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Abstract  22 

Compound-specific isotope analysis (CSIA) was firstly applied to explore the 23 

biodegradation of hexachlorcyclohexane (HCH) isomers in contaminated soil. 24 

Concentrations and compound-specific carbon isotope ratio profiles of HCH in 25 

different specific ex-situ pilot-scale contaminated soil mesocosms were determined. 26 

The addition of nutrients and Sphingobium spp. significantly enhanced the 27 

degradation of HCH in contaminated soils within 90 days. Isomer specific 28 

biodegradation of HCHs was observed with α- and γ-HCH being more degradable 29 

than β and δ-HCH. Stable carbon isotope fractionation of HCH was observed and the 30 

δ
13C values shifted from -28.8 ± 0.3 ‰ to -24.8 ± 0.7 ‰ upon 87.3% removal, -27.9 ± 31 

0.2 ‰ to -25.9 ± 0.5 ‰ upon 72.8% removal, -29.4 ± 0.3‰ to -19.9 ± 0.6‰ upon 32 

95.8% removal, and −27.8 ± 0.5 ‰ to −23.6 ± 0.7 ‰ after 96.9% removal for α, β, γ, 33 

and δ-HCH, respectively. Furthermore, the enrichment factor ε for α, β, γ, and δ-HCH 34 

biodegradation in soil was obtained for the first time as -2.0‰, -1.5‰, -3.2‰, and 35 

-1.4‰, which could play a critical role in assessing in situ biodegradation of HCH 36 

isomers in field site soil. Results from ex-situ pilot-scale experiments clearly 37 

demonstrated that CSIA could be a promising tool to qualitatively and quantitatively 38 

evaluate in situ biodegradation of HCH in contaminated field site.  39 

Keywords: Carbon isotope fractionation; Persistent organic pollutants (POPs); 40 

Bioremediation of Contaminated soil; Biodegradation; Biostimulation 41 

 42 

Capsule: 43 

CSIA could be applicable to qualitatively and quantitatively evaluate in situ 44 

biodegradation of HCH in contaminated soil.  45 
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1. Introduction 46 

Hexachlorocyclohexane (HCH) isomers are extensively used persistent organic 47 

pollutants (POPs) and frequently detected in the environment (Kumar et al., 2005; 48 

Quintero et al., 2005). Due to their potentially negative effects and high persistence, 49 

HCH isomers were included to the Stockholm Convention's annexes in 2004, and the 50 

production of α-, β- and γ-HCH has been forbidden since 2009 (Vijgen et al., 2011). 51 

However, severe environmental contamination of HCH still exists because of their 52 

wide use in the past and the ongoing abuse of γ-HCH (lindane) in the world, 53 

especially in developing countries (Wang et al., 2009; Yang et al., 2018). Stockpiles 54 

from abandoned pesticide factories and leachates from dump sites have led to serious 55 

soil contamination by HCH (Bhatt et al., 2009). 56 

Organic pollutants can provide energy and carbon source for microorganisms in 57 

contaminated soils (Sun et al., 2015). Biodegradation plays an important role in 58 

removing HCH in the soil subsurface (Bhatt et al., 2009), and is considered as an 59 

economical and effective substitute for physicochemical remediation of soil 60 

contaminated by HCH (Alvarez et al., 2012; Phillips et al., 2006). Previous laboratory 61 

and field studies have reported the biodegradation of HCH using various microbial 62 

consortium or isolated microbes under aerobic or anaerobic conditions (Badea et al., 63 

2009; Bajaj et al., 2017; Bhatt et al., 2007; Murthy and Manonmani, 2007). For 64 

example, Clostridium was reported to degrade HCH isomers (Macrae et al., 1969), 65 

and HCH isomers were found to be degraded by Pseudomonas and Sphingomonas in 66 

pure cultures (Lal et al., 2010; Zhao et al., 2017) and agricultural soils (Xu et al., 67 

