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Abstract 34 

 Linking the distribution of enzyme activity to the size and properties of soil pores is a 35 

necessary prerequisite for mechanistic understanding of soil biochemical processes. In this study 36 

we used soil 2D zymography and X-ray computed tomography (µCT) to assess the relationship 37 

between enzymes and pores. The objectives of the study were (i) to assess spatial distribution 38 

patterns in the activity of six enzymes contributing to C, N and P cycles, namely, 39 

cellobiohydrolase, β-glucosidase, xylanase acid phosphatase, leucine aminopeptidase, and N-40 

acetylglucosaminidase, in soils from five long-term land use and management practices, (ii) to 41 

study the correlation between enzyme activities and µCT information, i.e., pore characteristics 42 

and image grayscale values, and (iii) to explore the potential use of soil 2D zymography in 43 

predicting enzyme activities within 3D soil cores. 3D pore-size distributions were obtained from 44 

µCT images of 13 intact soil cores and then 8-15 2D zymography maps were taken from each 45 

core. Spatial distributions in the activities of all studied enzymes were auto-correlated; the spatial 46 

correlation ranges were equal to ~7-8 mm. The relative activity of all enzymes was positively 47 

associated within 60-180 µm Ø pores. Combining 3D µCT information with 2D zymography 48 

maps visualized the overall patterns of enzyme activity distributions with respect to soil pores 49 

and particulate organic matter locations. Based on the findings we propose a conceptual scheme 50 

relating localization of microorganisms, enzymes and substrates to pores of different size ranges. 51 

Specifically, we suggest that pores in the tens of microns size range represent optimal microbial 52 

habitats, and as such are associated with greater microbial abundance, leading to high enzyme 53 

production and activity. 54 

 55 
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1. Introduction 63 

 Extracellular enzymes (EEs) produced by roots and microorganisms in order to meet their 64 

nutrient and energy demands, play a major role in biochemical processes, including soil organic 65 

matter transformations (Burns et al., 2013). Yet, despite substantial efforts in studying EEs, the 66 

drivers of their production and subsequent fate in soil are not fully understood (Nannipieri et al., 67 

2012; Burns, 2013). One of the reasons is the extremely high spatial heterogeneity of EE activity 68 

(Baldrian, 2014) which can differ by as much as an order of magnitude within a distance of only 69 

a few millimeters (Razavi et al., 2016; Ma et al., 2017; Kuzyakov and Razavi, 2019). At a field 70 

scale (10 – 100 m), EE spatial patterns are related to patterns in soil fertility (Banerjee et al., 71 

2016), landscape topography (Wickings et al., 2015; Mganga et al., 2016), and land use and 72 

management practices (Stursova and Baldrian, 2011; Baldrian, 2014). At a scale of 10 µm – 10 73 

mm, spatial patterns in EE are related to fungal or bacterial colony sizes (Baldrian and 74 

Vetrovsky, 2012) and the activity of enzyme producers (Banerjee et al., 2016; Hoang et al., 75 

2016b; Stursova et al., 2016; Navratilova et al., 2017). Hot-spots of EE presence are not only 76 

associated with microbial colonies, but also with soil macro- and micro-fauna (Hoang et al., 77 

2016a; Hoang et al., 2016b), plant roots (Razavi et al., 2016; Ge et al., 2017; Razavi et al., 2017) 78 

and plant residues (Hoang et al., 2016b; Liu et al., 2017), as well as influxes of fresh organic 79 

inputs (Heitkotter and Marschner, 2018). To complicate matters, EEs can react with organic 80 

sources and become anchored in the soil matrix while still preserving a certain degree of activity 81 

(Nannipieri et al., 2012; Burns, 2013). Moreover, activity of EEs can last surprisingly long after 82 

the disappearance of their original microbial producers (Schimel et al., 2017). Quantifying the 83 

spatial variability patterns in EE and linking them with those of soil and root characteristics and 84 

microorganisms is crucial for understanding what drives EE activities and functions. 85 

 The majority of previous studies related EE to soil biological and/or chemical properties 86 

as well as to substrate inputs. Chemical and biological processes occur within the physical frame 87 

defined by the soil pore network (Young and Crawford, 2004; Or et al., 2007; Tecon and Or, 88 

2017), however, the influences of soil pores on EE have so far been largely overlooked. We 89 

hypothesize that variations in soil physical properties, especially the pore presence and 90 

characteristics, can also contribute to the distribution of spatial patterns in EEs.  91 

 Pores can impact EE distribution within the soil matrix via several mechanisms. They can 92 

affect spatial patterns in inputs of the substrates for microbial decomposition directly, i.e., by 93 



driving localization of roots, rhizodeposits, and earthworms (Baldrian et al., 2010a; Baldrian et 94 

al., 2010b; Athmann et al., 2017; Banfield et al., 2017a; Banfield et al., 2017b; Navratilova et al., 95 

2017); as well as indirectly, i.e., by influencing diffusion and convective transport of soluble 96 

organic compounds (Allison, 2005). Pores can also define micro-environmental conditions, e.g., 97 

water regime and O2 supply (Keiluweit et al., 2016; Keiluweit et al., 2018), which in turn 98 

influence the ability of microorganisms to function and produce EEs. Moreover, pores provide 99 

the physical space necessary to host microbial colonies, which can range in size from a few 100 

dozen to some hundreds of µm (Nunan et al., 2003). The combination of these mechanisms can 101 

result in the creation of optimal microbial habitats. Such habitats largely determine the regions of 102 

microbial EE production; and higher EE activity can be expected to correspond to these prime 103 

habitats.  104 

 Visualization of the connections between EE and soil pores could provide valuable input 105 

in understanding the in situ biochemical processes taking place within an intact soil matrix. One 106 

of the possible techniques is coupling soil 2D zymography, which enables EE activity mapping 107 

