 2 × 2-factorial test design (cf. Zubrod et al., 2015b), gammarids were either subjected 

231 to a control treatment (Control), to waterborne CIP exposure (Water), a treatment, where the 

232 animals received leaves that were microbially conditioned in the presence of CIP (Diet), or a 

233 combination of the two effect pathways (Combined; see Fig. 1). Replicates of each treatment 

234 (n = 65) comprised a 250-mL glass beaker filled with 200 mL of SAM-5S that was 

235 continuously aerated. Each beaker was equipped with one gammarid kept in a cylindrical 

236 mesh cage made from stainless steel with a mesh size of 0.5 mm (to guarantee a careful 

237 transfer of the animals into new test vessels during medium exchanges). Animals were 

238 allowed to feed on three leaf discs from different sets. The three corresponding leaf discs from 

239 the same sets were deployed in the beakers within rectangular stainless steel mesh cages that 

240 prevented feeding by the gammarids and hence allowed to control for microbial and handling-

241 related leaf mass loss. The two cages were separated by a watch glass to prevent the 

242 interaction of animal’s feces with the leaf discs in the rectangular cage (see Zubrod et al., 

243 2015b for a schematic representation of an assay replicate). Every third day, SAM-5S as well 

244 as the CIP concentration in the respective treatment was renewed, to guarantee a chronic 

245 exposure, and dead animals were recorded and discarded. In addition, to quantify the amount 

246 of gammarids’ feces, the 3-day old SAM-5S containing the animals’ feces was filtered 

247 through pre-weighed glass fiber filters (GF/6, Whatman, Dassel, Germany), which were used 

248 twice within each 6-day interval and stored at 60°C. Every sixth day, leaf disc remains of both 

249 cages were replaced by freshly conditioned leaf discs. Leaf disc remains and filters were dried 

250 and weighed as described above. To correct for changes in filter weight by handling and 

251 microbial and physico-chemical leaf mass loss (as both can cause the formation of fine 

252 particulate organic matter), three additional replicates without test organism were set up per 
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253 treatment. At the end of the experiment, gammarids were shock-frozen in liquid nitrogen and 

254 stored at -80 °C before being freeze-dried and weighed to the nearest 0.01 mg. Replicates 

255 containing dead animals (8, 5, 14 and 8 % in the Control, the Water, the Diet and the 

256 Combined treatment, respectively) were excluded from further statistical analyses.

257 2.7. Microbial analyses

258 To shed light on mechanisms underlying CIP-induced alterations of the microorganism-

259 mediated food quality for Gammarus (i.e., indirect effects), microbial parameters (i.e., 

260 ergosterol content, bacterial densities and hyphomycete community structure) were analyzed. 

261 During the food choice and long-term feeding assay, 15 leaf discs of 16 mm diameter and five 

262 leaf strips, respectively, of each aquarium (i.e., N = 35 = 7 replicates × 5 treatments and N = 

263 24 = 3 replicates × 2 treatments × 4 independent leaf conditionings) were stored at -20°C for 

264 analysis of ergosterol. Moreover, during both assays, three leaf discs (diameter = 16 mm) per 

265 aquarium were preserved in a 2 % formaldehyde/0.1 % sodium pyrophosphate solution and 

266 stored at 4°C for quantification of bacterial densities. Furthermore, for the determination of 

267 the hyphomycete community structure, five leaf discs (diameter = 16 mm) were shaken 

268 (120 rpm) in deionized water for 96 hours (at 16 ± 1°C and in total darkness) to stimulate 

269 sporulation of fungi and preserved in a 2 % formaldehyde/0.5 % polysorbate 80 (Tween® 80, 

270 Carl Roth, Karlsruhe, Germany) solution at 4°C for later analysis. 

271 Ergosterol content was analyzed according to Gessner and Schmitt (1996). This sterol occurs 

272 in cell membranes of Eumycota and is considered as a proxy for leaf-associated fungal 

273 biomass (e.g., Gessner, 2007). Ergosterol was extracted via solid-phase extraction (Sep-Pak® 

274 Vac RC tC18 500 mg sorbent, Waters, Milford, US-MA) and measured by high-performance 

275 liquid chromatography (1200 Series, Agilent Technologies, Santa Clara, US-CA) using a 

276 LiChrospher® 100 RP-18 column (250 mm × 4.6 mm, particle size 5 µm, Merck Millipore, 
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277 Billerica, US-MA). Ergosterol concentration was quantified via external calibration curve and 

278 normalized to leaf dry mass.

279 Bacterial densities were quantified according to Buesing (2007). Briefly, bacterial cells were 

280 detached from the discs using ultrasonication and subsequently stained via SYBR® Green II 

281 (Molecular Probes, Eugene, US-OR). The number of cells was determined by using a 

282 fluorescence microscope and the software AxioVision (Axio Scope.A1, AxioCam MRm and 

283 AxioVision Rel. 4.8, Carl Zeiss MicroImaging, Jena, Germany). The mean number of 

284 20 digital photographs was extrapolated to the total sample volume and normalized to leaf dry 

285 mass by drying and weighing (as described above) of three additional leaf discs per sample 

286 from the same aquarium and the same leaf strips for the food choice and long-term feeding 

287 assay, respectively. 

288 Following Pascoal and Cássio (2004), the hyphomycete community structure was determined 

289 by identifying species via spore morphology. Therefore, fungal spores were fixed on a 

290 cellulose filter (S-Pak Filters 0.45 µm, 47 mm white gridded, Merck Millipore, Billerica, US-

291 MA) and stained with a cotton blue solution. Subsequently, spores were identified using a 

292 microscope as well as various identification keys (e.g., Ingold, 1975). Afterwards spores were 

293 extrapolated to the total sample volume and normalized to leaf dry mass.

294 2.8. Fatty acid analyses

295 We quantified triacylglycerol (TAG) fatty acids (i.e., neutral lipid fatty acids, NLFAs) in 

296 gammarids, as they constitute the major energy storage in invertebrates (Azeez et al., 2014) 

297 and their composition can be affected relatively quickly (compared to phospholipid fatty 

298 acids) by changes in the diet (Iverson, 2012). Additionally, we analyzed NLFAs of 

299 conditioned leaf materials to determine fungi-mediated alterations in the food quality for 

300 shredders (fungi pose a crucial quality parameter to the shredder’s diet; e.g., Graça et al., 
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301 1993), since TAGs constitute the major lipid class in fungi (Harwood and Russell, 1984). 

