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Abstract 19 

Forest aboveground biomass is a key variable in remote sensing based forest monitoring. Active sensor 20 

systems, such as lidar, can generate detailed canopy height products. Relationships between canopy 21 

height and biomass are commonly established via regression analysis using information from ground-truth 22 

plots. In this way, many site-specific height-biomass relationships have been proposed in the literature 23 

and applied for mapping in regional contexts. However, such relationships are only valid within the specific 24 

forest type for which they were calibrated. A generalized relationship would facilitate biomass estimation 25 

across forest types and regions. In this study, a combination of lidar-derived and ancillary structural 26 

descriptors is proposed as an approach for generalization between forest types. Each descriptor is 27 

supposed to quantify a different aspect of forest structure, i.e., mean canopy height, maximum canopy 28 

height, maximum stand density, vertical heterogeneity and wood density. Airborne discrete return lidar 29 

data covering 194 ha of forest inventory plots from five different sites including temperate and tropical 30 

forests from Africa, Europe, North, Central and South America was used. Biomass predictions using the 31 

best general model (nRMSE = 12.4%, R² = 0.74) were found to be almost as accurate as predictions using 32 

five site-specific models (nRMSE = 11.6%, R² = 0.78). The results further allow interpretation about the 33 

importance of the employed structure descriptors in the biomass estimation and the mechanisms behind 34 

the relationships. Understanding the relationship between canopy structure and aboveground biomass 35 

and being able to generalize it across forest types are important steps towards consistent large scale 36 

biomass mapping and monitoring using airborne and potentially also spaceborne platforms. 37 

 38 

Keywords: forest structure; aboveground biomass; canopy height; lidar; generalization 39 

 40 

41 



3 
 

1. Introduction 42 

Quantifying global carbon stocks of forests as well as their changes over time requires spatially explicit 43 

measurements and monitoring (Harris et al., 2012). The primary variable of interest hereby is forest 44 

aboveground biomass (AGB). Thus, there is a growing amount of literature about estimating forest 45 

biomass from canopy height metrics derived from light detection and ranging (lidar), synthetic aperture 46 

radar or photogrammetry (Asner and Mascaro, 2014; Goetz and Dubayah, 2011; Lu et al., 2014; Treuhaft 47 

et al., 2015; Zolkos et al., 2013). The majority of these studies investigated data from specific forest sites 48 

with the goal to find the best prediction model, i.e., maximizing explained variability (e.g., R²), minimizing 49 

prediction error (e.g., RMSE) and minimizing systematic bias, while using the most parsimonious set of 50 

predictor variables (Zolkos et al., 2013). Different statistical approaches have been used including multiple 51 

linear regression models and machine learning methods (Fassnacht et al., 2014). As a result various site-52 

specific and forest type-specific relations for biomass estimation have been proposed and applied 53 

successfully for biomass mapping at regional scale. 54 

Comparatively few studies have tried to seek for generalization in the estimation approaches. In those 55 

studies conducted in the temperate and boreal biomes, field plots ranging from 500 to 1000 m2 in size 56 

were used and reported estimation uncertainties ranged from 2.5 to 23% (Bouvier et al., 2015; Lefsky et 57 

al., 2002; Magnussen et al., 2012). In similar studies conducted in the tropical biome, field plots were 58 

commonly in the size range from 0.1 to 1 ha and reported estimation uncertainties were around 10% at 59 

the 1-ha scale (Gregory P. Asner et al., 2012; Asner and Mascaro, 2014; Vincent et al., 2014, 2012) For 60 

consistent global mapping of forest biomass, however, it would be desirable to have more generic 61 

relationships which are applicable across different forest types and biogeographic regions. Such an 62 

approach would contribute to a better understanding of how structural attributes differ between forest 63 

types and how they are related to biomass. It would also facilitate biomass mapping across the globe. 64 

Given the variety of metrics that can be derived from lidar data (Næsset, 2002), it would further be 65 



4 
 

desirable to have a minimum set of meaningful metrics, describing different aspects of forest structure, to 66 

avoid problems with multicollinearity and extensive model selection procedures (Bouvier et al., 2015). 67 

A widely used general approach is the one proposed by Asner et al. (2012) and modified by Asner & 68 

Mascaro (2014) for pan-tropical application. The function is inspired by individual tree allometry, where 69 

tree AGB can be modeled as a multiplicative power law of tree diameter at breast height (DBH; or tree 70 

basal area BA), tree height and species-specific wood density (Chave et al., 2014). Hence, as a stand level 71 

equivalent for area-based AGB estimation they used a power law of stand BA sum, mean top-of-canopy 72 

height (TCH) and average wood density. The approach further assumes a linear relationship between BA 73 

and TCH, which may differ between regions, and regional differences in average wood density can be 74 

considered. This approach has been established using data from different tropical regions (Hawaii, 75 

Panama, Peru, Madagascar) and has been applied successfully in other tropical regions, e.g., Colombia (G. 76 

P. Asner et al., 2012), Malaysia (Coomes et al., 2017), Tanzania (Getzin et al., 2017), with uncertainties 77 

between 12 and 15% at 1-ha scale.  78 

Bouvier et al. (2015) suggested a different model for generalized AGB estimation. They used several a 79 

priori defined lidar-based metrics that captured different aspects of forest structure. Their model was able 80 

to produce accurate AGB estimations for different forest types in France. However, site-specific 81 

coefficients led to higher prediction accuracies for each site, compared to using only one set of coefficients 82 

across all sites. 83 

In this study, we attempted to find a model that is generally applicable throughout different forest types 84 

and even different biomes by including structural information on forest stands. Tropical forests in Panama, 85 

French Guiana and Gabon were analyzed along with temperate forests in the United States of America and 86 

Germany. A generalized approach should also perform well across the gradients from intact to disturbed 87 

and natural to managed forests without requiring any stratification. Therefore, our analysis incorporated 88 

plots of primary and managed forests. We tried to estimate BA and AGB at the 1-ha scale. Usually, the two 89 

are closely correlated. However, BA is a simple inventory-derived metric, which is easily comparable 90 
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among sites and studies (Vincent et al., 2012). Inventory-based AGB, on the other hand, is more complex 91 

to compute. Assumptions about allometric relationships and wood density values are required to derive 92 

single tree AGB. It can lead to considerable differences in stand AGB if different assumptions are chosen 93 

for the same stand (Duncanson et al., 2017). It has been argued that BA (or its two components stem 94 

number and quadratic mean stem diameter) is the essential variable that has to be derived from remote 95 

sensing and AGB could then be estimated based on predicted BA and the regional tree diameter-height 96 

allometries and wood densities (Vincent et al., 2014, 2012). Here, we chose to analyze both variables – BA 97 

for its robustness and comparability and AGB as the major variable of interest in forest carbon mapping 98 

efforts. 99 

We hypothesized that the following structural forest attributes may contribute to explaining stand BA and 100 