(Razavi et al., 2016), with X-ray computed micro-tomography (µCT), which allows for the 3D 108 

characterization of soil pores (Peth et al., 2008; Helliwell et al., 2013). Combining of 3D X-ray 109 

µCT information with 2D soil data was pioneered by Hapca et al. (Hapca et al., 2015), who 110 

created 3D maps of soil elements’ contents using 2D SEM-EDX.  111 

 We considered two types of µCT data of potential use in EE spatial variability 112 

predictions: (i) the presence and abundance of pores of different sizes and (ii) the grayscale 113 

values of µCT soil images. Grayscale values reflect the attenuation of X-rays as they pass 114 

through scanned material. The attenuation within solid soil matrix reflect variations in soil 115 

mineralogy, presence of pores with sizes below the image resolution, and presence of organic 116 

materials, e.g., plant residues and particulate organic matter (POM). They also highlight areas 117 

with high soil organic matter (SOM) levels (Kravchenko et al., 2014; Quigley et al., 2018a). 118 

 In this study we explored mm-scale, i.e. one to tens of mm, spatial patterns in the 119 

distribution of six EEs involved in soil C, N, and P cycling: cellobiohydrolase, β-glucosidase, 120 

xylanase, acid phosphatase, leucine aminopeptidase, and N-acetylglucosaminidase (chitinase 121 

NAG). Cellobiohydrolase and β-glucosidase are involved in consecutive stages of cellulose 122 

degradation (German et al., 2011). Xylanase is responsible for breaking down hemicelluloses 123 

(German et al., 2011). Acid phosphatase mineralizes organic P into phosphate by hydrolyzing 124 



phosphoric (mono) ester bonds under acidic conditions (Eivazi and Tabatabai, 1977; Malcolm, 125 

1983; German et al., 2011). Leucine aminopeptidase facilitates hydrolysis of leucine residues 126 

from the amino-termini of protein or peptide substrates (Rawlings et al., 2004). N-127 

acetylglucosaminidase (NAG) decomposes chitin to low molecular weight chitooligomer 128 

(Baldrian and Stursova, 2011), and decomposes bacterial peptidoglycan.  We explored EE 129 

activity in soil from several long-term land use and management practices, which over time 130 

developed substantial differences in their SOM levels and pore characteristics (Kravchenko et 131 

al., 2018). 132 

 Our objectives were (i) to assess the spatial variability of the activity of six EEs in intact 133 

soil cores, which represent a diverse range of long-term land use and management practices, (ii) 134 

to study correlations between EE activity and physical soil properties, i.e., pore characteristics 135 

and grayscale values from X-ray µCT scanning, and (iii) to explore the potential of using soil 2D 136 

zymography to predict enzyme activity within 3D soil cores with/without µCT information.  137 

 138 

2. Materials and methods  139 

2.1. Land use and management systems 140 

 The five studied land use and management systems are a part of the Great Lake 141 

Bioenergy Center experiment, Kellogg Biological Station, Michigan, USA. The experiment was 142 

established in 2008. The soils of the site are well-drained Alfisols of Oshtemo and Kalamazoo 143 

series (mesic Typic Hapludalf) (Robertson and Hamilton, 2015). The experimental design is a 144 

randomized complete block with five replicated 0.12 ha experimental plots randomly assigned to 145 

each land use system. The five studied systems are: continuous corn (Zea mays L.) (G1) and 146 

continuous corn with winter cover crop of cereal rye (Secale cereale L.) (G2), a monoculture 147 

switchgrass (Panicum virgatum L.) (G5), a hybrid poplar (Populus nigra × P. maximowiczii 148 

‘NM6’) with herbaceous understory (Sprunger and Robertson, 2018) (G8), and an early 149 

successional community (G9). Detailed description of the experimental site and management 150 

practices can be found at https://lter.kbs.msu.edu/research/long-term-experiments/glbrc-151 

intensive-experiment/ (verified on April 20, 2018). The intact soil cores were collected from the 152 

replicated plots of each system from 5-10 cm depth. A total of 13 cores (2-3 cores per system) 153 

were used for zymography analyses. 154 

 155 



2.2 X-ray µCT scanning and image analysis 156 

 Soil pore characteristics and grayscale values were obtained via X-ray µCT image 157 

analyses. For that, the soil cores were subjected to X-ray scanning using a GE Phoenix v|tome|x 158 

at the Institute of Soil and Environment at the Swedish University of Agricultural Sciences in 159 

Uppsala. 3D µCT X-ray images were reconstructed using the GE software datos|x. Detailed 160 

description of the scanning specifications is reported in Kravchenko et al. (2018). Each image 161 

had a resolution 29 µm in all directions.  162 

 The image processing was conducted in ImageJ/Fiji software (Schindelin et al., 2012). 163 

Preprocessing consisted of a 3D median filtering with a radius of two in all directions to reduce 164 

random noise. We removed 0.5 cm border part around each core to avoid artifacts associated 165 

with sample wall effects. Based on the scanning resolution of µCT analysis, we identified pores 166 

with diameters >60 µm, referred to as visible pores. The thresholds were computed using 167 

minimum error thresholding approach (Kittler and Illingworth, 1986). Following (Nakagawa and 168 