302 Although many prokaryotes are incapable to store energy in this form (Alvarez and 

303 Steinbüchel, 2002), background NLFA concentrations originating from bacteria cannot be 

304 completely excluded (Bååth, 2003).

305 For NLFA quantification, ten gammarids of each treatment and portions of five different leaf 

306 strips (in total ~40 mg leaf dry weight) per aquarium (N = 40 and N = 24, respectively) were 

307 freeze-dried and weighed as described above. The extraction and purification of lipids were 

308 performed according to Bligh and Dyer (1959) with slight alterations: gammarids were 

309 homogenized in a chloroform/methanol/water mixture (1:2:0.8) using an Ultra-Turrax blender 

310 (at 6500 rounds/min for few seconds; T25 basic, IKA® Werke GmbH & Co. KG, Staufen, 

311 Germany) and leaf material was crushed manually before the chloroform/methanol/water 

312 mixture was added. Afterwards, a TAG with three deuterated 18:0 FAs (Tristearin-D105, 

313 Larodan, Solna, Sweden) as internal standard as well as chloroform and water (to obtain the 

314 mixture ratio of 2:2:1.8; cf. Bligh and Dyer, 1959) were added to each sample and the samples 

315 were stored overnight at 4°C. TAGs were separated from glycolipids and phospholipids by 

316 elution with 4 ml chloroform through conditioned (with 4 ml chloroform) solid phase 

317 extraction columns (Chromabond® easy polypropylene columns, Macherey-Nagel, Düren, 

318 Germany). Afterwards, the solvent was evaporated under nitrogen in a dry heat incubator 

319 (VLM Metallblockthermostate, VLM GmbH, Bielefeld, Germany) at 40°C and TAGs were 

320 subsequently solved in 100 µl of chloroform. According to Butte (1983), NLFAs were 

321 transesterified by trimethylsulfonium hydroxide (Sigma-Aldrich, St. Louis, US-MO) and the 

322 resulting fatty acid methyl esters (FAMEs) were analyzed using a gas chromatograph (CP-

323 3800, Varian, Palo Alto, US-CA) equipped with a flame ionization detector and a DB-225 GC 

324 column (30 m, ID 0.25 mm, film thickness 0.25 µm, J&W Scientific, Folsom, US-CA; cf. 

325 Fink, 2013). Nitrogen was used as carrier gas. FAMEs in each sample were determined using 
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326 the retention times of FAME standards (Sigma-Aldrich, St. Louis, US-MO) and FAs were 

327 quantitatively analyzed via external standard calibration (i.e., µg FA/mL). NLFA 

328 concentrations were adjusted for FA traces originating from solvents using extraction blanks. 

329 Furthermore, concentrations of the FAs were corrected using the respective internal 

330 standard’s recovery rate. The corrected FA concentrations were extrapolated to the total 

331 sample volume and normalized to sample weight (i.e., mg FA/g dry sample mass).

332 2.9. Calculations and statistics

333 The leaf material consumed by G. fossarum during the feeding activity and food choice assays 

334 was expressed as mg consumed leaf material/mg individual/day and calculated as described 

335 by Naylor et al. (1989) and Bundschuh et al. (2009), respectively. Microbial decomposition of 

336 the inaccessible leaf discs for G. fossarum during the food choice assay was expressed as mg 

337 leaf mass loss/day and calculated according to Zubrod et al. (2015a). For the 24-days long-

338 term feeding assay, leaf consumption in mg/day was calculated as per Zubrod et al. (2011). 

339 Gammarid growth in µg/day was defined as dry mass gain and derived by subtracting the 

340 mean dry mass of 48 gammarids shock-frozen at the test start from the final dry mass of each 

341 individual divided by 24 days. 

342 Effect concentrations resulting in 20 and 50 % of mortality and inhibition of leaf consumption 

343 (LC20/EC20 and LC50/EC50 values) were determined by fitting various concentration-response 

344 models to the feeding activity assay’s data. The models with the best fit were selected based 

345 on Akaike’s information criterion (Table S2). Prior to null hypothesis significance testing 

346 (NHST), extreme values were detected by visual inspection of boxplots (with a 1.5 × 

347 interquartile range) and excluded from further analyses only when they differed considerably 

348 from the main trend of data (Field et al., 2012). Normality and homoscedasticity were tested 

349 using the Shapiro–Wilk test and Levene’s test, respectively, as well as visual inspection. 

350 When both presumptions of parametric testing were met, unpaired data from one-way designs 
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351 with two factor levels and at least three factor levels were analyzed using Student's t-test and 

352 analysis of variance (ANOVA) followed by Dunnett’s test, respectively. Data from the 2 × 2-

353 factorial design of the long-term feeding assay were analyzed via two-way ANOVA. Paired 

354 data were evaluated using paired t-tests. When one of the assumptions for parametric testing 

355 was violated, Wilcoxon rank-sum and Wilcoxon signed-rank tests were used for unpaired and 

356 paired data from one-way designs, respectively, followed by a Bonferroni correction for 

357 multiple comparisons if more than two factor levels were tested (Zar, 2010). For non-

358 parametric data from the long-term feeding assay, data were rank-transformed before 

359 performing a two-way ANOVA (Conover and Iman, 1981) or the Brunner-Dette-Munk test 

360 (sensu Aho, 2019) was applied, if the assumption of homoscedasticity was still violated after 

361 ranking (Brunner et al., 1997). Multivariate data were square-root transformed, to decrease 

362 the discriminatory power of dominant sporulating fungal species and NLFAs (Happel et al., 

363 2017), and tested via permutational multivariate analysis of variance (PERMANOVA). For 

364 the visualization of (dis-)similarities of the hyphomycete communities as well as NLFA 

365 composition, data were displayed via non-metric multidimensional scaling (NMDS) using 

366 Bray-Curtis dissimilarity. Fungal sporulation data were zero-adjusted by adding a dummy 

367 species with an abundance of one to each replicate (Clarke et al., 2006) to determine Bray-

368 Curtis dissimilarities.

369 Detailed information on NHST (i.e., p-values, F-statistics, sum and mean of squares as well as 

370 group means or medians with 95 % confidence intervals) of the assays are provided in 

371 Tables 1 and S3–S9. Modeling, statistics and figures were conducted with R Version 3.5.1 for 

372 Windows (R Core Team, 2014) as well as the add-on packages, “asbio“, drc”, “multcomp”, 

373 “plotrix” and “vegan”. Note that the term “significant” refers to statistical significance 

374 throughout the study.

