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Enhanced abstract 

Background: Rapid global change is creating fundamental challenges for the persistence of 

natural ecosystems and their biodiversity. Conservation through the protection of landscapes has 

had mixed success, and there is an increasing awareness that the long-term protection of 5 

biodiversity requires inclusion of flexible restoration along with protection. Rewilding is one such 

approach that has been both promoted and criticized in recent years. Proponents emphasize the 

potential of rewilding to tap opportunities for restoration while creating benefits for both 

ecosystems and societies. Critics discuss the lack of a consistent definition of rewilding and 

insufficient knowledge about its potential outcomes. Other criticisms arise from the mistaken 10 

notion that rewilding actions are planned without considering societal acceptability and benefits. 

Here, we present a framework for rewilding actions that can serve as a guideline for researchers 

and managers. The framework is applicable to a wide range of rewilding approaches ranging from 

passive to trophic rewilding and aims to promote beneficial interactions between society and 

nature. 15 

Advances: 

The concept of rewilding has evolved from its initial emphasis on protecting large, connected areas 

for large carnivore conservation to a process-oriented, dynamic approach. Based on concepts from 

resilience and complexity theory of social-ecological systems, we identify trophic complexity, 20 

stochastic disturbances, and dispersal as three critical components of dynamics of natural 

ecosystems. We propose that the restoration of these processes, and their interactions, can lead to 

increased self-sustainability of ecosystems and should be at the core of rewilding actions. Building 
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on these concepts, we develop a framework to design and evaluate rewilding plans. Alongside 

ecological restoration goals, our framework emphasizes people’s perceptions and experiences of 

wildness and the regulating and material contributions from restoring nature. These societal 

aspects are important outcomes and can be critical factors for the success of rewilding initiatives 

(Figure 0). We further identify current societal constraints on rewilding and suggest actions that 5 

can mitigate them. 

Outlook: Rewilding challenges us to rethink the way we manage nature and it invites us to broaden 

our vision about how nature will respond to changes that society brings, both intentionally and 

unintentionally. The effects of rewilding actions will be particular for each ecosystem, and thus a 10 

deep understanding of the processes that shape ecosystems is critical to anticipate these effects and 

to take appropriate management actions. In addition, the decision whether a rewilding approach is 

desirable, should consider stakeholders’ needs and expectations. To this end, structured restoration 

planning based on participatory processes involving researchers, managers and stakeholders, that 

includes monitoring and adaptive management, can be used. With recent calls to designate 2021-15 

2030 as the decade of ecological restoration, rewilding could be pushed to the forefront of 

discussions by policy and decision-makers on how to reach post-2020 biodiversity goals. 
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Abstract: Rewilding has been both promoted and criticized in recent years. Benefits include 

flexibility to react to environmental change and the promotion of opportunities for society to re-

connect with nature. Criticisms include the lack of a clear conceptualization of rewilding, 

insufficient knowledge about the possible outcomes, and the perception that rewilding excludes 

people from landscapes. Here, we present a framework for rewilding that addresses these 5 

criticisms. We suggest rewilding should target trophic complexity, natural disturbances, and 

dispersal, as interacting ecosystem processes that can improve ecosystem resilience and maintain 

biodiversity. We propose a structured approach to rewilding projects that include assessment of 

the contributions of nature to people and the social-ecological constraints on restoration. 

10 

One Sentence Summary: Rewilding can increase ecosystem resilience by promoting interactions 

among ecological processes, and aims to reconnect people with nature. 

Main Text: 15 

Shifting societal and environmental conditions, including land-use change and increasing demand 

for resources, are accelerating biodiversity loss and ecosystem degradation (1–4). The associated 

loss of many important ecological processes (5, 6) can decrease the complexity and resilience of 

ecosystems by hampering their capacity to recover from perturbations (7–9). Although responses 

to the biodiversity crisis, especially the establishment of protected areas, have reduced biodiversity 20 

loss in some instances (10–12), reports of ineffective protected areas (13) and on-going declines 

of threatened species (14) show that conservation needs to go beyond current efforts (15, 16). 
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A growing body of literature emphasizes the need for novel, process-oriented approaches to 

restoring ecosystems in our rapidly changing world (4, 17–19). Dynamic and process-oriented 

approaches focus on the adaptive capacity of ecosystems (4) and on the restoration of ecosystem 

processes promoting biodiversity, rather than aiming to maintain or restore particular ecosystem 

states characterized by predefined species compositions or particular bundles of ecosystem 5 

services. Such approaches recognize ecosystems as dynamic systems (20) whose future 

development cannot always be predicted (21, 22). 