2018a).  68 

The evaluation of in situ biodegradation for organic pollutants in contaminated 69 

soil only based on the concentration is not convincing, because physical processes 70 
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(e.g., volatilization, sorption, dilution and dispersion) can contribute to the decrease in 71 

their concentration, leading to an overestimation of removal or biodegradation 72 

efficiencies for xenobiotic (Bombach et al., 2010; Illman and Alvarez, 2009). In 73 

general, molecules with heavy carbon isotopes (13C) require more activation energies 74 

for bond breaking in the reactive sites than those contain light carbon isotopes (12C), 75 

and tend to be decomposed slower than 12C containing molecules. Thus, the 13C/12C 76 

isotope composition or carbon isotope ratio (13C/12C, most commonly given as δ13C) 77 

usually varies due to isotope fractionation in organic pollutants. Compound-specific 78 

stable isotope analysis (CSIA) was developed to distinguish the biodegradation from 79 

nondestructive processes by determining the carbon isotope fractionation of 80 

compounds. CSIA has already become a promising tool for characterizing in situ 81 

biodegradation of a wide variety of organic pollutants in the environment (Bombach 82 

et al., 2010; Braeckevelt et al., 2012; Elsner and Imfeld, 2016; Hofstetter and Berg, 83 

2011; Steinbach et al., 2004). The aerobic and anaerobic biodegradation of HCH 84 

isomers in pure culture (Badea et al., 2009; Bashir et al., 2013) and in contaminated 85 

aquifer (Bashir et al., 2015; Liu et al., 2017) has been investigated by CSIA. However, 86 

the precise assessment on biodegradation of HCH in contaminated soils remains still 87 

unclear. 88 

In the present study, CSIA was applied to explore the biodegradation of HCH in 89 

contaminated soil for the first time. Different ex-situ pilot-scale mesocosms for 90 

bioremediation of HCH contaminated soils were set up and conducted for 90 days. 91 

Concentrations and isomer-specific carbon isotope ratio profiles of HCH in all soil 92 

mesocosms at different time-intervals were measured. The stable carbon isotope 93 

fractionation during the microbial degradation of HCHs in ex-situ pilot-scale 94 

contaminated soils was determined. The present study aims to explore the 95 
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applicability of CSIA in evaluation in situ biodegradation in HCH-contaminated soil 96 

system at the field- scale.  97 

2. Materials and methods 98 

2.1. Soils 99 

HCH contaminated soil samples were collected from an abandoned pesticide 100 

factory site in Wuhan, China (30°33′ N, 114° 14′ E) (Fig.1) by a shovel excavator. All 101 

the soils were air dried, homogenized, and stored at 4 °C in the dark before use. The 102 

physicochemical properties of the soils are given in Table 1. 103 

2.2. Setup of ex-situ soil mesocosms 104 

Pilot-scale ex situ mesocosms experiments were performed from April to June 105 

in 2015. The collected soil samples with varied HCH concentrations (10~240 mg/kg 106 

dry weight soil, DWS) were mixed to achieve a final HCH concentration of 55.2 107 

mg/kg DWS for the ex-situ bioremediation mesocosms. The initial concentration of 108 

α-HCH, β-HCH, γ-HCH and δ-HCH was 34.6, 10.3, 7.1 and 3.2 mg/kg DWS, 109 

respectively. Five soil treatments were included: abiotic control (AC), biotic control 110 

(bulk soil with no action, BC), soil with nutrition (SN), soil with inoculation (SI), and 111 

soil with both nutrition and inoculation (SNI). The abiotic soils were obtained by 112 

three rounds of sterilization using an autoclave. The BC, SN, SI and SNI mesocosms 113 

were used to investigate the natural attenuation, biostimulation, bioaugmentation, and 114 

the combination of biostimulation and bioaugmentation of HCH in contaminated soils, 115 

respectively. For SN and SNI treatments, the nutrients including glucose (250 mg/kg 116 

DWS), (NH4)2HPO4 (125 mg/kg DWS) and K2HPO4 (25 mg/kg DWS) were 117 

supplemented every 15 days. For SI and SNI treatments, 500 mL of bacterial 118 

inoculate containing 1.9×108 cfu/g soil of Sphingobium quisquilarium P25 were 119 

added separately. The water content for all groups was controlled at about 35% by pot 120 
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watering every day. Each treatment was performed in three parallel pits of 2 m2 × 20 121 

cm depth, filled with approximately 200 kg of contaminated soil. All the fifteen pits 122 

were lined at the bottom with plastic sheet to prevent leaching of the contaminant. At 123 