Rosenfeld, 1979) the two-Gaussian fits were applied to sequences of grayscale histograms of 2D 169 

images separately for each soil core. For these computations we used the Regression Wizard tool 170 

of the SigmaPlot software (Systat Software, Inc). Then, pore size distributions were obtained 171 

using the Pore size distribution tool of Xlib plugin for ImageJ, based on the maximum inscribed 172 

spheres approach (Munch and Holzer, 2008). On the studied images we also identified fragments 173 

of particulate organic matter using the approach outlined in Kravchenko et al (2014). 174 

 Another employed µCT image characteristic was µCT grayscale values of the soil solid 175 

matrix voxels. The grayscale values reflect the attenuation of X-rays as they pass through the soil 176 

sample; they are driven by the density of the material and by the atomic numbers of the 177 

constituting elements (Ketcham, 2005; Peth, 2010). On 8-bit images, the voxels that contain 178 

primarily pore space (air) appear dark and have grayscale values close to zero, while the voxels 179 

that contain primarily solid material dominated by elements with high atomic number, e.g., iron, 180 

appear bright and have grayscale values close to 255. Here we only used the grayscale values of 181 

the image voxels that were classified as solids; the gray scale values from the image voxels that 182 

were classified as pores were not used in this analysis. Thus, the darker grayscale values of the 183 

studied solid voxels correspond to the greater abundance of elements with low atomic numbers, 184 

notably, carbon (Quigley et al., 2018b). Please note that darker values could also be related to 185 

greater presence of pores smaller than the scanning resolution (<60 µm Ø pores).   186 



 187 

2.3. 2D zymography of soil core slices 188 

 Mapping of soil enzyme activities was conducted via 2D soil zymography (Spohn and 189 

Kuzyakov, 2014; Razavi et al., 2016), as described in detail in Razavi et al (Razavi et al., 2016). 190 

In a course of 2D zymography a membrane saturated with an enzyme-specific substrate is placed 191 

on a soil surface. Contact between substrate and enzyme releases a fluorescent product (e.g. 192 

MUF: methylumbelliferon, AMC: 7-amido-4-methylcoumarin) and the resulting fluorescing 193 

patterns reflect spatial distribution of active EE (Guber et al., 2018).  194 

 Hydrophilic polyamide filters (0.45 µm pore size; 100 µm thick, Tao Yuan, China) were 195 

used as membranes (Razavi et al., 2016; Sanaullah et al., 2016). Photos of the membrane on the 196 

soil surface were taken using Nikon D90 camera (Nikon Inc.) with a Sigma 18-250 mm f/3.5-6.3 197 

DC Macro OS HSM lens (Sigma Corp. of America) installed on a Rocwing Pro Copy Stand 198 

(Rocwing Co., UK). The source of UV light was a 22W Blue Fluorescent Circline Lamp - 199 

FC8T9/BLB/RS (Damar Worldwide 4 LLC.).  200 

 Six enzymes were studied: β-glucosidase, cellobiohydrolase, xylanase, N-acetyl-beta-201 

glucosaminidase (chitinase, NAG), leucine aminopeptidase, and acid phosphomonoesterase Acid 202 

phosphatase). The respective enzyme-specific substrates used were: 4-Methylumbelliferyl-β-D-203 

Glucoside, 4-Methylumbelliferyl-β-D-Cellobioside, 4-Methylumbelliferyl-β-D-Xylopyranoside,  204 

4-Methylumbelliferyl-N-Acetyl-β-D-Glucosaminide, L-leucine-7-amido-4-methylcoumarin 205 

hydrochloride, and 4-methylumbelliferyl-phosphate (Razavi et al., 2017). Each substrate was 206 

dissolved in a concentration of 6 mM in either TRIZMA buffer (was used for AMC-based 207 

substrate - leucine aminopeptidase, pH: 7.2) or MES (2-(N-morpholino)ethanesulfonic acid) 208 

buffer (was used for MUF-based substrates - all other enzymes, pH: 6.5): [MES(pH: 6.5) 209 

(C6H13NO4SNa0.5) TRIZMA (pH: 7.2)  (C4H11NO3•HCl, C4H11NO3] (Razavi et al., 2017). 210 

 We obtained 8-13 enzyme maps per each intact soil core (1-3 maps of each individual 211 

enzyme from each core) for a total of 180 enzyme maps. One enzyme map was obtained per each 212 

soil slice. The order in which specific enzymes were measured within the core was randomized. 213 

For the measurements, each core was placed within a cutting table (Supplement Fig. 1). A 214 

calibrated handle at the bottom of the table allowed pushing the core out of the sample cylinder 215 

in 0.5 mm increments. At each 0.5 mm increment the soil layer pushed above the table was 216 

removed manually using a microtome knife. Care was taken to minimize disturbance to the soil 217 



surface while cutting, by removing stones or large sand grains with tweezers from the surface 218 

prior/during cutting. Enzyme maps were obtained on soil surfaces in 2 mm increments 219 

(Supplement Fig. 1). For that, a polyamide membrane (Ø 4.5 cm) was saturated in 240 µl of the 220 

MUF/AMC-based substrate solution and placed on top of the prepared soil surface. Additional 221 

120 µl of the substrate solution was added on top of the membrane with a pipette and evenly 222 

spread with a fine brush. The membrane was covered by a layer of aluminum foil followed by a 223 

100 g sandbag weight. The membrane was incubated on the soil surface for 30 minutes at room 224 

temperature, then it was placed within a light-proof zymography chamber and a photo was taken 225 

in UV light as described above. The membrane was then removed from the soil surface. 226 

