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Abstract

The input of labile organics by plant roots stimulates microbial activity and 

therefore facilitates biochemical process rates in the rhizosphere compared to bulk soil, 

forming microbial hotspots. However, the extent to which the functional properties of 

soil microorganisms are different in the hotspots formed in soils with contrasting 

fertility remains unclear. We identified the hotspots related to different levels of Zea 

mays L. root architecture by zymography of leucine aminopeptidase in two soils with 

contrasting fertility. The hotspots localized by tiny wet-needle approach around first- 

and second-order roots were compared for parameters of microbial growth and enzyme 

kinetics. The pattern of hotspot distribution was more dispersed and the hotspot area 

was one order of magnitude smaller around first- versus second-order roots. The 

specific microbial growth rate (μm) and biomass of active microorganisms were soil-

specific, with no difference between the hotspots and bulk soil in the fertile soil. In 

contrast, in the soil poor in organic matter and nutrients, 1.2-fold higher μm and greater 

growing biomass were found in the hotspots versus bulk soil. Lower enzyme affinity 

(1.3-2.2 times higher Km value) of β-glucosidase and leucine aminopeptidase to the 

substrate was detected in the hotspots versus bulk soil, whereas only β-glucosidase 

showed higher potential enzyme activity (Vmax) in the hotspots, being 1.7-2.1 times 

greater than that in bulk soil. Notably, the activity of C-acquiring enzyme, β-

glucosidase positively correlated with the biomass of actively growing microorganisms. 

The fertile soil, on the whole, showed greater Vmax and catalytic efficiency (Vmax/Km) 

and an approximately 2.5 times shorter substrate turnover time as compared to the poor 

 

 

 

Journal Pre-proof



soil. Therefore, we conclude that i) the differences in microbial growth strategy 

between rhizosphere hotspots and bulk soil were dependent on soil fertility; ii) affinity 

of hydrolytic enzyme systems to substrate was mainly modulated by plant, whereas 

potential enzymatic activity was driven by both plant and soil quality.

Keywords: Microbial hotspots, Soil zymography, Microbial growth, Enzyme kinetics

1. Introduction

The input of root exudates and rhizodeposits, mainly easily degradable low-

molecular weight organic substances, stimulates microbial growth and activity in the 

rhizosphere, which is defined as one of the most dynamic microbial hotspots (Kuzyakov 

and Blagodatskaya, 2015; Kuzyakov and Razavi, 2019). The peculiarity of the 

rhizosphere as a root-soil interface is that the microbial community composition is 

generally linked to the soil microbial community, which is determined by basic soil 

properties (de Ridder-Duine et al., 2005). The structure of rhizosphere community (i.e., 

species dominance and activity), however, is strongly modulated by the plant strategy 

for the nutrient acquisition, which is also dependent on basic soil properties, e.g., soil 

nutrition state (reviewed by Kuzyakov and Razavi, 2019). Therefore, the research 

question: how the difference between the hotspots and bulk soil is impacted by soil 

fertility, which dramatically changes soil C and nutrient status, is very relevant. This 

question needs to be addressed considering that microbial communities in the hotspots 

and bulk soil are functionally different in terms of their life strategies and enzyme 

kinetic properties due to different qualities and quantities of organic substrates 
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(Blagodatskaya et al., 2009; Hoang et al., 2016).

Microbial activity is limited by various environmental factors and especially by 

carbon (C) availability (Hodge et al., 2000; German et al., 2011). Microbial hotspots 

are formed with the input of fresh carbon sources (Hodge et al., 2000, Schimel and 

Weintraub, 2003). Accordingly, soil with higher quality, i.e., the availability of organic 

substances and nutrients, should represent higher microbial and enzyme activity. On 

the other hand, the relative fraction of the hotspots induced by root exudates and 

rhizodeposits may be lower if soil inherent substrate availability is sufficient for 

microbial metabolism. We hypothesize, therefore, that the differences in microbial 

functional parameters between the hotspots and surrounding soil will be smoothed in 

rich compared to the poor soil.