375 3. Results and discussion
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376 3.1. Short-term waterborne effects

377 During the 7-day feeding activity assay, exposure to CIP resulted in a concentration-

378 dependent increase and reduction in mortality and leaf consumption of G. fossarum, 

379 respectively (Fig. 2, Table S3). The EC50 values for survival and leaf consumption were 13.6 

380 and 6.4 mg CIP/L and the respective EC20 values were 9.5 and 0.5 mg CIP/L. Since the acute 

381 CIP toxicity for G. fossarum is in the mg/L range, which is comparable with reported toxicity 

382 data for Daphnia spp. (Martins et al., 2012; Dalla Bona et al., 2014), crustaceans, in general, 

383 seem to be relatively tolerant towards waterborne CIP exposure. However, prokaryotes and 

384 unicellular eukaryotes are often more sensitive towards antibiotics than invertebrates (Danner 

385 et al., 2019). Consequently, we expected effects on leaf-associated microorganisms at lower 

386 CIP concentrations during microbial conditioning.

387 3.2. Food choice – a proxy for dietary effects

388 In line with our expectations, leaf-associated microorganisms were affected at CIP 

389 concentrations, which were five-fold below those negatively affecting the leaf-shredding 

390 invertebrate (Table S4). Contrary to our hypothesized release of competitive pressure for leaf 

391 associated fungi, however, fungal biomass (measured as ergosterol) was significantly reduced 

392 by ~55 and ~60 % at 500 and 2500 µg CIP/L, respectively, while bacterial density was not 

393 significantly affected (Table S4). The latter may be explained by the unexpected negative 

394 impact on aquatic fungi, which probably reduced the competitive pressure for bacteria. This 

395 relief of competition coupled with a relatively fast adaptation of the bacterial community to 

396 chemical stress (e.g., replacement of sensitive species and evolutionary acquisition of CIP 

397 resistance; Brandt et al., 2015), may explain the results at the highest CIP concentrations. 

398 Moreover, the community composition of hyphomycetes was significantly shifted when 

399 exposed to 100 µg CIP/L (Fig. 3, Table S4). Similar to fungal biomass, these alterations in the 

400 community structure constitute an indicator for chemical stress-induced shifts in the 
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401 palatability of leaf litter as well as its quality for shredders (Bundschuh et al., 2011). This can 

402 be assumed as fungal species vary in their palatability and nutritional value for amphipod 

403 shredders (Bärlocher and Kendrick, 1973, Arsuffi and Suberkropp, 1989, Aßmann et al., 

404 2011). The significant community shift was mainly driven by direct effects on Fusarium sp., 

405 the most prevalent hyphomycete species associated with leaves during the food choice assay 

406 (Table S5). Indeed, fluoroquinolones show antifungal activities on the same genus (causing 

407 fungal keratitis) by inhibiting type II topoisomerase DNA gyrase and topoisomerase IV (e.g., 

408 Day et al., 2009). 

409 In contrast to our hypotheses and despite these CIP-induced shifts in the microbial 

410 community, G. fossarum did not show significant preferences during the food choice assay 

411 (Fig. 4, Table S4) indicating that the reduction in Fusarium sp. is not mirrored in the leaves’ 

412 palatability. However, consumption of this fungus was shown to increase the nutritional value 

413 of leaves and affect shredders’ growth positively (Bärlocher and Kendrick, 1973, Bärlocher 

414 and Kendrick, 1975a). Accordingly, we expected indirect negative implications on the 

415 gammarids’ growth and energy storage via the dietary pathway over the long run triggered by 

416 a lower nutritious quality.

417 3.3. Long-term waterborne and diet-related CIP effects

418 In accordance with our initial hypothesis but contrary to the results of the food choice assay 

419 (see 3.2), 0.5 mg CIP/L significantly elevated the leaf consumption (~20 %) of G. fossarum 

420 via the dietary pathway, while feces production was not affected (Fig. 5, Table 1). The 

421 increased leaf consumption might be explained by a CIP-induced higher food quality, as, in 

422 this assay, ergosterol content (i.e., a proxy for fungal biomass) was significantly increased 

423 when leaves were conditioned in presence of CIP (Table S6). The higher fungal biomass 

424 might have stimulated the leaf consumption of gammarids (Foucreau et al., 2013), ultimately 

425 resulting in a tendency to higher growth (~50 %) and energy storage (i.e., NLFA content, 
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426 ~15 %; Figure 3 and 4, Table 1) of gammarids. As originally hypothesized, the observed 

427 responses in the leaf-associated microbial community and ultimately G. fossarum may be 

428 driven by giving the leaf-associated fungi a competitive advantage through the impact of CIP 

429 on bacteria. This hypothesis could be (alongside the increased ergosterol content) supported 

430 by a non-significant reduction of the leaf associated bacterial density (~25 %; Table S6). 

431 However, the increased fungal biomass was not reflected by typical fungal FA markers 

432 (18:1ω9 and 18:2ω6; Bååth, 2003; Table S9). This might be explained by fungi investing 

433 energy preferably in growth rather than in energy storage under the provided conditions (i.e., 

434 a surplus of carbon, nitrogen, and phosphorus from both leaves and the conditioning medium; 

435 Bååth, 2003).

436 The contrasting effects on the leaf-associated microbial communities in this experiment 

437 compared to the food choice assay (see 3.2) are likely related to the utilization of microbial 

438 inocula from different seasons leading to a different species composition (Nikolcheva and 

439 Bärlocher, 2005). While there were no adverse effects on any of the hyphomycete species in 

440 the long-term feeding assay (Table S6 and S7), sporulation of Fusarium sp. was substantially 

441 affected during the food choice assay and ergosterol content was significantly reduced at 0.5 

442 mg CIP/L. These differing effects observed with the field collected leaf associated microbial 

443 community point towards their high plasticity motivating further studies targeting the 

444 underlying mechanisms.

