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Highlights 18 

• Invasive alien species (IAS) can have negative as well as positive effects on human well-19 

being. 20 

• The impact of IAS on ecosystems is mediated by species characteristics, some of which 21 

relate to ecosystem service provision. 22 

• The proposed framework examines the relationship between traits of invasive plants, and 23 

ecosystem services and disservices. 24 

• The framework supports the identification of plant traits which affect (positively and/or 25 

negatively) different environmental and socioeconomic sectors of human well-being  26 
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Abstract 27 

Invasive alien species (IAS) have negative as well as positive effects on human well-being. They 28 

can alter ecosystem properties, functions and associated ecosystem services (ES). However, many 29 

IAS have negative effects (resulting from reducing ES or by increasing or creating ecosystem 30 

disservices (EDS), the latter termed genuine negative effects) on, e.g. biodiversity, crop and timber 31 

production and/or human health. We present a novel framework, linking traits of IAS via ES and 32 

EDS to affected environmental and socioeconomic sectors. By applying the framework, we were 33 

able to identify whether a plant trait affects different sectors (positively and/or negatively) and 34 

whether the same trait impacts one but benefits another sector. Positive effects correspond to an 35 

increase in ES/a reduction in EDS whereas impact represents a reduction in ES/an increase in EDS. 36 

The framework is applicable across traits and species, including the direction (positive/negative) 37 

and strength of effects. Furthermore, we classified six socioeconomic and environmental sectors 38 

frequently affected (positively or negatively) by invasive plants, along with the list of ES and EDS 39 

relevant in these sectors. The framework can be used as a tool for assessing multiple ES and EDS 40 

and for prioritizing the management of affected sectors. 41 

Keywords 42 

Alien species, biological invasions, conceptual framework, ecosystem disservices, ecosystem 43 

services, functional traits44 
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Introduction 45 

Alien plant species have been introduced by humans all over the globe and many of them have 46 

become invasive (i.e. causing impact; see below). They have modified ecosystems for centuries 47 

with great effects on the environment and human well-being (Vilà et al., 2010, Vilà and Hulme 48 

2017). Alien species numbers have increased with the development of agriculture, forestry, and 49 

industry (van Kleunen et al., 2015, Pyšek et al., 2017) and this increase is not yet saturated 50 

(Seebens et al., 2017). Alien species were reported to have a great effect on agriculture, for 51 

instance, in the US introduced species make up 98% of food consumed (Pimentel et al., 2005). 52 

Similarly, plant species used in forestry or horticulture are often introduced, e.g. a study in the US 53 

showed that 82% of tree species (out of 235) were introduced for landscaping, already in the 17th 54 

century, when the first ornamental garden was founded (Reichard and White, 2001). At the same 55 

time, there are hundreds of alien woody species (most commonly of the genera Pinus, Eucalyptus 56 

and Acacia) commercially planted for timber (Holmes et al. 2009). Herbaceous plant species are 57 

introduced as ornamentals in botanical gardens or private gardens because of their exotic 58 

appearance (Hulme et al., 2018, van Kleunen et al., 2018) or for the production of pharmaceutical 59 

and cosmetic compounds (Scott, 2010). In Europe, the majority of alien plant species were 60 

introduced for agriculture, forestry, materials, horticulture or as ornamental species (Lambdon et 61 

al., 2008). Further, alien species are used in ecosystem restoration, for soil stabilization, and as 62 

phytoremediators or windbreakers (Pejchar and Mooney, 2009).  63 

While ecosystem services (ES) present direct or indirect positive effects, disservices (EDS) 64 

generate functions, processes and attributes in ecosystems that result in perceived or actual 65 

negative impacts on human well-being (Shackleton et al., 2016). In this paper, we first introduce 66 

invasive alien plant species and their environmental and socioeconomic effects. Further, we 67 
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present plant functional traits linked with invasiveness and ES / EDS. Additionally, we overviewed 68 

main ES/EDS of invasive plant species in Europe as a rationale for a conceptual framework that 69 

links IAS, traits and ES/EDS.  Here, we used the Common International Classification of 70 

Ecosystem Services (CICES; Haines-Young and Potschin, 2012) where ES can be classified as 71 

follows: (i) provisioning services (including food, fiber, pharmaceuticals, water and others); (ii) 72 

regulation and maintenance services (climate, water and erosion regulation, nutrient cycling, 73 

pollination etc.); and (iii) cultural services (spiritual and aesthetic values as well as providing 74 

foundation for tourism and recreation development).  75 

 76 

Background 77 

Invasive plant species 78 

By now, 13,168 alien plant species have been reported as naturalized around the world (GloNAF 79 

