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Abstract 24 

The presence of diesel in the water could reduce the growth of plant and thus phytoremediation 25 

efficacy. The toxicity of diesel to plant is commonly explained; because of hydrocarbons in 26 

diesel accumulate in various parts of plants, where they disrupt the plant cell especially, the 27 

epidemis, leaves, stem and roots of the plant. This study investigated the effect of bacterial 28 

augmentation in floating treatment wetlands (FTWs) on remediation of diesel oil contaminated 29 

water. A helophytic plant, Phragmites australis (P. australis), was vegetated on a floating mat to 30 

establish FTWs for the remediation of diesel (1%, w/v) contaminated water. The FTWs was 31 

inoculated with three bacterial strains (Acinetobacter sp. BRRH61, Bacillus megaterium RGR14 32 

and Acinetobacter iwoffii AKR1), possessing hydrocarbon degradation and plant growth-33 

enhancing capabilities. It was observed that the FTWs efficiently removed hydrocarbons from 34 

water, and bacterial inoculation further enhanced its hydrocarbons degradation efficacy. Diesel 35 

contaminated water samples collected after fifteen days of time interval for three months and 36 

were analyzed for pollution parameters. The maximum reduction in hydrocarbons (95.8%), 37 

chemical oxygen demand (98.6%), biochemical oxygen demand (97.7%), total organic carbon 38 

(95.2%), phenol (98.9%) and toxicity was examined when both plant and bacteria were 39 

employed in combination. Likewise, an increase in plant growth was seen in the presence of 40 

bacteria. The inoculated bacteria showed persistence in the water, root and shoot of P. australis. 41 

The study concluded that the augmentation of hydrocarbons degrading bacteria in FTWs is a 42 

better option for treatment of diesel polluted water. 43 

Keywords: Floating Treatment wetlands, Plant-bacteria synergism, Hydrocarbons, 44 

Bioremediation, Chemical oxygen demand, Biochemical oxygen demand.  45 
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1. Introduction  46 

The demand of oil production and shipping is increasing day by day, whereas intermittent oil 47 

spillage is the leading cause of hydrocarbons contamination in soil and water. Among other fuel 48 

oils, diesel is more frequently reported cause of contamination of soil and water due to its 49 

extensive transportation and applications, i.e., automobiles and industrial sector. Alongside, 50 

diesel is extremely toxic in nature as it comprises several mutagenic and carcinogenic 51 

compounds (Arslan et al. 2014; Al-Baldawi, et al. 2015). The presence of these compounds in 52 

water bodies pertains to detrimental effects on living organisms (Moreira et al. 2011). 53 

Additionally, the compounds are deleterious to plants as these reduce the bioavailability of 54 

essential nutrients due to their hydrophobic nature (Gros et al. 2014; Arslan et al. 2014). 55 

Remediation of water contaminated with diesel is relatively difficult due to complex nature of its 56 

components (Lin and Mendelssohn, 2009; Li et al. 2013). It contains approximately 25% of the 57 

aromatic hydrocarbons (mainly alkylbenzenes and naphthalenes) and 75% of the saturated 58 

hydrocarbons (mainly cycloparaffins and paraffins) (ATSDR, 1995). Most of these compounds 59 

are previously reported to be highly resistant to degradation in the environment (Arslan et al. 60 

2016; Hussain et al. 2018). The conventional physiochemical remediation methods are either 61 

energy/chemical intensive or require high capital, operational and maintenance costs (World 62 

Bank, 2013; Hu et al. 2015; Younker and Walsh, 2015). Another side, phytoremediation of 63 

contaminated waters through FTWs is an effective strategy both in terms of cost and energy 64 

demands. Although the method is in practice since long time; a major bottleneck in achieving 65 

good remediation is the decreased performance of plants due to presence of toxic compounds in 66 

the wastewater (Shahid et al., 2018).  67 

Bacterial assisted phytoremediation over the past few years has been reported as an effective 68 

method for the remediation of contaminated soil and water (Khan et al. 2013; Ijaz et al. 2016; 69 

