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Abstract 9 

This study analyzes daily mean streamflow records from 5,311 U.S. Geological Survey stream gages in the 10 

continental United States and develops a Metastatistical Extreme Value Distribution (MEVD) tailored for 11 

flood frequency analysis. We compare the new tool with the Generalized Extreme Value (GEV) and Log-12 

Pearson Type III (LP3) distributions and investigate the role of El Niño Southern Oscillation (ENSO) in 13 

the generation of floods. Hence, we formulate the MEVD in terms of mixture of distributions to describe 14 

the occurrence of flood peaks generated under different ENSO phases. We find that the MEVD outperforms 15 

GEV and LP3 distributions respectively in about 76% and 86% of the stations, with a significant 16 

improvement in the accuracy of quantiles corresponding to return periods much larger than the calibration 17 

sample size. The ENSO signature detected in the distributions of the daily peak flows does not necessarily 18 

improve the estimation of high return period flow values. 19 
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1. Introduction 20 

Globally, in the period 1998-2017, floods have been the most frequent disaster (43.4% of the natural 21 

disasters) and have caused more than 140,000 deaths (representing 11% of the fatalities due to natural 22 

disasters of all types) (Wallemacq and House, 2018). Within this global context, during the 20th century 23 

floods in the United States were the number-one natural disaster in terms of the number of lives lost and 24 

property damage (Perry, 2000), the costliest (Miller et al., 2008) and affected the largest number of people 25 

(Stromberg, 2007). They are also the second weather-related hazard in terms of fatalities in the United 26 

States, with 4,586 reported deaths between 1959 and 2005, mainly due to flash floods caused by heavy 27 

precipitation (Ashley and Ashley, 2008). Reliable flood frequency estimation methods are the basis to devise 28 

and implement strategies for the mitigation of these societal and economic impacts, with applications in a 29 

number of fields, from the design of hydraulic structures, to environmental management and planning, to 30 

flood insurance. A key concept is the design flood peak value, typically set in national regulations by 31 

specifying an average recurrence interval, or return period, T, associated with a probability of being 32 

exceeded in each year equal to P=1/T. The T-year flood, in turn, is estimated based on the analysis of past 33 

floods, requiring the selection of a probability distribution to perform this inference using a sample with 34 

size S<<T (Benson, 1962). 35 

Flood frequency analyses are commonly performed as a part of engineering and planning projects, but they 36 

too often represent a mere statistical fitting exercise, and do not attempt to incorporate a representation of 37 

the underlying physical processes. As noted by Klemeš (1988, 1993), the standard approach of extreme 38 

event probability estimation is moving towards a higher mathematical abstraction, renouncing any 39 

leveraging or understanding of the different flood-generating mechanisms at play. The hydrological-process 40 

information in the observations is thus often neglected, and the selection of an optimal statistical model 41 

through a goodness-of-fit metric remains the main focus of these types of analyses. The approach proposed 42 

here does not belong to the “standard” methodology on which flood frequency analyses are usually based. 43 

Three points of departure can indeed be highlighted. First, it is not a mere fit of a distribution on annual 44 
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maxima but, by dealing with all the observations (see Section “Data and Methodology” for further details), 45 

the approach described here is closer to the “raw” observations. Second, the approach we propose for flood 46 

frequency analysis is not a mere “goodness of fit exercise”, which is what Klemeš (1988, 1993) was 47 

stigmatizing. One of the important points highlighted here is that we need to address predictive uncertainty 48 

through a cross-validation procedure, rather than just use unexplained variance as a measure of uncertainty. 49 

Third, but not less important, the proposed approach does not just consider peak flows as random numbers, 50 

but attempts to base the statistical modelling on physical drivers. 51 

The U.S. federal guidelines themselves (Bulletin 17-B (IACWD, 1982), and its updated version 17-C 52 

(England et al., 2018)) recognize that the assumption under which stream gage records are generated by 53 

one single flood-generating mechanism may not always be realistic. They highlight the need to understand 54 

and more accurately identify these physical mechanisms and list the identification and treatment of mixed 55 

distributions to represent their diversity as a research and application priority. 56 

Even though the idea of a more process-driven flood frequency analysis is not necessarily new (e.g. 57 

Hirschboeck, 1987), there has been a renewed interest in recent years in process-based formulations of 58 

extreme flood distributions (e.g., Alila and Mtiraoui, 2002; Smith et al. 2011; Villarini and Slater, 2017; 59 

Barth et al., 2019). Flood-generating processes can quite naturally be analyzed using mixed distributions 60 

(e.g., Alila and Mtiraoui, 2002), but the determination of which flood peaks result from the different 61 

processes and of when the use of mixed distributions is beneficial remains an open problem (e.g., Villarini 62 

and Slater, 2017). 63 

There are several different hydrological mechanisms that can drive the occurrence of flood events, including 64 

snowmelt, frontal systems, local convective processes, monsoons, and intense tropical cyclones (see 65 

Villarini, 2016; Zhang et al., 2017). Slater et al. (2015) compared hydrologic and geomorphic drivers in 66 

flood hazard, while Berghuijs et al. (2016) analyzed the dominant flood generating mechanisms across the 67 

