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Abstract 11 

Birds respond strongly to vegetation structure and composition, yet typical species 12 

distribution models (SDMs) that incorporate Earth observation (EO) data use discrete land-13 

use/cover data to model habitat suitability. Since this neglects factors of internal spatial 14 

composition and heterogeneity of EO data, we suggest a novel scheme deriving continuous 15 

indicators of vegetation heterogeneity from high-resolution EO data.  16 

The deployed concepts encompass vegetation fractions for determining vegetation density 17 

and spectral traits for the quantification of vegetation heterogeneity. Both indicators are 18 
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derived from RapidEye data, thus featuring a continuous spatial resolution of 6.5 m. Using 19 

these indicators as predictors, we model breeding bird habitats using a random forest (RF) 20 

classifier for the city of Leipzig, Germany using a single EO image.  21 

SDMs are trained for the breeding sites of 44 urban bird species, featuring medium to very 22 

high accuracies (59–90%). Analysing similarities between the models regarding variable 23 

importance of single predictors allows species groups to be determined based on their 24 

preferences and dependencies regarding the amount of vegetation and its spatial and 25 

structural heterogeneity. When combining the SDMs, models of urban bird species richness 26 

can be derived.  27 

The combination of high-resolution EO data paired with the RF machine learning technique 28 

creates very detailed insights into the ecology of the urban avifauna, opening up opportunities 29 

of optimising greenspace management schemes or urban development in densifying cities 30 

concerning overall bird species richness or single species under threat of local extinction. 31 

 32 

Keywords: 33 

Remote sensing, spectral traits, species distribution model, random forest, urban birds, 34 

machine learning 35 
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1 Introduction 37 

Modelling potential breeding sites that are species-specific can be an integral part of urban, 38 

peri-urban and non-urban biodiversity studies and conservation strategies (Guisan & Thuiller, 39 

2005). The urban environment is especially rich in birds, often surpassing their rural 40 

surroundings in terms of biomass and diversity (Chace & Walsh, 2006). A key element of 41 

sustaining viable population sizes of single species under threat or increasing overall species 42 

richness and abundance is the identification and protection of breeding sites. A core element 43 

determining the breeding sites of birds is vegetation structure such as vegetation density and 44 

diversity (Paker et al., 2014). Earth observation datasets provide a cost-effective, reproducible 45 

and straightforward method for the analysis of such vegetation parameters. 46 

Satellite-derived information has been widely used to predict species richness, diversity and 47 

turnover in a variety of kingdoms (Rocchini et al., 2010, 2017). While the analysis of such 48 

diversity parameters is valuable (Rocchini et al., 2010), those analyses lack species-specific 49 

information. For multiple use cases such as species protection measures or environmental 50 

impact assessments, species distribution models (SDMs) are needed (Guisan & Thuiller, 2005). 51 

However, there is a clear lack in SDMs since existing models have two major problems 52 

regarding the characteristics of input data and modelling technique. 53 

Regarding modelling techniques, studies often use regression (Bino et al., 2008; Warton et al., 54 

2015). Due to the model assumptions inherent to most regression methods, problems such as 55 

collinearity between predictors, outliers or non-linear and exponential relationships may 56 

result in bad model performance (Rousseeuw & Leroy, 2005; Dormann et al., 2013). Thus, to 57 

overcome the aforementioned limitations, a more flexible machine learning approach seems 58 

favourable for SDMs. One particularly robust and well-established procedure in ecology and 59 

EO studies is thereby the RF-algorithm (Cutler et al., 2007; Belgiu & Drăgu, 2016), which is an 60 

ensemble learning method consisting of a multitude of decision trees (Breiman, 2001). RFs are 61 

able to deal with highly collinear predictors that can be both quantitative (numeric) and 62 

qualitative (non-numeric) with all kinds of variable interactions, making them, therefore, often 63 

superior to regression.  64 
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Input data is often inadequate because a multitude of models use classified, discrete land-65 

use/cover data (Falcucci et al., 2007). This implies two important pitfalls, firstly, the loss of 66 

information, namely the internal heterogeneity in a certain land-use/cover class, and 67 

secondly, the loss of transition zones between different  classes through sharp boundaries 68 

(Palmer et al., 2002; Lausch et al., 2015). However, transition zones and internal heterogeneity 69 

are key factors for bird species’ distribution (He et al., 2015). 70 

Urban environments are dynamic and complex and, within them, sites of high biodiversity can 71 

be found next to intensely managed ones (Haase et al., 2014; Knapp et al., 2017). This species 72 

richness, however, seems to be in danger as recent reports state that multiple species in 73 

Europe (Bowler et al., 2019) and also in Germany (Gedeon et al., 2004) are in rapid decline. 74 