  Because of unevenness of the soil surface, only a portion of it was in full contact with 227 

the membrane; thus reliable enzyme activity data could be obtained only from the portions of the 228 

membrane (Guber et al., 2018). In order to estimate presence and strength of the contact we used 229 

MUF-staining approach (Guber et al., 2018b). For that, immediately after removing the 230 

membrane with the substrate, we applied to the soil surface a membrane fully saturated with 6 231 

mM MUF solution. The membrane was covered with a 100 g sandbag and kept for 30 s. Then, 232 

the soil surface was photographed in UV light. The bright areas on the image indicated the 233 

localities on the soil surface that received MUF from the membrane, and thus could be regarded 234 

as such that were in contact with the membrane. The image processing was conducted in ImageJ 235 

and the images were converted into an 8-bit format. The image from the substrate membrane was 236 

matched with the image of the MUF-stained surface, and the areas with minimal contact, that is, 237 

with MUF-stained grayscale values of <30 (0-255 grayscale scale), were excluded from further 238 

enzyme map analyses. 239 

 240 

2.4. Matching enzyme maps with µCT information 241 

 The enzyme maps were obtained from the surfaces of the individual soil slices 242 

(Supplement Fig.1b). The enzyme map was covered by a 1 mm2 grid and EE readings from 243 

zymograms were used  to produce as single value per each 1 mm2 grid cell. For that, for each 1 244 

mm2 pixel of the enzyme map we, first, calculated the average grayscale value corresponding to 245 

it, then, the pixel averages were further standardized based on the mean and standard deviations 246 

of the entire map. The latter step was necessary to enable comparisons among different enzymes 247 

and systems.  248 



 Then, for each soil slice we identified the corresponding layer from the µCT image, such 249 

that the center of the layer corresponded to the soil slice (Supplement Fig. 1c). The µCT layers 250 

were 1 mm in height, 0.5 mm above and below the soil surface layer. The µCT information was 251 

aggregated to 1 mm3 grid cells. For each 1 mm3 grid cell we calculated the total volumes of the 252 

pores of the studied sizes. For example, for each given 1 mm3 grid cell we had the number of 29-253 

µm voxels of the original µCT image that belonged to that cell and that were occupied by 60 µm 254 

diameter pores, and that number was used to calculate the volume of the 60 µm pores in that grid 255 

cell. The gray scale values from all 29-µm voxels of the original µCT image that belonged to that 256 

1 mm3 cell were used to calculate the average gray scale value of the cell. 257 

 To match enzyme maps from soil slices with 3D information from µCT scans 258 

horizontally, we used the mark placed on an acrylic tube of each soil core prior to µCT scanning. 259 

The cores were located within the cutting table so as to ensure a match between the mark and the 260 

position of the zymography membrane on the soil surface. To match them vertically, we used 261 

visual observations from the 3D images and pictures of soil surface taken at each soil cut, and the 262 

height of the soil remaining after all the desired enzyme slices were cut from the soil core. 263 

 The aggregation of the data to the 1 mm scale conducted here was a conservative 264 

measure to address the uncertainties associated with some movement of soil during surface 265 

cutting as well as with matching enzyme maps with µCT images. However, it did introduce 266 

smoothing into the resulting pore data. 267 

  268 

2.5. Data analysis 269 

Removal of artificial spatial trends 270 

 Despite the best efforts, during placing the substrate membranes on the soil surface there 271 

was some unevenness in the redistribution of the liquid substrate through the membrane. These 272 

spatial trends could distort the assessments of spatial variability patterns via variography. To 273 

ensure that such redistribution is not affecting the variogram estimates we removed the trends 274 

using multiple regression models. Application of polynomial models with various degrees of 275 

complexity was explored and the model that appeared to adequately describe the spatial trend in 276 

most of the studied 180 samples was the model with linear effects of x and y spatial coordinates. 277 

Specifically, for each enzyme map we fitted the regression model to the EE data, obtained 278 



residuals from the regression analysis, and then used the residuals in all further analyses as a 279 

measure of relative EE activity corrected for presence of linear spatial trends.  280 

 281 

Variography 282 

 Sample variograms of the residuals, obtained from the trend removal procedures 283 

described above, were calculated individually for each 2D enzyme map. We used lag distance of 284 

1 mm and considered 30 lag distances, thus, covered 30 mm of the sample, avoiding border 285 

effects. The number of point pairs in the considered lags always exceeded 500, hence was 286 

sufficient for a reliable estimation of the sample variogram value (Goovaerts, 1998). Variogram 287 

calculations were conducted using PROC VARIOGRAM in SAS (SAS 9.4). 288 

  The spherical model was used in variogram fitting for kriging, as the model that was 289 

adequately fitting most of the obtained sample variograms. Automated fitting of all 180 sample 290 

variograms was not possible because of convergence problems, thus manual fitting was 291 

performed. As a nugget, we selected the sample variogram value at the first lag; and the sill was 292 

"eye-ball" selected as the value corresponding to the plateau. The spatial auto-correlation range 293 

was set as the lag distance corresponding to the sill. As a measure of proportion of the variability 294 

occurring at distances < 1,000 µm we used the ratio of nugget and sill (N/S) expressed as 295 

percent.  296 

 297 

Ordinary and regression kriging 298 

 Prediction accuracy of 2D zymography data was tested using test-model data set 299 

approach (Goovaerts, 1998). That is, the data were divided into two sub-sets, a model data set 300 

and a test data set. The model data set was used for generating kriging predictions for the test 301 

data set. The test data set consisted of a total of 120 randomly selected data points (Supplement 302 