United States. Barth et al. (2017, 2019) investigated the role of atmospheric rivers in the generation of flood 68 
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peaks across the western United States and suggested a weighted mixed population approach to perform a 69 

process-driven flood frequency analysis to reflect the differences in flood agents. 70 

Within the context of mixed distributions, this study formulates a novel flood frequency distribution and 71 

uses it to investigate the role of El Niño Southern Oscillation (ENSO) in the generation of floods, and the 72 

detectability of its signature in observed records. ENSO is a major mode of variability of the coupled 73 

atmosphere-ocean system associated with episodes of above-normal (El Niño) and below-normal (La Niña) 74 

sea surface temperature in the tropical Pacific Ocean, with impacts on seasonal winds, rainfall, and 75 

temperature across the globe.  76 

We propose here the use of a novel approach, the Metastatistical Extreme Value Distribution (MEVD), 77 

which can naturally incorporate mixed distributions to represent flood magnitudes generated by different 78 

mechanisms. The MEVD has been introduced by Marani and Ignaccolo (2015) and has been applied mostly 79 

to rainfall (Zorzetto et al., 2016; Marra et al., 2018; Zorzetto and Marani, 2019), for which it was shown 80 

to provide significantly smaller estimation uncertainty when compared to traditional approaches, especially 81 

when considering return periods that are larger than the sample size used for distribution estimation. 82 

Currently, the MEVD has yet to be applied to flood magnitudes and flood frequency analysis. Here we 83 

provide the first such application and ask the following relevant questions: does the MEVD outperform the 84 

traditional Generalized Extreme Value (GEV) distribution in flood frequency analysis? Does the 85 

incorporation of mixed probability distributions representing different types of flood events associated with 86 

different ENSO phases improve the estimation of event magnitudes with high return periods? 87 

To answer these questions, we apply the MEVD approach to daily records from stream gage stations across 88 

the continental United States (CONUS), examining the role played by mixtures of distributions associated 89 

with different ENSO phases. Results are compared and contrasted against those from the GEV distribution, 90 

providing qualitative and quantitative evaluations of their relative predictive performance. The GEV 91 

distribution is the natural reference benchmark for this comparison, as it stems from the widely-applied 92 
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traditional Extreme Value Theory (Smith, 1987; Katz et al., 2002). However, other methods are widely 93 

applied in the flood-frequency analysis practice. We thus extended the comparison of cross-validation 94 

performances to the Log-Pearson Type III (LP3), the distribution extensively used in flood frequency 95 

analyses in the US (USWRC, 1976).  96 

The paper is organized as follows: the data and methodology used in the study are described in Section 2, 97 

followed by a Section 3 detailing the results of the analyses. Section 4 summarizes the main points of this 98 

study and concludes the paper. 99 

 100 

2. Data and methodology 101 

We analyzed daily records from 5,311 U.S. Geological Survey (USGS) stream gages across the continental 102 

United States (Figure 1, panel a). We focus on water years, defined to run between October 1 and September 103 

30, and select only sites where at least 30 complete (i.e. with more than 330 daily observations/year) years 104 

of observation exist, and where no statistically significant trends are found (at the 5% level, based on the 105 

Mann-Kendall test; Mann, 1945, Kendall, 1975). The historical time series selected cover the period 1916-106 

2017, with record lengths between 31 and 101 years (Figure 1, panels b and c; consult Supplementary 107 

Figure 1 for an overview of the spatial distribution of the lengths of the historical time series).  108 

Flood frequency analysis requires the identification of independent events: here, we identify the largest 109 

flood peaks within blocks of length equal to T = 10 days + log(A), where A is the drainage area in square 110 

miles (Lang et al., 1999). Additionally, we discard the smallest discharge peak within any pair of 111 

consecutive peaks if the minimum flow between them does not drop below a threshold equal to 75% of the 112 

lower of the two (Water Resources Council, USWRC, 1976). This additional condition is necessary to 113 

eliminate secondary peaks occurring during recession periods of previous floods. The entire set of peak 114 

discharge values resulting from this selection process of uncorrelated events is here called the set of 115 
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“ordinary events” to denote that it contains all the independent events that have occurred in the record, 116 

irrespective of their magnitudes. 117 

 118 

 119 
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Figure 1 – Panel a: Spatial distribution of the selected stream gages. The colors refer to the statistical detectability of ENSO phases 120 
in the distribution of discharge peak values: black dots indicate stations where the frequency distributions of ordinary peak 121 
discharge values in different ENSO phases are indistinguishable from one another; stations for which three different phases are 122 
detected are displayed in red; in blue, stations where two out of three ENSO phases can be distinguished. Panel b shows the 123 
cumulative number of stations with data in each water year, while the histogram in panel c summarizes the number of stations in 124 
terms of the number of years on record.  125 

2.1 MEVD approach 126 

The Metastatistical Extreme Value Distribution, originally introduced by Marani and Ignaccolo (2015), is 127 

explicitly formulated on the basis of the probability distribution(s) of the ordinary values, from which the 128 

distribution of extremes (annual maxima) is then derived. Hence, the expression of the MEVD describing 129 

the extreme events is identified by estimating its parameters using the entire set of observed ordinary events. 130 