0, 15, 30, 45, 60, 75, and 90 d, five soil samples were collected from each pit and 124 

thoroughly mixed as a more representative sample for each pit to study the 125 

biodegradation of HCH. Aerobic strain Sphingobium quisquilarium P25, which was 126 

maintained on LB medium at 28 °C, was isolated from soil contaminated with HCH 127 

isomers and kindly provided by the Department of Isotope Biogeochemistry, 128 

Helmholtz Centre for Environmental Research (UFZ). 129 

2.3. HCH extraction and purification 130 

Residual HCH in the soil was extracted through the accelerated solvent 131 

extraction (ASE) using the Dionex ASE 300. Briefly, 10 g soils were extracted in a 34 132 

ml stainless steel vessel at 140 °C (heating time of 6 min) and a pressure of 1500 psi 133 

with dichloromethane methylene chloride (DCM) and acetone mixture (1:1, v/v). The 134 

detailed extraction procedure is described in Text S1.2. Preliminary experiments 135 

showed that the extraction by ASE had no significant influence on the carbon isotope 136 

ratios of HCH (Fig. S1). 137 

2.4. Chromatographic analysis and CSIA 138 

The residual HCH was quantified using gas chromatograph coupled to mass 139 

spectrometer (GC-MS). More detailed information on analysis of HCH is shown in 140 

Text S1.2. CSIA of HCH during the pilot-scale ex situ bioremediation of contaminated 141 

soils was performed by a gas chromatography-combustion-isotope ratio mass 142 

spectrometer (GC-C-IRMS). The GC-C-IRMS contains a GC (6890 Series; Agilent 143 

Technology, USA) coupling with a MAT 252 mass spectrometer (Thermo Fisher, 144 

Scientific) by a GC/C III interface (Thermo Fisher Scientific). Briefly, the carbon 145 



7 
 

isotope ratio (13C/12C) of HCH was presented as δ13C (‰) and calculated by the 146 

following Eq.1 (Coplen et al., 2006):  147 

��������	
 = �
�����
�
������� − 1                                (1) 148 

Where Rstandard and Rsample are the 13C/12C ratios of the international standard Vienna 149 

Pee Dee Belemnite (VPDB) and the sample, respectively. Each sample was performed 150 

in triplicate, with the uncertainty of analysis being ≤ ± 0.5‰. 151 

2.5 Stable isotope analysis of biodegradation 152 

To quantify the biodegradation of HCH in soils, the Rayleigh equation was used 153 

to establish the relationship between stable isotope ratios and concentrations of HCH 154 

isomers during biodegradation, and the fractionation factor (α) reveals the changes in 155 

concentration shifts and stable isotope ratios (Eq. (2)) (Elsner and Imfeld, 2016).  156 

��
�� = � �� ��⁄

���� ����⁄ �� �                                    (2) 157 

Where C0, R0 and Ct, Rt are the chemical concentrations and the stable isotope ratios at 158 

the beginning of the biochemical reaction and at a given time, respectively. Generally, 159 

the abundance of 12C in the natural environment is much higher than that of 13C, then 160 

R + 1≈1, and Eq. (2) can be simplified as Eq. (3): 161 

��
�� = ������

� �
                                          (3) 162 

Fractionation effects are negligible for most of the naturally reactive processes (i.e., 163 

α≈1), and the enrichment factor ε (‰) is usually used to provide the link between the 164 

changes in the concentrations (Ct/C0) and the changes in stable isotope ratios (Rt/R0) 165 

and defined as Eq. (4). 166 

! = (# − 1) × 1000‰                                  (4) 167 

Eq. (3) is described in the logarithmic formula (Eq. (5)): 168 
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() �*�+,���*�+,���� = !-() �
��
���                                  (5) 169 

Where the enrichment factor εc (‰) was given as the slope of the linear regression, 170 

and the errors are documented as 95% of the confidence interval (Bashir et al., 2013; 171 