Fig 2). The remaining data constituted the model data set. We used data from all individual 2D 303 

enzyme maps sequentially 304 

 For ordinary kriging (OK), the model data set was used to compute a sample variogram 305 

and determine the variogram model parameters, as described above. Then, the model parameters 306 

were used in 2D OK to generate predictions for the test data points. SAS procedure PROC 307 

KRIGE2D was used to perform OK. The search radius was set to 14 mm and the minimum and 308 

maximum number of data points used in kriging estimation was set to 4 and 10, respectively. For 309 



regression kriging (RK), the model data set was first used to relate EE values with auxiliary 310 

variables from µCT images, i.e., abundances of pores of different sizes and grayscale values. 311 

Predicted values for the test data points were recorded. Then the residuals from the fitted model 312 

were used in computing sample variogram, fitting variogram model, and obtaining kriging 313 

predictions at the test data points. The final predictions for each test data point were obtained by 314 

adding predictions from the linear regression model and the kriging predicted residuals. For both 315 

OK and RK the correspondence between true and predicted values for the test data sets were 316 

assessed using R2 values, MSE, along with parameters (slope and intercept) of the regression 317 

equation relating true values with predictions. 318 

 319 

Statistical analysis 320 

 Statistical analyses, ANOVA and ANCOVA, were conducted in SAS using PROC 321 

MIXED and PROC GLIMMIX tools (Milliken and Johnson, 2001, 2009). Statistical models for 322 

exploring spatial parameters for the studied enzymes included the fixed effects of the enzymes 323 

and the land use systems and the interaction between them, and the random effects of blocks, 324 

plots, and cores (nested within systems and plots). Normality of the residuals and homogeneity 325 

of variances were checked for each variable. In case of marked deviations from normality the 326 

data were log-transformed, while in case of variance heterogeneity, unequal variance analysis 327 

was performed (Milliken and Johnson, 2001, 2009). Significant interactions were examined 328 

using analysis of simple effects, and, when significant, were followed by multiple comparisons 329 

via t-tests. The results are reported as statistically significant at 0.05 level.  330 

 To assess the associations between EE and auxiliary variables from µCT images, 331 

correlation analysis and ANCOVA were applied. For ANCOVA we used the statistical model 332 

described above and added to it the linear effects of the auxiliary variables of interest. The 333 

resulting linear coefficients were then used to explore the patterns in relationships among six EE 334 

in the studied land use systems. To facilitate comparisons we report standardized coefficients 335 

from these analyses, i.e., t-values. 336 

 337 

3. Results 338 

3.1. Spatial variability patterns  339 



 Spatial autocorrelation was present in the activity distributions in all soil slices from all 340 

studied EE and land use systems. Examples of β-glucosidase and acid phosphatase maps of EE 341 

activity are shown on Fig. 1 along with the corresponding sample variograms fitted with 342 

spherical models.  343 

 ANOVA indicated no interactions between EE and land use systems and no land use 344 

effects (p>0.05) (Supplement Table 1), thus we focused the analyses on the main effect of EE. 345 

Acid phosphatase and leucine aminopeptidase had much higher nuggets and sills than the other 346 

EE (Fig. 2a and b), indicating an overall greater variability in their activity. However, their N/S 347 

ratios were lower than for the other enzymes. The N/S ratio was 47% for acid phosphatase and 348 

54% for leucine aminopeptidase, for other EE it exceeded 60%. Since N/S ratios here represent 349 

the proportion of the random variability occurring at distances <1000 µm, the lower values in 350 

phosphatase and leucine aminopeptidase suggest that the distribution patterns of these enzymes 351 

had greater spatial continuity than that of the other EE, while small random patches were more 352 

abundant in the other EE’s distributions. Overall, N/S ratios were quite substantial and ranged 353 

from 17% to 80% in individual soil slices. The average spatial correlation range across all 354 

enzymes and land use systems was equal to 7.5 mm; no significant differences among the 355 

enzymes and among systems were observed. 356 

  357 

3.2. Correlations of EE activities with X-ray µCT information 358 

 In most soil slices the studied EE were negatively correlated to grayscale values from X-359 

ray µCT images (Fig. 3). NAG and β-glucosidase were the two enzymes with the strongest 360 

associations with the grayscale values (Fig. 3). For the other two enzymes involved in C cycle, 361 

i.e., cellobiohydrolase and xylonase, the associations with the grayscale values were relatively 362 

weak. With the exception of a few slices, acid phosphatase was not correlated with grayscale 363 

values. 364 

 Associations with pores of various sizes varied among the six enzymes, but positive 365 

relationships with 60-180 µm Ø pores and subsequent decrease with further increasing pore sizes 366 

was present in all EEs (Fig. 4). For 60 µm pores, the associations were the highest for β-367 

glucosidase, closely followed by acid phosphatase, and then by NAG. Associations with 120 µm 368 

pores were the strongest for phosphatase, followed by β-glucosidase, and NAG. Associations 369 



with pores of 180-300 µm size range were substantially stronger for acid phosphatase as 370 

compared to the other EEs. All enzymes were negatively associated with pores 360 µm (Fig. 4).  371 

  372 

3.3. Kriging predictions 373 

 As expected, the R2 values for test data set predictions were higher (Fig. 5) for the 374 

enzymes with greater spatial autocorrelation, i.e., acid phosphatase and leucine aminopeptidase. 375 

The R2 values for these two enzymes were around 0.45, while for the other enzymes they were in 376 

0.30-0.35 range. Adding auxiliary X-ray information, i.e., grayscale values did not lead to a 377 

substantial improvement in mapping accuracy during regression kriging (results not shown).  378 