This is quite different from the assumptions at the basis of the traditional Extreme Value Theory (EVT), 131 

which focuses on fitting a distribution to the annual maxima or to relatively few values above a high 132 

threshold. 133 

The MEVD approach treats as realizations of stochastic variables both the parameters of the distributions 134 

describing the ordinary events in each year, 𝐹(𝑥; 𝜽) (where 𝜽 is the parameter vector), and the number, n, 135 

of yearly event occurrences. Under these premises, the MEVD of yearly maxima can be defined as: 136 

𝜁(𝑥) =  ∑ ∫ [𝐹(𝑥; 𝜽)]𝑛𝑔(𝑛, 𝜽)𝑑𝜽
𝛺𝜣

∞
𝑛=1  (1) 137 

where 𝑔(𝑛, 𝜽) is the joint probability distribution of the random variables N and Θ (discrete in n and 138 

continuous in 𝜽) and 𝛺𝛩 is the population of the parameters values. The ensemble average can be 139 

approximated by the sample average computed over all the years of the historical series (M), becoming 140 

𝜁(𝑥) =  
1

𝑀
∙ ∑ [𝐹(𝑥; 𝜽𝑗)]𝑛𝑗𝑀

𝑗=1   (2) 141 

where 𝐹(𝑥; 𝜽𝑗) is the cumulative distribution of ordinary values and 𝑛𝑗 is the number of events in year j. 142 

Here, we apply the MEVD to peak discharges and modify this approach to account for ordinary values 143 

belonging to different populations, corresponding, in the present case, to different ENSO phases. The 144 

cumulative distribution function ζ(x) of the mixed-MEVD can be written as follows: 145 



8 
 

𝜁(𝑥) =  
1

𝑀
∑ ∏ [𝐹𝑝(𝑥; 𝜽𝑗)]

𝑛𝑗,𝑝𝑛𝑝ℎ

𝑝=1
𝑀
𝑗=1  (3) 146 

where nph is the number of phases that induce statistically different distributions of the ordinary events and 147 

should therefore be considered separately; Fp is the yearly (or time window, when the low number of 148 

events/year requires parameter estimation to be performed of multi-year windows) cumulative distribution 149 

of the ordinary values in phase p; nj,p is the original yearly number of the peaks in phase p and year j; M is 150 

the number of years for which observations are available. Eq.(3) reduces to the original formulation in 151 

Marani and Ignaccolo (2015) when only one phase is present. The mixed MEVD formulation in Eq.(3) is 152 

the same as the approach proposed in Marra et al. (2019). Here, instead of using the further simplification 153 

(SMEV, Marra et al., 2019) that removes the inter-annual variability in the statistics of the ordinary events 154 

(i.e. there is no dependence on j in Eq.(2)), we preserve the time variability of the distributions.   155 

The first step in the application of the MEVD approach is identifying a suitable parametric distribution to 156 

represent the ordinary events. We evaluate three candidate distributions for the 𝐹(𝑥; 𝜽𝑗) in Eq.(2): Weibull, 157 

Generalized Pareto, and Gamma distributions. We select the most suitable distribution on the basis of the 158 

skill score (see Section on the evaluation metrics for its definition), comparing the MEVD-estimated 159 

quantiles to the observed maxima. In the present analyses, the Gamma distribution was the best performing 160 

one (see Section 3 for further details). 161 

Because the average number of flood events in a year is small for many stations (e.g., in 1243 of the 5311 162 

analyzed stations the average number of peaks/year is smaller than or equal to 10; see Supplementary Figure 163 

2), we explore estimating the parameters of the distribution using either five-year windows or the entire 164 

sample. Eq. (3) can be hence expressed in terms of the windows used for parameter estimation:  165 

𝜁(𝑥) =  
1

𝑀
∙ ∑ ∏ [𝐹𝑝(𝑥; 𝜽𝑘(𝑗))]

𝑛𝑗,𝑝𝑛𝑝ℎ

𝑝=1
𝑀
𝑗=1                 (4) 166 

where k(j) is the index value identifying the window containing year j, 𝜽𝑘(𝑗)is the parameter vector in the 167 

kth window, p is the number of statistically different phases and M is the number of years on which the 168 
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sample average is computed to approximate the ensemble average in Eq. (1). When considering window 169 

sizes longer than one year (k years in general, 5 and S years in the present analyses), the parameters of the 170 

ordinary distributions are the same for the k years used as calibration sample. 171 