AGB: a) mean canopy height, b) maximum possible stand density c) maximum possible tree height, d) 101 

vertical canopy heterogeneity, and for AGB, additionally, e) average wood density. Most of these structural 102 

attributes can be quantified in several alternative ways. Thus, for one attribute there may be a set of 103 

several candidate metrics. Some of the metrics can be derived from lidar, while others require ancillary 104 

information. In this analysis, data from 194 ha of temperate and tropical forest from five megaplot sites 105 

were combined with the following goals: 1) to find a generic approach for BA and AGB estimation that can 106 

be applied across all sites without causing prediction bias at any individual site and 2) to investigate the 107 

contributions of the different structural attributes. 108 

109 
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2. Material & Methods 110 

2.1. Study Sites 111 

Data from five forest sites covering different forest types and biogeographical zones were used (Tab. 1). 112 

Four study sites are part of the ForestGEO megaplot network (Anderson-Teixeira et al., 2015) and thus 113 

they have been inventoried according to a standard protocol. The data structure for the fifth site, Paracou, 114 

is similar to the data structure of the ForestGEO sites. For each tree, the diameter at breast height (DBH), 115 

spatial position and species identity were recorded. In this study, only trees with a DBH ≥ 10 cm were 116 

considered, because 10 cm was the minimum DBH recorded at Paracou (Blanc et al., 2009), and all given 117 

numbers refer to trees above this size threshold. In the following, each of the five sites is briefly described.  118 

1) Barro Colorado Island (BCI), Panama, is a Central American lowland tropical moist forest site with an 119 

annual precipitation of 2580 mm and an average temperature of 27.1 °C. The census on the 50-ha plot was 120 

conducted in 2010 (Condit, 1998; Condit et al., 2012; Hubbell et al., 1999) and comprised 22,084 trees, 121 

which belonged to 223 species. Trees of the six families Malvaceae (17%), Fabaceae (13%), Moraceae (7%), 122 

Euphorbiaceae (6%), Rubiaceae (6%) and Meliaceae (6%) account for 56% of AGB with Quararibea 123 

asterolepis being the single species with the highest contribution (6%). 124 

2) Paracou, French Guiana, is a South American lowland tropical rainforest with an annual precipitation of 125 

3040 mm and an average temperature of 26 °C. There are 16 large plots with plots 1 to 15 having an extent 126 

of 250 m × 250 m each and plot 16 having an extent of 500 m × 500 m. In 1986 and 1987, selective logging 127 

with different treatment intensities (timber logging, fuelwood logging, thinning) was conducted on some 128 

of the plots, while others have served as control plots (Hérault and Piponiot, 2018). Since our analysis was 129 

conducted for 100 m × 100 m units, only subareas of 200 × 200 m measured from the south-western 130 

corners of plots 1 to 15 were used. In total, 85 ha from Paracou were analyzed. Censuses were conducted 131 

in 2015 and comprised 53,501 trees of 713 species. Trees of the three families Fabaceae (25%), 132 
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Lecythidaceae (15%) and Chrysobalanaceae (11%) account for 51% of AGB with Eperua falcata being the 133 

single species with the highest contribution (7%). 134 

3) Rabi, Gabon, is a Central African lowland tropical rainforest site with an annual precipitation of 2300 mm 135 

and an average temperature of 26 °C. The census on the 25-ha plot was conducted from 2010 to 2012 136 

(Labrière et al., 2018) and comprised 12,019 trees, which belonged to 235 species. Trees of the three 137 

families Fabaceae (38%), Ochnaceae (9%) and Simaroubaceae (7%) account for 54% of AGB with Lophira 138 

alata being the single species with the highest contribution (9%). 139 

4) The Smithsonian Environmental Research Center (SERC) plot, United States of America, is a North 140 

American deciduous broadleaved temperate forest site with an annual precipitation of 1070 mm and an 141 

average temperature of 13.2 °C. The census on the 16-ha plot was conducted in 2014 (Král et al., 2016; 142 

McMahon and Parker, 2015) and comprised 4,719 trees, which belonged to 39 species. Trees of the six 143 

species Liriodendron tulipifera (27%), Liquidamber styraciflua (16%), Fagus grandifolia (11%), Quercus alba 144 

(8%), Carya alba (7%) and Fraxinus pennsylvanica (6%) together account for 76% of the AGB. 145 

5) Traunstein, Germany, is a Central European managed mixed temperate forest site, which includes 146 

conifer and broadleaf plantations. It has an annual precipitation of 1240 mm and an average temperature 147 

of 7.6 °C. The census on the 25-ha plot was conducted from 2015 to 2016. Due to the shape of the plot a 148 

rectangular 18-ha subarea was selected for the analysis. It comprised 7,182 trees, which belonged to 25 149 

species. Trees of the four species Picea abies (39%), Fagus sylvatica (22%), Acer pseudoplatanus (19%) and 150 

Abies alba (15%) together account for 94% of the AGB. 151 

Tab. 1: Information about the study sites 152 

Site Region Forest type Size 
[ha] 

Location Year of 
inventory 

Year of lidar 
scan 

Basal area range 
[m2 ha-1] 

BCI Central Panama Neotropical moist  50 9.15° N, 
79.85° W 

2010 2009 17.3 – 38.5 

Paracou Northern French 
Guiana 

Neotropical wet 85 5.27° N, 
52.92° W 

2015 2015 24.8 – 38.7 

Rabi Western Gabon Afrotropical wet 25 1.92° S, 
9.88° E 

2010-2012 2015 20.8 – 36.7 

SERC Eastern USA Nearctic temperate 
broadleaf  

16 38.89° N, 
76.56° W 

2014 2017 26.2 – 43.5 

Traunstein Southern 
Germany 

Palearctic temperate 
mixed 

18 47.94° N, 
12.67° E 

2015-2016 2016 7 – 44.6 
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2.2. Inventory Data 153 

The inventory data was processed to calculate AGB of each tree. Based on species, wood density values 154 

were assigned to each tree using the ForestGEO wood density database 155 

(http://ctfs.si.edu/Public/Datasets/CTFSWoodDensity/) and, in the case of Paracou, the Global Wood 156 

Density Database (Chave et al., 2009; Zanne et al., 2009). Wood density values for 82% of all trees were 157 

available at species level. For the remaining trees, median wood densities at genus (14.1%) or family level 158 

(3.7%) or the overall median at the site (0.2%) were assigned, respectively. From DBH, the height of each 159 

tree was calculated using site specific asymptotic allometric relationships. These relationships were 160 

derived by fitting regression models of the Michaelis-Menten type (Equation 1) to the diameter height 161 

dataset from Jucker et al. (2017), grouped by biogeographical region and forest type. 162 

Equation 1:     𝐻 =  
ℎ𝑚𝑎𝑥∙𝐷

𝑑1/2+𝐷
    163 

This equation describes tree height H [m] as a function of DBH D [m] with two parameters: 1) hmax [m], 164 

which is the asymptotic maximal possible tree height, and 2) d1/2 [m], which is the DBH of a tree that has 165 

reached a height of half of hmax. A verification of whether the derived models describe the DBH-height 166 

relations at each site reasonably well, was done by plotting the curves together with the maximal observed 167 

DBH and maximal (lidar-derived) height of each hectare (Fig. S1). This showed that the relationships match 168 

the observed values for the BCI, Paracou, Rabi and Traunstein plot, but strongly underestimate the tree 169 

heights at SERC. Thus, for SERC we discarded the diameter-height relationship obtained from the dataset 170 

and instead obtained parameters by directly fitting a regression model to the data points in Fig. S1, 171 

representing the lidar-derived maximal heights on each hectare. All height allometry parameters used are 172 

listed in Tab. 2. 173 

  174 
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Tab. 2: Parameters for the different diameter-height relationships modeled with a Michaelis-Menten equation. 175 