Elsner et al., 2007). The percentage of biodegradation(B [%]) of organic pollutants is 172 

subsequently determined by Eq. (6) (Elsner and Imfeld, 2016).  173 

.(%) = �1 − ��
��� × 100 = 01 − �*�

+,���
*�+,����

� 12⁄ 3 × 100          (6) 174 

2.6 Data analysis 175 

Analysis of variance (ANOVA) and post hoc Tukey's test were performed to 176 

investigate difference in the concentrations and carbon isotope data between different 177 

treatments using SPSS 20.0 (IBM SPSS, USA). A minimal level of statistical 178 

significance for differences in values was considered to be p < 0.05. All graphs were 179 

drawn by Origin Pro 2016 (Origin Lab, USA).  180 

3. Results and discussions 181 

3.1 Attenuation of HCH in different soil mesocosms 182 

The kinetics of residual HCH and the degradation rate in all the experimental 183 

soil mesocosms within 90 days are shown in Fig.2. The degradation of HCH in BC 184 

mesocosm was not appreciable with a degradation rate of 6.3% at 90th day. After 185 

sterilization, degradation of HCH in AC was rather limited and did not exceed 1.1% 186 

within 90 days, indicating that microorganisms in soil played a role in HCH 187 

dissipation. Similarly, Sun et al. (2015) found that indigenous microorganisms (e.g., 188 

Clostridium, Pseudomonas and Sphingomonas) are able to metabolize HCH in aged 189 

contaminated soils. The degradation rates of HCH were consistently higher in SN and 190 

SI mesocosm than that in BC mesocosm (P < 0.05). For example, after 90 days of 191 

bioremediation, the residual concentrations of HCH were 51.7 ± 2.5, 12.0 ± 3.0 and 192 
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31.3 ± 3.1 mg/kg DWS in BC, SN and SI mesocosms, respectively, suggesting that 193 

the addition of nutrients or Sphingobium quisquilarium P25 significantly accelerated 194 

the attenuation of HCH in soils. The inorganic nutrients plays a key role in the 195 

microbial activity for microorganisms in soil. The increase in degradation rate of 196 

HCH by nutrition was likely due to the fact that a number of indigenous HCH 197 

degrading microorganisms existed in the HCH-contaminated soils and the addition of 198 

glucose, (NH4)2HPO4 and K2HPO4 as nutritional supplements may stimulate the 199 

activity of such microorganisms, leading to a higher removal efficiency for HCH. 200 

This result is in accordance with findings in some previously studies that 201 

biostimuation of indigenous HCH-degrading microorganisms is effective for 202 

bioremediation of HCH (Dadhwal et al., 2009; Garg et al., 2016). HCH-degrading 203 

Sphingomonads were detected at chronically HCH contaminated sites (Boltner et al., 204 

2005; Mohn et al., 2006), thus biostimulation could be a good proposition for 205 

remediation of HCH contaminated soil. Exogenous HCH degradation bacteria 206 

inoculation (i.e., Sphingobium quisquilarium P25) showed a synergistic effect with 207 

the indigenous HCH degrading microorganisms on removal of HCH based on the 208 

removal rates of HCH in BC and SI mesocosm. In addition, the removal efficiency of 209 

HCH in SI mesocosm (43.3% at 90 d) was much lower than that in SN mesocosm 210 

(78.3% at 90 d), indicating that biostimulation (addition of nutrients) was more 211 

effective in HCH degradation than bioaugmentation (amendment of Sphingobium 212 

quisquilarium P25). This may be attributed to the stimulation of indigenous 213 

microorganisms and the low bioavailability of inoculated Sphingobium quisquilarium 214 

P25 without enough nutrients. The removal efficiency of HCH in SNI mesocosm was 215 

significantly higher than SN and SI mesocosms, with a degradation rate of 86.4% in 216 

SNI at 90 d. The increase may be attributed to a combined effect of the nutrient 217 
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supplement and the inoculum of Sphingobium quisquilarium P25, suggesting that the 218 

combination of biostimulation and bioaugmentation is an effective approach for the 219 

decontamination of HCH in the contaminated soil sites. 220 

3.2 Stable carbon isotope fractionation during HCH biodegradation in soil  221 

To better understand the biodegradation of HCH, the kinetics of each isomer (α, 222 

β, γ, and δ-HCH) and their δ13C values were determined in contaminated soil over 90 223 

days (Fig.3). The carbon isotope ratios of α, β, γ, and δ-HCH kept almost unchanged 224 

throughout the whole experiment in abiotic controls (data not shown), indicating no 225 

significant carbon isotope fractionation of HCH occurred during the physiochemical 226 

process.  227 

3.2.1 α-HCH and γ-HCH 228 

In all the pilot-scale ex situ bioremediation mesocosms (BC, SN, SI and SNI), 229 

the dynamics of carbon isotope ratios for α-HCH within 90 days was shown in Fig.3. 230 