Unlike the application of the MEVD to the analysis of daily rainfall (Zorzetto et al., 2016), the use of a 172 

yearly estimation window is not considered here due to the potential inaccuracies in the estimation of the 173 

parameters when few values are available. This is because the autocorrelation in discharge is much larger 174 

than in precipitation, leading to the need to use an inhibition window to identify independent flood events 175 

as previously described. This problem is further exacerbated when we stratify the data into different 176 

components of the mixture of distributions: the use of relatively long data windows (either 5-year windows 177 

or the whole calibration sample) for parameter fitting is thus necessary to make sure that, in periods in 178 

which multiple ENSO phases are present, there is a sufficient number of flood events in each phase to 179 

ensure a robust parameter estimation. After evaluating the number of peaks/year in stream gauges across 180 

the CONUS (see Supplementary Figure 2) we selected 5 years as the minimum window size, because a 181 

smaller one would have led to very few peaks/window in the driest areas, especially when ENSO phases 182 

are considered.  183 

2.2 Fitting Procedure and Cross-Validation 184 

2.2.1 Fitting Procedure 185 

GEV fitting is performed on annual maxima using L-Moments (Hosking, 1990). Zorzetto et al. (2016) found 186 

that the cross-validation performance of the Peak-Over-Threshold GEV fits is indistinguishable from the 187 

performance of Maximum Likelihood or L-Moment GEV fits on annual maxima. Hence, we only present 188 

here results from the application of the latter. The parameters of the yearly Gamma distributions in the 189 

MEVD (Eq.(2)) are estimated on independent peaks from either 5-year windows or the whole sample via 190 

L-Moments (Hosking, 1990). LP3 fitting is performed on annual maxima using the method of moments 191 



10 
 

(Griffis and Stedinger, 2007). Low Floods have not been removed, because they still convey information 192 

about the frequency of events. 193 

2.2.2 Evaluation Metrics 194 

To identify the possible signature of ENSO phases in the distributions of ordinary flood peaks, we assign 195 

each event to one of the three ENSO phases based on the Extended Multivariate ENSO Index 196 

(https://www.esrl.noaa.gov/psd/enso/past_events.html). The phases are defined with a monthly time span 197 

by means of an index: -1 for El Niño, 1 for La Niña and 0 for the neutral phase. We then test whether the 198 

distributions of ordinary flood peaks for each phase are different from one another using the Kolmogorov-199 

Smirnov test with the Bonferroni correction (Bonferroni, 1936) to account for multiple hypotheses testing 200 

(the three possible combinations among the phases, in this case). If the distributions of the peak magnitudes 201 

belonging to two separate ENSO phases are not statistically different at the 5% level, we combine all 202 

discharge peak values from both phases. Hence, we classify each time series in the dataset depending on 203 

whether: 1) three separate ENSO phases are distinguishable in the empirical distribution of ordinary flood 204 

peaks; 2) two separate ENSO phases are distinguishable (i.e. peaks from two of the phases were merged); 205 

3) no ENSO phases are statistically different from each other in the set of ordinary events. 206 

We estimate the values of the empirical cumulative frequency associated with observed peak discharge in 207 

the test sub-sample using the Weibull plotting position (Fk = k/(L+1), where k denotes the k-th peak 208 

discharge value, Qk, in an ascending order ranking). The estimated quantiles corresponding to each value 209 

Fk are computed using the three EV distributions by solving DIST(QDIST
k) = Fk, where DIST indicates the 210 

MEV, GEV and LP3 distributions. 211 

We use two metrics to evaluate goodness-of-fit and estimation accuracy: 212 

1.  we compare estimated quantiles with observed ones through the computation of the Skill Score (SS ∈213 

(−∞; 1] ) (Murphy and Winkler, 1992; Hashino et al., 2006), which provides a global metric of estimation 214 

accuracy: 215 

https://www.esrl.noaa.gov/psd/enso/past_events.html
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𝑆𝑆(𝑄𝑒𝑠𝑡 , 𝑄𝑜𝑏𝑠) =  𝜌𝑄𝑒𝑠𝑡,𝑄𝑜𝑏𝑠

2 −  [𝜌𝑄𝑒𝑠𝑡,𝑄𝑜𝑏𝑠
− (𝜎𝑄𝑒𝑠𝑡

𝜎𝑄𝑜𝑏𝑠
⁄ )]

2
− [(𝜇𝑄𝑒𝑠𝑡

− 𝜇𝑄𝑜𝑏𝑠
) 𝜎𝑄𝑜𝑏𝑠
⁄ ]

2
 (5) 216 

where 𝜌𝑄𝑒𝑠𝑡,𝑄𝑜𝑏𝑠
 is the correlation between the estimated values (Qest) and the observations (Qobs); 𝜎𝑄𝑒𝑠𝑡

 and 217 

𝜎𝑄𝑜𝑏𝑠
 (𝜇𝑄𝑒𝑠𝑡

 and 𝜇𝑄𝑜𝑏𝑠
) represent the standard deviation (mean) of the observations and estimations, 218 

respectively. The SS accounts for the potential skill (i.e., coefficient of determination) as well as conditional 219 

and unconditional biases. The SS is used both in the context of ordinary values fitting and of extreme values 220 

estimation evaluation. In the latter case, to provide a measure of the estimation of high quantiles, we 221 

compute the terms in the skill score definition (Eq. (5)) only on quantiles with return period Tk=(1-Fk)
-1 > 222 