  379 

4. Discussion 380 

 Our findings can be interpreted at two spatial scales: tens-of-mm spatial scale for the EE 381 

spatial variability data and tens-of-micron scale for correlations between EE and CT data. Note 382 

that the soil cores here were investigated in the absence of live plant roots, thus the observed 383 

relationships can be regarded as typical for a soil matrix outside of the actively functioning 384 

rhizosphere. Despite our expectations, the spatial distributions of EE activities and their 385 

associations with pores did not differ among the studied land use systems. 386 

 387 

4.1. Spatial variability patterns of enzyme activities  388 

 Spatial distributions of EE activity at tens-of-mm spatial scale were auto-correlated (Fig. 389 

2), but between 47% and 60% of EE variability took place at distances <1000 µm. The strengths 390 

of spatial auto-correlation in distribution of EE at the studied spatial scale are likely related to: (i) 391 

spatial patterns of EE's microbial producers, and (ii) spatial patterns and diffusion rates of the 392 

substrates subject to the enzymes. In the absence of live roots, microbial activities are the main 393 

driver of EE production (Nannipieri et al., 2012; Burns, 2013). However, past history, such as 394 

former presence and activity of live plant roots, affected the spatial distribution patterns of both 395 

microorganisms and EE substrates.  396 

Even though the spatial resolution of our study was too coarse to conduct in-depth 397 

assessment of the spatial patterns in microbial producers, the highly patchy distributions of 398 

enzymes observed here are consistent with the typically reported, very sparse distributions of 399 

microorganisms (Nunan et al., 2003; Franklin and Mills, 2009; Baldrian and Vetrovsky, 2012). 400 



Presence of bacterial colonies and individual cells are highly sporadic even on plant roots, which 401 

are the sites of the greatest microbial activity in soils (Schmidt and Eickhorst, 2013). The typical 402 

reported sizes of microbial colonies and spatial correlation ranges in their distributions are much 403 

smaller than the studied resolution (1000 µm). For example, Nunan et al. (Nunan et al., 2002; 404 

Nunan et al., 2003; Nunan et al., 2006) reported 100-600 µm spatial correlation ranges for 405 

bacteria presence. Probandt et al. (Probandt et al., 2018) observed that the average distances 406 

between individual bacteria cells on sand grains varied from 0 to 29 µm. It can be surmised that 407 

sporadic patterns in microbial distributions played a major role in EE variability and were 408 

responsible for the high spatially unexplained component in the EE variograms. 409 

 Spatial patterns and diffusion rates of EE substrates were the other possible source of the 410 

observed auto-correlations. Specifically, comparisons among the studied EE enabled insights 411 

into how differences in their substrates can be the potential source of the observed differences in 412 

EE spatial patterns. For example, lower N/S ratios for leucine aminopeptidase and acid 413 

phosphatase as compared to the other EE could be related to the fact that they have relatively low 414 

substrate specificity and can act on different substrates including a variety of compounds within 415 

non-particulate SOM (Alef et al., 1995). These enzymes can be expressed by a wide range of 416 

producers (Dick and Tabatabai, 1984; Blagodatskaya and Kuzyakov, 2008; Nannipieri et al., 417 

2012). Also, it is assumed that the mobilization of organic P by phosphatases is necessary over 418 

larger soil volumes compared to the enzymes responsible for other nutrients (Kuzyakov and 419 

Razavi, 2019), because P delivery to roots is strongly controlled by diffusion, which is very slow 420 

for P (Nye and Tinker, 1977). Mancarella et al (Mancarella et al., 1981) suggested that the 421 

soluble form of aminopeptidase in soil is a result of proteolytic and non-proteolytic processing of 422 

epithelial cell membranes and that it is not a true secretory product. This is also valid for 423 

intercellular phosphatase which can be released from the cells of plants, fungi and bacteria after 424 

lyses, and can react as EE in soil matrix. However, the substrates for the other studied enzymes 425 

are primarily plant and fungal residues and spatial continuity in their distribution patterns is 426 

typically quite low. This makes their distribution random and sporadic, which would explain the 427 

observed differences in enzyme auto-correlations.  428 

 Differences between β-glucosidase and cellobiohydrolase in the strength of association 429 

with pores, namely, strong positive correlation for β-glucosidase and relatively weak correlations 430 

for cellobiohydrolase, might be an indication of the importance of substrate diffusion rates. Even 431 



though β-glucosidase and cellobiohydrolase are both involved in cellulose degradation 432 

(Nannipieri et al., 2012), the substrate of cellobiohydrolase activity is insoluble cellulose while 433 

the substrates of β-glucosidase are soluble compounds, e.g. disaccharides (Alef and Nannipieri, 434 

1995). The latter can easily diffuse within the soil matrix, with pores being the avenues for such 435 

diffusion. The spatial patterns in β-glucosidase likely follow the spatial patterns of its soluble 436 

substrates which are then reflected in positive correlations of β-glucosidase activities with pores. 437 

Work by Bailey et al. (2017) demonstrated that fine pores with ~6 m neck diameters contained 438 

more complex organic compounds than large pores with ~200 m necks, while large pores had 439 

greater presence of simple soluble organic. Note that the enzymes diffusion is negligible (Guber 440 

et al., 2018), thus, the reactions between enzymes and substrates are driven solely by substrate 441 

diffusion and substrate mass flow with water. 442 

 443 

4.2. Associations with pores 444 

 Even though the pore size distribution data were aggregated to 1 mm spatial scale, the EE 445 

associations with pores of different sizes are indicative of the processes taking place at tens-of-446 

micron scale, i.e., the scale corresponding to CT resolution. Presence of most enzymes was 447 

positively associated with 60-180 µm pores, while negatively associated with presence of 360 448 