In the rhizosphere, root exudation and rhizodeposits stimulate the activities of 

extracellular enzymes (Ge et al., 2017; Ma et al., 2018), which are valuable tools for 

microorganisms to degrade complex polymeric organic substances for acquiring energy 

and nutrients from surrounding soil. However, artificially labeled fluorogenic substrates 

applied in soil studies for determination of extracellular enzymes activity (Marx et al., 

2001) are much less than natural organic polymers. Despite it is generally assumed that 

fluorogenic substrates are decomposed by extracellular enzymes; this assumption still 

needs to be proven experimentally. Furthermore, application of sonicated soil 

suspension cannot distinguish the activity of enzymes released by microorganisms in 

response to substrate addition and earlier secreted enzymes immobilized within soil 

matrix (Nannipieri et al., 2018). Therefore, the cumulative activity of enzymes 
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presented in soil suspension is determined by this approach.

The gradients of enzyme activities as a function of distance from the root surface 

to the soil have been clearly related to nutrients availability (Tarafdar and Jungk, 1987; 

Badalucco and Nannipieri, 2007) and the spatial patterns of such gradients have been 

recently visualized (Sanaullah et al., 2016; Zhang et al., 2019). However, the 

inhomogeneous distribution of microbial hotspots along the roots has also been 

observed (Pausch and Kuzyakov, 2011; Razavi et al., 2016a), which might be due to 

soil heterogeneity (Webster, 2000; Heuvelink and Webster, 2001) or variation and 

distribution of exudation along the roots. Therefore, careful localization of the hotspots 

is necessary for precise soil sampling from microbial hotspots. Soil zymography, a 

novel in situ method, enables determining the two-dimensional spatial distribution of 

enzyme activities in soil (Spohn et al., 2013; Razavi et al., 2019; Heitkötter and 

Marschner, 2018) and localizing hotspots of various enzyme activities.

The most ecologically relevant biogeochemical processes in soils are microbially 

mediated, and microbial functions depend on active microbial pools in soil because 

only the active microorganisms drive biogeochemical processes (Blagodatsky et al., 

2000; Nannipieri et al., 2003). The rate of biomass-specific respiration is 10 to 100 

times greater when it is based on the active than on the total microbial pool (Salazar-

Villegas et al., 2016). Additionally, the fraction of active microorganisms in the 

hotspots is up to 2 times higher than that in bulk soil (Blagodatskaya et al., 2014). 

Consequently, the simultaneous occurrence of numerous hotspots at the micro-scale 

level determines the microbial functions at higher scales (Blagodatsky and Smith, 2012; 
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Kuzyakov and Blagodatskaya, 2015). In turn, the effect of hotspots can be quantified 

by their relevance to functional parameters, such as respiration, microbial growth and 

enzyme activities (Blagodatskaya and Kuzyakov, 2013). Kinetic approaches, based on 

product formation, e.g., respiration, are successful for assessment of the active biomass 

and for relating it to basic soil processes (Blagodatsky et al., 2000). Kinetic parameters 

of microbial growth as well as the dominant strategy can be detected using the 

substrate-induced growth response (SIGR) method (Panikov, 1995). The 

correspondence between microbial growth and functional parameters of enzymes 

hydrolyzing polymeric organic compounds in soil remains to be studied in the precisely 

localized hotspots (Razavi et al., 2015; Ma et al., 2017).

Here, two types of soil with contrasting fertility were used to grow maize plants. 

The application of soil zymography enabled accurate localization of the microbial 

hotspots and successful collection of the micro-samples by tiny wet-needle approach. 

This study was designed to i) investigate the potential effect of rhizosphere hotspots on 

microbial growth and enzyme activities; ii) evaluate the effect of soil type on the 

difference in kinetic parameters between the hotspots and bulk soil. We hypothesized 

that 1) rhizosphere hotspots contain a high fraction of stimulated microorganisms (with 

a high growth rate and enzyme activity) compared to bulk soil independently of soil 

fertility; 2) the difference in kinetic parameters between the hotspots and bulk soil are 

stronger in the poor soil; 3) the enzyme activity in soil with higher fertility is higher 

than in the poor soil.
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2. Materials and methods

2.1. Hotspot identification and sampling

Individual maize plants (Zea mays L., KWS, Germany) were grown in separate 

rhizoboxes (30 plants in total) in two soils with similar pH but contrasting texture and 

fertilization. Mitterfels (fertile soil) is located in the Central German Uplands. The soil 

type is Hyperdystric Chromic Folic Cambisol (WRB, 2015). The samples of Mitterfels 

soil were taken from loamy Ap horizon (Lang et al., 2017) with high C and N content. 

