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Abstract 12 

Freshwater ecosystems including lakes and reservoirs are hot spots for retention of excess 13 

nitrogen (N) from anthropogenic sources, providing valuable ecological services for 14 

downstream and coastal ecosystems. Despite previous investigations, current quantitative 15 

understanding on the influential factors and underlying mechanisms of N retention in lentic 16 

freshwater systems is insufficient due to data paucity and limitation of modeling techniques. 17 

Our ability to reliably predict N retention for these systems therefore remains uncertain. 18 

Emerging high frequency monitoring techniques and well-developed ecosystem modeling 19 

shed light on this issue. In the present study, we explored the retention of NO3-N during a 20 

five-year period (2013-2017) in both annual and weekly scales in a highly flushed reservoir 21 

in Germany. We found that annual-averaged NO3-N retention efficiency could be up to 17% 22 

with an overall retention efficiency of ~4% in such a system characterized by a water 23 

residence time (WRT) of ~4 days. On the weekly scale, the reservoir displayed negative 24 

retention in winter (i.e. a source of NO3-N) and high positive retention in summer (i.e. a sink 25 

for NO3-N). We further identified the critical role of Chl-a concentration together with the 26 

well-recognized effects from WRT in dictating NO3-N retention efficiency, implying the 27 

significance of biological processes including phytoplankton dynamics in driving NO3-N 28 

retention. Furthermore, our modeling approach showed that an established process-based 29 

ecosystem model (PCLake) accounted for 58.0% of the variance in NO3-N retention 30 

efficiency, whereas statistical models obtained a lower value (40.5%). This finding 31 

exemplified the superior predictive power of process-based models over statistical models 32 

whenever ecological processes were at play. Overall, our study highlights the importance of 33 

high frequency data in providing new insights into evaluating and modeling N retention in 34 

reservoirs.  35 
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1. Introduction 38 

The drastically disrupted nitrogen (N) cycling by human activities has become one of 39 

the planetary systems exceeding its boundary and thereby stands out of the ‘safe operating 40 

space’ (Rockström et al. 2009). It is estimated that anthropogenically created N amounted to 41 

187 Tg in 2005 (equivalent to total fixed N from natural processes), which originated mostly 42 

from Haber-Bosch industrial production, agricultural fertilization, land use change, and fossil 43 

fuel combustion (Canfield et al. 2010, Galloway et al. 2008). One third of the excess N, 44 

however, is ultimately transferred from the land into the ocean, deteriorating estuaries, 45 

coastal and offshore areas with severe eutrophication and hypoxia (Galloway et al. 2004, 46 

Harrison et al. 2009, Seitzinger et al. 2006, Vitousek et al. 1997, Yu et al. 2019). 47 

Lakes and reservoirs are important inland aquatic systems providing valuable 48 

ecological services for downstream waters, including N removal via denitrification, whenever 49 

hypoxic or anoxic conditions prevail, and to a lesser extent by burial in sediment (Harrison et 50 

al. 2009, Saunders and Kalff 2001). It is estimated that on a global scale, overall retention 51 

capacity of lakes and reservoirs is ten times higher than that of terrestrial systems, and 52 

approximately 20% of total denitrification occurs in freshwater systems including lakes and 53 

reservoirs (Seitzinger et al. 2006). The disproportional important role of small lentic systems 54 

in removing nutrients has also been gradually recognized (Cheng and Basu 2017, Harrison et 55 

al. 2009). In addition, increasing number of reservoirs around the globe (Lehner et al. 2011) 56 

demonstrates the importance to better understand the role of reservoirs in N cycling in the 57 

landscape. 58 

Nonetheless, to reliably predict N removal capacity for a given inland aquatic system 59 

remains challenging. N retention efficiency of aquatic systems varies from around 10% in the 60 

catchment of Upper Mississippi River (Loken et al. 2018) to almost 90% in Waikato Basin 61 
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(Alexander et al. 2002). The huge variability and its underlying causes may have large 62 

impacts on management, as the retention capacity of these systems can determine the strategy 63 

against nutrient pollution by either emphasizing on upstream control or relying on the 64 

downstream elimination in aquatic systems. The controversy may be reconciled by better 65 

resolved monitoring data and more mechanistic aquatic ecosystem models that enable to link 66 

N removal to the underlying mechanisms and their controlling environmental factors. 67 

It has been demonstrated that influential factors driving N retention in lakes and 68 

reservoirs include N loading, water residence time (WRT), water depth, water temperature 69 

and total phosphorus (TP) concentrations (David et al. 2006, Finlay et al. 2013, Harrison et 70 

al. 2009, Saunders and Kalff 2001, Tong et al. 2019, Windolf et al. 1996). However, these 71 

studies on N retention in lakes or reservoirs were mostly based on an inter-annual budget, 72 

whereas few studies paid attention to intra-annual patterns including seasonal or even finer 73 

temporary scales. Relevant biological processes such as phytoplankton growth that are 74 

strongly interactive with nutrient dynamics have been overlooked in general. We argue that in 75 

inter-annual investigations, the effects of biological processes that undergo strong seasonal 76 

variations on N retention are simply not resolvable. High-frequency monitoring (Porter et al. 77 

2012) allow to investigate the effects of biological processes on the N budget of aquatic 78 

systems at intra-annual temporary scales. Ultimately, the urgent need for iterative near-term 79 

ecological forecasting (Dietze et al. 2018) calls for the prediction of water quality issues such 80 

as nutrient retention on a much shorter temporal scale. This is also relevant because key 81 

characteristics like WRT, water temperature or N loading can display considerable intra-82 

annual variations. 83 

Current understanding of N retention in lakes and reservoirs is hampered not only by 84 

observational data but also by modeling techniques. While the statistical modeling based on 85 
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regional or global datasets have demonstrated their capacity in predicting N retention in lakes 86 

and reservoirs on the basis of annual budgets, they cannot link to the underlying processes 87 

and are unable to dynamically predict N retention at sub-annual timescales. Process-based 88 

ecosystem models, on the other hand, generate dynamic nutrient budgets and predict nutrient 89 

retention by explicitly addressing the processes and mechanisms underlying (Janssen et al. 90 

2019). Therefore, we expect a superior performance of process-based ecosystem model over 91 

statistical model in projecting N retention in lentic ecosystems such as reservoirs. 92 

Taken together, we aim to address the following research questions in the present 93 

study: Can high frequency data provide new insights into N retention in reservoir at both long 94 