S, i.e. greater than the length of the dataset used for calibration. This reflects application needs, which target 223 

the estimation of extremes with return period much greater than the length of the observational time series 224 

available (estimation of quantiles with Tk ≤ S can be performed empirically, without the need to assume a 225 

specific probability distribution); 226 

2. we compute the non-dimensional estimation error: 227 

𝜀𝑗(𝑆, 𝑇) =   [𝑄𝑒𝑠𝑡,𝑗(𝑆, 𝑇) − 𝑄𝑜𝑏𝑠,𝑗(𝑆, 𝑇)] 𝑄𝑜𝑏𝑠,𝑗(𝑆, 𝑇)⁄   (6) 228 

for which we estimate a whole frequency distribution based on the Nr = 1000 Monte Carlo realizations. The 229 

Monte Carlo experiment allows us to eliminate any non-stationarity in the observational records, while, at 230 

the same time, it preserves the distribution of the flood peak values and their occurrence.  231 

Over these realizations, we finally compute the Fractional Standard Error: 232 

𝐹𝑆𝐸(𝑆, 𝑇) =  [
1

𝑁𝑟
∑ 𝜀𝑗(𝑆, 𝑇)2𝑁𝑟

𝑗=1 ]
1

2⁄
                 (7) 233 

2.2.3 Cross-Validation 234 

We quantify the uncertainty in estimating high quantiles associated with the use of the MEVD (in its single- 235 

or multi-phase versions) and of the GEV and LP3 distributions by means of a cross-validation procedure 236 

involving Monte Carlo simulations (with Nr  = 1000 realizations for each station) as follows: 237 
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1. we randomly reshuffle the observational years on record keeping all the observations in their original 238 

year to preserve their yearly frequency distributions and the distribution of the number of events/year, to 239 

generate a realization without any systematic variability; 240 

2. we divide the observational sample into two sub-samples obtained by randomly selecting S years from 241 

the original time series of length Ltot: this sub-sample is used for parameter estimation, while data in the 242 

remaining L = Ltot - S years are used for testing; 243 

3. in every realization, we compute both the SS and the FSE between the estimated and observed quantiles 244 

as described in the Section about the estimation metrics; 245 

4. the whole procedure above is performed for different calibration sample sizes (S=10, 20, and 30 years), 246 

to evaluate how estimation uncertainty varies jointly with return period and calibration sample size. 247 

 248 

3. Results  249 

3.1 Ordinary Values  250 

We start by selecting the most appropriate parametric distribution for ordinary peak discharge values based 251 

on the SS computed for yearly maxima. 252 

The Gamma distribution provides the highest SS for most of the observational records analyzed (71% of 253 

the sites, Supplementary Figure 3). This is consistent with other studies in the literature (e.g., Hann, 1977; 254 

Palynchk and Guo, 2008; Villarini and Strong, 2014; Slater and Villarini, 2017). Hence, analyses were 255 

performed using the Gamma distribution at all CONUS sites, including the minority of sites where it was 256 

not the most skillful. This choice was made to obtain a method that would be simpler to apply and more 257 

homogeneous comparisons across the CONUS. 258 
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Another necessary step for the application of the MEVD towards the evaluation of the potential 259 

improvements associated with the use of a mixed ENSO-based MEVD, is to identify whether the 260 

distribution of ordinary flow peak values associated with different ENSO phases are different. 261 

For most of the stations (3718 or 70% of the total), we did not detect statistically different distributions 262 

among the peaks occurred under different ENSO phases. At 883 sites (about 17%) the three phases are all 263 

different from one another. For the remaining 13% of the stations, we find common distributions to be 264 

shared by El Niño and the neutral phases or by La Niña and the neutral phase (Figure 1a). In most of the 265 

analyzed cases, different ENSO phases are detectable in ordinary peak discharge values in areas located in 266 

the eastern and southern United States, which are known to be more strongly affected by ENSO (e.g., 267 

Emerton et al., 2017; Mallakpour and Villarini, 2017). We found detectable phases also in a group of 268 

stations in the U.S. Midwest, which are not usually areas that are affected by the effects of ENSO, but other 269 

processes might play a role. 270 

3.2 Extreme Values Analysis 271 

We now turn to the question of evaluating the predictive performance of the MEVD-Gamma formulations 272 

and compare the predictive performances of the two MEVD approaches, for the first time applied to flood 273 

frequency analysis, with those from the traditionally used GEV distribution and the Log-Pearson Type III 274 

distribution. The “optimal” MEVD-Gamma formulation compared below to traditional flood-frequency 275 

analysis approaches is, for each station, obtained by selecting the window size and the approach (single-276 

component or multi-phase) that maximizes the Skill Score value. We will then quantify the potential 277 

benefits of including ENSO phases in extreme flood estimation.  278 

When comparing the “optimal MEVD” (i.e. the MEVD formulation based on the number of phases that 279 

yielded the maximum SS value computed on yearly maxima) we find that MEVD outperforms the GEV 280 

applied to yearly maxima in ~78% of the stations based on the SS metric; Figure 2a shows the results from 281 

a S=10 years calibration period in terms of the relative difference between the SS from the optimal MEVD 282 
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and the SS from the GEV distribution, divided by the absolute value of the SS for the GEV distribution 283 

here assumed as a reference. Regarding the comparison with the Log-Pearson Type III, Figure 2b shows 284 

that the MEVD outperforms the LP3 at a large number of stations (~86% of the stations), the same results 285 

being confirmed when looking at the FSE computed on the quantile corresponding to the maximum return 286 

period (i.e. the length of the test subsample + 1 year, Supplementary Figure 4). A calibration sample size 287 

of 10 years does not always allow a reliable the calculation of the third moment (skewness) when estimating 288 