This trend is especially apparent for bird species breeding in urban and agricultural settings, 75 

since those feature the most rapid reduction of all regarded habitat types (Gedeon et al., 76 

2004). Since the case study area of this paper, the city of Leipzig, Germany, is characterised by 77 

a dense centre with vast parks as well as a large natural forest and fertile agrarian 78 

surroundings, it is an ideal case study for developing models for those endangered species 79 

groups and also for the large group of forest birds (Wellmann et al., 2018). 80 

Urban ornithological studies show that even small patches of vegetation can serve as viable 81 

breeding sites (Ikin et al., 2013) and that birds respond to both vegetation composition and 82 

configuration (Chace & Walsh, 2006). Hence, for complex urban settings such as the city of 83 

Leipzig, high-resolution data is much needed. Therefore, high spatial resolution data, as 84 

provided by the RapidEye satellite fleet, seems favourable for deployment in the urban 85 

environment (Tigges et al., 2013). From such high-resolution EO data, various plant 86 

characteristics can be analysed by using the spectral traits approach (Lausch et al., 2016). This 87 

spectral trait framework, introduced by Lausch et al. (2016), builds on the traits framework 88 

(Kattge et al., 2011) by incorporating those plant traits that are detectable by EO based 89 

techniques. The spectral traits concept hence includes biochemical, biophysical, physiological, 90 

structural, phenological or functional characteristics of plants, populations and communities 91 

(Kattge et al., 2011; Lausch et al., 2016). 92 

The spectral trait concept is a functional approach in which every plant trait corresponds to a 93 

function, that is relevant for (i) the plant and (ii) the larger ecosystem (Violle et al., 2007). 94 
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Therefore, the spectral traits approach is an efficient interface linking EO data to key 95 

ecosystem characteristics, functions and services (Lausch et al., 2016), which in return could 96 

be linked to bird species breeding behaviour. 97 

One way of analysing the spatial diversity of spectral traits in a plant community is by 98 

quantifying the composition and configuration of a plant trait related product, e.g., 99 

Normalized Difference Vegetation Index (NDVI), in space and over time (Wellmann et al., 100 

2018). For this, texture measures by Haralick et al. (1973), such as the grey level co-occurrence 101 

matrix (GLCM), are powerful and well established methods used by St-Louis (2009) for the 102 

prediction of bird species diversity.  103 

Consequently, the combination of high-resolution satellite data paired with machine learning 104 

techniques can create novel and detailed insights into the ecology of urban birds and their 105 

habitats. Since there is no established framework for modelling bird-breeding sites based on 106 

continuous spectral EO data, this paper seeks to develop an according methodology to predict 107 

the breeding sites for urban bird species. The following research questions guide the 108 

development: 109 

(i) Are fractional vegetation cover and spectral plant traits meaningful indicators for the 110 

prediction of breeding sites for species in the urban environment? 111 

(ii) What are suitable modelling techniques? 112 

(iii) How accurate are SDMs solely derived from EO data? 113 

(iv) How do the SDMs help to predict bird species richness? 114 

 115 

2 Study area 116 

Leipzig is a dense city in Eastern Germany located at 51°20′N, 12°22′E with 560,000 117 

inhabitants. The city houses a considerable number of natural biotopes and breeding-bird 118 

species richness is comparably high (Figure 1). Almost 40% of all bird species breeding in 119 

Germany (n = 314) can also be found in Leipzig (n= 120) (StUfa, 1995; Völkl et al., 2004). 120 

Important breeding grounds are located along a north to south transect in the large remnants 121 

of the alluvial forest on the floodplains. This forest is one of the largest of its kind in Europe 122 
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and features a quasi-natural structure in terms of species composition, which is dominated by 123 

ash, oak, beech, lime and sycamore trees. Next to forested areas, different types of urban 124 

greenspaces, urban building structures, and permanent agricultural systems in the 125 

surrounding may provide rich breeding grounds (StUfa, 1995) (Figure 1).  126 

 127 

Figure 1. RapidEye satellite image of the city of Leipzig with indication of the study area location in 128 
Germany and the breeding bird dataset showing bird species richness for all parts of the city but the 129 
areas that were excluded due to large-scale change in biotope composition between the acquisition 130 
of the RapidEye scene and the bird survey 131 

 132 
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The development of Leipzig since the German reunification in 1990 can be quickly 133 

summarized. In the observed period, Leipzig’s population declined slightly leading to a stable 134 

stock in central buildings. Suburbanisation tendencies on peri-urban agricultural land in the 135 

northern outskirts lead to large-scale developments in the outskirts, mostly consisting of 136 

logistic infrastructure, industrial facilities or the exhibition grounds. These developments 137 

mostly occurred outside of important nesting habitats for breeding birds, since the high-138 

intensity farming during the socialist past until 1990 left few ecological niches. A second 139 

important trend in the southern outskirts of the city are the flooding of former opencast mines 140 