(annual) and short (weekly) temporal scales? Can we resolve the impact of seasonal 95 

ecosystem dynamics on N retention and link retention to specific ecological processes? Can 96 

we take advantage of the recent advancements in aquatic ecosystem modeling to predict N 97 

retention in a dynamic framework? To this end, the specific goals of this study are as follows: 98 

1) to investigate N retention on different temporal scales (annual and weekly) in a reservoir 99 

system (Königshütte Reservoir, Central Germany) with a 5-year data set from high-frequency 100 

monitoring; 2) to adjust existing statistical models addressing the combined effects of both 101 

hydrological and biological factors on N retention in this reservoir; 3) to investigate whether 102 

process-based ecosystem models have better predictive abilities for N retention than 103 

statistical models; and 4) to provide new insights and implications on lake and reservoir 104 

management for mitigation of excess N. 105 

 106 

2. Materials and methods 107 

2.1  Study site 108 

Königshütte Reservoir is one of six reservoirs in the Rappbode Reservoir system in 109 
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Harz Mountains, Germany (Fig. 1), located at a crest elevation of 423.3 m a.s.l. (Rinke et al. 110 

2013). The reservoir has a mean depth of 4.9 m (maximum 13.0 m), a maximum surface area 111 

of 28.5 ha, and a maximum water volume of 1.4×106 m3. The average WRT is very short 112 

(within 4.3 days) so that the reservoir is a highly flushed system. The catchment area is 154.2 113 

km2, with forest and grassland (meadow) as the main land use types (approximately 90%). 114 

The reservoir receives water from two riverine inflows (Kalte Bode and Warme Bode). The 115 

outlets are discharging either into the downstream river Bode towards Wendefurth Reservoir 116 

(gauge Hirtenstieg) or into a water transfer gallery towards Rappbode Reservoir. The water 117 

gallery delivers approximately one third of the annual inflow into Rappbode Reservoir, which 118 

is the largest drinking water reservoir in Germany in terms of volume, providing drinking 119 

water to more than one million people (Wentzky et al. 2018a). 120 

 121 

2.2 Water budget 122 

Hydrological data, including water level (m a.s.l.), water volume (106 m3), 123 

precipitation (mm) and water discharges for the two inflows and the two outflows (m3·s-1) 124 

from January 1st, 2013 to December 31st, 2017, were provided on a daily basis by the 125 

reservoir authority of the state Saxony-Anhalt, Germany (Talsperrenbetrieb Sachsen-Anhalt). 126 

Diffusive inflow from the shore of the reservoir is estimated as 7.5% of the inflow of Warme 127 

Bode based on the ratio of surface areas. Groundwater input, output and evaporation loss 128 

were considered negligible and not included. Water surface area was derived from water level 129 

changes and the hypsographic curve of the reservoir linking water level to surface area (Fig. 130 

S1). The water budget is fully balanced during the five years of investigation by slightly 131 

adjusting the inflow of Warme Bode, based on the fact that the flow measurement in Warme 132 

Bode is most likely to be biased due to channel dynamics, while the water flow 133 
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measurements in other locations are more reliable due to stable artificial channel. 134 

 135 

2.3 High frequency monitoring data 136 

Data from the high frequency monitoring in Königshütte Reservoir are part of the 137 

Rappbode Reservoir Observatory (Rinke et al. 2013), which belongs to the TERENO project 138 

(http://www.tereno.net). There are three sampling sites equipped with probes, namely, YBK 139 

(Kalte Bode), YBW (Warme Bode) and YKB (Königshütte Reservoir, at the dam) (Fig. 1). 140 

These probes include optical sensors (ProPS, TRIOS, Germany) measuring light extinction in 141 

the UV spectrum (190-360 nm) providing continuous and automatic measurements on 142 

concentrations of NO3-N, and a multi-parameter probe (YSI6800, YSI, USA) measuring 143 

water temperature and chlorophyll a. The data measured on-site are automatically transferred 144 

to a central server via a GSM module and stored in a database, from which we collected the 145 

data for the three sample sites during January 1st, 2013 and December 31st, 2017. NO3-N 146 

concentrations (mg·L-1) and water temperature (℃) were measured at all stations in a time 147 

step of 10 min. Chl-a concentrations were measured at the same frequency only at YKB 148 

because the inflows contained no suspended algae given their rather short channel lengths 149 

through forested, mountainous areas. The data were pre-processed to eliminate outliers using 150 

Grubbs’ test (Grubbs 1950) with the null hypothesis that no outliers exist in a normally 151 

distributed data set. The missing values (outliers or functional failure of the instruments) in 152 

the time series for NO3-N and water temperature (fraction ranged 0.1-1.9%) were replaced by 153 

linear interpolation (not for Chl-a due to a larger missing fraction of 11.8%) (Table S1). 154 

In addition to the high frequency monitoring, there was also a regular field sampling 155 

program (biweekly) from January 2016 to December 2017 at the same three sites. Water 156 

samples were collected and transported back to the laboratory for wet chemical analysis of 157 

http://www.tereno.net/
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TN, NO3-N, NH4-N, TP, and SRP, as outlined by Friese et al. (2014). 158 

 159 

2.4 Nitrate budget calculation 160 

Since inorganic N in the inflows and reservoir is mostly present in form of nitrate, 161 

ammonia is not important in the system (e.g. NO3-N: 0.77±0.28 mg·L-1, NH4-N: 0.02±0.02 162 

mg·L-1 in both inflows from 2016 to 2017). Therefore, we established a dynamic NO3-N 163 

budget for Königshütte Reservoir during 2013 and 2017 on both annual and weekly scales. 164 

We quantified riverine NO3-N inflow and outflow loads based on both discharges and NO3-N 165 

concentrations. NO3-N inputs include riverine input from Kalte and Warme Bode plus 166 

atmospheric deposition onto the water surface of the reservoir. The atmospheric deposition, 167 

including both dry and wet, was estimated to be 5.5 g ha-1 d-1 for central Germany 168 

(Boltersdorf et al. 2014). Königshütte Reservoir has a mesotrophic state (Carlson 1977) with 169 

an average TP concentration of 0.020 (0.008-0.053) mg·L-1 at YKB during 2016 and 2017. 170 

Water bodies with low productivity usually have low input of N from bacterial fixation, 171 

which was on average estimated to be 0.3% of the external input (Finlay et al. 2013). 172 

Therefore, biological N fixation was not included in the budget. Total outputs include 173 

riverine outflow towards Hirtenstieg and the water gallery. Other output processes such as 174 

fish production and groundwater were not considered due to their minor contributions. 175 