µm pores (Fig. 4). Positive associations of EE with 60-180 µm Ø pores (Fig. 4) are consistent 449 

with a substantial body of experimental evidence suggesting that such pores are of particular 450 

significance for soil microbial functioning.  451 

 We suggest that pores of this size range are optimal microbial habitats, and as such are 452 

associated with greater microbial abundance, leading to high enzyme production and activity 453 

(Fig. 6).  For once, the micro-environmental conditions within these pores are better for 454 

microbial functioning than those in pores of other sizes. Pores of this range are associated with 455 

greater presence of fine roots (Pagliai and Denobili, 1993), and thus with greater new C inputs 456 

(Quigley et al., 2018a). These pores are also the main transport avenues for soluble organic 457 

substances released by litter decomposition (e.g. in O horizon) and/or from detritusphere. Pores 458 

of this size range likely provide optimal water availability and do not often experience a lack of 459 

O2 (Keiluweit et al., 2017). These pores probably also supply an optimally-sized physical space 460 

for the formation of active microbial colonies, since pores of <10 µm Ø are too small to furnish 461 

sufficient space for colony formation. Better micro-environmental conditions likely lead to more 462 



active microbial communities populating these pores. Wright et al., (1995) reported higher 463 

activity of bacteria introduced into 6-30 µm as opposed to small (<6 µm) pores. Carbon newly 464 

added to soil via plant roots is most actively consumed in pores of this size range (Quigley et al., 465 

2018a). They are the locations of faster C turnover and greater decomposition of newly added 466 

organics (Strong et al., 2004; Ruamps et al., 2011; Ruamps et al., 2013). Dissolved organic 467 

carbon extracted from pores of this size group was found to be more recalcitrant than that from < 468 

10 µm pores, suggesting quick consumption of labile compounds by resident microbes (Bailey et 469 

al., 2017). Indeed, these pores were found to  differ in terms of their microbial community 470 

composition (Ruamps et al., 2011; Ruamps et al., 2013).  471 

 Based on their C inputs, micro-environmental conditions, and size, the tens-of-µm pores 472 

constitute prime microbial habitats (Fig. 6) and are, potentially, the areas with the greatest 473 

microbial presence and activity within the non-rhizosphere soil matrix. Higher EE activity 474 

associated with greater abundance of such pores (Fig. 4) in all tested enzymes supports the prime 475 

microbial habitat theory.  476 

   477 

Enzyme mapping 478 

 While the observed associations are providing new insights into factors driving spatial 479 

patterns in EEs distributions within intact soil matrix at few mm spatial scale, the strength of the 480 

observed relationships was not sufficient to achieve high accuracy for EE micro-scale mapping. 481 

The biggest roadblock was an extremely high variability of EE' activity at <1000 µm distances. 482 

N/S ratios, which are the quantitative representations of that variability, exceeded 50% in most 483 

soil slices and were as high as 80% in some of them. Nevertheless, the R2 values obtained from 484 

ordinary kriging were in a 35-45% range (Fig. 5a). The stronger spatial autocorrelation, as in 485 

acid phosphatase and leucine aminopeptidase distributions, the higher accuracy in kriging maps. 486 

 Correlations of EE activities with X-ray µCT data, while statistically significant, and 487 

meaningful from biogeochemical standpoint, numerically were relatively weak. In cases when 488 

the auxiliary variable is only weakly correlated to the main variable of interest the incorporation 489 

of the auxiliary information via either regression kriging or co-kriging typically does not lead to 490 

sizeable improvement in accuracy. For example, a reliable improvement in prediction accuracy 491 

via regression kriging was only possible when the R2 for the linear regression between the main 492 

and auxiliary variables exceeded 0.6 (Zhu and Lin, 2010), the condition that was barely present 493 



among the soil zymography slices. Even when the R2 values are relatively high, the improvement 494 

in mapping accuracy due to regression kriging may still be only minor if spatial autocorrelations 495 

of the main and auxiliary variables are interrelated (Kravchenko and Robertson, 2007).  496 

 The mentioned above very high patchiness in microbial community locations and 497 

activities (Nunan et al., 2002; Franklin and Mills, 2009; Baldrian and Vetrovsky, 2012) suggests 498 

that only predictions and mapping at scales less than a hundred micron would be able to explain 499 

significant portion of EE variability. In this study the resolution of the µCT data was 30 µm. The 500 

resolution of zymograms is not possible to establish precisely due to the diffusion of products of 501 

enzyme catalysis (Guber et al., 2018b), but an estimate of 100 µm seems plausible. Yet, because 502 

of the inaccuracies potentially involved in matching the two sources, the 1000 µm resolution for 503 

the final joint data sets combining zymography and µCT was the only reasonable option for this 504 

study.  505 

 Even though the predictions of specific locations of EE activity were not possible, the 506 

approach did offer the possibility of exploring general associations between EEs and 507 

characteristics of soil micro-environments with potential relevance to EE distributions as well as 508 

their visualizations (Fig. 5b, Supplemental video 1). 509 

 In further work, greater reduction of uncertainties in spatial coupling of the two data 510 

sources can be achieved by improving zymography and X-ray µCT image matches (Guber et al., 511 

2018a). The high random component in spatial patterns of soil microorganisms, i.e. sources of 512 