- Global Naturalized Alien Floras; van Kleunen et al., 2015, Pyšek et al., 2017, van Kleunen et al., 80 

2019), with highest numbers in North America (5958 taxa), Europe (4139) and Australasia (3886; 81 

Pyšek et al., 2017). Most alien species that successfully naturalize in a new area (i.e. forming self-82 

sustaining populations by reproducing in the wild without human intervention and thus become 83 

permanent parts of the flora; Richardson et al., 2000, Pyšek et al., 2012a), do not necessarily 84 

modify their new habitat or cause positive or negative effect on environment or people. Vilà et al. 85 

(2010) showed that 5–6 percent of alien plant species in Europe are noted to have an environmental 86 

and socioeconomic effect. Estimates of the total numbers of invasive plant species over the globe 87 

vary (e.g. 451 in Weber (2003), excluding agricultural weeds, or 672 in the CABI Invasive Species 88 

Compendium; www.cabi.org/isc).  89 

http://www.cabi.org/isc
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In this paper, we term these “invasive alien species” (IAS), following the IUCN (2000) definition 90 

rather than the one commonly used in ecological literature where the criterion for a species to be 91 

invasive is rapid spread (Richardson et al., 2000). Therefore, “invasive alien species (IAS) are 92 

animals, plants or other organisms that are introduced into places outside their natural range, 93 

negatively impacting native biodiversity, ecosystem services or human well-being” (IUCN, 2000). 94 

Invasive species are easily transported by people and disperse effectively (Wilson et al., 2016). 95 

Additionally, they can rapidly adapt to a range of environmental conditions and therefore, inhabit 96 

a variety of ecosystems (Hellmann et al., 2008).  97 

 98 

Environmental and socioeconomic effects of IAS 99 

Invasive plant species have negative impacts on the environment, public health, recreation or 100 

infrastructure (Pyšek et al., 2012b, Blackburn et al., 2014, Jeschke et al., 2014), related to reduced 101 

provision of ES or increased EDS (Vaz et al., 2017, Potgieter et al., 2019). The most frequently 102 

documented impacts of invasive species on ecosystems are competition for resources with other 103 

plant species (Kumschick et al., 2015) and the spread of diseases and pests (Pimentel et al. 2005, 104 

Holmes et al. 2009). Many studies have shown that invasive species impact the diversity of native 105 

species in invaded plant communities (Hooper et al., 2005, Hejda et al., 2009, Pyšek et al., 2012b). 106 

Biodiversity has an important role in supporting ecosystem functioning and ecosystem services 107 

(e.g. food provision, nutrient cycling, microclimate regulation; Altieri, 1999) and according to 108 

Millennium Ecosystem Assessment (2005) the maintenance of biodiversity provides significant 109 

benefits to humans (although not every ES directly depends on biodiversity; Schwarz et al., 2017). 110 

Still, biodiversity is also an important asset (and hence service) in itself. Furthermore, invasive 111 
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plants can have detrimental effects on ecosystems by altering nutrient and water cycles or 112 

facilitating erosion (Kettunen et al., 2008).  113 

Agriculture, forestry and tourism can profit from IAS, however economic costs of losses, damage 114 

and control can exceed the profits they provide (Pimentel et al., 2005). For example, in the US, 115 

IAS cause the major losses in crop production resulting in 26.4 billion dollar loss per year, 116 

including a loss of 21 billion dollars by introduced pests and microbes (Pimentel et al., 2005). 117 

Similarly, invasive pathogens result in considerable losses in forestry and recreation sectors – up 118 

to 20.3 and 2 billion US dollars annually, respectively (Pimentel et al. 2005, Holmes et al., 2009). 119 

Furthermore, there are additional economic and environmental costs resulting from eradication, 120 

such as ecosystem recovery from the damages caused by herbicides or other weed removal 121 

techniques (Pimentel et al., 2005). In the UK, Japanese knotweed (Fallopia japonica) causes 122 

significant damages to infrastructure (roads, households, railways), with the costs of vegetation 123 

management and eradication totaling 165 million pounds, annually (Williams et al., 2010). Finally, 124 

IAS can decrease landscape quality and cause health problems (Kettunen et al., 2008, Pyšek and 125 

Richardson, 2010, Sladonja et al., 2015, Lazzaro et al., 2018). Overall, in Europe, terrestrial 126 

invasive plants cost 3.74 million euros annually, a third of total economic costs caused by all IAS 127 

in Europe (Kettunen et al., 2008).  128 

Nevertheless, some IAS can also have beneficial effects, manifested as increased provision of ES 129 

or reduced EDS. They can, consequently, affect environmental and socioeconomic sectors 130 