We calculated annual NO3-N retention rate (Nret,rate; Mg N·year-1) and retention 176 

efficiency (Nret,%; %) during 2013-2017 following the equations below. All components have 177 

the same unit of Mg N per day. 178 

𝑁𝑟𝑒𝑡,𝑟𝑎𝑡𝑒 = ∑ 𝐼𝑟 + ∑ 𝐷𝑎𝑡 − ∑ 𝑂𝑟,𝑑                   (eq. 1) 179 

𝑁𝑟𝑒𝑡,% = (∑ 𝐼𝑟 + ∑ 𝐷𝑎𝑡 − ∑ 𝑂𝑟,𝑑)/(∑ 𝐼𝑟 + ∑ 𝐷𝑎𝑡)      (eq. 2) 180 

where Ir represents the total riverine NO3-N inputs; Dat represents the total atmospheric NO3-181 
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N deposition; Or,d represents the total riverine NO3-N outputs. Likewise, weekly NO3-N 182 

retention was calculated based on weekly instead of annual data. Note that NO3-N retention is 183 

composed of both NO3-N being removed (removal) and NO3-N being stored within the 184 

reservoir water (see SI text for detailed description), while the change in NO3-N transitory 185 

storage is negligible in comparison to the total input or removal. 186 

 187 

2.5 Statistical modeling on the annual scale 188 

We utilized several statistical models for predicting N retention efficiency on the 189 

annual-scale (Table 1). These models include SPARROW, NiRReLa, RivR-N and those 190 

proposed by Windolf et al. (1996) and David et al. (2006), all of which have been developed 191 

and tested by other field data. We compared the estimations from these models to the 192 

calculated annual NO3-N retention efficiency in Königshütte Reservoir in each of the five 193 

years being investigated. 194 

 195 

2.6 Statistical modeling on the weekly scale 196 

To analyze the combined effects of different biological and hydrological factors on 197 

Nret,% (and also Nret,rate), a stepwise selection using linear regression models was applied. 198 

Calculated Nret,% (and also Nret,rate) on a weekly basis were considered as the response 199 

variables. We performed the Farrar-Glauber (FG) test to check for multicollinearity among 200 

the explanatory variables, using functions ‘omcdiag’ and ‘imcdiag’ for overall and individual 201 

diagnose, respectively, from the ‘mctest’ package in R (Imdadullah et al. 2016). After 202 

multicollinearity was eliminated, we used autoregressive model (‘acf’ (autocorrelation 203 

function) and ‘pacf’ (partial autocorrelation function) in R (R Core Team 2018)) to identify 204 

the existence and order of autocorrelation in the time series. We further performed Durbin-205 
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Watson (DW) test by ‘dwtest’ in R package ‘lmtest’ (Zeileis and Hothorn 2002) to check for 206 

the first-order autocorrelation in the residuals of ordinary least squares (OLS) models (if any), 207 

which would overestimate the model performance (Shultz et al. 2018). In case of significant 208 

results from DW test, we applied the generalized least squares (GLS) model by ‘gls’ in R 209 

package ‘nlme’ (Pinheiro et al. 2012), which is a modified OLS model to deal with 210 

autocorrelation in the model residuals. Bayesian information criterion (BIC) was used as 211 

criterion for model selection during the stepwise procedure, while we also referred to RMSE 212 

(root mean squared error), AICc (Akaike’s information criterion corrected for small sample 213 

sizes) and adjusted r2 (r2
 adjusted for the number of terms included in the model). All analysis 214 

were performed using R statistics program version 3.4.3 (R Core Team 2018). 215 

 216 

2.7 Predictions from process-based ecosystem modeling 217 

PCLake model is an ecosystem model for temperate shallow non-stratified lakes. The 218 

model is composed of a mixed water column and a sediment surface layer (Janse 2005). 219 

Biogeochemical cycling of C, N and P is highly resolved in this model including relevant 220 

processes like denitrification, algal uptake and sedimentation. We assumed that PCLake is 221 

applicable to Königshütte Reservoir because stratification hardly occurs except short episodes 222 

during high summer temperature when stratification is restricted to a small spot in front of the 223 

dam. During these episodes, the hypolimnion contributes only a very low fraction (<10%) to 224 

the overall volume and its contribution to N processing can therefore be neglected. The input 225 

data of PCLake included water discharge (inflow and outflow), TN and TP loading, and lake 226 

water temperature, which were prepared based on the high-frequency dataset described 227 

above. According to the laboratory data during 2016 and 2017 in the inflows, TN 228 

concentration was approximately 1.6 times of NO3-N concentration, NH4-N concentration 229 
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was approximately 2.4% of NO3-N concentration, and TP concentration was about 2% of TN 230 

concentration (all provided as median values). We estimated TN and TP loading based on 231 

nitrate loading, and fractions of NO3-N, NH4-N in the TN loading were also applied to the 232 

model accordingly. In addition, given that PCLake was developed for temperate shallow 233 

lakes, we applied the default settings for daily light intensity and day length from the model 234 

(Janse 2005). Model simulation starts from Jan. 1st, 2013 to Dec. 31st, 2017 at a time step of 235 

one day. Initial condition of the model was derived from the clear lake state setting calibrated 236 

from over 40 Dutch lakes (Janse et al. 2010) but with relatively low macrophytes density (1 237 

g·m-2) because there was hardly macrophytes in the reservoir. To eliminate the effect from 238 

the initial conditions, we added a ‘burn-in’ period of five-year before the simulation with the 239 

same external condition in 2013, following other modeling approaches with PCLake (Kong et 240 

al. 2017a, Kuiper et al. 2015). This procedure allows the model to start the simulation at 241 

equilibrium. Model outputs were validated by data for various water quality variables in the 242 

reservoir. 243 

 244 

3. Results 245 

3.1 Total NO3-N budget for 2013-2017 246 

High frequency data of NO3-N concentrations, Chl-a concentrations (YKB only) and 247 

water temperature at the three sampling sites from 2013 to 2017 provide between 232,542 and 248 

269,300 data points per station (Fig. 2 and Table S1). The high frequency data of NO3-N 249 

concentrations are reliable based on the comparison with those measured in laboratory at the 250 

same time (see Fig. S2 and descriptions in the SI text for more details). Total riverine input and 251 

output of NO3-N during the five years were 440.76 Mg and 423.16 Mg, respectively (Fig. 3). 252 