Rewilding is one such approach to restoration. It aims at restoring self-sustaining and complex 

ecosystems, with interlinked ecological processes that promote and support each other while 

minimizing or gradually reducing human interventions (23–25). Rewilding also emphasizes the 10 

emotional experience and perception of wild nature and wild ecosystems without human 

intervention (26). Although conventional restoration projects often aim to minimize human 

intervention, many scientists and practitioners consider some level of management as critical to 

replace ecosystem processes that have been lost due to human activities or to maintain important 

aspects of cultural landscapes (27). Such management often focuses on selected processes via 15 

precisely defined actions aiming at rather concrete end states (e.g., management of Satoyama 

landscapes in Japan (28)). Rewilding, on the contrary, recognizes and works with complexity and 

autonomy as ecosystem-inherent characteristics and acknowledges their dynamic, unpredictable 

nature (29). 

Despite its potential to address pressing challenges in restoration, critics of rewilding have pointed 20 

out several shortcomings that have as yet hampered the application of rewilding principles. 

Criticism includes a lack of a consistent definition of rewilding (30) and insufficient knowledge 

about the possible outcomes of rewilding endeavors (31). In addition, concerns have been raised 
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about rewilding activities being planned in a manner that excludes people from landscapes rather 

than designing rewilding projects with local support (32). 

Here, we articulate a conceptual framework for rewilding projects that addresses the above- 

mentioned criticisms. We start by briefly reviewing the history of the rewilding concept, from its 

initial emphasis on protecting large connected areas for carnivore conservation (33) to the diversity 5 

of rewilding concepts today (25). We propose a framework to design and evaluate rewilding plans 

that integrate the current diversity of rewilding approaches. Our framework draws on ecological 

theory to identify three interacting ecological processes that promote the self-organization of 

ecosystems and, therefore, should be the focus of rewilding actions. For each of these processes, 

we review ecological knowledge and identify rewilding actions that can assist the restoration of 10 

self-sustaining, resilient ecosystems. Importantly, these actions will vary depending on the societal 

context. Rewilding can happen spontaneously if humans withdraw from landscapes, for example 

after agricultural abandonment (34–36) or in areas that have become inhospitable due to armed 

conflict (37–39) or environmental catastrophes such as Chernobyl (40, 41). In other cases, 

rewilding projects are driven by active choices about how societies want to experience nature (42) 15 

and to which degree society can accept an autonomy of natural processes. In these cases, the 

feasibility of rewilding projects also depends on the material, non-material and regulating 

contributions from nature that emerge from rewilding (Figure 2). We discuss how rewilding 

projects need to account for social-ecological dynamics, from the point of view of both addressing 

people’s preferences and the effects that humans have on ecosystems. Finally, we apply our 20 

framework to a set of on-going rewilding projects and illustrate how interactions among the key 

processes can be promoted to increase both ecosystem resilience and societal benefits. 
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A brief history of the rewilding concept 

Rewilding, as it was originally conceived 20 years ago (33), referred to “ the scientific argument 

for restoring big wilderness based on the regulatory roles of large predators” (33) that could act as 

keystone species and maintain the resilience and diversity of terrestrial ecosystems through top-

down control (33, 43). The protection and restoration of “large, strictly protected core reserves, 5 

connectivity and keystone species”(44) were the central characteristics of this first definition of 

rewilding. Although the conservation of large carnivores and their habitats is still an important 

aspect of rewilding (25, 45), the concept has evolved from this original idea to include a range of 

diverse approaches (25). Trophic rewilding, perhaps the closest to the original concept, advocates 

the reintroduction of missing keystone species, such as large carnivores and large herbivores. 10 

Trophic rewilding often advocates the use of functional replacements, i.e. the introduction of non-

native species as ecological proxies for species that became extinct centuries or millennia ago (25, 

32, 45). A particular type of trophic rewilding is Pleistocene rewilding, which aims at the 

restoration of ecosystems that include and are shaped by populations of megafauna extirpated since 

the Late Pleistocene, taking a long-term evolutionary perspective on ecosystems (45). In contrast, 15 

ecological or passive rewilding emphasizes the passive management of ecological succession in 

abandoned landscapes. Passive rewilding actions include the creation of no-hunting areas, low-

intervention forestry management, set-aside agricultural land, the removal of dispersal barriers, or 

the restoration of natural flood regimes (22, 25, 34). 