Arslan et al. 2017). Both partners suffice the need of survival for each other. Mainly, interaction 70 

between plants and hydrocarbons to remove contaminants is important. The mechanisms of 71 

functioning behind this interaction include entrapment and, uptake of hydrocarbons, and 72 

flocculation of suspended matter by plants (Yeh et al. 2015). Moreover plants release 73 

phytohormones and enzyme such as dehalogenase, nitoductase, peroxidase and laccase from 74 

their roots that play a significant role in reduction of organic contaminants in water (Alkorta and 75 
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Garbisu 2001: Glick, 2014). Plants also have potential to eliminate organic contaminants through 76 

processes such as biodegradation, phytovolatilization, phytostabilization, metabolic 77 

transformation, extraction and stabilization (Yavari et al., 2015; Yeh et al. 2015; Chen et al. 78 

2017).Plants   also offer nutrients and shelter to their allied microbes whereas bacteria, in 79 

response, decrease the phytotoxicity by degrading xenobiotics (Weyes et al. 2009; Ijaz et al. 80 

2015). Thus, choice of both plant and bacterial species is a crucial parameter that may improve 81 

the phytoremediation efficiency of the system (Afzal et al. 2012; Rehman et al., 2019). In case of 82 

hydrocarbons, bacteria with the potential of using hydrocarbons as carbon source along with 83 

plant growth promoting (PGP) traits were previously recommended as ideal candidates in the 84 

bacterial-assisted phytoremediation (Afzal et al. 2012; Rehman et al., 2018). Many bacteria 85 

degrade hydrocarbons into simple nutrients, which are assimilated by plants for their growth 86 

(Billore et al. 2008; Arslan et al. 2014). Likewise, P.australis, a helophytic grass, could transport 87 

atmospheric oxygen into the rhizosphere has been appeared as beneficial host for the inoculated 88 

bacterial communities (Saleem et al. 2018; Rehman et al. 2018). Moreover, it has the capacity to 89 

survive in the severe environmental circumstances (Davies et al. 2005; Schröder et al. 2008; 90 

Hechmi et al. 2014) particularly in waterlogged conditions.  91 

In this study, the primary objective was to develop a better partnership between plants 92 

and their associated bacteria. Secondly, to evaluate the effect of augmentation of hydrocarbon 93 

degrading bacteria in FTWs, vegetated with P.australis towards phytoremediation of diesel 94 

polluted water. So a consortium of hydrocarbons degrading bacteria was inoculated in FTWs to 95 

assess the hydrocarbons degradation; toxicity reduction and the persistence of the inoculated 96 

bacteria. 97 

 98 

Materials and methods  99 

2.1. Bacterial strains 100 

Three pre-isolated and characterized bacterial strains, namely Acinetobacter sp. BRRH61, 101 

Bacillus megaterium RGR14, and Acinetobacter iwoffii AKR1, were used in this study (Fatima 102 

et al. 2015).Bacterial strains were cultured in M9 minimal salt medium containing diesel (1.0%, 103 

w/v) at 37 °C. Bacterial cells were harvested by centrifugation following their re-suspension in 104 
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NaCl solution (0.9%, w/v), optical density of each bacterial strain was made in a way to obtain 105 

108 cells ml-1 (Sutton, 2005). Consortium of all three bacterial strains was prepared by mixing 106 

them in equal ratio (1:1:1). Fifty ml of consortium was inoculated in a FTWs, microcosm as per 107 

experimental strategy. 108 

2.2. FTWs structure and experimental design   109 

Fifteen FTWs microcosms were formed using polyethylene tanks, floating mats, and plants. The 110 

floating mat was prepared by using polystyrene role as elucidated earlier (Shahid et al. 2019). 111 

Briefly, each mat had 51 cm length, 38 cm width and 7.62 cm thickness. Five holes were created 112 

at equal distance in each mat for plantation of healthy seedlings of P. australis, i.e. one seedlings 113 

was inserted in each hole. The floating mat was placed over polyethylene tank containing 20 114 

liters of tap water (Figure 1). In the first month of experiment, Hoagland’s solution was applied 115 

to grow the plants. After one month, the tap water was put in the tanks instead Hoagland’s 116 

solution, and spiked with 1% (w/v) diesel. The experimental treatments were as follows: 117 