Warme Bode (YBW) accounted for the dominant fraction of the NO3-N input (76.9%). The 253 
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outputs, on the other hand, were equally distributed between Hirtenstieg (50.2%) and the 254 

gallery (49.8%). Atmospheric deposition of NO3-N was 0.25 Mg, providing a marginal 255 

contribution to the total budget. Similarly, the change in NO3-N storage amounted to only 0.45 256 

Mg. Over the five years, total amount of NO3-N being removed from and retained in the 257 

reservoir amounted to 17.85 Mg, corresponding to a total retention efficiency of 4.05%. 258 

 259 

3.2 NO3-N retention on the annual scale 260 

On the annual scale, NO3-N retention efficiency varied and ranged from -2.89% 261 

(2017) to 16.53% (2014) in Königshütte Reservoir (Fig. 4), while NO3-N retention rate varied 262 

from -32.43 mgN·m-2·d-1 (2017) to 124.87 mgN·m-2·d-1 (2014). We found much higher NO3-263 

N retention in 2014 compared to the other years. Statistical models predicted the inter-annual 264 

variations of NO3-N retention efficiency during 2013 to 2017 with distinct performances 265 

(Fig. 4). For the three models (RivR-N, David et al. and Windolf et al.) that only require 266 

hydraulic load (Qs), predictions were mostly inconsistent with observations, with a tendency 267 

to underestimate the higher values (2014) and overestimate the other lower ones. On the other 268 

hand, for the other two models (SPARROW and NiRReLa) incorporating both Qs and settling 269 

velocity (vs), predictions were consistent with most of the observations except for the 270 

negative value in 2017, only when vs was calibrated for each year separately. Our results 271 

indicate that NO3-N retention efficiency cannot be properly predicted by variability in Qs 272 

only. 273 

 274 

3.3 NO3-N retention on the weekly scale 275 

 The weekly N-retention showed considerable variation over the seasons that exceeded 276 

the inter-annual variance markedly, while weekly retention efficiencies ranged from -66.58% 277 



14 
 

to 99.05%, and the inter-annual retention efficiency varied between -3% to 17% (compare 278 

Fig. 4 and 5). We observed a significant seasonal pattern of weekly NO3-N retention 279 

efficiency with values generally highest in summer and lowest during late winter and early 280 

spring. For NO3-N retention rate (ranged from -694.9 mgN·m-2·d-1 to 857.1 mgN·m-2·d-1), a 281 

less significant seasonal patterns was observed, but we found lower variance in summer than 282 

in other seasons (Fig. S3). On the other hand, characteristic seasonal variations in NO3-N 283 

loading, NO3-N concentration, Qs, WRT, water depth, water temperature and Chl-a 284 

concentrations were observed (Fig. S4). We found significant correlations between NO3-N 285 

retention efficiency (as well as retention rate) and all the seven factors above (Fig. S5). The 286 

correlation analysis suggested negative effects from NO3-N loading, NO3-N concentration, 287 

and Qs, whereas positive effects from WRT, water temperature and Chl-a concentration on 288 

NO3-N retention were detected (Fig. 5 and Fig. S3). We therefore proceeded to establish 289 

multiple linear regression models to quantify the contributions of different factors on NO3-N 290 

retention efficiency and rate. 291 

 292 

3.4 Statistical modeling of weekly NO3-N retention 293 

On a weekly scale, we first considered Qs, WRT, NO3-N loading, NO3-N 294 

concentration, water depth, water temperature and Chl-a concentration as the seven potential 295 

explanatory variables for the response variables of NO3-N retention efficiency and rate. We 296 

removed all the observations (weeks) without valid Chl-a data (29 out of 261). FG test 297 

implied the presence of multicollinearity among the seven explanatory variables (Chi-square 298 

test statistic 1442.36). The multicollinearity in the model primarily attributed to Qs (variance 299 

inflation factor (VIF)=22.59), NO3-N loading (VIF=20.33) and NO3-N concentration 300 

(VIF=4.25), as the theoretical threshold value of VIF at 5% level of significance would be 301 
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2.14 for a degree of freedom of (6, 225). Qs and NO3-N loading exhibited a strong correlation 302 

to WRT (Fig. S5). Given that hydraulic load Qs and WRT are both scaling with the inflow 303 

discharge, and the strong correlation between NO3-N loading and WRT, Qs and NO3-N 304 

loading were both discarded in the following model analyses. Collinearity was subsequently 305 

lower, whereas VIF of water temperature (3.62) and NO3-N concentration (3.00) were still 306 

high. We further removed these two variables, resulting in the explanatory variables 307 

including WRT, water depth and Chl-a concentration without multicollinearity. Initial results 308 

of multilinear regression modeling using OLS suggested the significant positive effects of 309 

WRT and Chl-a concentration (p<0.001) on NO3-N retention. However, we found a 310 

significant spike at a lag of 1 (week) in the time series of response variables (retention rate, 311 

retention efficiency) and explanatory variables (WRT and Chl-a concentrations), implying 312 

first-order autocorrelation in the dataset (Fig. S6 and S7). The DW statistics were 1.0052 313 

(p<0.01) and 1.1786 (p<0.01) for the models of retention efficiency and rate, respectively, 314 

both suggesting significant positive autocorrelation in model residuals. We concluded that the 315 

autocorrelation in model residuals needs to be accounted by using the GLS model. We 316 

selected the correlation structure of first-order autoregressive process (AR(1)). The best 317 

statistical model with explanatory variables including WRT and Chl-a explained 40.5% of 318 

total variability in weekly NO3-N retention efficiency (Table 2) with normally distributed 319 

residuals (Fig. S8). For NO3-N retention rate, the best model included WRT and Chl-a 320 

concentration as the explanatory variables, accounting for only 9.6% of the total variability 321 

(Table S2). We concluded that weekly NO3-N retention rate overall cannot be properly 322 

predicted by statistical modeling in Königshütte Reservoir. Water depth is not a significant 323 

explanatory variable in both models. 324 

 325 
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3.5 Process-based ecosystem modeling for NO3-N retention 326 

Without calibration, the process-based ecosystem model PCLake performed well in 327 

predicting the dynamics of NO3-N and Chl-a concentrations in Königshütte Reservoir from 328 

2013 to 2017 (NO3-N: R2 = 0.859, RMSE = 0.193; Chl-a: R2 = 0.702, RMSE = 3.225; Fig. 329 