(agriculture, forestry, infrastructure, human health, aesthetics and recreation, environmental effect: 131 

sectors adapted from categories by Kumschick et al., 2012) positively and negatively (Table 1). 132 

For example, some plant invaders, such as Ailanthus altissima, can cause severe allergies in 133 

humans, yet, the species is used in the pharmaceutical industry due to its beneficial chemical 134 
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compounds (Sladonja et al., 2015). Ornamental species can increase the recreational value of the 135 

landscape but also have an adverse effect on ecosystems by degrading habitats, reducing 136 

biodiversity, causing injuries, and being toxic to humans (Potgieter et al., 2017). Invasive tree 137 

species used for timber production can at the same time release chemical compounds via 138 

allelopathy (Holmes et al., 2009) thereby inhibiting the growth of surrounding trees (decrease in 139 

ES). Many ornamental broad-leaved trees emit biogenic volatile organic compounds, which 140 

increase the concentration of ozone and photochemical smog in the atmosphere (Niinemets and 141 

Peñuelas, 2008). The complexity of ecosystems and interactions between invasive and native 142 

species makes identifying the real effects of invasive species difficult.  143 

 144 

Plant traits associated with invasiveness  145 

Many studies showed that certain functional traits of introduced plant species are associated with 146 

their ability to become invasive (e.g. flowering period, clonality, height; Pyšek et al., 2015, Pyšek 147 

et al., 2009, van Kleunen et al., 2010). In our paper, we consider functional traits as “any trait 148 

which impacts fitness indirectly via its effects on growth, reproduction and survival” (Violle et al., 149 

2007). Some traits associated with plant invasiveness include: growth rate (IAS grow faster 150 

compared with native species), SLA (higher specific leaf area in IAS), flowering phenology (IAS 151 

start flowering earlier and have longer flowering periods), higher fecundity and more efficient seed 152 

dispersal (Pyšek and Richardson 2007). Given the relationship of plant traits with plants’ 153 

invasiveness we argue that plant traits can be an important tool for predicting benefits (ES) or 154 

impacts (EDS) for different environmental and socioeconomic sectors (Table 1): Traits do affect 155 

ecosystem functions (Díaz et al. 2004), which humans might perceive as services or disservices 156 
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that can translate into societal (monetary or non-monetary) values (cf. ecosystem service cascade; 157 

Haines-Young and Potschin 2010).  158 

Thus, it is important to make a distinction (Fig. 1) between response and effect traits (Lavorel and 159 

Garnier 2002) in different stages of the invasion process, i.e. transport and introduction to a new 160 

area, establishment of self-sustaining populations (naturalization), and spread within the new area 161 

(Richardson et al., 2000). 162 

 163 

Figure 1. Different types of plant traits are important for each stage of invasion; response traits 164 

in early stages, while effect traits become more significant when introduced species begin to have 165 

an impact. However, the effect can be realized at any stage of the process. 166 

 167 

Response traits respond to environmental changes (e.g. life form, SLA, life cycle, relative growth 168 

rate, leaf and root morphology and seed mass; Lavorel and Garnier, 2002). Therefore, they are 169 

crucial throughout the invasion process, predominantly during the plants’ establishment and spread 170 

phases when plants need to overcome environmental barriers (Richardson et al., 2000). Different 171 

traits may be beneficial in different phases of the invasion process (Richardson and Pyšek, 2012) 172 
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– such as ornamental traits that might decide which species are transported across countries at all 173 

(Reichard and White, 2001). When IAS start to have an impact on ecosystems or economies, effect 174 

traits become more relevant since they affect ecosystem functioning and the provision of ES or 175 

EDS. These include, among others, plant height and biomass (competitive ability), phenology, 176 

mutualism with nitrogen-fixing bacteria, longevity, leaf litter quality or photosynthesis pathway 177 

(for example, in South Africa most of the invasive grass species are C3 and can have an advantage 178 

over C4 species in disturbed ecosystems or with an increase of CO2, e.g. more efficient nitrogen 179 

use in grasses; Milton, 2004).  180 

Plant traits and ES & EDS 181 

Plants’ effects on ES (such as crop yields, cultural services, pollination) are manifested by 182 

changing ecosystem functions and related values through the agency of functional traits such as 183 

biomass, plant height, canopy and root size/architecture, leaf dry matter content, SLA, soil organic 184 

carbon, flowering pattern or leaf P/N concentration (de Bello et al., 2010, Lavorel et al., 2011). 185 