LP3 parameters, hence leading to a low parameter estimation accuracy.  289 

Based on these multiple comparisons, and on the lower performance of LP3, in the following we will focus 290 

on further comparative analyses between the predictive performances of the MEVD and GEV distribution.  291 

We identify some areas where the performance of the GEV distribution is generally higher. They are 292 

characterized by a small number of independent events, and thus of uncorrelated flow peaks/year (e.g. the 293 

Rocky Mountains and southern California, where the number of independent peaks/year is frequently less 294 

than 10; see Supplementary Figure 2), usually in combination with short historical time series. The low 295 

number of flood events in these areas leads to a limited number of “ordinary peaks” that can be included in 296 

the MEVD in addition to yearly maxima. Moreover, previous findings showed that the GEV distribution 297 

does outperform the MEVD when the return period of interest is comparable with the calibration sample 298 

size (Zorzetto et al., 2016). 299 
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 300 

 301 

Figure 2 - Comparison between the performances of the optimal MEVD (i.e.  the choice of window length and single-phase or 302 
multi-phase formulation yielding the highest SS) and that of the GEV (LP3) distribution expressed as (SSMEVD – SSGEV)/ |SSGEV| 303 
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((SSMEVD – SSLP3)/ |SSLP3|) values averaged over 1000 Monte Carlo realizations in panel a (b). Colors indicate which distribution 304 
provides the highest values of the SS for each station: shades of blue when the MEVD outperforms GEV (LP3), shades of red 305 
(orange) when the GEV (LP3) outperforms MEVD). White circles indicate stations for which SS values are equal to the first decimal 306 
digit. 307 

In addition to characterize one method’s predictive performance globally, we are also interested in focusing 308 

on the prediction accuracy for high return periods, being this the case for most practical applications. The 309 

return period associated with the maximum value in each test sub-series is estimated as Tmax = Ltot - S +1, 310 

where Ltot represents the length of the historical series: it is variable among the analyzed stations and ranges 311 

between 22 and 92 years. With reference to the range of the historical records available here (31-101 years 312 

of observations), the highest quantile for which the estimation error can be quantified using a calibration 313 

sample size of 10 years corresponds to a return period T=31(101)-10=22(92) years. When we look at 314 

FSE(S=10 years, Tmax) computed for the highest return period from the MEVD and GEV approaches, the 315 

MEVD outperforms the GEV distribution in about 76% of the analyzed stations (Figure 3). The information 316 

provided by Figure 3 is complemented for all return periods in Figure 4, where the FSE is plotted as a 317 

function of the ratio between return period and calibration sample size (S=10 years). For small values of 318 

the ratio between the return period (T) and the calibration sample size (S), the errors in the estimations 319 

computed with the two EV approaches are comparable both in terms of average value and uncertainty. 320 

When higher values of T/S are considered, the estimates provided by the traditional GEV distribution are 321 

less accurate than those provided by the MEVD approach, which shows a 30% improvement with respect 322 

to GEV estimates. Many engineering applications are almost exclusively focused on high return periods 323 

(i.e. return periods much larger than the span of observational time series): the uncertainty of the GEV-324 

based estimates shows a steadily increasing trend of the FSE with increasing return period, while the MEVD 325 

estimation error stabilizes around a value of about 0.32 for high values of T/S. This result suggests that, 326 

when estimating quantiles corresponding to return periods much larger than values that have been observed, 327 

the estimation errors of the traditional EVT approach will become very large, and much larger than for the 328 

MEVD-based estimates. The results of the FSE computed with calibration sample sizes of 20 and 30 years 329 

are consistent with those from S=10 years (yet limited to smaller ratios of T over S) for both the GEV and 330 

LP3 distributions (second and third row in Figure 4). 331 
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The average number of peaks/year exhibits a large variation across space (from 3 to 31) suggesting that 332 

different analysis approaches may be differently effective in dry areas, where extremely few flood events 333 

are observed, and more humid areas, where the larger number of events/year makes available larger 334 

quantities of data. Also in consideration of the spatial pattern identified in Figure 2, it is thus interesting to 335 

analyze the possible dependence of the estimation performance associated with different EV approaches 336 

with respect to the number of floods/year. Figure 5 shows the FSE plotted as a function of T/S for two 337 

groups of stations representing two end-member cases: sites with less than 10 events/year and sites with 338 

more than 17 events/year (limits are defined in such a way that both groups include about 1000 stations). 339 

The advantage in the use of the MEVD approach instead of the traditional one is limited to higher values 340 

of T/S when few peaks are selected, while it always outperforms the GEV distribution when a greater 341 

number of peaks is available. This is linked to the fact that, for the same T/S, having a small number of 342 

peaks is not adding much information to the distribution of maxima, like it does when the number of peaks 343 

increases. However, the robustness of the MEVD with respect to the GEV distribution is confirmed for 344 

high ratios of return period over sample size. 345 
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 346 