445 Moreover, CIP tends to adsorb to organic carbon (log KOC of ~4 – 5 L/kg at neutral pH, 

446 Cardoza et al., 2005; Belden et al., 2007), which may ultimately increase internal CIP 

447 concentrations in G. fossarum via the dietary uptake. Through this pathway, a shift in the 

448 microbiome of the shredder’s gut may have been induced (see for antibiotic effects on the 

449 invertebrates’ gut microbiome Gorokhova et al., 2015 and Zhu et al., 2018). The gut 

450 microbiome is involved in energy harvest by transforming the components of the diet into 
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451 easily digestible substances (Cani et al., 2008) and in the regulation of appetite hormones (Mu 

452 et al., 2016). A potential stimulation of the appetite (Perić-Mataruga et al., 2009) and thus leaf 

453 consumption may have enhanced growth and energy storage. Moreover, the positive effects 

454 on G. fossarum could also be explained by antibiotics actively dampening immune responses, 

455 thereby reducing energy costs of the animal’s immune system (see for vertebrates e.g., 

456 Niewold, 2007 and Brown et al., 2017). Thus, the energy surplus (due to the reduction of 

457 immune responses) could have resulted in increased energy allocation to gammarids’ 

458 (feeding) activity and growth. However, the immunobiology (Loker et al., 2004) and the gut 

459 microbiome-host interactions (Lee and Hase, 2014) in invertebrates are not understood well 

460 enough yet to draw final conclusions on CIP as growth promoter in G. fossarum. 

461 Contrary to the diet-related effect pathway, waterborne CIP exposure did not affect the 

462 gammarids’ leaf consumption, feces production or growth (Fig. 5, Table 1). The content of 

463 saturated fatty acids (SAFAs) – mainly those with a shorter carbon chain length (i.e., 12:0 – 

464 17:0; Table S8) – were reduced non-significantly (mono- (MUFAs) and polyunsaturated fatty 

465 acids (PUFAs) were not affected; Fig. 6, Table 1).These shorter FAs tend to be mobilized 

466 relatively quickly in situations of energy shortage (e.g., during starvation; Werbrouck et al., 

467 2016; Price and Valencak, 2012). As CIP can induce the production of reactive oxygen 

468 species (ROS; Wang et al., 2018), defense mechanisms could increase the organism’s energy 

469 demand (Sokolova et al., 2012), which would explain the observed lower SAFA levels. 

470 Proteomic analyses (e.g., via mass spectrometry-based proteomics; Sokolowska et al., 2011) 

471 may help to link CIP-exposure with the induction of respective stress proteins unraveling the 

472 underlying physiological mechanisms.

473 When the dietary pathway acted jointly with waterborne CIP exposure, a significant 

474 synergistic interaction was observed for gammarids’ leaf consumption (no interactions were 

475 observed for the remaining endpoints Fig. 5 and 6, Table. 1). This synergism was derived 
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476 from the fact that the change in leaf consumption in the Combined treatment cannot be 

477 explained by summing up the effects induced by the individual pathways alone. It is likely 

478 that CIP originating from the water phase additionally adsorbed to the food already 

479 conditioned in the presence of CIP. Consequently, the gammarids’ exposure through the gut 

480 was potentially further increased, thus exacerbating the effects on the gut microbiome and 

481 shredder’s immune system. This hypothesized effect cascade is supported by the measured 

482 water concentrations, showing a 30 % reduction of CIP between water exchanges (measured 

483 in Water treatment; Table S1). Therefore, adsorbed CIP may have resulted in an 

484 intensification of the diet-related effects in G. fossarum. Moreover, positive diet-related 

485 effects seem to even cancel out the negative waterborne effects, since no significant reduction 

486 of the energy storage was observed (Fig. 6, Table. 1). In summary, our data suggest that CIP 

487 can affect growth and energy storage, respectively, of G. fossarum via waterborne and dietary 

488 exposure as well as via CIP-induced alterations of the microorganism-mediated food quality 

489 and the shredder’s gut microbiome. Furthermore, diet-related effects outweigh waterborne 

490 effects, when both pathways act jointly.

491 3.4. Environmental relevance

492 The present study shows that CIP concentrations altering leaf-associated microbial 

493 communities and thus potentially affecting G. fossarum via the dietary pathway are in the 

494 high µg/L range, while CIP concentrations at least one order of magnitude higher are needed 

495 to induce direct effects through waterborne exposure. As experimental concentrations are 

496 several orders of magnitude beyond concentrations usually detected in European surface 

497 waters (Danner et al., 2019), the present study suggests a low risk for decomposer-detritivore 

498 systems. Nonetheless, Bundschuh et al. (2017) showed that comparable effects can be induced 

499 by an antibiotics mixture at 2 µg/L and thus at typical exposure scenario nowadays (e.g., Riva 

500 et al., 2019). Moreover, antibiotic concentrations in surface waters are projected to increase 
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501 due to the growing population, increasing economic growth, and the expansion of the medical 

502 sector (van Boeckel et al., 2014; Klein et al., 2018). At the same time, inadequate wastewater 

503 management, particularly of pharmaceutical industries, lead in extreme cases to 

504 concentrations in the mg/L range (e.g., 2.5 mg CIP/L; Fick et al., 2009). All in all, these 

505 insights warrant the consideration of antibiotics as a potential stressor interacting with 

506 decomposer-detritivore systems and thus to understand the underlying mechanisms leading to 

507 effects.

508 4. Conclusion

509 The present study shows that effects of the model antibiotic CIP via the dietary pathway seem 

510 to be more relevant for G. fossarum than waterborne antibiotic effects. The dietary pathway in 

511 isolation and both effect pathways in combination resulted in a higher turnover rate of leaf 

512 litter by the shredders, which may influence carbon and energy dynamics in detritus-based 

513 ecosystems due to their bottom-up regulation (Wallace et al., 1997, Johnson and Wallace, 

514 2005). As leaf litter input to streams occurs mainly in autumn and serves as between-year 

515 food storage for decomposers and detritivores (e.g., Richardson, 1992), an elevated turnover 

516 rate exacerbate energy shortage from spring until autumn for the entire community. 

517
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790 Figure 1 Schematic overview of the three test designs (A, B and C). Before starting each 

791 assay, fresh leaves were deployed for 14 days in a stream (to establish a leaf-associated 

792 microbial community) followed by a 14-day conditioning process with microbially colonized 

793 and fresh leaves in a stainless-steel container under laboratory conditions (A1, B1 and C1). 