Control 1: Microcosms containing diesel contaminated water  118 

Control 2: Microcosms containing water (without diesel) and P. australis 119 

T1: Microcosms containing diesel contaminated water and bacterial consortium  120 

T2: Microcosms containing diesel contaminated water and P. australis 121 

T3: Microcosms containing diesel contaminated water, P. australis and bacterial consortium. 122 

The experiment was run during April to June 2018 at National Institute for 123 

Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. The water samples were 124 

collected every 10 days and analyzed for various physio-chemical parameters.  125 

2.3. Growth of plant  126 

To assess the effect of bacterial inoculation as well as toxicity of diesel, plant growth was studied 127 

in terms of root and shoot length and weight at the end of experimental period, i.e. 3-months. 128 

The roots and shoots were harvested 2 cm above the mat surface. Dry biomass was determined 129 

by placing roots and shoots in an oven for 48 h at 60 °C.  130 

2.4. Assessment of hydrocarbons 131 

Residual hydrocarbons in water were assessed using Fourier transform infrared 132 

spectrophotometer (FTIR). Hydrocarbons extraction was performed using dichloromethane. For 133 
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this purpose, 25 ml of treated water sample was extracted using dichloromethane (15 ml) as 134 

extracting solvent and hydrocarbon contents were determined using FTIR as described earlier 135 

(Rehman et al. 2019). 136 

2.5. Analyses of water quality parameters  137 

The collected water samples were analyzed for pH, total solids (TS), electrical conductivity 138 

(EC), total dissolved solids (TDS), dissolved oxygen (DO), total suspended solids (TSS), 139 

Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), total organic carbon 140 

(TOC), and phenols. The analyses were performed using established standard protocols (APHA, 141 

2005). 142 

 143 

2.6. Determination of persistence of inoculated bacteria   144 

In the water, rhizosphere and endosphere of the plant, number of the inoculated bacteria was 145 

determined at different time intervals. To isolate bacteria from roots and shoots interior, their 146 

surface sterilization was performed as mentioned earlier (Afzal et al. 2012). For this purpose, 147 

plant tissues were washed thrice with sterilized distilled water, then treated with 70% ethanol for 148 

10 minutes, and 1% NaOCl solution, modified with Tween 20 (0.01%), for 1 min. The final rinse 149 

was performed with sterilized distilled water for 2 minutes. After surface sterilization, in the 150 

presence of 10 ml NaCl solution (0.9% w/v), plant roots and shoots (5 g) were ground with 151 

mortar and pestle. The slurry suspension (100 µl) was plated on M9 media containing diesel oil 152 

(100 mg l-1). The plates were incubated at 37 °C for 48 hours, and colony forming units (CFUs) 153 

were counted. 154 

2.7. Toxicity testing 155 

Treated water was evaluated for toxicity reduction using fish toxicity assay. The water was put in 156 

the glass tanks and aerated with an electric pump. A total of ten fish specimens of about equal 157 

weight and size were put in each tank. The survival rate for fish population was recorded for the 158 

period of 90 h (Afzal et al. 2008). 159 

2.8. Statistical analysis 160 

Microsoft Excel software methodology was used to analyze data statistically for mean and 161 

standard deviation calculation. All the experiments were conducted in triplicates. 162 

 163 

3. Results and discussion  164 
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3.1. Hydrocarbons reduction 165 

In this study, concentration of hydrocarbons in all microcosms was gradually decreased during 166 

the experimental period (Figure 2). The bacterial consortium augmented FTWs (T3) exhibited 167 

maximum (97.5%) hydrocarbons reduction. A number of previous studies have described that 168 

the augmentation of bacteria in wetlands enhanced the degradation of organic pollutants (Al-169 