Based on the frequency of certain traits, ecosystems may become “hot-spots” of ecosystem 186 

services, fostering multiple services provided by some species (Potgieter et al., 2017), or they can 187 

exhibit trade-offs between services and disservices as a result of contrasting traits. Some tree 188 

species, due to their fast growth contribute carbon sequestration, climate regulation or erosion 189 

control (ES), while this trait can lead to increase in fire risk (EDS; Castro‐Díez et al., 2019). For 190 

example, Millward and Sabir (2011) showed that the effect of maple (Acer platanoides) on air 191 

quality is two-fold; it sequesters carbon dioxide from the air while emitting biogenic volatile 192 

organic compounds, which significantly reduce air quality. Such trade-offs can be expressed as a 193 

conflict between service and disservice.  194 
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In summary, the extent and direction of IAS’ effects on ES and EDS can be ambiguous. Thus, it 195 

is necessary to create a framework that provides information on which plant species should be 196 

prioritized for management actions in which environmental or socioeconomic sectors, depending 197 

on their traits and thus their positive and negative effects. Our paper provides a framework which 198 

is an extension of existing frameworks (e.g. Vaz et al., 2017). It examines the relationship of 199 

(functional) traits of invasive plants with ecosystem services and disservices, by linking those traits 200 

to affected sectors (agriculture, forestry, infrastructure, human health, aesthetics and recreation, 201 

and environmental effect).  202 

Hence, in the proposed paper we aim to (1) identify the main ES/EDS for a variety of invasive 203 

plant species; (2) establish the relationship between functional plant traits with increases or 204 

decreases in services and disservices; (3) link these traits to different socioeconomic and 205 

environmental sectors and highlight those severely affected by invasive plants. 206 

 207 

Main ES and EDS provided by invasive plant species in Europe  208 

In order to identify the benefits (increase in ES/ decrease in EDS) and impacts (increase in EDS/ 209 

decrease in ES) of invasive plant species (Table 1), we chose 18 vascular plant species from the 210 

list of representative invasive species in Europe provided by DAISIE (2009) and surveyed the 211 

literature for information on how these species affect ES/EDS. The main aim was to get an 212 

overview of ES and EDS provided by the selected invasive plant species in Europe. The main 213 

criterion for a species to be included on the DAISIE list was, besides it being classified as invasive 214 

in Europe, to cover a range of representative taxa and their impacts (Pyšek and Richardson, 2012), 215 

which makes the selection suitable for the purpose of our study. We listed the ES and EDS 216 
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mentioned in the investigated literature with the direction of their effects (positive or negative; 217 

Table 1). For example, for Fallopia japonica, the ES reported are the provision of animal food, 218 

use in medicine, use as a pesticide and biofuel, and ornamental value (Table 1). However, F. 219 

japonica negatively affects infrastructure, can cause floods (thick plant shoots can block water 220 

flow; Palmer 1990, Colleran and Goodall, 2014), produces allelopathic chemicals and changes of 221 

habitat (Murrell et al. 2011).  222 
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Table 1. List of effects on ecosystem services (increase and reduction in ES) and disservices (increase and reduction in EDS) provided 
by invasive plant species in Europe - (+): Increase in ES or EDS; (-): Decrease in ES or EDS 

IAS Ecosystem service Ecosystem disservice References 

Acacia dealbata 

Used for timber (+) ; Erosion 
control (+) ; Windbreak (+) ; 
Ornamental (+) ; Enhancing 
pollination (+) ; Use in cosmetics 
(+);  

Allelopathy (+) ; Erosion (+) ; 
Allergies (+) ; Nutrient 
alteration in soil (+); 

Lorenzo et al. 2008; Weber, 2003; Lorenzoni-
Chiesura et al. 2000; Chau et al. 1985; Logan, 1987; 
Le Maitre et al. 2011; Clemson, 1985; Griffin et al. 
2011; 

Ailanthus altissima 

Pesticide (+) ; Use in medicine (+) 
; Used for timber and fuel (+) ; 
Ornamental (+) ; Erosion control 
(+) ; Soil stabilization (+) ; 
Animal food (+); 

Allelopathy (+) ; Allergies (+) ; 
Habitat alteration (+) ; 
Infrastructure damage (+); 

Gómez‐Aparicio & Canham, 2008; Ding et al. 2005; 
Ballero et al. 2003; Castro-Diez et al. 2009; Grapow 
& Blasi, 1998; Sladonja et al. 2015; Kowarik & 
Säumel, 2007; Lee et al. 1997; Heisey, 1997; 

Ambrosia artemisiifolia 

Crop yield (-) ; Animal food (+) ; 
Use in medicine (+) ; 
Phytoremediation (+);  
Biodiversity (-); 