The ecosystem features that rewilding aims to restore are characteristic of wilderness areas (46, 20 

47), but importantly, they are not restricted to those. Instead we refer to wildness, which is the 

autonomy of natural processes (47, 48) that can occur in a variety of settings and across spatial 

scales. The restoration of wildness, rather than wilderness, is thus the goal of rewilding. 
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Broadening the original definition of rewilding and articulating the restoration of wildness rather 

than wilderness as its central goal makes rewilding applicable across spatial scales and adaptable 

to a wide range of societal and landscape contexts, from urban green spaces to abandoned 

agricultural landscapes (29). 

5 

A theoretical framework for rewilding 

In many ecosystems, complexity and resilience are maintained by trophic complexity, natural 

disturbances, and dispersal (49, 50) (Figure 1). Human activities often lead to degradation in one 

or more of these ecological processes. Rewilding aims to restore these three ecological processes 

to foster complex and self-organizing ecosystems that require minimum human management in 10 

the long run (51). If missing or degraded ecosystem processes are not expected to recover (on 

policy relevant time scales) without assistance, rewilding may encompass initial interventions, 

sometimes followed by continuous minimal management. In the following, we explain each of the 

processes in detail, elaborate how interactions among them can promote ecosystem resilience, and 

illustrate how rewilding can be used to restore and promote such interactions. 15 

Trophic complexity 

Species at higher trophic levels are often highly connected and functionally important to 

ecosystems (Figure 1) (52). Large-bodied herbivores exert strong influences on the diversity and 

abundance of other taxa such as birds, small mammals, insects (53, 54) and plants (55, 56). These 20 

effects occur through direct pathways, such as the provisioning of dung and carrion (57) or 

facilitation of dispersal (55, 56), but also through the modification of the physical environment by 

grazing and trampling, or the building of dams by beavers (54, 58). Large carnivores can, through 
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predation, affect population sizes and behavior of herbivores and create spatio-temporal 

heterogeneity in these processes. In the absence of top-down control by carnivores, high densities 

of large herbivores can have detrimental effects on the abundance and diversity of other species 

groups (53, 54). 

Humans cause changes in species composition and alter species interactions through hunting, 5 

harvesting or planting selected species in agriculture and forestry (Figure 1a). Especially large 

vertebrates are susceptible to human-driven defaunation due to their body size, long reproductive 

cycles, and high metabolic demands leading to the need for large foraging ranges (59–63). Thus, 

even where large vertebrates are still present in human-dominated landscapes, they might not be 

able to exert the top-down control they have in wild ecosystems due to their reduced densities (64, 10 

65). Selective defaunation of top predators and large herbivores can result in trophic cascading 

effects and higher susceptibility of ecosystems to collapse (52, 66). 

Rewilding can enhance trophic complexity through a variety of actions that depend on the 

characteristics of the ecosystem. Passive rewilding measures can, for example include the creation 

of no-hunting areas. Where spontaneous recolonization is unlikely, the restoration of trophic 15 

complexity might also be achieved by translocating species. Introductions of ecological 

replacements can be an option if species have gone extinct globally (45). However, such 

replacements can entail unforeseeable uncertainties and ecological risks and should be assessed 

with caution (25). Rewilding can also be supported by activities to promote coexistence between 

people and wildlife, e.g., through compensation schemes for crop- or livestock damage (67, 68). 20 
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Stochastic disturbances 

Natural disturbances often occur in a stochastic manner at different locations, magnitudes and 

frequencies, enhancing spatial and temporal heterogeneity in ecosystems (49). They can trigger 

reorganization and reconfiguration of ecosystems (69) and can lead to increased ecosystem 

complexity. They promote co-existence as often there is a trade-off in species' competitive abilities 5 

and resilience to events like fires, floods or pest outbreaks (69). Species that are able to survive 

disturbances act as biological legacies that promote recovery and reorganization (e.g., seed banks 

or small mammals surviving a fire) (49). 

In human-dominated landscapes, natural disturbances are often suppressed (e.g., fire suppression 

or flood regulation) or altered in their magnitude and frequency (Figure 1a), which may lead to 10 

even larger and potentially devastating disturbance events (e.g., large wildfires rather than smaller 

and more frequent ones). Instead, stochastic disturbances are replaced by predictable and constant 

disturbances (e.g., use of fertilizers and irrigation to maintain constant inputs to ecosystems, or 

annual soil mobilization to weed out competing species (49)). These deterministic disturbances 

often act in the same place over a long period of time without a chance for the affected ecosystem 15 

to recover and reorganize (69) and may lead to the loss of sensitive species (1). Moreover, human 

efforts to repair damage after natural disturbance events can remove biological legacies (49, 69) 

and lead to additional perturbations that hinder natural regeneration and reorganization processes 

(70). For example, salvage logging to remove dead trees after wind throw or pest outbreaks often 

removes important resources and habitats for saproxylic beetles or cavity-nesting species (71). 20 

Rewilding actions aim to release ecosystems from continued and controlled anthropogenic 

disturbances to allow for natural variability and sources of stochasticity (72) (Figure 1b). Mowing 

of grassland can be reduced or replaced by natural grazing. Dams can be removed or their 
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management modified to restore natural flood regimes (73). Logging can be replaced by allowing 

natural fire and pest regimes. 