EE in the soil, suggests that additional factors/drivers, e.g., fresh C inputs, variations in pH and 513 

soil moisture, need to be considered and better matching approaches are necessary for 514 

improvements at the finer spatial resolutions. 515 

 516 

5. Conclusions 517 

 At the studied scales of a few mm, within non-rhizosphere soil matrix, we found spatial 518 

autocorrelations in distributions of all studied EE.  Observed spatial patterns are a function of 519 

spatial patterns in the distributions of microbial producers, but also of nature, availability, and 520 

diffusion properties of EE substrates.  521 

Positive associations between pores with 60-180 µm diameters and relative EE activities 522 

were found for all studied enzymes, across all five studied land use and management practices. 523 

Apparently, micro-scale areas with prevalence of such pores experience elevated levels of 524 



microbial activities leading to EE production and are the potential hotspots of C, N and P 525 

cycling. The results suggest that in the studied soils pores of this size range serve as a prime 526 

habitat for soil microbial communities.  527 
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Figure 1. Examples of zymograms for β-glucosidase (top) and acid phosphatase (bottom) and 543 

their corresponding variograms of detrended values for one of the studied soil cores. Color 544 

gradient represent the range of enzyme activity from low (blue) to high (yellow). White scale bar 545 

represents 1 cm. Vertical lines mark spatial correlation ranges. 546 
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 562 

Figure 2. Nuggets (a), sills (b), and N/S ratios (c) for the studied enzymes across all land use 563 

systems. Shown are means and standard errors. Letters mark significant differences (at p< 0.05).  564 
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 595 

Figure 3. Correlation coefficients between µCT grayscale values from solid voxels and 596 

standardized values of the studied six enzymes. Horizontal lines and dots within the boxes mark 597 

medians and means, respectively, while outside dots mark outliers. Shaded area marks 598 

correlation coefficients that are not significantly different from zero (p<0.05). Note that negative 599 

correlations signify that higher EE levels were present in darker (lower grayscale value) areas of 600 

µCT images, which are in part associated with greater presence of organic materials. 601 
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Figure 4. Standardized linear regression slopes from ANCOVA relating enzyme activity with 622 

volumes of pores of different sizes across all studied sites. Shaded area marks correlation 623 

coefficients that are not significantly different from zero (p<0.05). 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

  641 

Pore diameter, µm 

St
an

da
rd

iz
ed

 r
eg

re
ss

io
n 

co
ef

fi
ci

en
t 



 642 

 643 

Figure 5. (A) R2 values from predicting test data set values using ordinary kriging. A total of 644 

120 randomly selected observations from the independent test data set are predicted in every soil 645 

slice. Letters mark significant differences among the enzymes (at p< 0.05). (B) A section of a 3D 646 

map of β-glucosidase (pink) distribution within an intact soil core obtained from regression 647 

kriging along with soil pores (blue) and particulate organic matter (green). White scale bar 648 

represents 5 mm.  649 
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 663 

Figure 6. Hypothesized relationships between extracellular enzyme (EE) activities, abundance of 664 

microorganisms, new carbon inputs from root exudates, and availability of water and O2 in pores 665 

of different sizes. The highest EE activity corresponds to the optimum between water and O2 666 

availability and high level of root exudation. Low EE activity in pores <10 µm is also related to 667 

these pores being too small to maintain sizeable microbial colonies, while pores > 300 µm are 668 

too large to provide 3D connectivity between colonies located on the pore surfaces and too 669 

accessible for grazing by the predators. 670 
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Appendix 684 

 685 

Supplement Figure 1. Intact soil core within a cutting table: a view from the top (a) and a view 686 

from a side with a 2 mm soil layer pushed out using the calibrated handle below (b); and 687 

schematic representation of the soil cutting and subsequent matching of soil surface slices where 688 

zymography was conducted with corresponding 1mm deep layer of µCT image data (c).  689 
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Supplement Figure 2. An illustration of a data from one soil slice used in assessing accuracy of 706 

kriging mapping. The black circles are the locations of the data points that were used for 707 

mapping (model data set) and the green circles are the locations to be predicted (test data set). 708 

  709 



Supplement Table 1. Results of ANOVA for the effects of the land use systems, enzymes, and 710 

system by enzyme interactions on geostatistical parameters, namely, nugget, sill, range, and 711 

nugget-to-sill ratio (N/S). Shown are F values for the effects and the estimates of the error 712 

variances for cores and the residuals. F-values significant at 0.05, and 0.01 levels are marked 713 

with **, and ***, respectively. 714 

 715 

Effect Geostatistical parameter 

 Nugget Sill Range, mm N/S 

Land use system 0.7 1.0 3.1 2.8 

Enzyme 11.8*** 6.1*** 1.5 5.6*** 

System*Enzyme 0.4 0.6 1.0 0.9 

Core(Land use system) 

variance 

93 409 0.1 9.4 

Residual variance 162 1561 7.5 141 

 716 
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 718 

Supplement Table 2. Summary of pore-size distribution data obtained from µCT images with 719 

scanning resolution of 29 µm. 720 

Pore radius, µm Pore volume, % of total 

Mean Standard 
deviation 

Minimum Maximum 

30 0.17 0.09 0.05 0.42 

60 0.69 0.38 0.22 2.01 

90 0.78 0.48 0.17 2.60 

120 0.49 0.33 0.08 1.67 

150 0.45 0.32 0.06 1.53 

180 0.23 0.16 0.03 0.75 

210 0.21 0.15 0.02 0.68 

240 0.13 0.09 0.01 0.40 

270 0.12 0.08 0.01 0.36 

300 0.08 0.06 0.01 0.28 

330 1.82 1.38 0.06 6.45 
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