(Wolff et al., 2016). 141 

Since the 1990s, the public urban green infrastructure such as the alluvial forest, parks, 142 

graveyards and allotment garden facilities did not change on a broad scale. The overall extent 143 

of forest cover did not change from the 1990s onwards and road-side trees are predominantly 144 

considerably old, which leads to small changes over a 13 year period in traits (trees younger 145 

than 20 years only make up 15.6% of total road-side trees) (Stadt Leipzig, n.d., 2018). The 146 

largest amount of old-growth and undisturbed vegetation can be found on graveyards and in 147 

the large alluvial forest, called “The Auwald.” Most parts are protected under the FFH statues 148 

which therefore obliges strong protection measures. This stability is also true for parts of the 149 

private green, for instance in the Wilhelmine quarters wher+e old grown vegetation prevailed 150 

throughout the investigation period.  151 

In summarizing the findings above, we see that, while the structure of the central areas 152 

remained very stable, there was considerable change at the outskirts of the city. Figure 1 153 

shows where the change was assessed with two biotope maps, the first from 1993 and the 154 

second from 2005. All blank areas inside the city featured more than a 35% change in biotope 155 

types between the two timeframes under consideration and where subsequently disregarded 156 

in this study. This was necessary due to the time lag between the acquisition of the bird 157 

dataset and the RapidEye image. 158 

 159 
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3 Data and Methods 160 

To model the presence and absence of 44 breeding bird species, we propose a new 161 

methodology that only uses a single RapidEye EO data set (Figure 2). The EO based 162 

methodology builds on fractional vegetation cover, the NDVI and a principal component 163 

analysis (PCA). We then used these products to calculate indicators of spatial heterogeneity, 164 

mainly with a grey level co-occurrence matrix (GLCM) and indicators of vegetation density. 165 

Using a random forest (RF) classifier on the aforementioned data sets, we predicted presence 166 

and absence patterns of single species, of species clusters, and of overall species richness. 167 

 168 

 169 

Figure 2. Methodological overview; separated into input data, indicator calculation, modelling and 170 
the generated outputs. 171 
 172 
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3.1 Earth observation (EO) data and indicator calculation 173 

3.1.1 Pre-processing of RapidEye data 174 

The RapidEye sensor features five spectral bands in the 400–850 nm range (blue, green, red, 175 

red-edge, near infra-red) with 6.5 m spatial resolution (Tigges et al., 2013). This study uses a 176 

RapidEye scene of the city of Leipzig that was acquired on June 3, 2011. The timing of the 177 

scene matches the vegetation period and the breeding patterns of the majority of the urban 178 

bird species. A bird-breeding calendar revealed that during June the largest proportion of the 179 

studied birds are actually breeding (Südbeck, 2005). The acquired RapidEye level 3A product 180 

was atmospherically corrected with ATCOR 2, assuring best transferability and interoperability 181 

between satellite scenes, geographic regions and different sensors (Richter, 2011). 182 

Based on the atmospherically corrected RapidEye scene, a map of fractional vegetation cover 183 

was calculated (Figure 3) (Haase et al., 2019). This dataset provides subpixel information about 184 

the share of vegetation featured in each pixel. It was used to mask out areas in the original 185 

RapidEye dataset that are not primarily vegetated. As a cut-off value, 75% was chosen, 186 

meaning that only pixels featuring at least a 75% cover in vegetation were used in the study. 187 

This threshold was found to be a good compromise between reducing spectral information of 188 

build-up origin as much as possible while not dropping too many pixels where only minor 189 

portions are not vegetated or where some soil signal is coming through, which is relevant for 190 

grasslands. Furthermore, excluded were agricultural areas that do not feature permanent 191 

crop systems in the breeding period, areas were detected using the 2011 biotope map.  192 

 193 

3.1.2 Calculation of functional vegetation indicators  194 

From the masked RapidEye image, a PCA and a NDVI layer were computed. A PCA is a 195 

statistical procedure that transforms collinear datasets into linearly non-correlated variables, 196 

in our case the five spectral bands of the RapidEye data set (Jolliffe, 2002). Since only pixels 197 

with vegetation were included in this procedure, the first principal component describes the 198 

diversity found in the vegetation’s whole traits. The NDVI, in turn, is more specifically oriented 199 

towards the calculation of the greenness of the plants. This is very much related to the plants’ 200 
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capacity for performing photosynthesis and, respectively, to the traits of the plants that are 201 

associated with photosynthesis (Gamon et al., 1995). 202 

 203 

Figure 3. Earth observation indicators calculated based on the RapidEye image (June 3. 2011); (A) a 204 
fractional vegetation map, (B) the first band of the principal component analysis (PCA) and (C) the 205 
normalized difference vegetation index (NDVI). 206 
 207 