Site Species group hmax [m] d1/2 [m] 

BCI All 57.4 0.43 

Paracou All 57.4 0.43 

Rabi All 59.9 0.48 

SERC (discarded) All 37 0.22 

SERC (used instead) All 54.7 0.27 

Traunstein Broadleafs 48.8 0.25 

Traunstein Conifers 68.9 0.5 

 176 

Aboveground biomass (AGB [t]) of each tree was calculated according to the general allometric equation 177 

suggested by (Chave et al., 2014) (“Model 5”) (Equation 2) with DBH D [m], height H [m] and wood density 178 

WD [t m-3]. 179 

Equation 2:    𝐴𝐺𝐵 = 0.559 ∙  𝐷2  ∙  𝐻 ∙  𝑊𝐷 180 

 181 

2.3. Lidar Data 182 

Small footprint discrete return lidar data was collected in BCI in August 2009 using an Optech ALTM Gemini 183 

sensor with a mean point density of 21 m-2 (Lobo and Dalling, 2014), in Paracou in October 2015 using an 184 

Riegl LMS Q 780 with a mean point density of 54.6 m-2, in Rabi in 2015 using a Riegl VQ-480i sensor with a 185 

mean point density of 2.5 m-2 (Labrière et al., 2018), at SERC in July 2017 using a Riegl VQ-480i sensor with 186 

a mean point density of 54.1 m-2 (Cook et al., 2013) and in Traunstein in August 2016 using a Riegl LMS Q 187 

680i sensor with a mean point density of 20.8 m-2. The lidar point clouds were terrain-normalized using 188 

LAStools (Isenburg, 2011) and rasterized to canopy height models (CHM) with 1-m resolution, by taking 189 

the height of the highest return in each 1-m²-cell (Fig. 1). No interpolation was used and cells with no 190 

return were filled with value zero (ground height). 191 
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 192 
Fig. 1: Canopy height models of the five study sites: a) Barro Colorado Island, b) Rabi, c) Paracou Plot 16 (biodiversity plot), d) 193 
Paracou Plot 1 (control plot), e) Paracou Plot 2 (selective logging), f) Paracou Plot 3 (selective logging and timber stand 194 
improvement), g) Paracou Plot 4 (selective logging, timber stand improvement and fuelwood collection), h) Smithsonian 195 
Environmental Research Center and i) Traunstein. The black grids and numbers represent the 1-ha subplots with each ha 196 
representing one record in the analysis. 197 

198 
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2.4. Forest Structure Metrics 199 

All inventory plots were divided into square-shaped subplots of 1-ha size each. At 1-ha scale a variety of 200 

structural metrics was calculated from 1) the inventory data and 2) the lidar data. Inventory-based metrics 201 

included basal area sum (BA), number of stems per ha (N), quadratic mean tree diameter (at breast height, 202 

Dg), maximum DBH per ha (Dmax), mean wood density weighted for tree basal area (WDBA) or weighted for 203 

tree aboveground volume (WDAGV) and stand density index (SDI, Equation 3), which is a standardized 204 

metric for stocking (Reineke, 1933). 205 

Equation 3:    𝑆𝐷𝐼 = 𝑁 ∙ (
25

𝐷𝑔
)

−1.605

 206 

Additionally to those metrics derived at 1-ha-level, we derived a set of metrics at site-level. Those site-207 

level metrics included maximum basal area sum (BAsmax) and maximum SDI (SDIsmax) of all the 1-ha plots at 208 

each site s and basal area-weighted mean wood density (WDsBA) and aboveground volume-weighted mean 209 

wood density (WDsAGV) across all trees at each site s. 210 

Lidar-based metrics were maximum canopy height per 1-ha plot Hmax and per site Hsmax, mean top-of-211 

canopy height from CHMs of two different resolutions (1-m and 10-m pixels called TCH1 and TCH10), 212 

standard deviation of the 1-m CHM (SDCHM), coefficient of variation of the 1-m CHM (CVCHM) and Gini index 213 

of the 1-m CHM (GiniCHM). The vertical foliage profile (VFP) was derived from the vertical profile of the 1-214 

m CHM following the approach described by Harding et al (2001) (Equation 4). Despite being originally 215 

developed for large footprint waveforms, the method can also be applied to vertical profiles of CHMs, 216 

since the latter have been shown to closely match coinciding waveforms (Blair and Hofton, 1999).  217 

Equation 4:    𝑉𝐹𝑃(ℎ𝑖) =  
1

𝑘∙𝛥ℎ
∙ ln (

𝐺𝑃(ℎ𝑖)

𝐺𝑃(ℎ𝑖+1)
) 218 

with k being the light extinction coefficient, h the width of one height bin (here 1 m) and GP(hi) the gap 219 

probability (value of the cumulative CHM profile) in height bin hi (Ni-Meister et al., 2001). All pixels below 220 

5 m height were regarded as ground and k was set to 0.3 for all sites. The parameter k can be described as 221 
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the quotient of a projection coefficient G, which is 0.5 for a random leaf angle distribution, and a clumping 222 

index C, which on average is 1.58 for different forest types (Tang et al., 2012). A value of k = 0.3 has been 223 

shown to result in good LAI estimations (Getzin et al., 2017). The same vertical distribution metrics as for 224 

the CHMs were derived from the VFP, namely SDVFP, CVVFP and GiniVFP. All metrics used for statistical 225 

modeling are listed in Tab. 3 and equations to calculate them are detailed in Fischer et al. (2019). 226 

Tab. 3: List of metrics used in the statistical analysis (CHM = canopy height model). 227 

Acronym Explanation of metric Structural aspect Predictor (Px) 

AGB Aboveground biomass [t ha-1] Target variable - 

BA Basal area [m2 ha-1] Target variable - 

TCH1 Mean top-of-canopy height from 1-m pixel CHM [m] Mean canopy height Ph 

TCH10 Mean top-of-canopy height from 10-m pixel CHM [m] Mean canopy height Ph 

BAsmax Maximal basal area at site s [m2 ha-1] Maximum stand density Pd 

SDIsmax Maximal stand density index at site s [ha-1] Maximum stand density Pd 

Hsmax Maximal canopy height at site s [m] Maximum canopy height Pm 

SDCHM Standard deviation of the 1-m pixel CHM [m] Vertical heterogeneity Pv 

CVCHM Coefficient of variation of the 1-m pixel CHM [m] Vertical heterogeneity Pv 

GiniCHM Gini index of the 1-m pixel CHM [m] Vertical heterogeneity Px 

SDVFP Standard deviation of the vertical foliage profile [m] Vertical heterogeneity Pv 

CVVFP Coefficient of variation of the vertical foliage profile [m] Vertical heterogeneity Pv 

GiniVFP Gini index of the vertical foliage profile [m] Vertical heterogeneity Pv 

WDsAGV Mean aboveground volume-weighted wood density at site s [t m-3] Wood density Pw 