6A and B). In addition, PCLake model prediction for TN, ammonia, organic N and TP were 330 

consistent with observations (Fig. S9 and Table S3). This result implied that the chance of 331 

overparmeterization was low in the mechanistic model. Intriguingly, PCLake showed a 332 

higher prediction power for NO3-N retention efficiency than the statistical model (Fig. 6C), 333 

such that PCLake accounted for 58.0% of the variability in NO3-N retention efficiency, while 334 

statistical models with explanatory variables of WRT and Chl-a concentration obtained a 335 

lower value (40.5%). One reason for the superior power of PCLake was its ability to predict 336 

negative NO3-N retention efficiency that usually occurred during winter and spring times, 337 

whereas the statistical model could hardly predict negative retention efficiencies (Fig. 6C). 338 

The regression line from PCLake-derived N retention is close to the 1:1 line while the 339 

regression line from the statistical model is strongly deviating from the 1:1 line and had a 340 

much lower slope. 341 

 342 

4. Discussion 343 

 In this study, high frequency monitoring data facilitated the investigation of NO3-N 344 

retention in a small, heavily flushed reservoir over short and long temporal scales, and 345 

allowed us to compare statistical and process-based ecosystem models regarding their 346 

capability in predicting N retention in this complex lentic water system. 347 

 348 

4.1 Annual scale N retention: the role of settling velocity 349 
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Our statistical-based estimation of NO3-N retention in Königshütte Reservoir on 350 

annual scale was comparable to other studies. During 2013 to 2017, annual NO3-N retention 351 

efficiency was up to 17% with a WRT ranging from 2.96 to 4.69 d, while the retention rate 352 

ranged from -32 to 125 mgN·m-2·d-1. In comparison, an investigation on 16 Danish lakes 353 

(WRT = 14.6-251.6 d) reported that NO3-N retention efficiency ranged from 11 to 72%, and 354 

the corresponding rate ranged from 47-234 mgN·m-2·d-1 (Windolf et al. 1996). In addition, a 355 

study in a small lake in Illinois, USA (WRT = 5-32 d) suggested a NO3-N retention 356 

efficiency of 37% and a rate of 91.23 mgN·m-2·d-1 (Kovacic et al. 2000). Our findings were 357 

in line with the previous studies, indicating a potential of N retention in small reservoirs that 358 

has been overlooked as an important sink of nutrient in inland ecosystems (Cheng and Basu 359 

2017). 360 

We supported our findings for the importance of vs by recalculating the N retention in 361 

another system (Lake Shelbyville) reported by David et al. (2006). Field observations in Lake 362 

Shelbyville suggested an averaged N retention efficiency of 58% (31-91%) over 23 years. 363 

David et al. (2006) applied RivR-N model (Seitzinger et al. 2002) with the observed Qs 364 

(ranged 5.27-27.93 m·yr-1) for Lake Shelbyville, which resulted in a underestimated 365 

efficiency (ranged 26-48% with a mean of 32%). Alternatively, we used the SPARROW 366 

model with the reported vs based on denitrification rate (21.02-94.60 m·yr-1) (David et al. 367 

2006) and obtained an efficiency of 42.9-94.7%, which fitted much better to the field 368 

observations. David et al. (2006) argued that the RivR-N model was developed based on a 369 

dataset from lakes with low N concentrations; therefore, the model underestimated the N 370 

retention with increasing WRT. They proposed a modified RivR-N model (Table 1), which 371 

fitted better to the data for Lake Shelbyville. However, we found that the modified RivR-N 372 

model could not accurately predict N retention in Königshütte Reservoir, primarily because 373 
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Qs in Königshütte Reservoir (258.8-436.1 m·yr-1) was much higher than that in Lake 374 

Shelbyville, which was out of the calibration domain of the model. Overall, our reanalysis 375 

highlights the necessity of vs -inclusive modeling in predicting NO3-N retention in reservoirs 376 

on the annual scale in addition to hydrological factor (e.g. Qs). 377 

Our statistical modeling of annual N retention efficiency only worked out if vs was 378 

used as a free parameter, i.e. changed annually, which highlights the importance of settling. 379 

However, from a mechanistic point of view, settling in models for N retention can be 380 

misleading because N is not really settling unless being absorbed by phytoplankton that is 381 

subject to sedimentation. In addition, denitrification as an important N elimination process is 382 

completely different from settling. To reconcile this contradiction, we argue that in the 383 

simplified, annual scale N retention models (Table 1), the parameter vs effectively captures a 384 

suite of N cycling processes. Specifically, vs basically scales the rate of N removal in lentic 385 

systems and includes both settling of organic N (which finally burial within sediments) and 386 

denitrification. In addition, other factors including the Fickian diffusion from the sediments 387 

and/or ammonification may indirectly link to vs and in turn affect N retention. Overall, vs 388 

represents all biogeochemical processes that are related to N retention, thereby providing a 389 

critical predictor to N retention in addition to Qs. 390 

We found the calibrated vs for Königshütte Reservoir were 25, 45, 1, 15, and 1 m·yr-1 391 

for 2013 to 2017, respectively (Fig. 4). The values were highly variable between years that 392 

might be driven by multiple processes aforementioned. In addition, for a system at 393 

mesotrophic state, we did not expect such high vs values, as a study on nitrogen retention 394 

suggested that on a global scale, reservoirs and lakes have averaged vs of 13.66 and 6.83 395 

m·yr
-1
, respectively (Harrison et al. 2009). Highest vs in our study (45.0 m·yr-1 in 2014) was 396 

even in the same magnitude of that in Lake 227 (73.3 m·yr-1), which was a highly eutrophic 397 
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experimental lake (Ruan et al. 2014, Schindler et al. 2008). Meanwhile, vs was found up to 398 

94.6 m·yr-1 in Lake Shelbyville located in an agriculture region (David et al. 2006). One 399 

explanation could be the growth and temporal dominance of diatom in the reservoir. Diatoms 400 

could contribute to a high settling velocity of N due to their siliceous frustules and slow 401 

mineralization (Wentzky et al. 2018b), which in turn led to elevated flux of NO3-N 402 

sedimentation from the water column into sediment surface. 403 

The addition of vs in modeling approaches increases the difficulty towards a general-404 

applicable predictive model, because accurate estimation of settling velocity becomes 405 

mandatory for one specific system in one individual year. Ultimately, the application of an 406 

annual scale settling velocity appears to be oversimplified because our study demonstrated 407 

that N retention shows a strong seasonal pattern and this feature is fully ignored when 408 

applying a certain elimination rate on an annual scale. This calls for a better strategy using 409 

process-based modeling (see below). 410 

 411 

4.2 Weekly scale modeling: new insights into NO3-N retention in reservoirs 412 

The weekly scale statistical modeling allowed us to investigate NO3-N retention at 413 

shorter, i.e. intra-annual time scales. First, our analysis highlighted the importance of 414 

biological process, i.e. algal growth (represented by Chl-a concentration), on NO3-N retention 415 

efficiency in the reservoir, which were usually overlooked by the existing statistical models. 416 