Based on the three products (NDVI, PCA band 1 & band 2) described above, 13 different 208 

indicators that describe both state and spatial heterogeneity in the plant communities are 209 

calculated for every 500 m by 500m cell (Table 1). The GLCM indicators by Haralick et al. (1973) 210 

assess local image texture by calculating the differences between the values of adjacent pixels 211 

values, e.g. NDVI value. Based on this frequency matrix, eight indicators were calculated and 212 

their mean and standard deviation values assessed for every  cell. Furthermore, two measures 213 

of spatial autocorrelation and three summary statistics were calculated.  214 

  215 
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Table 1. Overview of the indicator types expressing vegetation density or vegetation heterogeneity. 216 
 217 

Type Name Reference 

Local spatial 
autocorrelation 

GLCM mean 

(Haralick et al., 
1973)  

GLCM variance 

GLCM correlation 

GLCM homogeneity 

GLCM contrast 

GLCM dissimilarity 

GLCM entropy 

GLCM angular second   
moment 

Global spatial 
autocorrelation 

Geary's C (Geary, 1954) 

Moran's I (Moran, 1950) 

Descriptive 
statistics 

Standard Deviation  

Coefficient of Variation (Datt, 1998) 

Sum  

 218 

Since we derived all indicators used for modelling from the same RapidEye dataset, a 219 

correlation analysis was performed using a cut-off value of 0.9. The comparably high cut-off 220 

value was chosen because the RF algorithm is able to deal with highly collinear data (Breiman, 221 

2001). 222 

 223 

3.2 Bird species distribution data and further analysis 224 

3.2.1 The bird survey dataset and its pre-processing 225 

The breeding bird data used in this study was collected in the city of Leipzig over three 226 

breeding periods from 1991 to 1993 between February and July. It describes the presence or 227 

absence of 120 species within 1132 cells with a resolution of 500m by 500 m. Each of these 228 

cells was surveyed at least 5 times per year by ornithologists to map species that were 229 

breeding. The species was marked as present in a cell if it was observed at least once. Through 230 

this scheme, very reliable presence and absence data could be generated (StUfa, 1995).  231 

The dataset was treated to account for uncertainties in the occurrence of bird species. Firstly, 232 

only validated species sightings where included and, subsequently, all entries marked as 233 
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uncertain were disregarded. Secondly, rare species had to be excluded to ensure that a 234 

sufficient amount of presence points remained for validation of the proposed RF-model. As a 235 

threshold, a presence to absence ratio greater than 10% was chosen. Due to the exclusion of 236 

the rare species, only 44 of the 120 species remained for analysis. 237 

Finally, to account for changes in landscape composition between the acquisition time of the 238 

bird survey (1993) and the RapidEye acquisition (2011), a change analysis was conducted in 239 

order to exclude grid cells with major land use or land cover changes. This analysis is based on 240 

two biotopes, dating from 1993 and 2011. In so doing, cells with more than 35% change in 241 

biotope types were excluded from the analysis. Overall, around 200 grid cells, predominantly 242 

in the peri-urban space, were excluded.  243 

 244 

3.2.2 Determination of functional species communities with a cluster analysis 245 

A hierarchical cluster analysis was performed in order to find groups of bird species that are 246 

similar to each other in terms of their presence/absence patterns in Leipzig, to identify 247 

coexisting species. The HCLUST (R Core Team, 2000) algorithm used in this study iteratively 248 

assigns an object to a cluster based on a distance measure. The allocation of group 249 

memberships is executed on the premise of minimizing the distance between the clusters 250 

members. Distance in this study was measured by the Jaccard distance (1), a statistical 251 

measure computing the dissimilarity between sample sets (Podani & Schmera, 2011): 252 

,                                           (1) 253 

where dj is the Jaccard distance, J is the Jaccard index, and where A and B are the 254 

presence/absence points of two regarded species.  255 

 256 

 257 

 258 

 259 
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The optimal number of clusters was determined using the total within sum of squares method  260 

(TSS) (2): 261 

 ,                                                                                        (2) 262 

where 𝑦𝑖  is a single instance of the dependent variable and 𝑦̅its mean. The ideal number was 263 

visually derived from an elbow plot. 264 

3.3 Machine-learning based species distribution modelling techniques 265 

This study tested five different modelling techniques in terms of their capabilities of predicting 266 

species presence/absence of birds in Leipzig (Table 2). While overall the ensemble model 267 

delivers the results with the highest accuracies, this study recommends the RF-model as the 268 

means of choice. This is because the additional complexity and computing efforts do not justify 269 

a slight increase in accuracy. 270 

Table 2. Final decision matrix on choosing the modelling technique, the green shading indicates the 271 
best outcome per criterion. 272 
 273 