WDsBA Mean basal area-weighted wood density at site s [t m-3] Wood density Pw 

 228 

2.5. Multivariate Regression Analysis 229 

Regression analysis was conducted to find the best relationship and set of predictor variables for BA and 230 

AGB estimation with the main objective to minimize overall root mean squared error (RMSE) across sites. 231 

The regression models had the functional form of multivariate power laws. Each predictor was supposed 232 

to capture a different structural aspect of the forest. Several candidate metrics were grouped into sets of 233 

potential predictors and tested in different combinations. By categorizing metrics into different structural 234 

aspects the number of possible metric combinations for testing was reduced. Combinations of redundant 235 
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metrics, i.e., metrics that capture the same structural aspect, were not tested. For BA, a four predictor 236 

equation was used (Equation 5). For AGB, a five predictor equation was used (Equation 6). 237 

Equation 5:    𝐵𝐴 = 𝑎0 ∙ 𝑃ℎ
𝑎ℎ ∙ 𝑃𝑑

𝑎𝑑 ∙ 𝑃𝑚
𝑎𝑚 ∙ 𝑃𝑣

𝑎𝑣  238 

Equation 6:    𝐴𝐺𝐵 = 𝑏0 ∙ 𝑃ℎ
𝑏ℎ ∙ 𝑃𝑑

𝑏𝑑 ∙ 𝑃𝑚
𝑏𝑚 ∙ 𝑃𝑣

𝑏𝑣 ∙ 𝑃𝑤
𝑏𝑤  239 

Each Px represents a predictor for a certain structural aspect x with ax being the coefficients for BA 240 

estimation and bx being the coefficients for AGB estimation. For each Px one single metric from a set of 241 

possible predictors was used in each regression model. The predictor sets were defined as follows: The 242 

predictor for mean canopy height Ph was either TCH1 or TCH10. The maximum possible canopy height Pm 243 

was exclusively represented by Hsmax. The predictor for maximum density (stocking) Pd was either BAsmax 244 

or SDIsmax. For vertical heterogeneity of the canopy Pv, SDCHM, CVCHM, GiniCHM, SDVFP, CVVFP and GiniVFP have 245 

been explored. Average wood density Pw was only included in the AGB estimation and was either WDsBA 246 

or WDsAGV. 247 

Correlations among predictors were highest within predictor groups Px (Fig. S2, e.g., within Ph, Pv and Pw). 248 

Thus, by only combining predictors from different groups multicollinearity was reduced. Between groups, 249 

the highest correlations were observed between Hsmax and either of the two density predictors BAsmax and 250 

SDIsmax, while the two among each other were less correlated. We do not expect that maximum possible 251 

canopy height and maximum stocking density of forests are generally related. We rather suspect that 252 

correlations between these site-level metrics occurred by chance due to the small sample size of five sites. 253 

Maximum likelihood parameter estimation in R (R Development Core Team, 2014) was used to derive the 254 

coefficients for Equations 5 and 6. All possible metric combinations were tested including all possible 255 

subsets discarding one or several predictors Px. The goodness-of-fit was evaluated based on linear 256 

regression of predictions against ground-based observations of the dependent variable to quantify R², 257 

RMSE and nRMSE (normalized RMSE by dividing it by the mean observed value). Wilcoxon tests were 258 

performed to check whether the mean prediction residual at each site deviated significantly from zero, 259 
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with the goal of identifying unbiased prediction models. For each predictor combination, 1000 260 

bootstrapping replicates were performed by resampling the dataset randomly with replacement. Site-level 261 

metrics BAsmax, SDIsmax, Hsmax and WDsAGV were recalculated based on the resampled dataset, i.e., if, e.g., 262 

the plot with the largest Hmax of site s was not in the resampled dataset, Hsmax was set to the largest Hmax 263 

of any plots from site s present in the resampled dataset. Mean bootstrapped statistics (RMSEb, nRMSEb 264 

and R²b) served to evaluate the different models. The best predictor combinations for BA and AGB were 265 

finally tested in a leave-one-site-out cross validation, in which five different models were fit on data from 266 

four sites, respectively, and the fifth site was set aside for testing. 267 

 268 

2.6. Site-specific Reference Regression Models 269 

To assess the performance of the derived general, site-independent, structure-based multi predictor 270 

regression models site-specific reference models were required. For this purpose, single predictor 271 

regression models were fit. As predictors for these reference models Ph, i.e., TCH1 or TCH10, were used. 272 

These metrics have been most widely used for this purpose (Asner and Mascaro, 2014; Knapp et al., 2018) 273 

and showed the highest individual correlations with the target variables BA and AGB (Fig. S2). The models 274 

given by Equations 7 and 8 were fit by splitting the dataset into five subsets with each subset containing 275 

only records from one site and using the same fitting procedure as described above. 276 

Equation 7:     𝐵𝐴 = 𝑎0,𝑠𝑖𝑡𝑒 ∙ 𝑃ℎ
𝑎ℎ,𝑠𝑖𝑡𝑒   277 

Equation 8:     𝐴𝐺𝐵 = 𝑏0,𝑠𝑖𝑡𝑒 ∙ 𝑃ℎ
𝑏ℎ,𝑠𝑖𝑡𝑒   278 

As an alternative, also site-specific multi predictor models are possible. However, such models make 279 

comparisons more complicated, because the set of best predictors may vary from site to site. In our 280 

analysis the predictors Pd, Pm and Pw were all at site level. Thus, the only relevant predictor for site-specific 281 

multi predictor models, apart from Ph, was Pv. The best model using a combination of Ph and Pv for each 282 

site are listed in the supplements (Tab. S2). 283 

284 
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3. Results 285 

3.1. Forest Structure at Different Sites 286 

The different structure attributes at 1-ha scale varied within and among the five sites (Fig. 2 and Fig. S3). 287 

This section gives an overview on the distributions of the most important ground- and lidar-based 288 

structure metrics. BA values ranged from 7 to 44.6 m2 ha-1 with a mean of 29.8 m2 ha-1. AGB values ranged 289 

from 76 to 638 t ha-1 with a mean of 354 t ha-1. Mean top-of-canopy height ranged from 5.6 to 38 m when 290 

calculated from 1-m × 1-m pixels (TCH1) and from 15.8 to 41.8 m when calculated from 10-m × 10-m pixels 291 

(TCH10). In both cases, the distributions for the tropical sites were similar while TCH were on average higher 292 

at SERC and lower at Traunstein. Mean wood densities per hectare were calculated on a BA-weighted and 293 

on an AGV-weighted basis. Both were similar in their distributions and mean wood densities calculated for 294 

each site across the entire megaplot weighted by either BA or AGV were almost identical with the largest 295 

difference being 0.02 t m-3 in the case of BCI (WDsBA: BCI: 0.51 t m-3, Paracou: 0.69 t m-3, Rabi: 0.66 t m-3, 296 

SERC: 0.48 t m-3, Traunstein: 0.5 t m-3; WDsAGV: BCI: 0.49 t m-3, Paracou: 0.69 t m-3, Rabi: 0.66 t m-3, SERC: 297 

0.47 t m-3, Traunstein: 0.5 t m-3). Due to this similarity, only AGV-weighted wood density at site level 298 