Except for the BC mesocosm, the δ13C values of α-HCH increased while the 231 

concentration decreased during the whole experiment. For example, the δ13C value of 232 

α-HCH increased from -28.8 ± 0.3 ‰ to -26.0 ± 0.5 ‰ with a removal rate of 77.5% 233 

in the SN mesocosms, from -28.8 ± 0.3 ‰ to -27.5 ± 0.4 ‰ with a removal rate of 234 

50.3% in the SI mesocosms, and from -28.8 ± 0.3 ‰ to -24.8 ± 0.7 ‰ with a removal 235 

rate of 87.3% in the SNI mesocosms. These results indicate that biodegradation 236 

caused a stable carbon isotope fractionation of α-HCH. Meanwhile, as indicated by 237 

Fig.4, biodegradation of α-HCH in contaminated soil under biostimulation (SN), 238 

bioaugmentation (SI), and biostimulation combined with bioaugmentation (SNI) was 239 

well fitted to the first order kinetics (R2 > 0.98) with biodegradation rate constants (k) 240 

of 0.017 d−1, 0.008 d−1 and 0.023 d−1, respectively. Similar to α-HCH, γ-HCH was 241 

also easily biodegraded in soil, with removal rates of 90.1%, 69.0% and 95.8% at 90 d 242 



11 
 

in SN, SI and SNI mesocosms, respectively (Fig.3). The biodegradation of γ-HCH 243 

coincided well with first order kinetic model (R2 > 0.98) and the biodegradation rate 244 

constants (k) were 0.026 d−1, 0.014 d−1 and 0.035 d−1 for SN, SI and SNI, respectively 245 

(Fig.4). The δ13C of γ-HCH exerted very high 13C enrichment from −29.4 ± 0.3 ‰ to 246 

−22.0 ± 0.7 ‰, −29.4 ± 0.3 ‰ to −25.7 ± 0.5 ‰ and −29.4 ± 0.3 ‰ to -19.9 ± 0.6 for 247 

SN, SI and SNI respectively (Fig.3). It could be demonstrated that α-HCH and γ-HCH 248 

showed strong microbial degradability and higher 13C enrichment with much more 249 

stable carbon isotope fractionation during their biodegradation in soil. Thus, CSIA is 250 

applicable for revealing the biodegradation of α-HCH and γ-HCH in contaminated 251 

field soil and assessing the biodegradation rate. 252 

3.2.2 β-HCH and δ-HCH 253 

The isomers β-HCH and δ-HCH were more resistant to degradation as both 254 

β-HCH and δ-HCH were only degraded in the SN and SNI mesocosms (Fig. 3), and 255 

thus δ13C values of β-HCH and δ-HCH were only measured in this two mesocosms. 256 

As shown in Fig.3, in the SN and SNI mesocosms, the δ13C of β-HCH increased from 257 

-27.9 ± 0.2 ‰ at the beginning to -26.2 ± 0.3 ‰ at 90 d in SN mesocosm with 66.0% 258 

of β-HCH removed and increased from -27.9 ± 0.2 ‰ to -25.9 ± 0.5 ‰ at 90 d in the 259 

SNI mesocosm the maximum removal rate was 72.8%. The concentration of δ-HCH 260 

(< 3.2 mg/kg DWS) was very low in all tested soil, then no reliable δ13C values were 261 

obtained due to the low detection level of δ-HCH after 60 days. As shown in Fig.3, 262 

there was an increase of the δ
13C of δ-HCH from -27.8 ± 0.5 ‰ on day 0 to -23.7 ± 263 

0.6 ‰ on day 60 and an increase from -27.8 ± 0.5 ‰ on day 0 to -23.6 ± 0.7 ‰ on 264 

day 60 in the SN and SNI mesocosms, respectively. The removal rate of δ-HCH was 265 

96.9% and 93.8% in the SN and SNI mesocosms, respectively. However, a small 266 

amount of β-HCH (10.3 - 9.5 mg/kg DWS) and δ-HCH (3.2 - 2.7 mg/kg DWS) were 267 
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degraded in the SI mesocosms with little carbon isotope fractionation. This was likely 268 

attributed to their resistance to the inoculated aerobic strain Sphingobium 269 

quisquilarium P25 or the low activity of the added inoculum of Sphingobium 270 

quisquilarium P25 in SI treatment (Raina et al. 2008). Meanwhile, β- and δ-HCH 271 

biodegradation in contaminated soil did both also follow first order kinetics (R2 > 272 