We found higher NO3-N retention efficiency in summer than in other seasons (Fig. 5), which 417 

followed the pattern of Chl-a concentration (Fig. S4). Intensified algae growth in summer 418 

contributed to NO3-N retention via a three-step process: 1) N uptake by algae; 2) proliferation 419 

of algal cells; and 3) sedimentation of dead algae with N that would be either denitrified or 420 

buried in sediment. We performed an additional assessment on the factors determining the 421 
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phytoplankton assemblage in the reservoir (Fig. S10). We found that phytoplankton 422 

assemblage was predominantly driven by P (see SI text for more details). Based on either 423 

data analysis (Finlay et al. 2013, Tong et al. 2019) or whole-ecosystem experiments (Kaste 424 

and Lyche-Solheim 2005), importance of P in dictating N cycling of freshwater ecosystems 425 

had previously been well-recognized. Besides, we showed that due to low ammonia 426 

concentrations, phytoplankton used the abundant nitrate as the alternative N source, which in 427 

turn imposed a profound effect on the NO3-N retention in Königshütte Reservoir. The critical 428 

role of algae in NO3-N retention identified in this study therefore holds a consistency to the 429 

contribution from P, because it had been proved that the sedimentation of N from water 430 

column to anoxic sediment served as the underlying mechanisms for the impact of P on N 431 

cycling (Small et al. 2014). Second, our model supported the previous finding that WRT was 432 

a positive determinant of NO3-N retention efficiency in lakes and reservoirs (Finlay et al. 433 

2013, Tong et al. 2019), because longer WRT simply allowed for longer time for more 434 

intensive N removal processes within the water column and sediment. Overall, we found an 435 

interesting combination of both hydrological (WRT) and biological factors (Chl-a) that 436 

determined the weekly scale NO3-N retention. Although this is in line with the annual scale 437 

statistical modeling suggesting the joint contributions from both Qs and vs, it is also pointing 438 

out clearly that annually averaged retention efficiencies are misleading because the 439 

underlying processes undergo strong seasonal change and therefore call for investigation on 440 

sub-annual time scales. 441 

Other potential influential factors were discarded by either collinearity analysis or 442 

stepwise regression modeling. Due to its significant negative correlation (Fig. S5), NO3-N 443 

concentration (or NO3-N pool) in the reservoir was considered as the consequence rather than 444 

the driver of NO3-N retention, and therefore was excluded from the statistical model. This 445 
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was against previous findings (Windolf et al. 1996), where NO3-N concentration was 446 

modeled as a positive explanatory variable for retention. We argue that in a small time scale 447 

(such as weekly), the general assumption that higher NO3-N concentration would lead to 448 

higher denitrification rate (Pina-Ochoa and Álvarez-Cobelas 2006) and in turn higher NO3-N 449 

retention efficiency (David et al. 2006, Windolf et al. 1996) does not apply, whereas negative 450 

relation between NO3-N concentration and retention were found. The lower NO3-N 451 

concentration in summer was attributed to the lower NO3-N loading and high retention 452 

efficiency (Fig. S4). This was because on a weekly scale, NO3-N concentrations in reservoir 453 

were positively related to Qs (Fig. S5), which was a constraint on NO3-N retention. 454 

Furthermore, the relative low NO3-N concentration in Königshütte Reservoir (0.050-2.099 455 

mg·L-1) might have limited the sediment denitrification (Wall et al. 2005). The total NO3-N 456 

retention rate ranged from 42.74 to 175.09 mgN·m-2·d-1, over 80% of which could be 457 

attributed to denitrification based on estimations in other systems (Garnier et al. 2010). 458 

However, this was much lower than the value observed in other systems (e.g. 169.9-616.4 459 

mgN·m-2·d-1 in Lake Shelbyville) (David et al. 2006). As a result, the positive relation 460 

between NO3-N concentration and retention might be confounded. 461 

We found no effect of water temperature on NO3-N retention efficiency, which was 462 

against our assumption inferred from the similar seasonal patterns between NO3-N retention 463 

efficiency and water temperature (Fig. 5 and Fig. S4). Previous studies had not reached a 464 

consensus on the effects of temperature on denitrification rates in aquatic system, as positive 465 

(Seitzinger 1988), negative (Sørensen et al. 1979) and no relations (Cavaliere and Baulch 466 

2018, Harrison et al. 2009, Pina-Ochoa and Álvarez-Cobelas 2006) were reported. Despite 467 

the insignificant contribution of temperature to our model, we argue that on a seasonal scale, 468 

temperature should have a positive effect on NO3-N retention efficiency, which however 469 
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could have been masked due to potential linkage between temperature and other factors (such 470 

as WRT and Chl-a concentration) and therefore remained difficult to be isolated. The same 471 

could apply to water depth. In fact, water depth can be related to water-sediment interactions 472 

that affects profoundly the processes driving NO3-N removal (Windolf et al. 1996). 473 

Overall, our statistical modeling on a weekly scale unraveled the critical role of Chl-a, 474 

which was well supported by the interactions of N and P cycling in aquatic systems. 475 

Therefore, our findings provided new insights in our understanding of N retention in 476 

reservoirs, and highlighted the necessity to zoom into seasonal variations in the hydrological 477 

and biological dynamics in order to identify the underlying mechanisms in N retention in 478 

freshwater ecosystems that were masked in annual scale investigations. 479 

 480 

4.3 Process-based ecosystem modeling 481 

The comparative modeling approach demonstrates the advantages and disadvantages 482 

of process-based relative to statistical modeling. We showed that predictions of N retention 483 

with process-based modeling (PCLake) without parameter calibration were more accurate 484 

than statistical models (Fig. 6). Our results exemplify the advantages of process-based 485 

models, which rely on the explicitly mechanistic description on N cycling. This allows for the 486 

direct prediction on NO3-N concentrations in the reservoir with high accuracy based on 487 

external conditions and in turn for the precise calculation of retention efficiency. On the 488 

contrary, statistical models are limited in many aspects, such as a lack of mechanistic 489 

understanding, difficulty in addressing nonlinear relationships in ecosystems, and limited 490 

transferability when applied to conditions beyond their calibration domain (Janssen et al. 491 