WDsAGV was considered in the further analysis. Mean wood densities at Paracou and Rabi exceeded the 299 

values from all other sites strongly with WDAGV  at the 1-ha scale ranging from 0.6 to 0.74 t m-3 at Paracou 300 

and Rabi and from 0.42 to 0.55 t m-3 at all other sites. Stand density index values ranged from 138 to 778 301 

with the lowest values occurring in recently managed parts of Traunstein. The maximal SDIs are proxies 302 

for the highest possible stocking density in the different forest types (BCI: 683, Paracou: 749, Rabi: 703, 303 

SERC: 708, Traunstein: 778). The maximum canopy height covered a wide range from 27.1 m to 54.7 m. 304 

Hmax at SERC only covered a very narrow range falling inside the range of the tropical sites, while Hmax at 305 

Traunstein were much lower. The maximum canopy heights per site Hsmax were 54.7 m at BCI, 50 m at 306 

Paracou, 52.6 m at Rabi, 46.2 m at SERC and 40.3 m at Traunstein. 307 
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 308 
Fig. 2: Boxplots of the distributions of a selection of forest structure metrics across the five study sites Barro Colorado Island 309 
(B), Paracou (P), Rabi (R), Smithsonian Environmental Research Center (S) and Traunstein (T). Graphics (a) and (b) depict the 310 
two target variables basal area and aboveground biomass. Graphics (c) to (h) depict six possible predictor variables. Variables 311 
are partly lidar-derived (c, d, f, g) and partly field-derived (a, b, e, h). 312 
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The vertical heterogeneity was measured in several different ways using standard deviation, coefficient of 313 

variation and Gini index of the canopy height model and the vertical foliage profile, respectively. CHM- 314 

and VFP-based vertical structure metrics showed quite different distribution patterns. For the CHM-based 315 

metrics, Paracou and SERC showed the lowest values, due to a homogenous canopy surface, BCI and Rabi 316 

showed intermediate values, due to their rough canopy surface with large trees alternating with gaps and 317 

Traunstein showed (at least for CV and Gini index) the highest values, due to its heterogeneous structure 318 

composed of young and old stands interrupted by forest roads. For the VFP-based vertical structure 319 

metrics, Traunstein showed the lowest values, which is in accordance with the fact that large parts of the 320 

plot are single-layered stands of different age, while the other sites showed higher values, indicating a 321 

more complex, multi-layered canopy.  322 

 323 

3.2. Basal Area Estimation 324 

3.2.1. Site-specific Basal Area Estimation 325 

Here, basal area was estimated from lidar using a single structural descriptor of stand height Ph. Mean top-326 

of-canopy height at 1- and 10-m pixel resolution (TCH1 and TCH10) were tested as Ph to derive site-specific 327 

power law coefficients (a0,site and ah,site). Coefficients for each site are listed in Tab. S1 and a scatterplot 328 

with site-specific curves is displayed in Fig. 3. The following goodness-of-fit statistics were derived across 329 

all sites using the site-specific relationships: The TCH1-based basal area predictions resulted in 330 

RMSE = 2.5 m2 ha-1 (8.3%) and R² = 0.79. The TCH10-based basal area predictions resulted in 331 

RMSE = 2.8 m2 ha-1 (9.5%) and R² = 0.73. In both cases, the mean residuals were not significantly different 332 

from zero at any site (Wilcoxon tests with the smallest p-value of all sites being p = 0.54). Using multi 333 

predictor models (different metrics of Ph and Pv), site-specific predictions with RMSE = 2.3 m2 ha-1 (7.6%) 334 

and R² = 0.83 were achieved. However, the set of best metrics varied from site to site (Tab. S2). 335 
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  336 
Fig. 3: Site-specific relationships (power laws) between basal area and TCH1 with each point representing 1 ha. 337 

 338 

3.2.2. Generalized Basal Area Estimation 339 

Here, basal area was estimated using several structural descriptors from lidar, which were supposed to 340 

capture different aspects of forest structure (Equation 5). In total, 125 regression models consisting of 341 

different descriptors and metrics were analyzed. The best models found are listed in Tab. 4. The models 342 

are ranked according to increasing mean bootstrapped RMSEb. The listed models represent the best 343 

overall model and the best models with certain structural descriptors Px removed. For the different Px in 344 

most cases the same metrics were selected. For Ph mostly TCH10 was selected and TCH1 only occurred once. 345 

For Pd always the site specific maximal basal area BAsmax was selected. For Pm the site specific maximal tree 346 

height Hsmax was the only available metric. For Pv, however, four different metrics appear in the list of best 347 

models, namely SDVFP, GiniVFP., CVVFP and CVCHM.  348 

  349 
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Tab. 4: The best basal area estimation models for different predictor combinations ranked for increasing mean bootstrapping 350 
root mean squared error (RMSEb). For explanation of the variable names please refer to the main text. 351 

Mean canopy  
height Ph 

Maximal stand  
density Pd 

Maximal canopy  
height Pm 

Vertical  
heterogeneity Pv 

RMSE nRMSE R² RMSEb nRMSEb R²b Bias 

TCH10 BAsmax Hsmax SDVFP 2.9 9.8% 0.71 2.9 9.6% 0.72 yes 

TCH10 BAsmax - GiniVFP 3.0 10.0% 0.70 3.1 10.4% 0.67 no 

TCH1 - Hsmax - 3.3 10.9% 0.64 3.1 10.4% 0.67 yes 

TCH10 BAsmax - - 3.4 11.5% 0.60 3.6 12.0% 0.56 yes 

TCH10 - - CVVFP 3.6 12.2% 0.55 3.6 12.0% 0.56 yes 

- BAsmax - CVCHM 4.2 14.2% 0.40 4.2 14.1% 0.39 no 

TCH10 - - - 4.4 14.6% 0.36 4.3 14.5% 0.36 yes 

 352 

Equation 9:  𝐵𝐴 = 9.2 ∙ 𝑇𝐶𝐻10
1.3 ∙ 𝐵𝐴𝑠𝑚𝑎𝑥

0.359 ∙ 𝐻𝑠𝑚𝑎𝑥
−1.03 ∙ 𝑆𝐷𝑉𝐹𝑃

−0.305 353 

The overall best model was one using all four structural descriptors (nRMSE = 9.8%, Equation 9). The 354 

goodness-of-fit decreased only marginally if information on maximal possible height (Pm) was excluded 355 

from the predictors (nRMSE = 10%). The third best model was a two-predictor model using only current 356 

and maximal possible canopy height (Ph and Pm, nRMSE = 10.9%). Hence, there was no other three-357 

predictor model that could exceed this two predictor model in accuracy. It was followed by a model using 358 

mean canopy height and maximal possible stand density (Ph and Pd, nRMSE = 11.5%), and one using mean 359 

canopy height and vertical heterogeneity (Ph and Pv, nRMSE = 12.2%). At the lower end, the best model 360 

making no use of mean canopy height (no Ph) was somewhat better (nRMSE = 14.2%) than the one using 361 

exclusively mean canopy height (Ph = TCH10, nRMSE = 14.6%). Thus, adding any structural descriptor 362 

decreased nRMSE by at least 2.4% compared to a model purely based on canopy height.  363 

The additional goal was finding a relationship that is unbiased across all sites. According to the Wilcoxon 364 

tests, predictions of the best found model were slightly but significantly biased for BCI (p = 0.0036) and 365 