0.99). The biodegradation rate constants (k) of β-HCH were 0.012 d−1 and 0.015 d−1 273 

for SN and SNI, respectively (Fig.4), while the biodegradation rate constants (k) of 274 

δ-HCH were 0.047 d−1 and 0.052 d−1 for SN and SNI, respectively (Fig.4). All the 275 

results demonstrate that although β-HCH and δ-HCH were less biodegradable, stable 276 

carbon isotope fractionation occurred in the case of biodegradation occurring in soil. 277 

3.3 Biodegradation assessment of HCH isomers in soil 278 

The biodegradability of α and γ-HCH was much higher than β and δ-HCH in 279 

contaminated soil, suggesting that isomer specific biodegradation was observed for 280 

HCH and the variation in molecular structure may lead to the discrepancy. This 281 

finding was consistent with observations from some previous studies (Lal et al., 2010; 282 

Mehboob et al., 2013). Interestingly, similar to the contaminated soils, α and γ-HCH 283 

were found to be more appreciably degraded than β and δ-HCH in the SI treatment, 284 

indicating that the addition of nutrient did not alter the biodegradation selectivity for 285 

HCH by indigenous soil microorganisms. However, in the SN and SNI treatments, the 286 

biodegradability of these four main HCH isomers was following the order of δ-HCH > 287 

γ-HCH >α-HCH >β-HCH (Table 2), demonstrating that the degradation selectivity 288 

was significantly influenced by the inoculation of Sphingobium quisquilarium P25, 289 

and the biogradation mechanisms between the indigenous HCH-degrading 290 

microorganisms and the Sphingobium quisquilarium P25 were different. Thus, only 291 

the SN and SNI mesocosms were selected to determine the enrichment factor ε for α, 292 
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β, γ, and δ-HCH biodegradation in soil. The relationship between the δ13C and 293 

residual concentrations of α, β, γ, and δ-HCH in the SN and SNI soils together was 294 

established by Eq. (5) and showed in Fig.5. A significant negative linear correlation 295 

was found between ln [(δt 
13C + 1)/(δ0 

13C + 1)] and ln (Ct /C0), with correlation 296 

coefficients > 0.97. The enrichment factor ε for α, β, γ, and δ-HCH biodegradation in 297 

soil was determined to be -2.0‰, -1.5‰, -3.2‰, and -1.4‰, respectively. Previous 298 

studies have reported the enrichment factors of α-HCH (aerobic conditions: -1.0‰ ~ 299 

-1.7‰; anaerobic conditions: -3.7‰) and γ-HCH (aerobic conditions: -1.5‰ ~ -1.7‰; 300 

anaerobic conditions: -3.4‰ ~ -3.9‰) during the biodegradation in pure culture 301 

(Badea et al., 2009; Bashir et al., 2013). The εc values of α-HCH and γ-HCH obtained 302 

in the present study were lower than that by aerobic biodegradation and greater than 303 

that by anaerobic biodegradation in pure culture, indicating a possible synergistic 304 

effect caused by both aerobic and anaerobic biodegradation of HCH in contaminated 305 

soil. However, α-HCH biodegradation was more appreciable under aerobic condition 306 

than that under anaerobic condition, steps except for the isotope sensitive carbon bond 307 

cleavage were likely rate-limiting in the aerobic biodegradation of α-HCH, resulting 308 

in a masking effect for the carbon isotope fractionation (Aeppli et al., 2009; Bashir et 309 

al., 2013). Therefore, the εc value of α-HCH was much lower than γ-HCH in the 310 

present study.  311 

3.4 Implications for environmental studies 312 

Stable carbon isotope fractionation was found in the biodegradation of HCH 313 

isomers in soils, indicating that the indigenous microorganisms preferred to 314 

metabolize the light isotope molecules of these four HCH isomers in the contaminated 315 

soils. (Elsner and Imfeld, 2016; Xu et al., 2018b). CSIA can be applied to 316 

qualitatively and quantitatively evaluate the biodegradation of HCH in field soils. The 317 
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enrichment factor ε was determined to be -2.0‰, -1.5‰, -3.2‰ and -1.4‰ for 318 

biodegradation of α, β, γ, and δ-HCH in soil, respectively. These enrichment factors 319 

could be introduced to assess in-situ biodegradation of HCH in the field site and even 320 

with no need to determine HCH concentration. Moreover, the biodegradation rate 321 

constants (kt) could also be estimated by the changes of δ
13C using a modified 322 