Baldawi, et al. 2013; Adeboye et al. 2014; Zhang et al. 2014; Rehman et al., 2018). Minimum 170 

hydrocarbon degradation was observed in the treatment with bacterial consortium only (T1) 171 

where hydrocarbons were reduced to 39.5%. On the other hand, treatment (T2) containing only 172 

vegetation showed more hydrocarbons removal (68.7%) than T1. Overall 28.8% higher  173 

reduction of  hydrocarbons was achieved  by  T3 treatment  augmented with  bacterial strains and 174 

plants  besides T2  treatment  vegetated  only with plants. It was well established that besides the 175 

degradation of hydrocarbons by microorganisms, plants may also uptake the organic pollutants 176 

and convert them into less toxic compounds (Oyedeji et al. 2013; Darajeh et al. 2014; Kosesakal 177 

et al. 2016). Nevertheless, in all treatments, removal of hydrocarbons was faster during initial 30 178 

days. This might be due to the presence of short-chain hydrocarbons and/or nutrients in initial 179 

days. In control (C1), hydrocarbon contents were declined to 10.3% which might be accredited 180 

to the evaporation of volatile hydrocarbons, photodegradation, and/or degradation by indigenous 181 

bacterial communities (Kosesakal et al. 2016).  182 

In T3 treatment, plant and hydrocarbons degrading bacterial strains proved to be more effective 183 

in remediation of hydrocarbons in FTWs. It was due to the reason that; in principle the active 184 

zone of hydrocarbon degradation in FTWs is the extensive roots system in rhizosphere and 185 

rhizoplane. The rhizoplane is mainly involved in plant-microbe interactions. Plants roots release 186 

compounds that can act as inducer for microbial genes involve in hydrocarbon degradation and 187 

act as co-metabolites to assist microbial degradation (Xie et al., 2012). In return, plant associated 188 

bacteria support their host plant to overcome contaminant-induced stress responses. In addition, 189 

plants can further benefit from their associated-bacteria possessing pollutant-degradation 190 

potential, leading to enhanced pollutant mineralization and lessening of phytotoxicity (Khan et 191 

al., 2013). 192 

 193 

 3.2. Evaluation of water quality parameters  194 
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Reduction in COD (98.5%) and BOD (97.7%) was more prominent in the treatment (T3) 195 

containing plant and bacteria together than the treatments (T1 and T2) having plant and bacteria 196 

individually (Figure 3 and 4).In our study COD and BOD were reduced to 5.5 % and 0.7% 197 

higher than previous study of Rehman et al. (2018), who evaluated the remediation of crude oil 198 

contaminated wastewater using   P. australis plant in FTWs. Moreover, these results are in 199 

accordance to the previous studies which described that the augmentation of bacteria in the plant 200 

rhizosphere stimulates the remediation potential of the phytoremediation system (Saleem et al. 201 

2018; Hussain et al., 2019). Bacteria emulsify the hydrocarbons resulting in their enhanced 202 

bioavailability and degradation by microbial population (Pal et al. 2016). Comparatively, less 203 

reduction was observed in T2 than T3; and lowest reduction was observed in T1, i.e. COD 204 

reduced by 37.5% and BOD by 48.1%. In control, reduction in COD and BOD was recorded to 205 

be 11.4% and 14.1%, respectively. Similarly, TOC reduction (95.18%) was higher in T3 than 206 

other treatments (Figure 5). The lowest TOC reduction (69.75%) was found in T1 among all 207 

treatments. The maximum reduction of TOC in T3 could be due to the presence of bacteria on 208 

the roots of plants that uses organic compounds as a source of nutrients and energy (Omokeyeke 209 

et al. 2013). Likewise, more reduction (98.8%) in phenol concentration was observed in T3 than 210 

other treatments, and lowest (80.5%) was detected in T1 (table 1). Phenol removal was 2 % 211 

higher in our study than the earlier study that reported phenol degradation (96.14%) by P. 212 

australis in FTWs by augmentation of bacteria (Saleem et al. 2018). Similarly 71 % phenol 213 

reduction was observed in FTWs using Vetiver plant (Phenrat et al. 2017). Also, bacterially 214 

augmented treatment (T3) demonstrated maximum reduction in TS (70.19%), TSS (84.83%), 215 