Pest transmission in crops (+);  Reinhardt et al. 2003; Bohár & Kiss, 1999; Beres et 
al. 2002; Dechamp, 1999; Stubbendieck et al. 1995; 
Bassett & Crompton, 1975; 

Campylopus introflexus Ornamental (+) ; Biodiversity (-);  Habitat alteration (+); Biermann & Daniels, 1997; Daniëls at al. 2008; 

Carpobrotus edulis 

Ornamental (+) ; Soil stabilization 
(+) ; Use in traditional medicine 
(+) ; Used as food (+); 
Biodiversity  (-); 

Habitat alteration (+); Weber, 2017; Moretti, 1939; Ordway et al. 2003; van 
der Watt & Pretorius, 2001; 

Cortaderia selloana 
Ornamental (+) ; Erosion control 
(+) ; Soil stabilization (+) ;  
Biodiversity (-); 

Habitat alteration (+) ;  
Allergies and injuries (+) ; 
Causes fire (+);  

Bossard, 2000; DAISIE, 2009; Domènech & Vilà, 
2006; Okada et al. 2007; 

Echinocystis lobata Ornamental (+) ; Use in medicine 
(+); Biodiversity (-); 

Toxic (+); Ielciu et al. 2017; DAISIE, 2009; 

Fallopia japonica 
Animal food (+) ; Use in medicine 
(+) ; Pesticide (+) ; Biofuel (+) ; 
Ornamental (+) ; Biodiversity (-); 

Infrastructure damage (+) ; 
Floods (+) ; Allelopathy (+) ; 
Habitat alteration (+); 

Palmer, 1990; Beerling et al. 1995; Aguilera et al. 
2010; DAISIE, 2009; Seiger & Merchant, 1997; Shaw 
et al. 2011; 

Hedychium gardnerianum 
Recreation (-) ; Ornamental (+) ; 
Use in medicine (+); Biodiversity 
(-); 

Erosion (+); Macdonald et al. 1991; Weyerstahl et al. 1998; 
Minden at al. 2010; 
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223 
Heracleum 
mantegazzianum 

Recreation (-); Ornamental (+) ; 
Use in medicine (+) ; Used as 
food (+) ; Herbicide (+); 
Biodiversity  (-); 

Allergies (+) ; Pathogen 
transmission (+) ; Habitat 
alteration (+) ; Erosion (+) ; 
Allelopathy (+) ; 

Tiley et al. 1996; Jandová et al. 2014; Thiele & Otte, 
2007; Wille et al. 2013; Nielsen at al. 2007; Chan et 
al. 2011; Solymosi, 1994; Westbrooks, 1991; Pyšek, 
1991; 

Impatiens glandulifera Recreation (-) ; Biodiversity (-) ; 
Animal food (+) ; Ornamental (+); 

Habitat alteration (+) ; Erosion 
(+) ; 

Pattison et al. 2016; Hulme & Bremner, 2006; 
Beerling & Perrins, 1993; Pyšek & Prach, 1995; 

Opuntia ficus-indica Recreation (-) ; Biodiversity (-) ; 
Ornamental (+);  

Injuries (+); Toxic for people 
and cattle (+); 

Larsson, 2004; Brolin, 2004; Nikodinoska et al. 2014; 
Griffith, 2004; 

Oxalis pes-caprae 
Honey production (+) ; Crop 
yields (-) ; Tourism (+) ; 
Pollinators (+) ; Biodiversity (-); 

Toxic (+); Marshall, 1987; McLaughlan et al. 2014; DAISIE, 
2009; 

Paspalum paspaloides 

Crop yields (-) ; Preventing floods 
(+) ; Animal food (+) ; Erosion 
control (+) ; Phytoremediation (+) 
; Biodiversity (-); 

Attractive for 
mosquitos/disease transmitters 
(+); 

Holm et al. 1979; Lawler et al. 2007; Bernez et al. 
2005; Bor, 1960; Rosicky et al. 2006; Shu et al. 2002; 
Lee et al. 2004; 

Prunus serotina 

Forestry (-) ; Agriculture (-) ; 
Ornamental (+) ; Erosion control 
(+) ; Used for timber (+) ; Used as 
food (+) ; Biodiversity (-); 

Toxic (+) ; Soil alteration (+); Verheyen et al. 2007; DAISIE, 2009; Starfinger et al. 
2003; Fowells, 1965; Stephens, 1980; 

Rhododendron ponticum 

Forestry (-) ; Pollination (-) ; 
Recreation (-) ; Ornamental (+) ; 
Use in medicine (+) ; Biodiversity 
(-); 