Rayleigh-equation as following:  323 

45 = − �
1∙5 () �*�

+,���
*�+,����                                   (7) 324 

The time-resolved CSIA has the potential to predict the attenuation of HCH isomers 325 

in contaminated field soils. 326 

4. Conclusions 327 

The stable carbon isotope fractionation was firstly determined during the 328 

biodegradation of α, β, γ, and δ-HCH in contaminated soil. Accordingly, CSIA may be 329 

applicable for qualitatively and quantitatively evaluating HCH biodegradation during 330 

the bioremediation of HCH-contaminated soil. Additionally, relationship between the 331 

residual concentrations and the stable carbon isotope fraction of each HCH isomer in 332 

contaminated soil was established. The enrichment factor ε for the biodegradation of α, 333 

β, γ, and δ-HCH in soil obtained in this study would help us to gain a more scientific 334 

evaluation on in situ biodegradation of HCH in contaminated field soil.  335 
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Table 1 Main physicochemical property of the contaminated soil 442 

Soil Property Values(Mean value ± SD) Soil Property Values (Mean value ± SD) 

TOM (%) 23.4 ± 0.5 K (mg/kg) 16.9 ± 3.4 

TOC (%) 1.7 ± 0.2 Ca (mg/kg) 67.6 ± 8.2 

pH 6.7 ± 0.7 Soil Texture Clay-loam 

Salinity (mS/cm) 2.3 ± 0.2 Sand (%) 24.1 ± 7.5 

TN (mg/kg) 49.3 ± 1.7 Clay (%) 31.5 ± 6.3 

TP (mg/kg) 0.59 ± 0.1 Silt (%) 44.4 ± 10.4 

 443 

  444 
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Table 2 Comparison of biodegradation HCH isomers by the concentration analysis 445 

and CSIA 446 

HCH Isomers 
Half-life (days) 

Enrichment factor ε 

(‰) NA SI NS 

α-HCH 40.8 86.6 30.1 -2.0 

β-HCH 57.8 - 46.2 -1.5 

γ-HCH 26.7 49.5 19.8 -3.2 

δ-HCH 14.7 - 13.3 -1.4 

- : not determined 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 
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Figure Captions 459 

Fig.1 Location of sampling sites in the abandoned pesticide plant in Wuhan, China. 460 

Fig.2.Concentration (black symbols) and degradation rate (white symbols) of HCH in 461 

soil samples from the AC (upper triangular), BC (lower triangular), SN (star), SI 462 

(circle), and SNI (square) mesocosms during the 90 days bioremediation period. 463 

The error bars indicate standard deviation of triplicate analysis. 464 

Fig.3 Concentrations (black symbols) and carbon isotope ratios (δ13C) (white symbols) 465 

of α-HCH , γ-HCH, β-HCH, and δ-HCH in soil samples from the AC (upper 466 

triangular), BC (lower triangular), SN (star), SI (circle), and SNI (square) 467 

mesocosms during 90 days bioremediation period. The error bars indicate mean 468 

± SD; n = 3 independent treatments.  469 

Fig.4 Pseudo first order kinetics (black symbols) for the biodegradation of α-HCH, 470 

γ-HCH, β-HCH, and δ-HCH by SN (star), SI (circle), and SNI (square) 471 

treatments. 472 

Fig.5 Double logarithmic plot according to the Rayleigh equation (Eq. 5) to reveal the 473 

relationship between the carbon isotope ratios and residual concentrations of 474 

α-HCH (square), β-HCH (circle), γ-HCH (triangle), and δ-HCH (star) by 475 

biodegradation in contaminated soil. 476 

  477 
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Highlights 

� CSIA was used to assess HCHs biodegradation in contaminated soil for the first 

time 

� Addition of nutrients and Sphingobium spp. facilitated the degradation of HCHs 

� Isomer specific biodegradation of HCHs was observed in HCHs-contaminated 

soils 

� Stable carbon isotope fractionation occurred for HCHs biodegradation in soil 

� Enrichment factors εc for HCHs biodegradation in soil were obtained  
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