Unterlüss (poor soil) is located in Lower Saxony, Germany. The soil type is 

Hyperdystric Folic Cambisol. The samples taken from Ap horizon of Unterlüss sandy 

loam soil (WRB, 2015) were relatively barren, with respectively, 1.6, 2.0 and 4.1 times 

lower C, N and P content as compared with Mitterfels soil (Table 1). Further details on 

the sites, soil profiles and soil properties can be found in Lang et al. (2017). During 

growth, the rhizoboxes were kept inclined at an angle of 45° so that the roots grew at 

the vicinity of the lower wall of the rhizobox due to gravitropism. After cultivating 

maize plants for 2 weeks, soil zymography was applied to identify the spatial 

distribution of β-glucosidase and leucine aminopeptidase hotspots around the roots 

(Razavi et al., 2019).

Two types of fluorogenic substrates based on 4-methylumbelliferone (MUF) and 

7-amino-4-methylcoumarin (AMC) were used: 4-methylumbelliferyl-β-D-glucoside 

(MUF-G) for β-glucosidase; L-Leucine-7-amino-4-methylcoumarin (AMC-L) for 

leucine aminopeptidase. After fitting the substrate-saturated membrane to the soil 

surface for one hour, enzyme activity was detectable by the appearance of fluorescent 
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products on the membrane visible under UV light (Fig. 1a-d). The estimation of 

fluorescence intensity proportional to the activity of the enzyme was calibrated by the 

range of concentrations of corresponding products: either MUF or AMC. In order to 

transform zymogram images to graphical representation, digital image histograms were 

developed as barcharts, which showed the distribution of pixel values according to the 

color map. These histogram graphs show the number of pixels of the zymogram images 

at each 0.01 color intensity value occurring in that image. Numbers of pixels as well as 

area of whole image were calculated based on these histograms. All pixels with the 

color intensity exceeding average value (i.e., >0.75) were assigned to the hotspots for 

enzyme activities (Sanaullah et al., 2016).

For both soils, we found higher resolution for the hotspots identified by leucine 

aminopeptidase compared to β-glucosidase. In addition, we found that the hotspots 

around new-developed first-order roots of maize were very small in size and can be 

considered as dots, in comparison with large hotspot areas around second-order root. 

The zymography images of leucine aminopeptidase activity were treated for the 

hotspots sampling around first- and second-order roots, separately. For precisely 

localized sampling, soil particles were carefully collected using wet needle (tip 1.5 mm) 

of a syringe directly from the hotspots identified by zymography (Fig. 1e). No hotspots 

were detected at the distance exceeding 1.5 mm from the roots. About 0.1 g soil was 

collected from large number of hotspots and was pooled to form a composite sample 

for each plant replicate. Bulk soil was collected in a similar way from root-free soil.

2.2. Kinetics of substrate-induced growth response
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The kinetic parameters of substrate-induced growth response were estimated by the 

dynamics of CO2 emission from soil amended with glucose and nutrients (Panikov, 

1995), taking advantage of the rapid automated bacterial impedance technique (RABIT) 

system in a climate chamber enabling to work with reduced (up to 0.5 – 1 g) soil sample 

size. Briefly, soil sample was incubated in a tube after solution addition with glucose 

(10 mg g–1) and mineral salts: (NH4)2SO4–1.9 mg g–1, K2HPO4–2.25 mg g–1, and 

MgSO4·7H2O–3.8 mg g–1 (Blagodatsky et al., 2000). Soil water content was adjusted 

to 60% of water holding capacity by adding distilled water. The CO2 production rate 

was measured hourly at 22 °C using RABIT.