2019). Our results demonstrate how these limitations could constrain the prediction power on 492 

the annual scale NO3-N retention efficiency (Fig. 4), and that only ~40% of the variation in 493 
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NO3-N retention efficiency on a weekly scale could be explained (Table 2). On the other 494 

hand, statistical models are simple and powerful tools that have been widely used in 495 

analyzing nutrient retention (Finlay et al. 2013), and they allow upscaling to the global level 496 

(Harrison et al. 2009), for which mechanistic models are inadequate due to higher demand for 497 

parameterization and computation. This is indeed the advantages of statistical models. Our 498 

study demonstrates that the final statistical models are fairly simple with limited number of 499 

variables. By contrast, process-based model (PCLake) is relatively complex comprising a 500 

multitude of state variables and processes. Consequently, it would be essential to reconcile 501 

the higher likelihood of overparameterization, which requires more effort in modeling 502 

evaluation. However, PCLake model has been parameterized based on data from over 40 503 

temperate shallow lakes (Janse et al. 2010), and our study demonstrates that this parameter 504 

set is capable of representing the general patterns in other temperate lake/reservoir systems. 505 

Additionally, recent studies have nicely illustrated the possibility to overcome the 506 

disadvantages of process-based models such that mechanistic models at intermediate 507 

complexity could be also used for regional- or global-scale investigation (Bruce et al. 2018, 508 

Janssen et al. 2014). Overall, we advocate that both model types have their application 509 

domains and the combination of both would be powerful in projecting NO3-N retention 510 

efficiency in reservoirs and potentially other systems such as natural lakes. 511 

 512 

4.4 Merits and limitations of high frequency monitoring 513 

As far as we know, this is the first study to make an extensive use of high frequency 514 

data for N retention evaluation in a small, heavily flushed reservoir. The small reservoir 515 

system with relatively simple hydrological features allowed us to establish high-frequency 516 

monitoring networks and N budget over five years, with which we performed in-depth 517 
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analysis of N retention patterns across different temporal (annual and weekly) scales and 518 

unraveled hidden mechanisms. We found apparent intra-annual patterns (weekly) and 519 

highlighted the role of biological factors, which was not resolvable using dataset with less 520 

temporal frequency. The extremely rich dataset was subsequently used to parameterize both 521 

statistical models along with a well-developed process-based model to 1) shed light on their 522 

predictive abilities for N retention and 2) offer insights and implications for lake and 523 

reservoir management of excess N. In addition, compared to previous studies with datasets 524 

from multiple lakes and temporally coarse sampling, studying N retention in one specific 525 

system with high frequency data has the advantage that confounding factors due to 526 

differences among lakes play no role (Kong et al. 2017b). Overall, we presented new research 527 

questions and also a novel methodological framework, which could be applicable to other 528 

similar systems and investigations. 529 

We found uncertainty embedded in the nutrient budget and retention based on data 530 

from monthly or biweekly monitoring. We resampled in our high frequency monitoring 531 

dataset to mimic both biweekly and monthly monitoring schemes. In the biweekly scheme, 532 

NO3-N concentration data in all inflows and outflows were selected from the high frequency 533 

data starting from one of the 14 days between Jan. 1st-14th, 2013, and then collected biweekly 534 

onwards. We therefore obtained 14 scenarios of biweekly sampling schemes for each year 535 

from 2013 to 2017. For monthly scheme, the starting time was one of the 30 days between 536 

Jan. 1st-30th, 2013, and then collected every 30 days onwards. We calculated NO3-N retention 537 

efficiency and rate using these 14 (or 30) subsets of data, while we linearly interpolated the 538 

NO3-N concentrations between sampling dates as the common practice. We compared these 539 

results to the values based on high frequency data that was considered as the real retention 540 

(Fig. 7). Both NO3-N retention efficiency and rate can deviated enormously from the real 541 



25 
 

data, implying that the calculated NO3-N retention from biweekly and monthly sampling data 542 

can be largely under- or over-estimated. 543 

Nonetheless, there was a tradeoff of benefits gained by monitoring a greater number 544 

of water quality variables with reasonable temporal frequency and by focusing on a smaller 545 

subset of variables with the fine granularity. High frequency data were limited by the 546 

measurable water quality variables. In our study, only nitrate could be directly measured at 547 

high frequency, while other nitrogen species (e.g. ammonia and organic N) and also other 548 

chemicals (e.g. P and silica) were missing, which would be critical in understanding the 549 

characteristics of the aquatic systems. In addition, high frequency monitoring is subject to 550 

issues such as the reliability due to occasional functional failure in situ. Our study highlights 551 

the importance of high frequency data in improving the N retention evaluation in reservoirs, 552 

which would be more powerful when combined with regular monitoring programs. 553 

 554 

5. Conclusions 555 

Our study supports the critical role of small lentic aquatic systems in contributing to 556 

the nutrient retention in inland waters. Annual-averaged NO3-N retention efficiency of a 557 

small reservoir in central Germany could be up to 17% with a five-year averaged retention 558 

efficiency of ~4% in such a system characterized by a water residence time (WRT) of ~4 559 

days. While average annual N retention in this highly flushed system remains rather small, 560 

effective N retention on shorter time scales (weekly) can substantially deviate from this 561 

annual mean and in our study ranged from -67% to 99%. The reservoir often displayed 562 

negative retention in winter (i.e. it was a source of N due to mineralization processes) and 563 

high positive retention in summer (i.e. acting as a sink for N), which has implications for 564 

management of downstream waters. Beyond the morphological and hydrological features, our 565 
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study unravels the critical role of phytoplankton dynamics as a biological factor in 566 

determining N retention in reservoirs, which makes a step towards a comprehensive 567 

understanding on the mechanisms of nutrient retention in inland freshwater systems. We 568 

attribute our findings to the availability of the high frequency monitoring data, which has 569 

shown the large potential in identifying new mechanisms that cannot be easily realized by 570 

biweekly/monthly sampling routine. In addition, our results exemplify the superior prediction 571 

capacity of process-based ecosystem models over statistical models on N retention. We 572 

therefore advocate taking advantage of the emerging high frequency data and advancements 573 

in process-based ecosystem models in evaluation of nutrient retention in lakes and reservoirs. 574 
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 746 