TDS (70.03 %) and EC (85.23%) (Table 1). The pH value was reduced from 8.5 to 7.5 (Table 1) 216 

which is substantiated by earlier results (Ijaz et al. 2016; Rehman et al. 2018).  217 

 Persistence of bacteria  218 

The effectiveness of the bacterial-assisted FTWs is associated with the augmented bacterial 219 

population in the rhizosphere and water (Khan et al., 2013; Afzal et al., 2014; Ijaz et al. 2015; 220 

Rehman et al., 2018). The inoculated bacterial numbers were enumerated in the water; 221 

rhizoplane and plant tissues (root and shoot). The results elucidated that bacterial persistence was 222 

maximum in the water of FTWs augmented with bacteria (T3) than unvegetated treatment T2 223 

(Table 2). In different compartments of augmented FTWs , bacterial survival was observed as 224 

follows: rhizoplane (5.1 × 106) > root interior (4.5 × 105) > shoot interior (1.5 × 104). Plants 225 
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supply nutrients for bacterial growth, and their population continually rises (Ijaz et al. 2016). 226 

Bacteria penetrate the subjected plants and may have an active mechanism of colonization 227 

(Compant et al., 2010). The inoculated bacteria colonize in the roots and shoots of P. australis, 228 

however, a decline in their numbers was observed during the period of 90 days. This might be 229 

due to decrease in the amount of biodegradable fraction of diesel (Pal et al. 2016). 230 

1.3. Plant biomass and growth  231 

The presence of hydrocarbons in the water could reduce the growth of plant and thus 232 

phytoremediation efficacy (Shehzadi et al. 2014; Rehman et al. 2018). The hydrocarbons are 233 

absorbed in roots and translocated to the aboveground parts of plant and ultimately affecting 234 

their growth (Tsao, 2003). In this study, biomass of shoots and roots were determined to test the 235 

effect of diesel and inoculation of bacteria on plant growth (Table 3). P. australis vegetated in 236 

diesel oil contaminated water (T2) exhibited less root length (51.72%), shoot length (34.32%), 237 

fresh biomass (51.18%) and dry biomass (39.43%) as compared to control plants, grown in tap 238 

water. Many previous studies have documented that hydrocarbons substantially affect the growth 239 

of plants (Barua et al. 2011; Zhou et al. 2011; Eze et al. 2013). The reduction occurred in growth 240 

of plants are due to toxicity of hydrocarbons which affects photosynthesis and causes chlorosis in 241 

vegetated plants (Barac et al. 2004; Merkl et al., 2005; Rehman et al. 2018). In this study, 242 

minimum decrease in root length (20.68%), shoot length (8.95%), fresh biomass (10.40%) and 243 

dry biomass (2.83%) of P. australis were observed in FTWs augmented with bacterial 244 

consortium (T3) with respect to control. Better growth of plants is credited directly to plant 245 

growth promoting bacteria, which have potential to reduce the toxicity of hydrocarbons. 246 

1.4. Detoxification of diesel contaminated water 247 

Toxic compounds present in diesel may kill ecological receptors that are mainly fish (Robertson 248 

et al. 2007). In this study, an indication of the extent of remediation of the water was attained by 249 

exposing fish to the water of different treatments (Table 4). No toxicity was observed in water of 250 

T3 treatment (FTWs augmented with bacteria) where no fish was died after 96 h. Whereas in T1 251 

(only bacteria augmentation) and T2 (only vegetation) treatments, death of 4 and 3 fish was 252 

occurred, respectively, however, all the fish were died in control after 24 h. Shehzadi et al. 253 

(2014) also reported a massive decline in the toxicity of water treated by constructed wetlands. 254 

High extent of fish demise in untreated water might be due to gathering of different 255 
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hydrocarbons in fish, DNA damage, cardiac dysfunction and alleviated oxidative stress 256 