Specific growth rate (μm) was determined by fitting of equation parameters to the 

experimental data on CO2 evolution rate (v; Fig. 2) according to the following equation:

v(t) = A + B × exp(μm t)                                         (1)

where A is the initial rate of uncoupled (no growth) respiration, B is the initial rate 

of coupled (growth) respiration, t is the time (Panikov and Sizova, 1996; Blagodatsky 

et al., 2000); r0, the so-called physiological state index of microorganisms at time zero 

(before substrate addition), is calculated from the ratio between A and B. The total 

glucose-metabolizing microbial biomass (sustaining + growing) is

x0 = B·λ·YCO2/r0·μm,                                                                    (2)

Biomass yield per unit of CO2-C (YCO2) is assumed to be constant during the 

experiment and equals 1.5, corresponding to a mean value of 0.6 for the microbial yield 

per unit of glucose-C consumed. λ= 0.9 may be accepted as a basic stoichiometric 

constant (Panikov and Sizova, 1996). The growing (active) microbial biomass at time 
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zero is given by

x′0 = x0·r0                                                      (3)

The duration of the lag period (tlag) was determined as the time interval between 

the moment of glucose addition and the moment when the increasing rate of growth-

related respiration B × exp(μm t) becomes as high as the rate of respiration uncoupled 

from ATP generation; it was calculated using the parameters of the approximated curve 

of the respiration rate of microorganisms by the equation:

tlag = (4)
ln (𝐴

𝐵)
μm                                                                                                                         

In addition, the kinetic approach allowed the assessment of generation time (Tg) 

of both actively growing and total microbial population consuming glucose. The 

estimation of Tg for actively growing biomass is based on specific growth rates, i.e:

Tg = ln(2)/μm                                                   (5)

2.3. Enzyme kinetics

Activities of β-glucosidase and leucine aminopeptidase for the hotspots and bulk 

soil were measured using the same fluorogenic substrates as for zymography with seven 

concentrations ranging from 0-400 μmol L–1. The extraction and determination were 

carried out according to German et al. (2011) and Razavi et al. (2015). Suspensions of 

0.5 g soil (dry weight equivalent) with 50 mL deionized water were prepared using low-

energy sonication (40 J s-1 output energy) for 2 min. Thereafter, 50 μL of soil suspension 

was added to 100 μL substrate solution and 50 μL of buffer [MES (C6H13NO4SNa0.5), 

(pH:6.5) for MUF substrate and TRIZMA (C4H11NO3·HCl, C4H11NO3), (pH:7.2) for 

AMC substrate] in a 96-well microplate. At 0 min, 1 h and 2 h after mixing, a 
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fluorescence in microplates was measured at an excitation wavelength of 355 nm and 

an emission wavelength of 460 nm, slit width of 25 nm, with a Victor3 1420-050 Multi 

label Counter (Perkin Elmer, USA). Enzyme activity was expressed as MUF or AMC 

release in nmol per g dry soil per hour (nmol g–1 soil h–1).

The parameters of Michaelis-Menten kinetics for enzyme activities were 

determined using the equation:

V =                                        (6)
Vmax ×  [S]
Km +  [S]

where V is the reaction rate, [S] is the substrate concentration. Km (the substrate 

concentration at half-maximal rate) is related to the enzyme affinity to the substrate. 

Vmax refers to decomposition rates at saturating substrate concentration.

The substrate turnover time (Tt) was calculated according to the following 

equation: Tt (hours) = (Km + S) / Vmax (Panikov et al., 1992), where S is the substrate 

concentration. The substrate turnover time was calculated at substrate concentration for 

the situations corresponding to the lack and excess of substrate, as S = Km /10 and S = 

10* Km, respectively.

The catalytic efficiency of enzymes (Ka) was determined as Ka =  Vmax / Km (Hoang 

et al., 2016). The Ka characterizes the enzyme catalytic properties and is used as an 

indicator to reflect the functional changes of microbial communities (Tischer et al., 

2015). The higher Ka shows better catalytic properties (Moscatelli et al., 2012).