Toxic (+); Black, 1991; Colak et al. 1998; Milne & Abbott, 
2000; Dehnen-Schmutz et al. 2004; Erdemoglu et al. 
2003; 

Robinia pseudoacacia 

used as biofuel (+) ; Forestry (+) ; 
Ornamental (+) ; Pollination (+) ; 
Used as food (+) ; Used in 
cosmetics (+) ; Biodiversity (-); 

Habitat alteration (+) ; Toxic 
(+) ; Infrastructure damage (+); 

Sabo, 2000; Benesperi et al. 2012; Rédei et al. 2008; 
DAISIE, 2009; Rédei et al. 2002; Keresztesi, 1977; 
Grollier et al. 1986; 

Rosa rugosa 

Biodiversity (-) ; Recreation (-) ; 
Tourism (+) ; Erosion control (+) ; 
Ornamental (+) ; Used as food (+) 
; Use in medicine (+) ; Used in 
cosmetics (+) ; Windbreak (+); 

Injuries (+) ; Habitat alteration 
(+) ; Pest host/transfer (+); 

Vanderhoeven et al. 2005; Isermann, 2008; 
Shorthouse, 1987; Jørgensen & Kollmann, 2009; 
Weidema, 2006; Dobson et al. 1990; Dubey et al. 
2010; Bruun, 2006; 
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Conceptual Framework 224 

We propose a novel framework (Fig. 2) linking invasive plant species via their traits to ES and 225 

EDS relevant in different socioeconomic (agriculture, forestry, health) and environmental sector 226 

(with ES such as carbon sequestration, erosion control, pollination). The main aim is to link actors 227 

(IAS and their traits) with results/effects (ES and EDS) they generate on different sectors by 228 

identifying the impacts and benefits. Thus, the framework comprises three parts: plant trait, 229 

ecosystem services and disservices, and sectors. It is intended to address the following questions: 230 

Which sectors (environmental/socioeconomic) are most impacted by reduced ES/increased EDS 231 

contributed by invasive plants; what are the sectors benefiting from different increased ES/reduced 232 

EDS provided by invasive plants; which plant traits are predominantly responsible for influencing 233 

(positively or negatively via ES or EDS) different sectors; are there trade-offs in the effect caused 234 

by the same trait across sectors?  235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 
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Figure 2. Conceptual framework showing the linkage between a plant trait, ecosystem services, 244 

ecosystem disservices and different sectors (environmental/ socioeconomic) affected by IAS. Both, 245 

ES (light gray box - ES1, ES2) and EDS (dark gray box - EDS1, EDS2) can be increased (“+”) 246 

or decreased (“-“) by IAS, resulting in different types of benefits or impacts on sectors. Therefore, 247 

benefits are the result of a positive effect on ES or negative effect on EDS and impacts are an 248 

outcome of negative influence on ES or positive on EDS. Finally, if the strength of the influence is 249 

known (depending on the literature and data availability), it can be presented with the thickness 250 

of links between sectors and services (low impact – thin line, medium impact – thicker line, high 251 

impact – the thickest line). Moreover, the framework is applicable across all traits and plant 252 

species. 253 

Plant traits 254 

Plant traits were shown to be important for the provision of services and disservices. For example, 255 

canopy and root size affect various regulating services (climate and water regulation, soil stability) 256 

and the provision of food (de Bello et al., 2010). Leaf traits (leaf dry matter content, SLA and 257 

nitrogen content) affect soil fertility but also can be crucial for biocontrol and as a cultural service 258 

(ornamental value). For some legume species, traits such as corolla length are valuable for 259 

pollination efficiency (Lavorel et al., 2013). Phenological pattern in flowering (time and duration) 260 

is another characteristic affecting the provision of resources for pollinators (Lavorel et al., 2013). 261 

In woody plant species, tree height and biomass are principal traits impacting or enhancing 262 

provisioning services (timber and biofuel) and cultural services (aesthetic appreciation). Similarly, 263 

provisioning services (provision of food for humans or animals) are mainly affected by plant 264 

biomass (de Bello et al., 2010), either as the amount of food produced or as decrease in crop yields 265 

(via competition or allelopathy). The example of biomass shows that effects of plant traits can be 266 
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context dependent (can have a positive or negative effect on ES/EDS). However, species with 267 

similar life form or habitat might have similar effects on ES/EDS. Provided that the traits show a 268 

similar pattern between different IAS, the framework can be used as an efficient way of tackling 269 

their impact and can lead to faster interventions. 270 

Sectors, ecosystem services and disservices 271 

We assigned ES and EDS to six main public sectors influenced by invasive plant species: 272 

agriculture, forestry, infrastructure, human health, aesthetics and recreation, and environmental 273 

effect. Each of these sectors can have numerous services and/or disservices provided by IAS (Fig. 274 