(Incardona et al. 2004, Sturve et al. 2006, Pal et al. 2016). 257 

2. Conclusions 258 

We concluded from this study that performance of P. australis and hydrocarbons degrading 259 

bacterial strains to develop FTWs for phytoremediation of diesel contaminated water was proved 260 

to be an excellent approach. This study showed that FTWs is suitable and self-sustainable option 261 

for the remediation of diesel contamination in water and reduction of toxic effect of diesel on 262 

bacteria and plants; hence could be applicable for the remediation of diesel contaminated 263 

produced water in petroleum mining companies and oil refineries where setting up and operation 264 

of conventional wastewater treatment plants is difficult. Considering the synergism of P. 265 

australis with hydrocarbons degrading bacteria, bacterial augmented FTWs could be a promising 266 

approach to treat diesel oil contaminated water. Besides, studies are needed to conduct the 267 

analysis of genes transcription involved in the degradation of hydrocarbons present in diesel. 268 

Further studies are also needed to observe the abundance and expression of alkane-degrading 269 

genes in different compartments of FTWs. 270 
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Table 1. Effect of bacterial inoculation on remediation of diesel oil contaminated water in floating treatment wetlands vegetated with 
Phragmites australis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control : Un-vegetated microcosm containing diesel oil contaminated water; T1: Un-vegetated microcosm containing diesel oil 
contaminated water and bacterial consortium; T2: Vegetated microcosm containing diesel oil contaminated water; T3: Vegetated 
microcosm containing diesel oil contaminated water and bacterial consortium. Each value is a mean of three triplicates. Standard error 
among the replicates is presented in parenthesis. EC (electrical conductivity), TDS (total dissolved solids), TS (total solids), TSS (total 
suspended solids), DO (dissolved oxygen).

Treatment Days Parameter 
  pH EC (ms/cm) TDS (mg/l) TS (mg/l) TSS (mg/l) DO (mg/l) Phenol (mg/l) 
Control 0 8.7 (0.11) 3.29 (0.01) 1918 (178) 2274 (230) 356 (17) 5.5 (0.11) 0.353 (0.01) 
 15 8.5 (0.14) 3.27 (0.01) 1912 (194) 2270 (218) 350 (28) 5.2 (0.12) 0.343 (0.01) 
 30 8.3 (0.18) 3.24 (0.03) 1908 (174) 2268 (238) 346 (18) 5.0 (0.14) 0.323 (0.01) 
 45 8.2 (0.12) 3.21 (0.09) 1906 (187) 2255 (198) 336 (21) 5.1 (0.16) 0.321 (0.06) 
 60 8.1 (0.14) 3.19 (0.01) 1903 (194) 2245 (239) 331 (28) 4.9 (0.12) 0.318 (0.01) 
 75 8.0 (0.17) 3.17 (0.05) 1902 (128) 2239 (264) 329 (15) 4.7 (0.18) 0.317 (0.01) 
 90 8.0 (0.19) 3.14 (0.01) 1900 (149) 2225 (294) 317 (24) 4.5 (0.15) 0.312 (0.07) 

T1 0 8.8 (0.12) 3.27 (0.01) 1921 (111) 2276 (196) 355 (18) 5.3 (0.18) 0.349 (0.01) 
 15 8.7 (0.16) 2.32 (0.03) 1615 (153) 1811 (178) 296 (15) 5.1 (0.13) 0.165 (0.02) 
 30 8.6 (0.10) 2.09 (0.04) 1312 (163) 1509 (193) 197 (14) 4.8 (0.11) 0.125 (0.005) 
 45 8.6 (0.14) 1.23 (0.03) 1208 (144) 1321 (145) 143 (19) 4.3 (0.19) 0.098 (0.001) 
 60 8.5 (0.18) 1.11 (0.07) 1129 (126) 1217 (109) 117 (15) 4.0 (0.15) 0.075 (0.004) 
 75 8.4 (0.14) 1.09 (0.02) 1078 (153) 1161 (105) 103 (16) 3.8 (0.15) 0.071 (0.001) 
 90 8.2 (0.17) 1.03 (0.07) 1011 (103) 1117 (142) 92 (10) 3.5 (0.11) 0.068 (0.004) 