Method Result accuracies Computation time 

per model in 

seconds 

Variable 

importance 

Categorical 

variables 

R package 

name 

Mean 

accuracy 

Mean 

sensitivity 

Mean 

specificity 

Random Forest 0.78 0.70 0.77 1 yes yes randomForest 

EV Tree 0.76 0.61 0.80 7.5 yes yes evtree 

Neural 

Network 
0.78 0.65 0.78 1 no no e1071 

Support Vector 

Machine 
0.62 0.47 0.60 140 no no 

neuralnet 

Ensemble 

Model 
0.78 0.77 0.77 150 no no  

 274 
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3.3.1 Random forest modelling and hyperparameter refinement 275 

RF is an algorithm capable of solving regression and classifications problems (Breiman, 2001), 276 

providing fast model training and comparably high accuracies (Mitchell, 2011). In this study, 277 

44 random forests are grown—one for every species—to predict species presence/absence 278 

pattern with an independent test data set. 279 

For the hyperparameter computation, we used a threefold cross validation scheme: Regarded 280 

parameters and their value ranges are K-FEATURES (1–13 in steps of 1), determining the number 281 

of variables chosen at each split in a tree; NTREE (500–1500 in steps of 100) determining the 282 

number of trees to be grown; and NODESIZE (1–13 in steps of 1), determining the minimum size 283 

of a terminal node (Bernard et al., 2009). 284 

3.3.2 Downsampling for bird species distribution modelling 285 

For 32 of the 44 bird species, absence points outnumber presence points. Since highly 286 

unbalanced data can cause problems in the random forest classification, a downsampling 287 

approach for the species absences was used (Chen et al., 2004). In this study, rare species 288 

were downsampled, meaning that absence points were disregarded until a ratio of 1:3 289 

between presence and absence points was reached. This ratio was found to produce the most 290 

accurate results overall. Downsampling in this study is regarded as a very critical and 291 

important step which needs to be carefully addressed and iteratively tested. 292 

 293 

3.4 Accuracy metrics 294 

Table 3. Confusion matrix and formulas for accuracy indicators 295 
 296 

 Reference 
 

Predicted Event No event 

Event A B     Sensitivity = A/(A+C)                         (3) 
     Specificity = D/(B+D)                          (4) 
   Overall acc. = (A+D)/(A+B+C+D)       (5) No event C D 

A = True Positives; B = False Negatives; C = False Positives; D= True Negatives;  297 
 298 
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The model quality will be discussed based on three indicators; sensitivity (3)  specificity (4) and 299 

overall accuracy (5) (see Table 3). Overall accuracy thereby refers to the ratio of correctly 300 

classified instances. Sensitivity denotes the ratio of all positively classified instances (in this 301 

case species presences) correctly classified. Specificity in turn builds the same ratio for species 302 

absences (Kuhn, 2008).  303 

The quality of the diversity models will be discussed based on the mean absolute error (MAE) 304 

(6), which is a measure of difference between two continuous variables, in our case predicted 305 

species richness versus observed species richness: 306 

        (6) 307 

Where 𝑛 is the number of observations, 𝑌̂𝑖  the predicted value and  𝑌𝑖  the observed value. 308 

3.5 Connecting remotely sensed spectral traits with bird species traits 309 

The trait framework is an integral part of community ecology (McGill et al., 2006). As an 310 

outlook, we therefore demonstrate how the trait approach could provide for a direct 311 

modelling interface between remotely sensed spectral trait indicators and bird species traits. 312 

For this part, a dietary trait of the 44 bird species is used. The data is taken from Sibly et al. 313 

(2012).  314 

For modelling the relationship between the proposed indicators and the selected bird species 315 

traits, we used a multiple correspondence analysis (MCA). A MCA transforms nominal 316 

categorical data into a low-dimensional feature space. It is thus a methodology similar to the 317 

PCA – but for categorical data. This way, underlying structures and correspondences of 318 

different nominal categorical variables can be detected (Greenacre & Blasius, 2006). 319 

 320 
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4 Results 321 

4.1 Species distribution modelling 322 

4.1.1 Accuracies of computed random forest models 323 

The dataset was split into 20% for testing and 80% for growing the random forests. The mean 324 

overall accuracy for the 44 models, based on the testing data set, is 78%, with the best model 325 

featuring an overall accuracy of 90% and the worst 59% (Figure 4 and Table A1 in the 326 