Figure 3 - Ratio between the Fractional Standard Error from the optimal MEVD (defined on the basis of the SS between the single-347 
phase and multi-phase approach) and the FSE from the GEV distribution, computed for the highest return period at each station. 348 
Blue dots represent sites where the MEVD outperforms the GEV distribution (the ratio between the two FSEs is lower than one), 349 
while red dots indicate those stations in which the GEV distribution is providing a more accurate estimation. Shaded colors indicate 350 
small differences between the two approaches. 351 

 352 

Figure 4 - Fractional Standard Error (FSE) for the MEVD (blue, a), d) and g)),the GEV distribution (red, b), e) and h)) and the 353 
Log-Pearson Type III (orange, c), f) and i)) averaged across all the stations for return periods greater than the calibration sample 354 
size, plotted as a function of the ratio between the return period (T) and the length of the calibration sample size (S=10, 20 and 30 355 
years in the first, second and third row respectively). Dots represent the mean values computed across all stations and over T/S 356 
bins that include at least 300 values. Shaded areas indicate confidence intervals defined by the 25th and 75th percentiles.  357 
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 358 

Figure 5 - Fractional Standard Error as a function of T/S for the MEVD (blue) and GEV distribution (red). Dots represent the 359 
mean of the FSE in each bin (the width of the bins is chosen such that they contain at least 100 values). Shaded areas are limited 360 
by the 25th and 75th percentiles. Panel a) refers to sites where, on average, less than 10 events/year occur. Panel b) shows results 361 
for sites where the average number of yearly floods is greater than 17. 362 

We now focus on answering the second question, i.e. whether it is beneficial to adopt a mixed-distribution 363 

MEVD approach accounting for the different ENSO phases when estimating extreme flood magnitudes. In 364 

Figure 6 we show the performance of the optimal MEVD when the single-component approach and the 365 

mixed one are compared, on the SS basis (the performance of the two MEVD approaches is presented as 366 

the relative difference between the SS from the single-component MEVD and the one from the mixed 367 

approach, divided by the absolute value of the SS for the mixed MEVD here assumed as a reference). We 368 

find that including mixtures of distributions does not significantly improve the estimation: the number of 369 

sites where extremes are best described by a mixed MEVD is approximately equal to the number of sites 370 

where a single-population MEVD performs the best. Furthermore, in most cases the difference in skill 371 

scores between single-population and mixed MEVD estimates is negligible. This is consistent with the 372 

results obtained for rainfall by Marra et al. (2019), who found that introducing two populations to represent 373 

different rainfall-generating mechanisms in a relatively arid Mediterranean area did not yield improvements 374 

in the estimation of extremes. Moreover, whenever the mixed MEVD is selected, the value of the SS is 375 

generally comparable to what obtained using a single MEVD. The signal that we detected in the ordinary 376 

distributions is confirmed by the use of a mixed distribution for the estimation of extremes only along the 377 

eastern and south-eastern United States, which are known to be more strongly affected by ENSO.  378 
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These conclusions are corroborated by the analyses of the FSE values obtained from multi-phase and single-379 

phase MEVD approaches (Supplementary Figure 7), which show negligible improvement in the estimation 380 

accuracy when adopting a mixed-distribution MEVD based on multiple ENSO phases. 381 

 382 

Figure 6 – Optimal MEVD formulation for stations in which different phases have been detected in the ordinary peak flow 383 
distribution.  S=10 years is used for parameter estimation in the Monte-Carlo cross-validation evaluation of uncertainty. Magenta 384 
(black) circles represent stations for which the highest skill score is (not) obtained by including different ENSO phases. The relative 385 
performance of the two MEVD approaches has been evaluated through the ratio: (SSnon-mixed-MEVD - SSmixed-MEVD)/ |SSmixed-MEVD|. 386 
White circles represent the stations for which this ratio is equal to 0. 387 

With a more focused attention on the areas most influenced by ENSO (i.e. eastern and south-eastern US) 388 

and on those stations in which statistically different distributions were detected for the ordinary peaks, we 389 

look at the performance of the two MEVD approaches in absolute terms, to provide concrete indications of 390 

the estimation uncertainty at play. MEVD-estimates slightly under-estimate high-return period quantiles 391 

(see Figure 7) and, generally, the two approaches perform very similarly (consistently with the Skill Score 392 

values shown in Figure 6); however, in several cases the mixed-MEVD helps mitigating issues related to 393 

under-estimations of the quantiles compared to the observations (Figure 7). 394 
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 395 

Figure 7 - Quantile-Quantile plot of the median values of the maxima estimated with the single- (mixed-) component MEVD in 396 
black (magenta) vs observed ones. These results are relative to the stations in the eastern and south-eastern United States where 397 
statistically significant differences in the ordinary-event distributions were detected. 398 

 399 

4. Discussion and Conclusions 400 

In this paper, we applied for the first time an adapted formulation of the Metastatistical Extreme Value 401 