794 A2, B2 and C2 describe the conditioning process of leaf discs or strips (cut from fresh leaves) 

795 in the absence and presence (denoted by the pipette) of CIP. A3, B3 and C3 display the 

796 experimental setup of each assay: A3 illustrates the experimental setup of the 7-day feeding 

797 activity assay where G. fossarum was subjected to waterborne CIP exposure (denoted by the 

798 pipette). B3 displays the 24-hour food choice assay where G. fossarum was offered leaf discs, 

799 which were microbially conditioned in the absence or presence of CIP (denoted by white and 

800 grey discs, respectively). C3 shows the 2 × 2-factorial test design of the 24-day long-term 

801 feeding assay with the first factor being the absence or presence of waterborne CIP exposure 

802 (denoted by the absence or presence of the pipette). The second factor was leaves serving as 

803 food for G. fossarum, which were microbially colonized in the absence or presence of CIP 

804 (denoted by white and grey discs, respectively). 

805

806 Figure 2 Median leaf consumption (open circles with 95% CIs) of G. fossarum and 

807 proportion of dead gammarids (solid diamonds) when subjected to increasing CIP 

808 concentrations. Moreover, the models with the best fit (solid line for leaf consumption and 

809 dashed line for mortality) as well as the EC20/LC20 (transparent and solid squares, 

810 respectively) and EC50/LC50 values (transparent and solid triangles, respectively) are 

811 displayed. Asterisks indicate a statistically significant difference to the control.
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813 Figure 3 Non-metric multidimensional scaling (NMDS) plot for hyphomycete communities 

814 associated with leaf material conditioned under control conditions (white circles) and in the 

815 presence of 20 (light grey squares), 100 (grey diamonds), 500 (dark grey triangles) and 2,500 

816 (black asterisks) µg CIP/L during the food choice assay. A stress value is provided as a 

817 measure of “goodness-of-fit” for NMDS with reasonable fits indicated when below 0.2 

818 (Clarke, 1993)

819

820 Figure 4 Mean relative leaf consumption (with 95% CIs) of G. fossarum on leaves 

821 microbially colonized under control conditions (white bars) or in the presence of increasing 

822 CIP concentrations (grey bars). The dotted line indicates the no-effect level (i.e., 50% 

823 consumption on both leaf types).

824

825 Figure 5 Median (with 95% CIs) leaf consumption (points), feces production (triangles) and 

826 growth (diamonds) of G. fossarum subjected to different effect pathways during the long-term 

827 feeding assay with CIP. Statistical analyses are displayed in Table 1.

828

829 Figure 6 Median (with 95% CIs) saturated (SAFA; points), monosaturated (MUFA; triangles) 

830 and polysaturated (PUFA; diamonds) fatty acid content of G. fossarum subjected to different 

831 effect pathways during the long-term feeding assay with CIP. Statistical analyses are 

832 displayed in Table 1.
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835 Table 1 ANOVA-tables for all gammarid-related endpoints during the long-term feeding 

836 assay. All p-values <0.05 are printed in bold.

Endpoint Factor df1 SS/df2 MS/R2 F-value p-value ANOVA type

Leaf consumption Water 1 0.016 0.0163 0.295 0.588

Diet 1 1.478 1.4783 26.764 <0.001

Water × Diet 1 0.260 0.2598 4.703 0.031

Residuals 233 12.869 0.0552

Two-way 

ANOVA

Feces production Water 1 222.6602 - 0.187 0.666

Diet 1 222.6602 - 1.015 0.315

Water × Diet 1 222.6602 - 1.456 0.229

Residuals - - -

Brunner-Dette-

Munk test 

Growth Water 1 0.00000 0.000001 0.000 0.983

Diet 1 0.00361 0.003611 2.959 0.087

Water × Diet 1 0.00046 0.000457 0.374 0.541

Residuals 232 0.28311 0.001220

Rank 

transformed 

two-way 

ANOVA

Total FA content Water 1 539 539.2 1.747 0.195

Diet 1 1190 1190.0 3.856 0.057

Water × Diet 1 711 711.3 2.305 0.138

Residuals 36 11110 308.6

Two-way 

ANOVA

SAFA content Water 1 128.0 128.01 3.492 0.070

Diet 1 174.1 174.12 4.750 0.036

Water × Diet 1 49.9 49.87 1.360 0.251

Residuals 36 1319.7 36.66

Two-way 

ANOVA

MUFA content Water 1 61.4 61.44 0.965 0.333

Diet 1 197.4 197.37 3.099 0.087

Water × Diet 1 190.6 190.55 2.992 0.092

Residuals 36 2293.0 63.69

Two-way 

ANOVA

PUFA content Water 1 16.6 16.55 0.865 0.358

Diet 1 52.6 52.59 2.749 0.106

Water × Diet 1 33.7 33.69 1.761 0.193

Residuals 36 688.7 19.13

Two-way 

ANOVA

FA composition Water 1 0.012946 0.05297 2.312 0.111

of gammarids Diet 1 0.020477 0.08379 3.656 0.047

Water × Diet 1 0.009353 0.03827 1.670 0.193

 Residuals 36 0.244392 0.82497   

PERMANOVA
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Preliminary feeding activity assay with Gammarus fossarum

Figure S1 Median leaf consumption (open circles with 95% CIs; n = 30) of G. fossarum and 

proportion of dead gammarids (solid diamonds) when exposed to increasing ciprofloxacin 

(CIP) concentrations (0, 1, 25, 50, 75, 100 mg/L) for seven days. Moreover, the model with 

the best fit for mortality (see Table S2) as well as the LC20 and LC50 values (solid square = 14 

mg/L [95% CI 9.5 – 19] and triangle = 29 mg/L [95% CI 24.5 – 34], respectively) are 

displayed. Asterisks indicate a statistically significant difference relative to the control. The 

experiments were statistically evaluated using Wilcoxon rank-sum tests (p-values were 

adjusted using Bonferroni’s adjustment for multiple comparisons).



Multivariate evaluation of the fatty acid composition of gammarids and leaves during 

the long-term feeding assay

Figure S2 Non-metric multidimensional scaling (NMDS) plots for the NLFA composition of 

A gammarids subjected to four treatments during the long-term feeding assay with 500 µg 

CIP/L: a CIP-free control (i.e., Control; light grey circles), gammarids being directly exposed 

to CIP (i.e., Water; grey squares), gammarids receiving leaves conditioned in the presence of 

CIP (i.e., Diet; dark grey diamonds), and a combination of both treatments (i.e., Combined; 

black triangles) and B leaf material conditioned under control conditions (white circles) and in 

the presence of 500 µg CIP/L (black squares) during the long-term feeding assay. Stress 

values are provided as a measure of “goodness-of-fit” for NMDS with reasonable fits 

indicated when below 0.2 (Clarke, 1993) and 95% confidence ellipses (based on standard 

deviations) denote the dispersion of the data of each treatment.