3).  275 

IAS affect food production, timber, medicine, erosion control, via increasing or reducing these 276 

services. Moreover, invasive plants support or diminish disservices, such as pathogen 277 

transmission, and damage to infrastructure, human health or fire regimes. However, sometimes 278 

apparent disservices (e.g. allelopathy) can be perceived beneficial in specific circumstances or 279 

ecosystems (plants can produce and release allelopathic secondary metabolites affecting other 280 

plants and ecosystem, while the same chemicals can be used in pharmaceutical industry; Jimenez-281 

Garcia et al., 2013). Identifying cumulative plants’ effects (positive or negative) can simplify and 282 

improve decision making, particularly when multiple ES and EDS are considered.283 
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Application of the framework 284 

Traits of invasive plant species can affect an array of ES and EDS. Although these effects can be 285 

straightforward (e.g. increase in tree biomass provides more timber, pollen of a plant causes 286 

allergies etc.) often the effect is ambiguous or even antagonistic (simultaneous provision of both 287 

ES and EDS; Fig. 3). Below, we present several examples of plant traits with opposing effects 288 

(providing both, ES and EDS), where it can be beneficial to apply the framework for deciding on 289 

managing invasive species. 290 

Tree canopy 291 

Plant height and canopy height are traits that can have conflicting effects. For example, tree species 292 

can provide shade and climate regulation (ES), however, such shady places can be perceived as 293 

unsafe and as cover for burglars or wild animals (Lyytimäki and Sipilä, 2009; Potgieter et al., 294 

2019). 295 

Nitrogen-fixing plants 296 

Black locust (Robinia pseudoacacia) is a nitrogen-fixing invasive plant species in Europe. It 297 

increases nitrogen in soil and litterfall, which can be a service in nutrient-poor tree plantations 298 

(Rice et al., 2004) or a reduced service where it negatively affects the diversity of non-nitrophilous 299 

species (Benesperi et al., 2012).   300 

Pollination type 301 

Invasive plant species can be very attractive to pollinators and offer an additional food source. 302 

Brown et al. (2002) recorded a decrease in pollination of native Lythrum alatum in the presence of 303 

invasive Lythrum salicaria. Although food availability increased for pollinators (ES), visitation 304 
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rates decreased for the native species, as well as pollen quality due to heterospecific transfer 305 

between the two species (EDS). 306 

Toxicity 307 

Leaves of nettle (Urtica dioica) are used as food and herbal medicine in many parts of the world. 308 

Yet, when uncooked its stinging leaves are painful in direct contact, and leaf’s hairs can cause 309 

irritation or even be toxic for humans (Connor, 1977).  310 
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 311 

Figure 3. Biomass (e. g. increase of biomass) as a trait of invasive species and its benefits (+) or impacts (-) on different sectors and 312 

ES (light gray boxes with dotted frame) and EDS (dark grey boxes with dotted frame) 313 
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Use and data requirements 314 

The conceptual framework has the advantage that it can be applied across multiple invasive species 315 

by using species traits as a fundamental unit. Simultaneously, the framework provides an overview 316 

of all (selected/observed/interesting/relevant) services and disservices (including whether they are 317 

positively or negatively affected, respectively) and highlights main sectors influenced by IAS. It 318 

hence brings into focus sectors that urgently need to be addressed and traits most relevant for 319 

positive or negative effects in several sectors (Box 1).  320 

Illustrative example of the stem height (biomass) effect as a 

functional trait of A. altissima (tree of heaven) on the (a) ES 

(left, blue boxes); (b) EDS (left, red boxes); (c) and different 

sectors (right, dark blue boxes). Benefits of A. altissima are 

presented using blue arrows, and impact via red arrows; the 

number of different services or disservices is illustrated with 

different arrow thickness (one ES/EDS - thin line, multiple 

ES/EDS – thicker line). 
An increase in trunk biomass is a benefit for forestry, with the 
provision of wood and wood by-product and via reforestation. 
Overall, tree of heaven shows the biggest effect on ecological 
properties. Due to its very soft, light wood and great resistance 
property it is a good choice for planting to combat climate 
change (Enescu, 2014). Since it is often planted at former 
landfills or mining areas it is useful for restoring derelict land. 
However, A. altissima is a very competitive species and 
produces allelopathic compounds in the bark. Finally, it affects 
N, organic C and pH in the soil (Kowarik and Säumel, 2007). 
Plantations of A. altissima are used as a shelterbelt to control 
erosion or on sides of the highways, yet they can obstruct the 
view and therefore present safety hazard. Extracted components 
from tree of heaven are used in both traditional and conventional 
medicine. Nevertheless, the sap can be toxic to humans 
(Nentwig et al., 2017). Trees are suitable for growth in urban 
areas as they withstand high pollution levels and are valued for 
their ornamental appearance despite unpleasant odor.  