Appendix). The mean accuracy for predicting absences (representing species’ specificity) is 327 

approximately 77%, while the prediction for presences (representing species’ sensitivity) is 328 

about 70% (Table 2). Low sensitivity values can especially be found in models where 329 

downsampling led to a strong reduction in modelling cases. 330 

 331 

Figure 4. Overview of the performance of the 44 models with respect to their sensitivity and 332 
specificity, ordered by their overall accuracy in the modelling process.  333 

 334 
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4.1.2 Predictions of urban bird species distributions 335 

The RF-models were used to predict the breeding sites of 44 urban bird species. The prediction 336 

is based on the independent testing dataset, containing 20% of the cells of the bird dataset. 337 

Figure 5 shows the nesting patterns for the three different illustrative species introduced in 338 

section 4.1. Overall, the breeding patterns for the illustrative species are well reproduced, 339 

with only minor misclassifications. 340 

In Figure 5 the sparrow is shown on the left. It becomes clear that the sparrow breeds across 341 

the whole study area except for the loam-rich riparian flood plain forest. The skylark is shown 342 

in the middle, it predominantly inhabits the agriculturally dominated peri-urban areas. Thirdly, 343 

the great spotted woodpecker is shown on the right. It breeds in forested areas, 344 

predominantly in the floodplain forest. Consequently, the three selected species demonstrate 345 

the versatility and capability of the presented RF-modelling approach to model and analyse 346 

vastly different habitats. 347 

 348 

Figure 5 Predictions (in capital letters) and reference presence/absence data based on the testing 349 
data set (20% of all data points) for three bird species in Leipzig; the great spotted woodpecker 350 
(Dendrocopos major, A & a), the skylark (Alauda arvensis, B & b) and the sparrow (Passer 351 
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domesticus, D & d). Naming is congruent with the belonging of the single species to the clusters 352 
presented in Figure 6. 353 

 354 

4.1.3 Predictions of urban bird species richness 355 

Using the TSS measure, an optimal clustering solution was found that encompassed five 356 

clusters (Figure 6 – upper section). Based on clusters A, B and D, and a typical species for each 357 

of those, the results of the clustering will soon be illustrated. Cluster A features two species 358 

types, firstly cavity nesting birds breeding in tree holes like the great spotted woodpecker 359 

(Dendrocopus major) and the mallard (Anas platyrhynchos) breeding along the river 360 

embankments in the floodplain forest. Cluster B predominantly features ground-nesting birds, 361 

which can usually be found in agriculturally dominated surroundings on meadows and lawns 362 

like the Eurasian Skylark (Alauda arvensis). Cluster D features hemerophile species that have 363 

very broad geographic distributions across cities and show diverse breeding patterns. For 364 

instance, the Sparrow (Passer domesticus) breeds in holes in buildings but also in dense woody 365 

vegetation and is commonly found across the built-up area in Leipzig (BirdLife International, 366 

2017). 367 

By combining the 44 SDMs, patterns of urban bird species richness can be modelled. The most 368 

accurate results are generated for clusters A and D, which represent species in the forested 369 

areas and in the urban core respectively. This means that the model fulfils its purpose to cover 370 

the main urban bird species classes. The most inaccurate is cluster B, representing species 371 

breeding in the open landscapes in the peri-urban surrounding. 372 

The overall bird species richness depicted in cluster F was found to feature an MAE of six. 373 

Therefore, it can be seen that species richness is underestimated in grid cells that feature 374 

comparably high numbers of present bird species and overestimated in areas where few to 375 

no birds are actually found.  376 
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 377 

 378 

Figure 6. Models showing the relation between predicted and observed values for the five species 379 
clusters (A) to (E) and for all species (F) based on the testing data set. See Figure 4 for the species 380 
included in each cluster. 381 
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4.2 Variable importance of random forest models 382 

This study introduces texture metrics as new indicators for the creation of species distribution 383 

models. Table 4 shows that the majority of species feature these metrics as their most 384 

important or second most important variable.). In contrary, only five species feature the NDVI 385 

as their most important variable and thirteen a PCA. Since the majority of species feature both 386 

a classical remote sensing indicator and a texture metric as their two foremost variables, we 387 

can show the benefits both approaches can deliver when combining pixel-based and texture-388 

based approaches. 389 

 390 

Table 4. Indicators covered in this study for the test for bird breeding habitat and their frequency of 391 

usage in the first two important variables in the 44 models. 392 

Indicator type Primary variable Secondary variable 

Texture measures 26 29 

Global spatial autocorrelation 0 1 

NDVI 5 4 

PCA 13 10 

 393 

The findings above support our previously outlined thesis, which stated that the structure in 394 

vegetation communities is of primary importance for bird habitat prediction. In contrast to 395 

this, the global spatial autocorrelation indicators  which regard the whole cell rather than only 396 

in the local vegetation community, have low explanatory power as none of the species feature 397 

these measures as their most important variable. 398 

 399 
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 400 

Figure 7. Interactions between the two foremost important variables for (a) the Eurasian skylark (Two 401 
texture metrics) and (b) the great spotted woodpecker (PCA – Texture metric) 402 
 403 