2.4. Statistical analyses

One-way analysis of variance followed by the Tukey HSD (P < 0.05) was used to 

test the effect of hotspots on microbial and enzyme kinetic parameters, e.g., specific 
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growth rate, Vmax, Km, Tt and Ka. All the statistical analyses were performed using SPSS 

version 22.0 for Windows (SPSS Inc. Chicago).

3. Results

3.1. Kinetics of substrate-induced growth response

Different kinetic responses of microbial growth to substrate addition between the 

hotspots and bulk soil were detected in low fertile soil (Fig. 2 and Table 2). Glucose 

and nutrient input into the poor soil induced stronger stimulation of microbial growth 

with a 1.2-fold higher microbial specific growth rate (μm) in the hotspots compared to 

bulk soil. In contrast, μm values were similar between the hotspots and bulk soil of the 

fertile soil. The lag time (tlag) in the fertile soil was estimated as negligible, 

demonstrating immediate microbial growth after substrate input. Furthermore, a very 

high fraction of active microorganisms exceeding 10% of total biomass was observed 

in the fertile soil (Table 2). In contrast, a long lag time of 25.4 h was detected in bulk 

soil of the poor soil, accompanied by a low abundance of growing microbial biomass 

(Table 2). The growing microbial biomass (x′0) was at least 4.8-fold higher in the fertile 

than in the poor soil. Despite the strong difference in size, no difference in growth 

kinetic parameters was detected between the hotspots of first- and second-order roots.

3.2. Enzyme kinetics and substrate turnover

The maximum potential enzyme activity (Vmax) was 1.7-2.1 times higher in the 

hotspots than in bulk soil for β-glucosidase, whereas no difference was detected for 

leucine aminopeptidase (Fig. 3a). Interestingly, the difference in Vmax of β-glucosidase 

between the hotspots and bulk soil showed a close dependence on the amount of 
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growing microbial biomass (R2= 0.85; Fig. 4). Remarkably, Vmax was approximately 2 

times higher in the fertile than in the poor soil, whereas the Km showed no difference 

between the fertile and the poor soil. Overall, the Km values of β-glucosidase and leucine 

aminopeptidase were 1.3-2.2 times higher in the hotspots than in bulk soil (P < 0.05; 

Fig. 3b). Consistent with microbial growth kinetics, no difference in enzyme kinetics 

was detected between the hotspots of first- and second-order roots.

The turnover time for enzymes showed no difference between the hotspots and 

bulk soil except the leucine aminopeptidase in the poor soil in which the turnover time 

in the hotspots around the first-order roots was 40% longer than that in bulk soil (Fig. 

5a, b). The same pattern in the turnover time was detected under a lack of substrate as 

under an excess of substrate. Furthermore, the turnover time was approximately 2.4-2.9 

times as long in the poor as in the fertile soil. No change in the catalytic efficiency 

(Vmax/Km) was detected in the hotspots for β-glucosidase or leucine aminopeptidase (Fig. 

5c). However, the catalytic efficiency was approximately 3 times higher in the fertile 

versus the poor soil.

4. Discussion

4.1. Microbial growth response to substrate addition

Differences in the microbial growth response to substrate addition between 

rhizosphere hotspots and bulk soil were soil fertility dependent and were detected only 

in the poor soil (Fig. 2), which partly rejects our first hypothesis that microbial hotspots 

always stimulate microbial growth compared with bulk soil. Equal microbial specific 

growth rates (μm) in the hotspots and bulk soil from the fertile soil might be associated 
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with the availability of soil organics (German et al., 2011). Due to abundant organics in 

soil, the energy limitation and dependence of the microbial community on labile C input 

by roots are weak. In contrast, substrate addition to hotspots of the poor soil induced 

strong stimulation of microbial growth compared to bulk soil, confirming our second 

hypothesis that the difference in microbial growth between the hotspots and bulk soil 

is stronger in the poor soil. Thus, a greater fraction of fast-growing microorganisms 

with r-strategy in the hotspots was selectively stimulated by the input of labile C from 

roots (Grayston et al., 1998; Goddard et al., 2001; Cheng, 2009; Philippot et al., 2013). 