T2 0 8.7 (0.18) 3.23 (0.04) 1918 (251) 2275 (198) 359 (19) 5.6 (0.15) 0.351 (0.02) 
 15 8.4 (0.13) 2.01 (0.07) 1580 (143) 1618 (156) 278 (18) 6.1 (0.17) 0.115 (0.01) 
 30 8.2 (0.18) 1.88 (0.08) 1225 (134) 1315 (145) 167 (17) 6.5 (0.13) 0.089 (0.006) 
 45 8.1 (0.11) 1.02 (0.07) 1018 (141) 1109 (176) 124 (14) 6.8 (0.12) 0.017 (0.002) 
 60 7.8 (0.13) 0.98 (0.08) 987 (165) 1098 (179) 99 (12) 7.0 (0.13) 0.015 (0.001) 
 75 7.5 (0.12) 0.87 (0.05) 865 (154) 1068 (154) 63 (16) 7.2 (0.11) 0.012 (0.004) 
 90 7.4 (0.11) 0.76 (0.01) 786 (144) 1049 (148) 59 (11) 7.3 (0.14) 0.011 (0.001) 

T3 0 8.5 (0.14) 3.59 (0.07) 1922 (135) 2278 (187) 356 (18) 5.6 (0.14) 0.352 (0.011) 
 15 8.4 (0.16) 1.29 (0.06) 1418 (125) 1521 (195) 233 (17) 5.9 (0.13) 0.092 (0.001) 
 30 8.2 (0.18) 1.01 (0.04) 1108 (123) 1211 (143) 143 (16) 6.5 (0.17) 0.071 (0.001) 
 45 8.0 (0.19) 0.98 (0.03) 925 (143) 1038 (176) 133 (17) 7.4 (0.16) 0.016 (0.001) 
 60 7.9 (0.13) 0.84 (0.01) 786 (132) 838 (138) 118 (19) 7.5 (0.12) 0.011 (0.001) 
 75 7.7 (0.12) 0.63 (0.01) 678 (143) 708 (138) 70 (18) 7.5 (0.11) 0.008 (0.001) 
 90 7.5 (0.15) 0.53 (0.01) 576 (145) 679 (141) 54 (15) 7.6 (0.13) 0.004 (0.001) 



 

 

Table 2. Persistence of inoculated bacteria in the water, root and shoot of Phragmites australis  

ND = not determined. Each value is a mean of three triplicates. Standard error among the replicates is presented in 
parenthesis.  

Treatments Colony forming unit (CFU) × 105 
 0 day 15 day 30 day 45 day 60 day 75 day 90 day 

Water (CFU ml-1) 27.84 
(1.42) 

21.63 
(1.32) 

19.25 
(0.93) 

18.86 
(1.85) 

16.76 
(1.28) 

13.73 
(1.45) 

11.94 
(1.46) 

Rhizoplane (CFU g-1) ND 14.25 
(0.83) 

22.80 
(1.34) 

31.65 
(2.68) 

41.22 
(2.75) 

46.46 
(3.69) 

51.44 
(3.87) 

Root (CFU g-1) ND 7.29 
(1.33) 

15.73 
(1.57) 

24.73 
(1.12) 

33.38 
(1.75) 

39.34 
(2.4) 

45.47 
(3.38) 

Shoot (CFU g-1) ND 2.26 
(1.65) 

5.75 
(1.78) 

8.91 
(0.37) 

11.03 
(0.65) 

13.95 
(1.52) 

15.46 
(1.54) 



 

 

Table 3. Effect of bacterial inoculation on biomass, root and shoot length of Phragmites australis  

C2: Vegetated microcosm containing tap water; T2: Vegetated microcosm containing diesel 
contaminated water; T3: Vegetated microcosm containing diesel contaminated water and bacterial 
consortium. Each value is a mean of three triplicates. Standard error among the replicates is presented in 
parenthesis. 