Variable importance gives valuable insight into the functioning of the RF-model. This is shown 404 

in Figure 7 where the interaction between the two foremost variables for two different bird 405 

species are shown. Variable relationships are highly non-linear and are indicative of the 406 

species presence/absence patterns only in specific parts of the variable range. Thus, we arrive 407 

at our second assertion: that flexible machine learning approaches are more feasible for such 408 

work and are more appropriate than many regression techniques, since they are free of prior 409 

assumptions and only work on the patterns in the data itself. 410 

4.3 Connecting the spectral trait concept to the traits of bird species 411 

So far this study has modelled the presence/absence patterns of breeding birds, hence 412 

operating at the species level. In addition, the proposed methodology also provides the 413 

opportunity for connecting the spectral plant trait indicators directly to functional bird traits. 414 

This is illustrated in Figure 8, which shows that our two categories of indicators, GLCM texture 415 

metrics on the one hand and NDVI &PCA on the other, are indicative of a dietary trait. 416 
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 417 

Figure 8. Results of a Multi-Criteria Analysis (MCA) showing the relation between the proposed 418 

indicators with dietary traits of the 44 bird species for the first two dimensions in A and the first and 419 

third dimension in B, covering the major part of variability in the whole data set. 420 

 421 

Figure 8 shows that our newly proposed indicators nicely correspond with a dietary species 422 

trait. This is the case if behavioural traits are closely proximate to the developed indicators in 423 

the feature space. Birds feeding on invertebrates can be associated with the GLCM texture 424 

metrics, hence the heterogeneity of local vegetation is most important for the presence of 425 

birds featuring this trait. In contrast, a diet based on plants is associated with the indicator 426 

NDVI. This means that for birds that are directly dependent on vegetation the amount of 427 

photosynthetic activity is most important for their presence/absence patterns. The first PCA 428 

band is associated with omnivores and the second PCA band with a diet based on seeds. This 429 

amplifies the finding that the pixel based approach, which describes the state of the 430 

vegetation and not its functional diversity, is most important for a diet that includes plant 431 

material. 432 

 433 



23 

 

5 Discussion 434 

This study proposes a new approach to the integration of satellite-derived data for a more 435 

transferable, comparable and cost-efficient way to derive high-resolution SDMs. It does so by 436 

deriving indicators directly from continuous Earth observation data in order to reduce the 437 

deficiencies arising from  pre-classified land cover/land use products. These indicators  build 438 

on functional vegetation traits as crucial habitat variables for species modelling. Since previous 439 

studies predicting animal distribution patterns from space focussed on species richness and 440 

diversity (Rocchini et al., 2010), this study expands these efforts by introducing a species-441 

specific approach. 442 

With SDMs from EO data, new areas of environmental assessments come into reach that are 443 

highly relevant for both scientific and societal actors (Kerr & Ostrovsky, 2003). This could be 444 

species-specific conservation efforts, environmental impact assessments, or allocation of new 445 

construction developments in order to minimize environmental costs. 446 

A key challenge for improving existing SDMs is the scarcity of spatially continuous high-447 

resolution land-use/cover datasets, particularly in urban environments (He et al., 2015), 448 

because discrete EO data products are limited in extent and temporal and spatial resolution. 449 

Thus, they cannot show internal variability of classes or transition zones, or small linear 450 

elements (Lausch et al., 2015). This is especially problematic since the composition and 451 

structure of vegetation are the most important determinants for breeding sites of birds (Ikin 452 

et al., 2013; Paker et al., 2014). This study addresses this by integrating high-resolution 453 

RapidEye data that is already being used in studies of urban ecology (Wellmann et al., 2018).  454 

This methodology will greatly benefit from the broad availability of current and future high-455 

resolution EO datasets, for example, Planet Labs Doves (Wulder & Coops, 2014; Lausch et al., 456 

2018). In comparison, lower resolution sensors like Landsat (30m) or MODIS (250m) are too 457 

coarse to discern any spatial diversity of species-specific habitat characteristics in the urban 458 

and peri-urban environment (Saveraid et al., 2001; Goetz et al., 2007). While the need for 459 

higher spatial resolution applies to all ecosystem types, it very strongly relates to urban 460 

ecosystems where variation in the spatial dimension is very high due to the mix of built, 461 

sealed-green and blue surfaces (McPhearson et al., 2016).  462 
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Especially good SDMs were derived for birds breeding in typical urban settings, in parks, 463 

gardens or in densely built areas. Besides those hemerophile species, birds living in the alluvial 464 

forest were also modelled with high accuracy. We therefore conclude that our methodology 465 

is suitable for analysing both small- and large-scale vegetation patches of differing degrees of 466 

naturalness, opening up the possibility of transferring the methodology to areas outside of 467 

cities. In turn, the models for the open land species performed the worst. This can be partly 468 

attributed to the fact that open land species are the rarest species in the dataset. This linkage 469 

between the number of presence points and accuracy is at least partly related to the 470 

methodology as classification trees function best with larger sample sizes (Chen et al., 2004; 471 