Results of antibiotic analyses

Table S1 Nominal and measured (means with 95% CIs) CIP concentrations for the respective bioassays with the respective lowest calibration level 

(LCL).

Assay Test medium Treatment
LCL 

(µg/L)

Nominal 

(µg/L)
Fresh medium (µg/L)

3-day-old medium 

(µg/L)

Feeding 

activity

SAM-5S Control 0.50 0 <LCL -

CIP 500 629.0 (484.1 to 774.5) -

24500 25100.8 (20168.3 to 30033.4) -

Food choice Conditioning Control 1.00 0 <LCL -

CIP 20 19.77 (5.81 to 33.72) -

2500 2460.7 (1945.0 to 2868.3) -

Long-term Conditioning Control 1.00 0 <LCL -

feeding CIP 500 445.3 (417.3 to 473.3) -

SAM-5S Control 1.00 0 <LCL -

Water 500 408.1 (320.0 to 495.2) 271.6 (255.0 to 288.3)

Diet - - 18.76 (14.49 to 23.03)

  Combined  500 See Water 286.7 (264.5 to 309.0)



Concentration-response models for feeding activity data

Table S2 Models used for concentration-response modeling and their respective coefficients 

for each feeding activity assay.

Test Endpoint Model Parametersa

Preliminary 

experiment

Mortality Weibull (type 2 with 2 

parameters)

b=1.57 e=36807.35 -

Main 

experiment

Leaf 

consumption

Log-logistic (type 2 with 3 

parameters)

b=0.559 d=0.16 e=1.854

 

Mortality Log-logistic (type 2 with 2 

parameters)

b=-3.84 e=13.65 -

a Parameterization according to Ritz and Streibig (2005)

Statistical evaluations of the data of the respective bioassay

Table S3 Mortality of test organisms and group medians (with 95% CIs) for leaf consumption 

for the main experiment of the two feeding activity assays (n = 30). Moreover, statistical tests 

used as well as p-values from statistical comparisons of CIP treatments with the control (p-

values below 0.05 are printed in bold) and effect concentrations resulting in 20 and 50% of 

mortality and inhibition of leaf consumption (LC20/EC20 and LC50/EC50 values) in mg CIP/L 

(with 95% CIs) for mortality and leaf consumption are shown.

Endpoint

Concen-

tration 

(mg/L)

Mortality 

(%) or 

Median

±95% CI
Statistical 

test

p-value (after 

Bonferroni 

adjustment)

LC20 or 

EC20

LC50 or 

EC50

Mortality 0 6.7 0.82 to 22.07  9.5 13.6

0.5 0 0.00 to 11.57 1.000 (7.6 to (12.2 to 

6.5 6.7 0.82 to 22.07 1.000  11.4) 15.0)

12.5 40 22.66 to 59.40 0.003

18.5 80 61.43 to 92.29 <0.001

24.5 86.7 69.28 to 96.24

Proportion 

test

<0.001

Leaf 0 0.16 0.14 to 0.21 0.5 6.4

consumption 0.5 0.13 0.10 to 0.15 0.134 (0.4 to (5.8 to

6.5 0.08 0.05 to 0.12 <0.001  0.7)  7.0)

12.5 0.07 0.05 to 0.13 0.002

18.5 0.05 0.01 to 0.12 <0.001

 24.5 0.03 0.02 to 0.05

Wilcoxon 

rank-sum

0.003   



Table S4 Number of analyzed replicates and group means or medians (with 95% CIs) for the 

endpoints analyzed during the food choice assay. Moreover, statistical tests used as well as p-

values from statistical comparisons of CIP treatments with the respective control are shown. 

All p-values below 0.05 are printed in bold.

Endpoint
Concentration 

(µg/L)
n  Median ±95% CI Statistical test p-value

0 (for 20) 0.61  0.46 to 0.78

20

42

0.50  0.40 to 0.62

0.127

0 (for 100) 0.41  0.12 to 0.76

100

43

0.52  0.46 to 0.68

0.477

0 (for 500) 0.27  0.14 to 0.44

500

44

0.32  0.15 to 0.41

0.396

0 (for 2500) 0.22  0.11 to 0.32

Leaf 

consumption in 

mg/mg 

individual/d

2500

43

0.09  0.04 to 0.18

Student's t 

(paired)

0.218

0 (for 20) 0.12  0.09 to 0.17

20

44

0.17  0.11 to 0.21

1.000

0 (for 100) 0.19  0.17 to 0.22

100

44

0.22  0.19 to 0.24

<0.001

0 (for 500) 0.21  0.19 to 0.22

500

44

0.20  0.19 to 0.23

0.986

0 (for 2500) 0.23  0.21 to 0.26

Microbial leaf 

decomposition 

in mg/d

2500

44

0.19  0.16 to 0.22

Wilcoxon 

signed-rank

<0.001

0 7 0.28  0.16 to 0.36

20 7 0.31  0.15 to 0.37 0.634

100 6 0.21  0.13 to 0.28 0.298

500 7 0.13  0.11 to 0.19 <0.001

Fungal 

biomass in mg 

ergosterol/g 

leaf dry mass

2500 7 0.12  0.06 to 0.15

Dunnett’s t 

<0.001

0 7 0.52  0.14 to 0.88

20 7 0.22  0.11 to 0.52 0.389

100 7 0.39  0.29 to 0.78 1.000

500 7 0.57  0.19 to 0.81 1.000

Bacterial 

density in 109 

cells/g leaf dry 

mass

2500 7 0.29  0.09 to 0.55

Wilcoxon rank-

sum (with 

Bonferroni 

adjustment)

1.000

0 5 40.72  12.66 to 

102.21

20 7 11.68  4.49 to 180.62 0.808

100 7 6.90  4.13 to 11.57 0.020

500 5 1.88  1.31 to 14.51 0.063

Fungal 

spores/mg leaf 

dry mass

2500 5 3.88  1.34 to 146.33

Wilcoxon rank-

sum (with 

Bonferroni 

adjustment)

0.603

0 5 - -

20 7 - - 0.703

100 7 - - 0.012

500 5 - - 0.030

Hyphomycete 

community 

composition

2500 5 - -

PERMANOVA 

(with 

Bonferroni 

adjustment)

0.069



Table S5 Median number of sporulating fungal species per sample (with minima & maxima). 