Based on the microbial respiration rate, a negligible lag time (tlag) was estimated 

in the fertile soil (Table 2), which was closely associated with the active microbial pool. 

In the fertile soil, growing microorganisms can take up the added substrate immediately 

for their growth (Blagodatskaya et al., 2014). In contrast, a long lag time in the bulk 

poor soil indicated dormancy of microbial community located far from roots and 

limited by labile C, when the very tiny fraction of growing microorganisms was able to 

maintain activity state (Blagodatskaya and Kuzyakov, 2013). In the poor bulk soil, 

neither inherent soil C source nor labile C input from roots could support the activation 

of microorganisms. Overall, the lag time showed a negative correlation with the amount 

of active biomass, indicating that the state of microbial activity is responsible for the 

duration of tlag (Blagodatskaya et al., 2014). Therefore, the hotspot effect on microbial 

activity was not consistent among soils and was largely regulated by soil fertility.

Last, similar kinetics of the substrate-induced growth response between the 

hotspots associated with either first- or second-order roots suggest the same functional 
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groups and activity of microorganisms. Different area and distribution patterns of the 

hotspots do not necessarily mean functional differences, i.e., microorganisms in 

individual hotspots are not fully separated. The size of hotspots is governed by 

metabolic pathways, which strongly depend on the amount of substrate (Dippold and 

Kuzyakov, 2013). Therefore, different magnitudes of labile C input by first- and 

second-order roots would be the fundamental cause of the various shapes of rhizosphere 

hotspots (Pausch and Kuzyakov 2011).

4.2. Enzyme kinetics and substrate turnover

Generally, greater than doubled Vmax values in the fertile soil versus poor soil is a 

result of more growing biomass in the former (Table 2). Growing microorganisms 

produce larger amount of active enzymes (E0) and the Vmax is a function of E0 

(Nannipieri and Gianfreda, 1998; Allison et al., 2010; Blagodatskaya et al., 2016).

The difference in Vmax between the hotspots and bulk soil was specific for 

individual enzymes, with higher Vmax of β-glucosidase in the hotspots compared to bulk 

soil (Fig. 3). This observation partly rejected our first hypothesis again. It is necessary 

to underline that the activity of the enzymes was used here as an example of single 

enzyme-mediated processes (e.g., decomposition of cellulose-like oligosaccharides or 

hydrolysis of amino acid residues of polypeptides), which contributed to the 

decomposition of soil organics along with a large number of other processes and 

corresponding enzymes. Despite some empirical relationships observed (Sinsabaugh et 

al., 2008), neither β-glucosidase nor leucine aminopeptidase can be considered as an 

indicator of the heterogeneous process of C- or N-cycling. It is conceptually wrong to 
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use the activity of single enzyme (for example, leucine aminopeptidase) as an indicator 

of general microbial N acquisition, which depends on the activity of many various 

enzymes and physiological factors conjointly (Nannipieri et al., 2018).

The higher Vmax of β-glucosidase in the hotspots indicates that the activity of 

enzymes is also a function of the amount of available substrate (Allison and Vitousek, 

2005). The easily available C input by roots triggers microbial activity and thus drives 

the fast microbial metabolism (mainly by r-strategists) on the substrate, which could 

favor counterbalancing the high C inputs (Kuzyakov and Blagodatskaya, 2015), 

resulting in the higher Vmax in the hotspots versus bulk soil (Jones et al., 2003; Fischer 

et al., 2010). Supporting our interpretation, we found a good correspondence of growing 

microbial biomass and Vmax of β-glucosidase (Fig. 4), indicating the strong association 

between microbial growth and functions (Dorodnikov et al., 2009). Thus, the fast-

growing microorganisms with r-strategy in the hotspots are characterized by production 

of C-hydrolytic enzyme, which helps to consume the continuous input of labile C from 

roots (Sanaullah et al., 2016). However, the activity of the N-hydrolytic enzyme showed 

no significant correlation with the growing microbial biomass due to the insignificant 

difference in Vmax of leucine aminopeptidase between the hotspots and bulk soil. Given 

the C/N ratio around and above 20 in both soils (Table 1), the microbial acquisition of 

N was strongly restricted by nutrient supply capacity according to stoichiometric 

constraints (Sinsabaugh et al., 2009). As root exudates and rhizodeposits are generally 

depleted in N content, the N supply capacity was even lower in the hotspots than in 

bulk soil, thus restricting mobilization of organic N by microorganisms (Tarafdar and 
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Jungk, 1987; Badalucco and Nannipieri, 2007; Kuzyakov and Xu, 2013).