Distribution (MEVD) to flood peaks observed at more than 5,000 USGS stream gages across the continental 402 

United States and proposed an alternative procedure to the standard flood frequency analysis. The major 403 

differences between the proposed and the standard flood frequency approach does not only lie in the 404 

distribution chosen to describe flood peaks, but also in the use of independent test samples to evaluate 405 

predictive performance within a Monte Carlo cross-validation approach. Goodness-of-fit evaluations, in 406 

fact, merely consist in the evaluation of the suitability of a distribution to describe a record of observations, 407 

without quantifying the skill of a method when presented with yet unoccurred extremes. A cross-validation 408 

approach instead allowed us to properly quantify the predictive uncertainty of MEVD-based estimates, both 409 

comparatively, with respect to traditional approaches, and in absolute terms. 410 

Furthermore, we leveraged the ability of the MEVD of making use of all available independent observations 411 

to explore the potential benefits of a mixed-distribution approach, in which different ordinary-value 412 
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distributions are used to describe different flood-generation mechanisms processes, with specific reference 413 

to ENSO phases. 414 

Two fundamental steps were needed to develop a methodology tailored for flood frequency analysis. 415 

First, it was necessary to identify a robust method for the automatic and objective selection of independent 416 

flood peaks. Unlike previous MEVD applications, focused mainly on rainfall at the daily and sub-daily 417 

scale, the correlation in streamflow records is very significant, over large range of time scales. This 418 

circumstance required discarding potentially correlated flood peaks, and, as a consequence, the reduction 419 

of the number of events/year. The proposed approach performs analyses on data windows with length 5 420 

years or higher to compensate for this effect, a particularly strong constraint when stratifying observed 421 

peaks based on different ENSO phases.  422 

Second, a preliminary screening of candidate ordinary-value distributions was necessary. MEVD analyses 423 

of rainfall are based on the Weibull distribution (Wilson and Toumi, 2006; Marani and Ignaccolo, 2015), 424 

which was not found to be ideal in the case of flood peaks. Here, we compared the performance of three 425 

candidate distributions, eventually selecting the Gamma distribution as the best statistical model of flood 426 

peaks at the largest number of stations across the CONUS. This choice leads to a simpler MEVD-Gamma 427 

formulation, though applications seeking to optimize performance even further, may be based on an at-site 428 

selection of the optimal ordinary-value distribution. 429 

The MEVD-Gamma approach outperforms the traditional GEV analysis of extreme flood peaks at about 430 

76% of the stations, especially in the presence of records that are short with respect to the return period of 431 

interest. In fact, the MEVD displays the smallest Fractional Standard Error for small calibration sample 432 

sizes and high return periods, the case of greatest practical interest. We found similar results when 433 

comparing the MEVD with the widely-applied Log Pearson Type III. MEVD-based estimates of extreme 434 

peak flows outperform LP3 estimates at 86% of the stations across the CONUS. When the size of the 435 

calibration sample is increased (from S=10 years, to S=20, and to S=30 years) the three distributions 436 

considered here show comparable results for low values of T/S. The demonstrated superior predictive skill 437 
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of the MEVD-Gamma approach to flood frequency analysis becomes especially relevant for engineering 438 

applications, where the estimation of exceptionally high design events is often required in the basis of short 439 

observational time series. 440 

In a minority of cases the traditional GEV shows a reduced estimation uncertainty, in the presence of a low 441 

number of peaks/year and of short time series. In these stations, little additional information is available for 442 

the MEVD to exploit additionally to yearly maxima.  443 

Considering ENSO as a factor potentially identifying different populations of flood peaks, we found that 444 

the estimation of high return period flows does not necessarily improve, even though the ENSO signature 445 

in the distributions of ordinary flood peaks was identified as statistically significant at several stream gages. 446 

We conclude that either the uncertainty intrinsic to extreme value estimation overwhelms the information 447 

contributed by ENSO phases or that just one of the ENSO phases detected in the distribution of the ordinary 448 

events effectively dominates the shape of the distributional tail and of the extreme values.  449 

A final comment is in order. Even though the conclusion regarding the information that can be extracted 450 

from ENSO phases about extreme streamflows is negative, the ability of accounting for mixtures of 451 

distributions in the flood-peak MEVD formulation still has practical potential. In fact, several physical 452 

flood drivers can be identified (e.g., snowmelt, rain-on-snow, atmospheric rivers) whose role can be studied 453 

using the proposed approach. The introduction and formalization of a mixed-distribution MEVD for flood 454 

frequency analysis thus remains important, because it lends itself to applications to a variety of contexts in 455 

which different physical drivers can be defined, such as the North Atlantic Oscillation in western Europe 456 

(Marani and Zanetti, 2015) or the Arctic Oscillation in north eastern Europe (Bartolini et al., 2009). 457 

Regarding ENSO, its detection in the distributions of the ordinary peaks is also still valuable: the detection 458 

or prediction of the occurrence of an ENSO phase justifies the use of MEVD parameters conditional to the 459 

known occurrence of that specific ENSO phase, with potential improvements over flood frequency analyses 460 

neglecting this information. 461 

 462 
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