Paracou (p = 0.05), whereas the second best model did not show any significant bias for any of the sites 366 

(Tab. S3). Fig. 4 shows the 1:1 plots for site-specific TCH1-based predictions (a), the generalized TCH10-367 

based predictions (c) and the predictions using the best model based on structural descriptors (e). Fig. 4 368 

also shows the residual distributions resulting from each of the three predictions for the different sites (b, 369 

d, f). In the leave-one-site-out cross validation of the best predictor combination, the overall nRMSE 370 

increased from 9.8% to 12.3% and moderate but significant biases were observed for three sites (Fig. S4). 371 
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 372 

Fig. 4: Scatterplots of predicted basal area against observed basal area using a) site-specific single predictor models, c) a general 373 
single predictor model (based on TCH10) and e) the best general multi predictor model (Equation 9). The boxplots on the right 374 
hand side show the distribution (quartiles) of prediction residuals at each site with numbers below displaying the mean residual 375 
value (bias) and asterisks above indicating whether the means deviate significantly from zero (b, d, f). 376 

377 
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3.3. Aboveground Biomass Estimation 378 

3.3.1. Site-specific Aboveground Biomass Estimation 379 

Analogous to BA, AGB was modeled as a power law function of mean canopy height Ph, using either TCH1 380 

or TCH10 by fitting site-specific coefficients (b0,site and bh,site; Tab. S1). Applying these site-specific 381 

relationships, the following goodness-of-fit statistics were derived across all sites: The TCH1-based AGB 382 

predictions resulted in RMSE = 41 t ha-1 (11.6%) and R² = 0.78. The TCH10-based AGB predictions resulted 383 

in RMSE = 41.8 t ha-1 (11.8%) and R² = 0.77. In both cases, the mean prediction residuals were not 384 

significantly different from zero at all sites (Wilcoxon tests with the smallest p-value of all sites being 385 

p = 0.39). Using multi predictor models (different metrics of Ph and Pv), site-specific predictions with 386 

RMSE = 38.1 t ha-1 (10.8%) and R² = 0.81 were achieved. However, the set of best metrics varied from site 387 

to site (Tab. S2). 388 

  389 

Fig. 5: Site-specific relationships (power laws) between aboveground biomass and TCH1 with each point representing 1 ha. 390 

391 
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3.3.2. Generalized Aboveground Biomass Estimation 392 

To derive a generalized AGB estimation model the same structural descriptors as for basal area were used. 393 

Additionally, a fifth descriptor for the average wood density Pw was introduced, which resulted in 251 394 

models in total. Tab. 5 lists the best models found for different combinations of structural descriptors. The 395 

models are ranked according to increasing RMSEb (derived from bootstrapping). The listed models 396 

represent the best overall model and the best models with a reduced number of structural descriptors Px. 397 

Compared to the basal area estimation more descriptor combinations are possible due to the additional 398 

parameter Pw. TCH10 was selected in most cases for Ph. For Pd maximal basal area BAsmax and maximal stand 399 

density index SDIsmax per site do appear in the models. For Pv three different metrics have been selected: 400 

SDCHM, SDVFP and CVVFP. 401 

Tab. 5: The best aboveground biomass estimation models for different predictor combinations ranked for increasing mean 402 
bootstrapping root mean squared error (RMSEb). For explanation of the variable names please refer to the main text. 403 

Mean canopy  
height Ph 

Maximal stand  
density Pd 

Maximal canopy  
height Pm 

Vertical  
heterogeneity Pv 

Mean wood  
density Pw 

RMSE nRMSE R² RMSEb nRMSEb R²b Bias 

TCH1 SDIsmax Hsmax SDCHM WDsAGV 44.0 12.4% 0.74 46.1 13.0% 0.71 no 

TCH10 BAsmax Hsmax SDVFP - 47.4 13.4% 0.70 47.9 13.5% 0.69 yes 

TCH10 SDIsmax Hsmax - WDsAGV 45.6 12.9% 0.73 48.5 13.7% 0.69 no 

TCH10 SDIsmax Hsmax - - 46.0 13.0% 0.72 48.5 13.7% 0.69 yes 

TCH1 - Hsmax - - 47.7 13.5% 0.70 48.9 13.8% 0.68 yes 

TCH10 BAsmax - CVVFP WDsAGV 51.2 14.5% 0.67 49.7 14.0% 0.67 yes 

TCH10 BAsmax - - WDsAGV 60.1 17.0% 0.55 50.6 14.3% 0.66 yes 

TCH10 SDIsmax - - - 50.9 14.4% 0.66 50.7 14.3% 0.66 yes 

TCH10 - - CVVFP - 54.3 15.3% 0.61 53.9 15.2% 0.61 yes 

TCH10 - - - WDsAGV 57.2 16.1% 0.57 57.2 16.1% 0.57 yes 

TCH10 - - - - 58.5 16.5% 0.55 58.3 16.4% 0.55 yes 

- BAsmax - SDVFP - 63.0 17.8% 0.48 62.2 17.5% 0.49 yes 

 404 

In the case of aboveground biomass estimation the best model was the one using all five available 405 

structural descriptors (Equation 10; nRMSE = 12.4%).  406 

Equation 10: 𝐴𝐺𝐵 = 1.92 ∙ 𝑇𝐶𝐻1
1 ∙ 𝑆𝐷𝐼𝑠𝑚𝑎𝑥

0.979 ∙ 𝐻𝑠𝑚𝑎𝑥
−1.24 ∙ 𝑆𝐷𝐶𝐻𝑀

0.212 ∙ 𝑊𝐷𝑠𝐴𝐺𝑉
0.0838 407 

Leaving either Pv, Pw or both aside increased the nRMSE by around 1%. The best model that did not rely 408 

on any site related ground-based information was the one using only Ph and Pm (nRMSE = 13.5%). Tab. 5 409 

documents the results for other descriptor combinations. E.g., a single predictor model based on TCH10 410 

only had nRMSE = 16.5%. Pd and Pm were more important than Pv (according to their presence in the best 411 
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models), which is different from the basal area estimation where Pv was more important than Pd and Pm. 412 

The best model without Ph had an nRMSE = 17.8%. 413 

With regard to the goal of finding a relationship that is unbiased across all sites, the Wilcoxon tests 414 

identified two models for which the mean of residuals at none of the single sites differed significantly from 415 

zero (Tab. S4): the models in lines 1 and 3 in Tab. 5. For all other models, predictions were biased for at 416 

least one site. Fig. 6 shows the 1:1 plots for site-specific TCH1-based predictions (a), the generalized TCH10-417 

based predictions (c) and the structure guided predictions using the best model (e). Fig. 6 also shows the 418 

residual distributions resulting from each of the predictions for the different sites (b, d, f). In the leave-419 

one-site-out cross validation of the best predictor combination, the overall nRMSE increased from 12.4% 420 

to 24.1% and significant overestimations were observed for all sites but Rabi (Fig. S4). 421 

 422 
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 423 

Fig. 6: Scatterplots of predicted aboveground biomass against observed aboveground biomass using a) a site specific single 424 
predictor model, c) a general single predictor model (based on TCH10)  and e) the best general multi predictor model 425 
(Equation 10). The boxplots on the right hand side show the distributions (quartiles) of prediction residuals at each site with 426 
numbers below displaying the mean residual value (bias) and asterisks above indicating whether the means deviate 427 
significantly from zero.  428 