Box 1. Framework application using invasive species Ailanthus altissima (from Sladonja et al., 2015) 
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The application of the conceptual framework requires data on species trait(s) and lists of ES and 321 

EDS provided with the effects quantified (or in some cases with qualitative data). Currently, 322 

studies quantify effects by (i) numerical scoring (e.g. 1 to 5 or 1 to 3), (ii) description (very high, 323 

high, moderate, low, none; Blackburn et al., 2014, Bacher et al., 2018, Nentwig et al., 2016, 2018), 324 

(iii) statistical significance (significant or non-significant impact; Pyšek et al., 2012b), (iv) 325 

monetization (costs or value; Cook et al., 2007), (v) percentage of increase/decrease (e.g. crop 326 

yields; Fried et al., 2017).  327 

IAS have been classified with respect to their environmental impact – EICAT (Blackburn et al., 328 

2014) and socioeconomic impact – SEICAT (Bacher et al., 2018) into several categories: massive, 329 

major, moderate, minor and minimal concern. This categorization was developed to help identify 330 

the magnitude of negative effects alien species have on the environment and human well-being. 331 

Similarly, classification can be established for benefits provided by IAS. Changes caused by IAS 332 

can be perceived as beneficial (increased ES/decreased EDS) or harmful (increased EDS/decreased 333 

ES) by different people depending on their personal preference, financial status, cultural 334 

background or education (Shackleton et al., 2018, Potgieter et al., 2019). Therefore, the main 335 

advantage of our framework is that it is suitable for different types of data sets and that it allows 336 

flexibility in the choice of scoring systems. It can hence serve as a basis for further meta-analyses. 337 

Summarizing, our framework has several advantages: One can use multiple traits and/or multiple 338 

species when assessing the effects of IAS. Our framework addresses the “bigger picture” by 339 

assessing the effect of invasive species on sectors (and not only ES/EDS as in Vaz et al., 2017) 340 

and thus “opposing” effects (e.g. positive effect via one ES and impact via another reduced ES 341 

/EDS). In this case trait can have predominately negative effect in one sector (e.g. increases in 342 

biomass can impact wood production or biodiversity), and mostly positive in another (e.g. 343 
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increases shade, regulates climate and has ornamental value). Therefore, these species can be 344 

considered undesirable in forest but beneficial in urban areas and parks. The framework allows 345 

assessing the interplay between different ES/EDS and is adjustable to any type of qualitative and 346 

quantitative data. Some traits have multiple services (or disservices) but also there might be 347 

interactions among them including the ES/EDS interaction between different sectors. 348 

In addition to the framework’s advantages, some limitations exist. Due to lack of data, currently, 349 

the framework is predominantly applicable using qualitative data since quantitative data are 350 

infrequent in the literature. Similarly, it could prove to be difficult to assess if a certain effect is 351 

beneficial or disadvantageous. Thus, some traits can be considered ES or EDS depending on the 352 

context. Finally, in some cases, it can be challenging to link certain ES/EDS with the specific 353 

functional trait (and how much this trait exclusively contributes to ES/EDS). However, the 354 

framework can handle the dichotomy of ES and EDS, by allowing the integration of all diverging 355 

services and disservices and by focusing on the final outcome within sectors. 356 

Conclusions 357 

Invasive plant species provide some major services and disservices, directly affecting human well-358 

being. Only recently part of the research agenda on biological invasions shifted toward examining 359 

both benefits by providing ecosystem services as well as disservices, e.g. as a direct negative effect 360 

of IAS on human well-being (Dobbs et al,. 2014). We classified the main benefits and impacts IAS 361 

provide in Europe and disentangled the difference between services and disservices in the context 362 

of invasion biology. The conceptual framework uses traits of invasive plant species as a proxy for 363 

effects on different services and disservices. The framework provides a simple and comprehensive 364 

way of highlighting the main environmental and socioeconomic sectors affected by invasion while 365 
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enabling the use of multiple (and often conflicting) services and disservices and thus linking plant 366 

traits with sectors. This is facilitated by applying the direction (positive/negative) and strength of 367 

impact. Clarifying the extent of impact and benefit as well as most affected sectors can help address 368 

problems caused by IAS.369 
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