Fig. 1. Location of Königshütte Reservoir in central Germany. (A) Elevation of the 747 

catchment (denoted by the white polygon) and the surrounding area. Locations of the major 748 

tributaries (Kalte Bode, Warme Bode), and the two outflows (Hirtenstieg and water gallery) 749 

as well as the main Rappbode Reservoir are shown. (B) Land use type distribution of the 750 

catchment. Locations of the three sample sites (YBK: Kalte Bode; YBW: Warme Bode; 751 

YKB: in reservoir) are highlighted. 752 
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 753 

Fig. 2. Time series of high frequency monitoring data in Königshütte Reservoir during 754 

2013 to 2017. (A) Hydrological variables including total water inflow and outflow (m3·s-1), 755 

net water flux (m3·s-1) and water level (m a.s.l). (B) NO3-N concentration (mg·L-1) in three 756 

sampling sites. (C) Water temperature (℃) in three sampling sites and Chl-a concentration 757 

(μg·L-1) in the reservoir.  758 
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 759 

Fig. 3. Total NO3-N budget in Königshütte Reservoir from 2013 to 2017. The box in the 760 

middle represents the reservoir. The line thickness is proportional to the NO3-N fluxes in the 761 

unit of Mg (=106 gram). 762 

  763 
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 764 

Fig. 4. Annual NO3-N retention efficiency and statistical modeling results. (A) Observed 765 

annual NO3-N retention efficiency during 2013-2017 in Königshütte Reservoir, together with 766 

predictions from five statistical models listed in Table 1. (B) Other limnology variables 767 

(annual average) during 2013-2017 in Königshütte Reservoir. N_load: NO3-N loading 768 

(gN·m-2·d-1); WRT: water residence time (d); Qs: the areal hydraulic loading (m·d-1); 769 

vs_calibrated: calibrated apparent settling velocity (m·yr-1); Chla: Chlorophyll a 770 

concentration (μg·L-1); Temperature: water temperature (℃). 771 
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 772 

Fig. 5. Weekly NO3-N retention efficiency and relationship with other factors in the 773 

reservoir. (A) Weekly NO3-N retention efficiency during 2013-2017. (B) Weekly NO3-N 774 

retention efficiency against NO3-N loading (gN·m-2·d-1) and the areal hydraulic loading (Qs; 775 

m·d-1). (C) NO3-N concentration (mg·L-1) and water residence time (WRT; d). (D) Weekly 776 

NO3-N retention efficiency against water temperature (℃) and Chlorophyll-a concentration 777 

(Chl-a; μg·L-1). The red line in each panel is the smoother line using ‘geom_smooth’ with 778 

either ‘lm’ or ‘loess’ method selected by the program automatically in the R package 779 

‘ggplot2’ (Wickham 2016). The grey area is the confidence interval. 780 
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 781 

Fig. 6. Observed against modelled data for Königshütte Reservoir from 2013 to 2017. (A 782 

and B) Probe and PCLake simulated NO3-N and Chl-a concentrations on a daily scale (NO3-783 

N: R2 = 0.859, RMSE = 0.193; Chl-a: R2 = 0.702, RMSE = 3.225). (C) NO3-N retention 784 

efficiency. Modelled values include both predictions from statistical model (Table 2) and 785 

process-based ecosystem model (PCLake). Red and blue solid lines are best fits from linear 786 

regression for statistical model predictions (y=0.39x+8.08, R2=0.405, n=232, p<0.001) and 787 

PCLake predictions (y=0.88x+0.77, R2=0.580, n=232, p<0.001) to observations, respectively. 788 

The grey area is the confidence intervals (95%). Solid black line is the 1:1 line representing a 789 

perfect prediction to the observed data. 790 
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 791 

Figure 7. Comparison of NO3-N retention calculated by both high frequency monitoring 792 

and the biweekly/monthly monitoring data. The biweekly/monthly scheme is mimicked 793 

from the resampling in the high frequency data during 2013 to 2017. (A) NO3-N retention 794 

rate and (B) NO3-N retention efficiency. Variability of the biweekly/monthly random 795 

sampling data is represented by medians (P50), and the 5th (P5), 25th (P25), 75th (P75), and 796 

95th (P95) percentiles. 797 

798 



43 
 

Table 1. Overview of the statistical models for N retention efficiency (Nret,%) in  lakes or 799 

reservoirs on an annual scale. Qs (m·yr-1) is the areal hydraulic loading. vs (m·yr-1) is the 800 

apparent settling velocity. Z (m) is the water depth. 801 

Model name Equation References 

SPARROW 𝑁𝑟𝑒𝑡,% =  
1

1 + 𝑣𝑠(𝑄𝑠)−1
 (Alexander et al. 2002) 

NiRReLa 𝑁𝑟𝑒𝑡,% = 1 − 𝑒𝑥𝑝 
−𝑣𝑠

𝑄𝑠
 (Harrison et al. 2009) 

RivR-N 𝑁𝑟𝑒𝑡,% =  88.45 ∙ 𝑄𝑠
−0.3677 (Seitzinger et al. 2002) 

David et al. 𝑁𝑟𝑒𝑡,% = 243.00 ∙ 𝑄𝑠
−0.5632 (David et al. 2006) 

Windolf et al. 𝑁𝑟𝑒𝑡,% = 96 ∙ 𝑄𝑠
−0.48 ∙ 𝑍0.34 (Windolf et al. 1996) 

  802 
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Table 2. Statistical modeling results for weekly NO3-N retention efficiency using stepwise 803 

multivariable linear regression with generalized least squares (GLS). r2 is the coefficient of 804 

determination. Adj.r2 is the r2
 adjusted for the number of explanatory variables. RMSE is the 805 

root mean squared error. AICc is the Akaike’s information criterion corrected for small 806 

sample sizes. BIC is the Bayesian information criterion. 807 

Retention efficiency 

(n=232) 

r2 Adj.r2 RMSE AICc BIC F 

statistic 

P 

value 

Explanatory variables         

WRT, Chl-a (best model) 0.4098 0.4046 22.01 2031.83 2048.99 79.91 <0.001 

WRT 0.3265 0.3236 23.65 2042.66 2056.41 111.5 <0.001 

 

Explanatory variables Coefficients Std. Error t ratio P value 

(Intercept) -18.013 4.4227 -4.07 <0.001 

WRT 3.096 0.4058 7.63 <0.001 

Chl-a  1.801 0.4842 3.72 <0.001 
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