In accordance with ecological principles, the Km increased in rhizosphere hotspots 

compared to bulk soil (Fig. 3b), indicating decreased affinity of enzymes as an effect 

of root exudates and rhizodeposits (Blagodatskaya et al., 2009). It is important to note 

that enzyme activity determined in situ in soil is a cumulative action of the entire 

microbial community, which produced a set of isoenzymes with similar functions but 

different environmental optima (Nannipieri et al., 1982, Nannipieri and Gianfreda 

1998). Therefore, the apparent Vmax and Km represent average values of kinetic constants, 

reflecting simultaneous activity of a suite of isoenzymes catalyzing the same reactions 

(Nannipieri and Gianfreda, 1998; Razavi et al., 2016a). The higher Km values in the 

hotspots versus bulk soil indicated altered enzyme systems by rhizo-microbial 

interactions. Such changes resulted in a strong increase in Vmax of C-acquiring β-

glucosidase due to high availability of oligosaccharides in the rhizosphere hotspots; 

while they were insufficient to increase the Vmax of leucine aminopeptidase due to lack 

of oligopeptides and other N-containing substrates, again indicating the possible 

restriction of Vmax by basic soil properties.

Low enzyme affinity to substrate observed in the rhizosphere is typical for fast-

growing r-strategists, showing higher Km values (Fierer et al., 2007). The slow-growing 

K-strategists with enzymes of high substrate affinity are better adapted for growth on 

poorly available substrates, and they are uncompetitive against the r-strategists in 

rhizosphere hotspots (Dorodnikov et al., 2009). In fact, the decrease of substrate affinity 

is in line with the stoichiometric theory postulating that microbes regulate enzyme 
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activities in response to soil resource availability to match their nutrient requirements 

(Sinsabaugh and Follstad Shah, 2012). Therefore, the shift in enzyme intrinsic 

properties (Km) under different substrate availability was presumably associated with 

changes in microbial species domination, accompanying with the expression of 

isoenzymes with the same function but different conformations and structures (Somero, 

1978). Thus, the Km values were independent on basic soil properties, demonstrating 

that enzyme affinity to substrate was mainly modulated by roots. In contrast, Vmax was 

affected by both soil quality and plant-microbial interactions.

Rhizosphere hotspots contain a stimulated microbial community with a greater 

enzyme activity and a lower affinity for the substrate compared to bulk soil. However, 

no difference in the catalytic efficiency (Ka) of enzymes or turnover time of the 

substrate was detected between the hotspots and bulk soil due to simultaneous increases 

in Vmax and Km (Fig. 5). This finding was inconsistent with the results of Sanaullah et 

al. (2016) who found that higher Ka was detected in bulk soil, however, we found the 

same trend: both Vmax and Km increased in the hotspots. Thus, our study revealed strong 

changes in enzyme systems in the hotspots versus bulk soil (as indicated by altered 

activity and affinity); as a result, an increased Km counterbalanced an increase in Vmax 

resulting in similar catalytic efficiency in soil microhabitats. Furthermore, much shorter 

turnover time of substrate and higher catalytic efficiency in the fertile versus the poor 

soil suggest that microbial communities change the intrinsic properties of hydrolytic 

enzymes to adapt to different environments (Razavi et al., 2016b).
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5. Conclusions

Microbial hotspots and bulk soil were successfully distinguished by soil 

zymography and were precisely sampled by tiny wet-needle approach with the goal of 

comparing the effects of hotspots on microbial growth and enzyme kinetic parameters. 