SIMPER displays the contribution of spores (i.e., fungal spores/mg leaf dry mass) of each 

species to the dissimilarities between fungicide treatments and the respective control.

Concen-

tration 

(µg/L)

Sporulating 

fungal 

species

SIMPER results with percentage contribution

0 3 (2 to 4)

20 2 (2 to 4) F (45); AA (17); TM (12); NL (11); U (10); TA (4); CL (0); FF (0)

100 2 (0 to 4) F (58); U (11); NL(11); TM (10); TA (5); AA (5); CL (0); FF (0)

500 1 (0 to 2) F (62); NL (10); TM (8); U (8); FF (7); TA (3); AA (2); CL (0)

2500 2 (2 to 4) F (53); TM (18); NL (11); TA (8); U (7); FF (2); AA (2); CL (0)

Alatospora acuminata (AA); Clavatospora longibrachiata (CL); Flagellospora fusarioides (FF); Fusarium sp. 

(F); Neonectria lugdunensis (NL); Tetracladium marchalianum (TM); Tricladium angulatum (TA); Unknown 

(U)

Table S6 Number of analyzed replicates and group medians (with 95% CIs) of parameters 

describing leaf quality used during the long-term feeding assay. Moreover, the statistical tests 

used for the respective endpoint as well as the p-value from the statistical comparison of 500 

µg CIP/L with the control is shown. All p-values below 0.05 are printed in bold.

Endpoint

Concen-

tration 

(µg/L)

n Median ±95% CI Statistical test p-value

0 12 0.02 0.00 to 0.06Fungal biomass in mg 

ergosterol/g leaf dry mass 500 12 0.07 0.02 to 0.12

Wilcoxon rank-

sum 0.032

0 12 0.53 0.39 to 0.91Bacterial density in 109 

cells/g leaf dry mass 500 12 0.39 0.27 to 0.76

Student's t 

(unpaired) 0.266

0 12 5.25 3.99 to 7.77Total NLFA content in 

mg/g leaf dry mass 500 12 4.69 3.80 to 6.40

Student's t 

(unpaired) 0.399

0 12 1.98 1.31 to 2.92Sat. NLFA content in mg/g 

leaf dry mass 500 12 1.99 1.50 to 2.49

Student's t 

(unpaired) 0.933

0 12 0.33 0.29 to 0.39Monounsat. NLFA content 

in mg/g leaf dry mass 500 12 0.36 0.33 to 0.44

Student's t 

(unpaired) 0.339

0 12 2.82 2.37 to 4.41Polyunsat. NLFA content 

in mg/g leaf dry mass 500 12 2.44 1.90 to 3.18

Student's t 

(unpaired) 0.183

0 12 - -FA composition of leaves

500 12 - -

PERMANOVA

0.081

Neutral lipid fatty acid (NLFA); Saturated neutral lipid fatty acid (Sat. NLFA); Monounsaturated neutral lipid 

fatty acid (Monounsat. NLFA); Polyunsaturated neutral lipid fatty acid (Polyunsat. NLFA); Fatty acid 

composition (FA composition)



Table S7 Number of analyzed replicates and median number of fungal spores per mg dry 

mass of leaf material (with 95% CIs) of each detected species during the long-term feeding 

assay. Since only few species and spores were detected on leaves, all medians and most of the 

respective confidence limits are zero. Furthermore, as the data contains too many identical 

values (i.e. zeros), the p-values originating from statistical comparisons with the respective 

control are not reliable and thus not reported.

Species

Concen-

tration 

(µg/L)

n Median ±95% CI

0 12 0.00 0.00 to 0.00Alatospora 

acuminata 500 12 0.00 0.00 to 0.00

0 12 0.00 0.00 to 0.00Mycocentro-

spora clavata 500 12 0.00 0.00 to 0.00

0 12 0.00 0.00 to 0.00Neonectria 

lugdunensis 500 12 0.00 0.00 to 16.34

Table S8 ANOVA-tables for all gammarid-related NLFAs (n = 10) during the long-term 

feeding assay. All p-values <0.05 are printed in bold.

Fatty acid Factor df1 SS MS F-value p-value

12:0 Water 1 0.2147 0.2147 3.174 0.083

Diet 1 0.3722 0.3722 5.501 0.025

Water × Diet 1 0.0548 0.0548 0.810 0.374

Residuals 36 2.4356 0.0677

13:0 Water 1 593 592.9 4.877 0.034

Diet 1 360 360.0 2.961 0.094

Water × Diet 1 1 0.9 0.007 0.932

Residuals 36 4376 121.6

14:0 Water 1 10.43 10.425 4.072 0.051

Diet 1 10.87 10.87 4.246 0.047

Water × Diet 1 4.46 4.455 1.740 0.196

Residuals 36 92.18 2.56

15:0 Water 1 0.0319 0.03190 1.724 0.198

Diet 1 0.0830 0.08302 4.486 0.041

Water × Diet 1 0.0055 0.0055 0.297 0.589

Residuals 36 0.6662 0.01851

16:0 Water 1 42.1 42.07 3.047 0.089

Diet 1 58.8 58.8 4.259 0.046

Water × Diet 1 19.6 19.6 1.419 0.241

Residuals 36 497.1 13.81

17:0 Water 1 0.02618 0.02618 3.608 0.066

Diet 1 0.04691 0.04691 6.466 0.015

Water × Diet 1 0.00111 0.00111 0.154 0.697

 Residuals 36 0.26119 0.00726   



Table S8 continued.