Treatments Fresh biomass (g) Dry biomass (g) Length (cm) 

 Root Shoot Root Shoot Root Shoot 
C2 392a (27) 454a (34) 101ab (15) 216a (19) 88.4a (7.4) 76.7a (4.9) 
T2  195b (12) 218b (17) 86b (9) 106b (14) 42.7c (3.8) 44.4c (3.4) 
T3 360a (31) 398a (24) 115a (16) 193a (21) 70.1b (7.3) 58.1b (3.7) 



 

 

Table 4. Fish toxicity assay of diesel oil contaminated water detoxified by floating treatment 
wetlands 

Control : Un-vegetated microcosm containing diesel oil contaminated water; T1: Un-vegetated 
microcosm containing diesel oil contaminated water and bacterial consortium; T2: Vegetated 
microcosm containing diesel oil contaminated water; T3: Vegetated microcosm containing diesel 
oil contaminated water and bacterial consortium. Each value is a mean of three triplicates. 
Standard error among the replicates is presented in parenthesis. 

Treatment Fish death over time Total death Detoxification status 

 24 h 48 h 72 h 96 h   
Control 10 0 0 0 10/10 Negligible 
T1 1 1 1 1 4/10 Partial 
T2 0 1 1 1 3/10 Partial 
T3 0 0 0 1 1/10 Complete 



 

 

Figure 1: Development of floating treatment wetlands (FTWs) microcosms for the remediation of a 

diesel oil contaminated water. Control 1: Un- vegetated microcosm containing diesel oil contaminated 

water. Control 2: vegetated Microcosm containing tap water. Treatment1: unvegetated microcosm 

containing diesel oil contaminated water and bacterial consortium. Treatment2: Vegetated 

microcosm containing diesel oil contaminated water. Treatment3: Vegetated microcosm containing 

diesel oil contaminated water and bacterial consortium  



 

 

Figure 2: Diesel oil reduction in water by floating treatment wetlands. C: Un-vegetated 
microcosm containing diesel oil contaminated water; T1: Un-vegetated microcosm 
containing diesel oil contaminated water and bacterial consortium; T2: Vegetated 
microcosm containing diesel oil contaminated water; T3: Vegetated microcosm containing 
diesel oil contaminated water and bacterial consortium. Each value is a mean of triplicate 
determinations. Error bars indicate the standard error among three replicates. 
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Figure 3: COD reduction in water by floating treatment wetlands. C: Un-vegetated 
microcosm containing diesel oil contaminated water; T1: Un-vegetated microcosm containing 
diesel oil contaminated water and bacterial consortium; T2: Vegetated microcosm containing 
diesel oil contaminated water; T3: Vegetated microcosm containing diesel oil contaminated 
water and bacterial consortium. Each value is a mean of triplicate determination. Error bars 
indicate the standard error among three replicates. 
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Figure 4: BOD reduction in water by floating treatment wetlands. C: Un-vegetated 
microcosm containing diesel oil contaminated water; T1: Un-vegetated microcosm containing 
diesel oil contaminated water and bacterial consortium; T2: Vegetated microcosm containing 
diesel oil contaminated water; T3: Vegetated microcosm containing diesel oil contaminated 
water and bacterial consortium. Each value is a mean of triplicate determination. Error bars 
indicate the standard error among three replicates. 
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Figure 5: TOC reduction in water by floating treatment wetlands. C: Un-vegetated 
microcosm containing diesel oil contaminated water; T1: Un-vegetated microcosm containing 
diesel oil contaminated water and bacterial consortium; T2: Vegetated microcosm containing 
diesel oil contaminated water; T3: Vegetated microcosm containing diesel oil contaminated 
water and bacterial consortium. Each value is a mean of triplicate determination. Error bars 
indicate the standard error among three replicates. 
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► Plant–hydrocarbons degrading bacteria partnerships is an emerging hydrocarbon remediation 
approach.  

► Plant associated microcosms can enhance hydrocarbon degradation 

 ► Phragmites australis stimulates hydrocarbons degrading bacteria to degrade hydrocarbons in 
water 

 ► Phragmites australis associated- hydrocarbons degrading bacteria can reduce phytotoxicity 
and evapotranspiration of hydrocarbons. 
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