Goetz et al., 2007). Therefore, working on larger study areas with more presence/absence 472 

data could benefit the results.  473 

Relationships between the dependent and independent variables are highly diverse and 474 

inherently species specific. Consequently, a flexible machine learning approach that takes 475 

both presence and absence data into account would be advantageous. Overall, we tested five 476 

non-parametric machine learning techniques, in terms of their accuracy for the given task, and 477 

found that RF is most useful, but an ensemble model is most accurate. The versatility of RF-478 

models for SDMs has been demonstrated for instance in Evans et al. (2011). 479 

Regarding the predictors, we found that the NDVI is the second least important indicator after 480 

the measures of autocorrelation. The NDVI analyses only a single trait in the vegetation, i.e. 481 

its chlorophyll content or degree of greenness, and is thus a poor indicator for overall 482 

functional diversity (Wang et al., 2003). However, studies that already incorporate EO data for 483 

species diversity or species richness analysis often rely on the NDVI without conducting 484 

sensitivity analysis  (Seto et al., 2004; Goetz et al., 2007; Bino et al., 2008). Between the NDVI 485 

and species richness of different taxa  varying indicator relationships were found (Bino et al., 486 

2008), raising the question of reliability and transferability. In this light, a PCA seems more 487 

promising. When computed only in vegetated areas, PCA analysis represents a large variety in 488 

plant traits (Estes et al., 2010). In our case, the first two PCA bands explained 99% of the 489 

variance in the spectral backscatter. We found that the PCA-based predictors were the second 490 

most important. This suggests that more effort must be taken to analyse the degree of 491 

functional diversity in plant communities rather than analysing derivatives of photosynthesis 492 

capacity, as in the NDVI (Estes et al., 2010). 493 
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We facilitated our analysis of functional diversity by deploying texture metrics, which we find 494 

to be the most important indicator type. These indicators by Haralick et al. (1973) depict local 495 

spatial heterogeneity and are thus able to capture the diversity in functional plant 496 

characteristics. So far, this method has only been used rarely for species richness analysis (St-497 

Louis et al., 2009; Estes et al., 2010) or in the urban context (Wellmann et al., 2018). This is 498 

unfortunate as modelling plant functional diversity from space is currently at the forefront of 499 

EO science (Jetz et al., 2016; Schneider et al., 2017; Kissling et al., 2018) but has not yet been 500 

adapted into SDM modelling. 501 

Finally, we show that the concept of spectral traits also allows for future binding of remotely 502 

sensed characteristics to other species traits. This is a new and promising step for functional 503 

ecology and needs to be further evaluated in upcoming studies. Since there has been a large-504 

scale diminishing of insectivorous birds across Europe recently, the modelling of birds 505 

featuring these traits is timely and needed and could help in evaluating and improving 506 

potential habitats (Bowler et al., 2019). 507 

In the course of the study, datasets of vegetation and building heights (with 2 m resolution) 508 

and a soil map were added. These datasets only slightly improved model performance (1–2% 509 

on average). We therefore aimed for a less data-intensive approach by using only a single EO 510 

dataset as model input. This also means that the approach will be more transferable. 511 

 512 

6 Conclusions 513 

This study shows that satellite-derived vegetation parameters describing the composition and 514 

configuration of vegetation traits in a continuous way can play a crucial role in expanding the 515 

knowledge about species distribution patterns. Generally, results are promising and show that 516 

the usage of a single RapidEye scene paired with machine learning models can produce SDMs 517 

at high resolution and accuracy. Since the provisioning of suitable nesting grounds are key for 518 

the survival of a species, the adequate modelling of the breeding sites is very important. This 519 

is especially true because currently most cities do not provide resources for additional bird 520 

monitoring covering the entire city. 521 
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For the preservation and extension of urban biodiversity spatially explicit data in high-522 

resolution is necessary for well-informed land and green-space management. This study 523 

provides a window of opportunity for a better understanding of coupled human-524 

environmental systems in the city, by exploring the effects of vegetation diversity and 525 

structure on the breeding behaviour of urban birds. This will ultimately help to adapt land 526 

management schemes or to steer urban development such that bird-breeding sites are 527 

minimally affected or might even benefit from new and/or existing constructions. 528 
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