Overall, the differences in microbial growth between the hotspots and bulk soil were 

significant in the poor soil only, i.e., they were regulated by inherent soil substrate 

availability (Fig. 6). A difference in enzyme activity and affinity was detected between 

the hotspots and bulk soil in the fertile and the poor soils but was enzyme-specific: the 

difference was significant for β-glucosidase (one of enzymes involved in the 

decomposition of oligosaccharides), whereas it was insignificant for leucine 

aminopeptidase (enzyme contributing to the decomposition of proteins). In both soils, 

enzyme systems changed towards decreased affinity for the substrate to maintain 

similar catalytic efficiency in the hotspots versus bulk soil, which was the preferred 

microbial strategy in the tested soils.
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Figure captions

Fig. 1 Examples of maize roots grown in rhizoboxes (center) and zymographs; showing 

spatial distribution of enzyme activities: (a) β-glucosidase, and (b) leucine 

aminopeptidase in the fertile soil; (c) β-glucosidase, and (d) leucine aminopeptidase in 

the poor soil, and (e) the sampling scenario using wet needle.

Fig. 2 Glucose-induced respiratory responses of microbial community and their 

corresponding specific growth rates (μm; inset figures) after substrate addition into the 

(A) fertile and (B) poor soil. Experimental data are shown as symbols and model 

simulation (Equation 1) as curves. Bars show standard errors of the means (±SE). 

Lower-case letter indicates significant difference at a level of P < 0.05.

Fig. 3 Vmax (a) and Km (b) values of β-glucosidase, and leucine aminopeptidase in the 

fertile and the poor soils. Values are means of three replicates (±SE). Asterisks indicate 

significantly different from bulk soil. The inserts show the mean value of different 

samples.

Fig. 4 The relationship between the Vmax of β-glucosidase and the growing microbial 

biomass (P < 0.05).

Fig. 5 The turnover time (a) at excess of substrate and (b) lack of substrate, and (c) the 

catalytic efficiency of enzymes (ratio of Vmax/Km) in the fertile and the poor soils. Values 

are means of three replicates (±SE). Asterisks indicate significantly different from bulk 

soil. The inserts show the mean value of different samples.

Fig. 6 Conceptual graph showing changes of microbial activities and functions in the 

hotspots as affected by soil fertility. Vertical and horizontal red arrow indicate increase 
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and no change of microbial kinetics and functions in the hotspots compared to bulk soil, 

respectively. Red gradient arrow indicates increasing trend, blue gradient arrow 

indicates decreasing trend, gray arrow indicates no change along soil fertility. 
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Table 1 Stand parameters at two research sites in Germany. Data taken from relevant 

German forest authority (Hauβmann and Lux, 1997; Lang et al., 2017).

Stand parameters Mitterfels Unterlüss

Locations 48°97′N, 12°87′E 52°83′N, 10°36′E

Elevation (m) 1023 115

Precipitation (mm) 1229 779

Mean annual temperature (℃) 4.9 8

Texture Loam Loamy sand

Ptot (g m–2) 1375 164

Ntot (kg m–2) 1.4 0.7

Ctot (kg m–2) 26 16

C/N 18.6 22.9

C/P 127 493

pH (H2O) 3.6 3.5

Clay % 24 6

Sand % 32 19

Silt % 44 75
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Table 2 Growing microbial biomass and its proportion of total biomass, lag-period and 

generation time of actively growing microbial community consuming substrate during 

incubation of soils with glucose and nutrients.

Microbial biomass (μg C g-1) Generation Time
Soil Treatment

Lag time 

(hours) Growing % of total (hours)

Fertile Bulk soil 0 16.0 16.4 5.4

　 Hotspots-first-order 0 27.6 17.7 5.7

Hotspots-second-order 0.7 15.5 8.4 4.9

Poor Bulk soil 25.4 0.2 0.2 4.7

　 Hotspots-first-order 0 4.5 11.4 4.0

Hotspots-second-order 5.44 3.2 3.6 3.8
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Fig. 1 
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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The hotspots around roots were successfully localized by tiny wet-needle approach. 

Stimulation on microbial growth in the hotspots was soil-specific.

Roots modulated enzyme affinity to substrate.

The fertile soil showed greater catalytic efficiency than the poor soil.
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