429 
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3.4. Comparison of Results 430 

Overall, achieved relative errors in BA estimation were somewhat lower than the ones for AGB estimation. 431 

The exclusion of different structural descriptors led to an increase in estimation errors. Fig. 7 shows the 432 

obtained nRMSE for different sets of Px in comparison to the nRMSE of site-specific estimations. For BA 433 

estimation, the best unbiased generic model required four coefficients and resulted in an nRMSE of 10.4%, 434 

which is 2.1% higher than the nRMSE of 8.3% obtained from five site-specific models, requiring ten (two 435 

per site) coefficients. For AGB estimation, the best unbiased generic model required six coefficients and 436 

resulted in an nRMSE of 13%, which is 1.4% higher than the nRMSE of 11.6% obtained from five site-437 

specific models, requiring ten coefficients. 438 

 439 

 440 

Fig. 7: Summary of how the exclusion of certain structural descriptors Px influence the normalized root mean squared error 441 
(nRMSE) of basal area (a) and aboveground biomass estimation (b). The black bar represents the site-specific reference 442 
model. The grey bars represent mean bootstrapping nRMSE of the different generic models. The striped bars mark the 443 
models which produce unbiased predictions at all sites. For the meaning of the indices of the predictors please refer to the 444 
main text. 445 

 446 

447 
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4. Discussion 448 

The goal of this study was to determine a set of forest structure metrics that can be used for BA and AGB 449 

estimation from CHMs at very distinct forest sites, which belong to different biomes. It could be shown 450 

that a combination of four metrics capturing mean canopy height, maximal stand density, maximal canopy 451 

height and vertical heterogeneity could estimate BA using a generic model across all sites with a high 452 

accuracy, which was almost as good as the accuracy achieved by site-specific models. The accuracy for 453 

AGB estimation was slightly weaker than the one for BA estimation.  454 

 455 

4.1. The Role of Mean Canopy Height 456 

It was found that the mean canopy height (Ph), represented here by TCH1 and TCH10, was the most 457 

important predictor variable, which is in support of its wide use in previous studies (Asner and Mascaro, 458 

2014; Duncanson et al., 2015; Lefsky et al., 2002). It was important in BA and AGB estimation, with 459 

accuracies decreasing considerably when Ph was dropped from the models. Despite the mathematical 460 

simplicity of TCH (the mean height of all CHM pixels) it is a quite comprehensive metric capturing much of 461 

the forest structure in a single number. It is influenced by the heights and crown sizes of the trees (which 462 

contribute to the CHM) and therefore closely related to Lorey’s height (BA-weighted mean tree height) 463 

(Asner and Mascaro, 2014). However, TCH also provides information on horizontal vegetation density, if 464 

ground pixels, e.g., in canopy gaps, are included in its computation (Lu et al., 2014). There have been 465 

studies that tried to separate the “height” and “density” aspect of TCH by calculating mean canopy height 466 

only from canopy pixels (and excluding ground pixels) and capturing horizontal vegetation density as 467 

fractional canopy cover, i.e. the relative proportion of canopy pixels above an arbitrary height threshold, 468 

or its inverse, the gap fraction (Bouvier et al., 2015). It has also been shown that fractional canopy cover 469 

alone can predict AGB in tropical forests quite well over a range of canopy height thresholds (Meyer et al., 470 

2018).  471 
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It was found that TCH10 derived from a rough 10-m-pixel CHM often performed better than TCH1 derived 472 

from 1-m pixels. This has been observed also in an earlier study at BCI using TCH in single predictor models 473 

(Knapp et al., 2018). It might be explained by the ability of TCH10 to capture the canopy structure of the 474 

large trees, which also contribute most to BA and AGB, and the larger gaps where such trees are missing. 475 

TCH1 includes more detail and is influenced by the structure of individual tree crowns and small gaps within 476 

and between crowns, which might not be relevant or even counterproductive for estimating BA and AGB. 477 

In particular, in the context of generalization between different forest types it might be beneficial that 478 

TCH10 “ignores” differences in crown shapes.  479 

 480 

4.2. The Role of Stand Density 481 

Maximal stand density per site (Pd) was of high importance for AGB and BA estimation. Only one in the 482 

best eight AGB models did not contain Pd. Asner & Mascaro (2014) pointed out that for many sites BA 483 

shows a linear relationship with TCH, but with considerable differences in the slopes, which was therefore 484 

an important term in their AGB estimation model. Differences in this relationship can be expected because 485 

at different sites different tree species may occur, which have different geometries, in particular regarding 486 

the relationships between DBH and height and DBH and crown diameter. Of two stands with the same 487 

canopy height, one may contain trees with slender crowns and has a much higher stocking than the other 488 

one containing trees with wide crowns. We tried to reduce the necessary information about density as 489 

much as possible by only using the maximum observed value per site. As this parameter is not derived 490 

from remote sensing data, either inventory data or expert knowledge on the maximum possible density 491 

of the forest type would be required. As metrics for Pd, BAsmax and SDIsmax were used. The two are 492 

independent from each other: The highest SDI identifies the stand with the highest stocking according to 493 

the self-thinning rule (Reineke, 1933), which is not necessarily the stand with the highest current BA 494 

(Fig. S5). Among the five sites investigated, the tropical sites had lower BAsmax (38.5, 38.7, and 36.7 m2 ha-495 
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1) than the temperate sites (43.5 and 44.6 m2 ha-1). SDIsmax, however, was similar at BCI, Rabi and SERC 496 

(683, 703, 708) and somewhat higher at Paracou (749) and Traunstein (778). As shown, either of the two 497 

metrics could improve the AGB estimation in comparison to the case of missing Pd. 498 

 499 

4.3. The Role of Maximum Height 500 

An inclusion of maximum possible height (Pm) was expected to improve estimation models. The reason 501 

behind is the same as for stand density, namely the possibility of regionally different DBH-height 502 

relationships of trees, that lead to differences in the maximum possible canopy height. Pm can be easily 503 

extracted from the remote sensing data (in contrast to Pd). Here, the maximum observed canopy height 504 

Hsmax (in the CHM) was used under the assumption that the plots are large enough to be representative 505 

for the maximum possible tree height in the respective forest types. Maximum height showed no 506 

relevance in BA estimation, but prediction errors for AGB increased from 11.8% to 14.8% if it was dropped 507 

from the model. Hsmax represents the maximum value that TCH could possibly reach, if the whole area 508 

would be fully occupied by trees that all have reached their maximum potential height. Hence, Hsmax might 509 

act as a standardization for TCH. Site-specific relationships between TCH and AGB (Fig. 5) show that, e.g., 510 

the forest at Traunstein reaches high AGB values at much lower mean canopy heights than other sites. By 511 

additionally providing the information that also Hsmax at Traunstein is lower than elsewhere, the TCH values 512 

are put into the perspective of how high is the forest now and how high could it possibly become. This 513 

standardization role of Hsmax is supported by the fact that all selected models have negative coefficients 514 