Dispersal 

Populations depend on dispersal among habitats to avoid overcrowding (74), intraspecific 5 

competition and loss of genetic diversity (75). The exchange of individuals from different 

populations can increase gene flow, mitigate inbreeding and hence lead to more viable populations 

(76). Habitat degradation or anthropogenic dispersal barriers reduce habitat connectivity and 

dispersal ability (Figure 1a). 

A rewilding approach includes the improvement of connectivity within and among ecosystems to 10 

promote dispersal. While connectivity efforts often focus on corridors alone, a multi-scale 

approach should seek to identify and link opportunities, ranging from local features such as 

hedgerows to support birds or insects (77), to large-scale corridors which allow recolonization by 

large mammals over long distances. Connectivity can also be improved by removing or increasing 

the permeability of dispersal barriers (Figure 1b) such as roads, dams or fences. The permeability 15 

of unsuitable habitat, particularly homogeneous agricultural areas, can be improved by the 

introduction of natural landscape elements (78). 

Integrating across ecological processes 

The three ecological processes can influence and promote one another (Figure 1). Disturbances 20 

can, for example, promote habitat heterogeneity and increase resource availability for less 

competitive species and may therefore lead to an increase in species diversity (79). High dispersal 

among habitats aids recovery of ecosystems after (major) disturbance events by allowing 
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recolonization and recovery of populations of affected species (Figure 1b). Large vertebrates 

present in complex ecosystems often act as dispersal agents for plants (55, 56), and can introduce 

stochasticity into a system, e.g., through predation or grazing (80). Therefore, the restoration of 

one of these processes may positively influence the functionality levels of the two other processes 

(Figure 1b). Interactions among the processes can increase ecosystem resilience by jointly 5 

promoting, for example, functional redundancy or recolonization. 

Rewilding efforts can be assessed by representing ecosystems in their degraded and restored states 

in a three-dimensional, pyramid-shaped space where each axis corresponds to an ecological 

process, and the faces represent the interaction between processes (Figure 2). During the 

restoration of a process, the respective vertice of the pyramid moves further away from the origin 10 

and the volume of the pyramid increases. The difference in volume between the restored and 

degraded ecosystem is thus a proxy for the effect of rewilding on the resilience of the ecosystem. 

Note that because the processes interact, it is expected that restoring only one dimension but 

leaving the other two unaddressed often corresponds to a smaller improvement than restoring the 

three dimensions simultaneously, e.g., the change in the volume of the pyramid is very small when 15 

one of the axis is fully restored but the other two axes remain highly degraded. 

Rewilding as a societal choice 

Ecosystems cannot be assessed separately from human societies (81). All areas that are candidates 

for rewilding are influenced by people and/or have a history of use. Consequently, any rewilding 20 

project can affect local livelihoods and wellbeing. Societal changes can influence ecosystems in 

positive or negative ways and vice versa, and the trajectories of ecosystems are often defined by 

human decisions that focus on the delivery of certain resources and ecosystem services (68, 82). 
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Considering and managing for interactions between ecosystems and people while assessing and 

communicating the benefits of rewilding for society (Figure 2) can incentivize actions that benefit 

both ecosystems and society (68) and, therefore, increase the acceptance and success of rewilding 

endeavors. 

The restoration of the three ecosystem processes can positively impact people’s lives in various 5 

ways. Rewilding plays an important role for non-material contributions of nature and relational 

values of biodiversity (83). A growing body of literature concludes that exposure to green or 

natural spaces can reduce stress levels, increase positive emotions and cognitive function, 

encourage physical activity, and facilitate social cohesion in humans (84–86). Especially 

wilderness experiences provide an opportunity for eco-therapy to promote psychological resilience 10 

in children and adolescents (87), and personal transformation and self-fulfillment in adults (88). 