Fatty acid Factor df1 SS MS F-value p-value

18:0 Water 1 0.534 0.5342 1.220 0.277

Diet 1 1.165 1.1645 2.659 0.112

Water × Diet 1 0.026 0.0265 0.060 0.807

Residuals 36 15.765 0.4379

14:1ω5 Water 1 0.001126 0.0011264 1.911 0.175

Diet 1 0.001573 0.0015727 2.669 0.111

Water × Diet 1 0.002290 0.0022901 3.886 0.056

Residuals 36 0.021214 0.0005893

16:1ω7 Water 1 2.728 2.7277 3.740 0.061

Diet 1 2.311 2.3109 3.168 0.084

Water × Diet 1 1.346 1.3455 1.845 0.183

Residuals 36 26.259 0.7294

18:1ω7 Water 1 0.994 0.9939 3.794 0.059

Diet 1 0.635 0.6353 2.425 0.128

Water × Diet 1 0.203 0.2031 0.775 0.384

Residuals 36 9.431 0.262

18:1ω9 Water 1 27.0 26.97 0.581 0.451

Diet 1 131.1 131.06 2.825 0.101

Water × Diet 1 138.5 138.48 2.985 0.093

Residuals 36 1669.9 46.39

20:1ω9 Water 1 0.0014 0.00139 0.037 0.849

Diet 1 0.0595 0.05948 1.582 0.217

Water × Diet 1 0.1426 0.14259 3.792 0.059

Residuals 36 1.3536 0.0376

18:2ω6 Water 1 0.10 0.100 0.030 0.863

Diet 1 5.43 5.428 1.644 0.208

Water × Diet 1 3.72 3.72 1.127 0.295

Residuals 36 118.83 3.301

18:3ω3 Water 1 13.03 13.028 1.777 0.191

Diet 1 20.42 20.418 2.785 0.104

Water × Diet 1 11.12 11.119 1.516 0.226

Residuals 36 263.95 7.332

18:3ω6 Water 1 0.000001 0.0000007 0.001 0.971

Diet 1 0.001596 0.0015957 3.052 0.089

Water × Diet 1 0.000001 0.0000006 0.001 0.973

Residuals 36 0.018824 0.0005229

20:2ω6 Water 1 0.0000 0.000011 0.001 0.981

Diet 1 0.0139 0.013877 0.685 0.413

Water × Diet 1 0.0268 0.026824 1.323 0.258

Residuals 36 0.7297 0.020269

20:3ω3 Water 1 0.0067 0.00666 0.129 0.722

Diet 1 0.0096 0.00958 0.185 0.670

Water × Diet 1 0.1245 0.12451 2.403 0.130

 Residuals 36 1.8651 0.05181   



Table S8 continued.

Fatty acid Factor df1 SS MS F-value p-value

20:4ω6 Water 1 0.00007 0.000073 0.020 0.888

Diet 1 0.00196 0.001958 0.547 0.465

Water × Diet 1 0.00101 0.001007 0.281 0.599

Residuals 36 0.12897 0.003582

20:5ω3 Water 1 168 168.1 1.290 0.264

Diet 1 462 462.4 3.548 0.068

Water × Diet 1 8 8.1 0.062 0.805

Residuals 36 4691 130.3

22:6ω3 Water 1 0.000343 0.0003428 0.561 0.459

Diet 1 0.001308 0.0013076 2.138 0.152

Water × Diet 1 0.001236 0.0012357 2.021 0.164

 Residuals 36 0.022015 0.0006115   

Table S9 Group medians (with 95% CIs, n = 12) of NLFAs on the leaves (mg/g dry mass of 

leaf material) conditioned in the absence or presence of CIP during the long-term feeding 

assay. Moreover, the statistical test used for the respective NLFA as well as the p-value from 

the statistical comparison of 500 µg CIP/L with the control is shown. All p-values below 0.05 

are printed in bold.

Fatty acid

Concen-

tration 

(µg/L)

Median ±95% CI Statistical test p-value

11:0 0 0.00 0.00 to 0.00

500 0.00 0.00 to 0.01

Wilcoxon 

rank-sum 0.106

12:0 0 0.03 0.03 to 0.05

500 0.02 0.02 to 0.04

Wilcoxon 

rank-sum 0.017

13:0 0 0.00 0.00 to 0.00

500 0.00 0.00 to 0.00

Student's t 

(unpaired) 0.935

14:0 0 0.09 0.08 to 0.11

500 0.08 0.06 to 0.11

Student's t 

(unpaired) 0.335

15:0 0 0.01 0.01 to 0.01

500 0.01 0.01 to 0.01

Wilcoxon 

rank-sum 0.242

16:0 0 1.10 0.64 to 1.45

500 0.76 0.59 to 1.19

Student's t 

(unpaired) 0.085

17:0 0 0.04 0.03 to 0.06

500 0.04 0.03 to 0.05

Student's t 

(unpaired) 0.156

18:0 0 0.12 0.07 to 0.13

500 0.11 0.09 to 0.16

Student's t 

(unpaired) 0.502

20:0 0 0.19 0.14 to 0.44

500 0.40 0.29 to 0.48

Wilcoxon 

rank-sum 0.078

21:0 0 0.02 0.01 to 0.02

 500 0.02 0.02 to 0.03

Wilcoxon 

rank-sum 0.143



Table S9 continued.

Fatty acid

Concen-

tration 

(µg/L)

Median ±95% CI Statistical test p-value

22:0 0 0.24 0.18 to 0.48

500 0.38 0.31 to 0.49

Student's t 

(unpaired) 0.113

23:0 0 0.02 0.01 to 0.02

500 0.02 0.02 to 0.02

Wilcoxon 

rank-sum 0.225

24:0 0 0.05 0.04 to 0.07

500 0.07 0.05 to 0.08

Wilcoxon 

rank-sum 0.052

14:1ω5 0 0.00 0.00 to 0.00

500 0.00 0.00 to 0.00

Wilcoxon 

rank-sum 0.101

16:1ω7 0 0.13 0.10 to 0.19

500 0.18 0.15 to 0.25

Wilcoxon 

rank-sum 0.160

18:1ω7 0 0.09 0.07 to 0.11

500 0.09 0.08 to 0.10

Student's t 

(unpaired) 0.851

18:1ω9 0 0.11 0.07 to 0.15

500 0.08 0.07 to 0.12

Student's t 

(unpaired) 0.257

20:1ω9 0 0.00 0.00 to 0.01

500 0.01 0.00 to 0.01

Wilcoxon 

rank-sum 0.590

18:2ω6 0 0.49 0.34 to 0.75

500 0.37 0.27 to 0.60

Student's t 

(unpaired) 0.169

18:3ω3 0 2.28 1.98 to 3.68

500 1.98 1.54 to 2.55

Student's t 

(unpaired) 0.169

20:2ω6 0 0.00 0.00 to 0.00

500 0.00 0.00 to 0.00

Wilcoxon 

rank-sum 0.319

20:4ω6 0 0.00 0.00 to 0.00

500 0.01 0.00 to 0.01

Wilcoxon 

rank-sum 0.024

22:2ω6 0 0.06 0.04 to 0.07

 500 0.07 0.05 to 0.11

Student's t 

(unpaired) 0.060
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