(am, bm), commonly close to -1 for Hsmax, and positive coefficients (ah, bh), commonly close to +1 for TCH, 515 

i.e., the ratio TCH / Hsmax is used in the predictions. Models based on TCH1 and Hsmax only were the best 516 

two-predictor models in BA and AGB estimation, respectively. 517 

 518 
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4.4. The Role of Vertical Heterogeneity 519 

Vertical heterogeneity (Pv) was after mean canopy height (Ph) the second descriptor derived at individual 520 

plot-level rather than site-level. It was included in the best BA and AGB models, however, dropping it 521 

increased the nRMSE by less than 1%. From the six candidate metrics for Pv, various were chosen in 522 

different models.  523 

The calculation of the vertical metrics was either based on the canopy height model or on the vertical 524 

foliage profile. As visible in Fig. S3, the distributions of SD, CV and Gini index differed strongly depending 525 

on whether they were CHM- or VFP-based. CHM-based variability metrics describe the heterogeneity of 526 

the canopy surface, including ground pixels, i.e., canopy gaps. VFP-based variability metrics describe the 527 

vertical layering of the reconstructed foliage profile, which does not contain any ground component, but 528 

up-weights profile parts in the lower heights to compensate for the occlusion by high trees. Hence, their 529 

contributions to BA and AGB estimation might be different: CHM-based metrics rather characterize forests 530 

in the spectrum from smooth canopy surfaces, as observed for young, dense stands, to rough canopy 531 

surfaces, as observed for old or disturbed stands. VFP-based metrics rather account for the overseen trees 532 

in the lower canopy. Other studies have also identified the vertical heterogeneity as a component in 533 

prediction models. Magnussen et al. (2012) proposed a two-predictor model based on 1) TCH and 2) the 534 

variance of the CHM divided by TCH, which is closely related to CVCHM used here. Bouvier et al. (2015) 535 

considered two vertical metrics in their four-predictor model: 1) variance of the CHM and 2) CV of the leaf 536 

area density in the VFP. In our analysis, vertical heterogeneity was also able to improve site-specific 537 

estimation models compared to solely TCH-based models (about 1% decrease in nRMSE) with different 538 

vertical metrics being chosen at different sites. To conclude, there is a wide variety of metrics that 539 

characterize vertical heterogeneity and they may in fact capture quite different aspects of forest structure. 540 

They do contribute in the improvement and generalization of BA and AGB estimation. Future analyses 541 

should try to achieve a better understanding of how the different metrics are related to ground-based 542 
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metrics of forest structure, and whether a combination of several of them could further improve 543 

estimation results. 544 

 545 

4.5. The Role of Wood Density 546 

Regional differences in average wood density have been suspected to be a main reason behind differences 547 

in the height-to-biomass relationship of forests (Asner and Mascaro, 2014; Meyer et al., 2018; Vincent et 548 

al., 2014). In our analysis, however, dropping the wood density parameter (Pw) led only to a slight increase 549 

in nRMSE of less than 1% for AGB estimations. The values of WDsAGV were very similar for BCI, SERC and 550 

Traunstein, but considerably higher for Paracou and Rabi. If region-specific estimates on average wood 551 

density are available, they should definitely be considered in AGB estimation models. Nevertheless, our 552 

results suggest that compared to other parameters wood density is of minor importance for a generalized 553 

AGB estimation. With regard to how average wood density should be calculated, Vincent et al. (2014) 554 

argued to use AGV instead of BA as a weighting variable, as AGV of the trees in the ground-truth plots has 555 

to be calculated anyway to derive tree AGB, and AGV is the structurally more appropriate weighting 556 

variable compared to BA. In this study, for all five study sites WDsAGV and WDsBA were found to be very 557 

similar. Thus, only WDsAGV was further used in the analyses. 558 

 559 

4.6. Generalization and Outlook 560 

With the identified structural variables and the fitted coefficients, we propose general prediction models 561 

for BA and AGB estimation, which are applicable on temperate and tropical forests under natural and 562 

managed conditions. Having such models and also understanding the contribution of different forest 563 

structural aspects is important for consistent large scale mapping of forest carbon stocks (Lefsky et al., 564 

2002). This is particularly relevant for upcoming spaceborne missions such as GEDI (Hancock et al., 2019; 565 

Stavros et al., 2017), ICESat-2 (Narine et al., 2019), BIOMASS (Le Toan et al., 2011) or Tandem-L (Moreira 566 



31 
 

et al., 2015) which will provide consistent forest height measurements across very different forest types, 567 

not all of which are represented sufficiently in ground-truth datasets.  568 

As a next step, the proposed relationships need to be tested at other forest sites to either confirm or, if 569 

necessary, adapt them. The results of the leave-one-site-out cross validation suggest that the presented 570 

approach for BA estimation is more robust than the one for AGB estimation, with regard to reducing the 571 

number of forest types for fitting. The distributions of the various structure metrics have shown that all of 572 

the five sites differ in one or another aspect from all others, which apparently makes each of them essential 573 

in the calibration of the AGB prediction model. In future analyses, further datasets need to be taken into 574 

account. Achieving robust leave-one-site-out cross validation results will require a sufficient degree of 575 

structural redundancy among sites, i.e., several sites representing similar forest types.  576 

The Traunstein site was the most distinct site concerning various structural aspects. It remains unclear to 577 

which degree this can be explained by ecological differences alone (e.g., only site with large proportion of 578 

conifers), and to which degree the intensive management there plays a role. Forest management may alter 579 

some of the relationships among structure metrics, compared to natural stands. Future research should 580 

try to identify such changes. In case they are significant, management would be an additional aspect which 581 

should be considered in generalization approaches. Remote sensing methods for estimating the 582 

management regimes and parameters could then complement the biomass estimation. 583 

Furthermore, the influence of spatial scale needs to be investigated, as different sensors produce 584 

measurements at different scales (Knapp et al., 2018; Tello et al., 2018). Finally, methods need to be 585 

developed for acquiring more of the structural variables entirely from remote sensing and becoming 586 

independent from any ground-based input. Individual tree delineation from high resolution canopy height 587 

data can be applied to derive stand density information directly from remote sensing (Duncanson et al., 588 

2015; Ferraz et al., 2016). Average wood density can be estimated based on forest type or even species 589 

classification using passive optical remote sensing (Fassnacht et al., 2016). These technologies have to be 590 
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combined to derive very detailed estimates from airborne acquisitions at landscape scale. The estimates 591 

can then serve as training areas for wall-to-wall mapping using spaceborne products. 592 

 593 

5. Conclusion 594 

Data from temperate and tropical forest plots was combined to develop a general equation for biomass 595 

(and basal area) estimation based on a set of forest structure metrics from lidar remote sensing. The 596 

different structural predictors were a priori defined. The results provided insight in the relative importance 597 

of mean and maximal canopy height, stand density, vertical heterogeneity and wood density for biomass 598 

estimation. Not all of those forest attributes can be derived from lidar data. For maximal stand density and 599 

mean wood density field-based information is required at the site level. Alternatively, a model without 600 

those attributes can be chosen from the list of models, at the expense of slightly lower prediction 601 

accuracies. The found relationships should provide guidance towards a standardized workflow for 602 

estimating aboveground biomass for forest carbon mapping and monitoring from remote sensing. 603 
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