Moreover, the satisfaction that certain people perceive if species or ecosystems exist and thrive 

(89, 90) can reach societies in great geographical distance to an actual rewilding site. The presence 

of charismatic or symbolic species or landscapes can inspire spiritual, artistic and technological 

development (42). Far-ranging and migrating species travelling on dispersal pathways may 15 

motivate nature-based activities such as birdwatching (42). Being able to witness natural processes 

associated with childhood experiences, like the migration of swallows or cranes, can promote a 

sense of place and rootedness and be the basis for narratives, rituals and celebrations that form the 

core of the cultural identity of a place (42). 

Economic benefits of rewilding may arise from opportunities for nature-based economies and 20 

alternative sources of income based on non-material contributions from nature (e.g., recreational 

activities (42, 91, 92)). Furthermore, natural disturbance events can trigger innovation and change 

in social-ecological systems (93). Rewilding promotes other regulating services and nature-based 
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solutions such as regulation of climate, air quality, pollination and dispersal of seeds (42, 94). 

Improved dispersal potential and trophic complexity may prevent the depletion of material 

contributions from nature (42) such as economically relevant natural resources (e.g., wildlife 

game), not only in the areas undergoing rewilding but also in surrounding areas. 

However, rewilding can also have undesired consequences for people. Natural disturbances like 5 

fires or floods may threaten humans and human infrastructure (95). Human-wildlife conflicts, for 

example crops damaged by large herbivores or livestock killed by large predators (96), are 

becoming more frequent and more severe where these animals are reintroduced or their 

populations recover (97). Additionally, concerns over the loss of traditional, cultural landscapes, 

including their unique natural and cultural heritage, are growing in Europe and other regions (91, 10 

98, 99). Particular unease has been expressed regarding impacts on farmland biodiversity and on 

cultural ecosystem services, for example aesthetic values (100), sense of place (101), and a general 

“erasure” of human history and involvement with the land and its flora and fauna (32). 

In sum, the relationship of people with wildness in nature is and has always been characterized by 

sets of paradoxes (102). These range from contradictory views of wildness in nature ascribed to 15 

prehistoric peoples as a “constant threat to [human] life and livelihood” vs. the “primary source of 

life and livelihood” to contemporary, contradictory perceptions as “a potentially dangerous, 

alienating and challenging place” vs. “a potentially peaceful refuge to relax and conveniently 

enjoy” (102). This range of emotions highlights that well-planned rewilding projects that mitigate 

possible conflicts have higher potential to maximize the positive experiences and beneficial 20 

contributions from nature. 
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Applying the framework 

A structured and participatory approach to rewilding is important to ensure that all stakeholders 

have a clear understanding of the goals, the management options, the desirable outcomes, and the 

associated risks (103). The first step of a rewilding project should be an analysis of the ecological 

status of the focus area, by identifying missing and/or degraded components. Paleo-ecological 5 

data, for example on past vegetation change, megafauna presence, or fire dynamics, as well as past 

information on land-use histories should be considered in such analyses (4). 

In the second step, managers should assess the ecological viability of different management 

options and potential synergies among those. Together with key stakeholders (e.g., 

conservationists, farmers, hunters, general public), managers should identify social-ecological 10 

constraints (e.g., infrastructure hindering dispersal, emerging human-wildlife conflicts or risks 

associated with the restoration of natural disturbances), and evaluate benefits and disadvantages 

associated with the rewilding intervention. 

The third step is the implementation of the rewilding actions using an adaptive management 

approach. This includes the monitoring of the different interventions, ideally using a before-after-15 

control-impact (BACI) approach (104), that considers both the ecological and the societal 

outcomes. Results of this monitoring may lead to adjustments in ongoing rewilding interventions 

or raise the need for further management actions and decisions. The implementation phase should 

be accompanied by a communication strategy that involves affected communities in decisions, and 

outreach activities that inform the wider public about the outcomes of rewilding. These should be 20 

offered via a broad array of opportunities for nature experiences (e.g., guided tours through the 

rewilding area, nature education tools, opportunities for leisure activities). Additionally, managers 
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may seek to develop opportunities for sustainable business opportunities to increase the acceptance 

of rewilding among stakeholders. 

Our stepwise approach can also be applied for passive rewilding projects. In that case, there is no 

deliberate decision to initiate a project, but instead managers can take advantage of ongoing social-

ecological dynamics (e.g., farmland abandonment). If this opportunity is identified, the first step 5 

will involve an assessment of the already ongoing passive rewilding dynamics, associated risks 

and benefits, and potential impediments to those dynamics. The second step will focus on 

identifying options to support those dynamics and mitigate threats. This will often involve the 

consolidation of ongoing non-intervention (e.g., establishment of no-hunting arrangements, or 

protected areas), or the mitigation of emerging conflicts. Similar to active rewilding projects, the 10 

third step involves adaptive management, monitoring and outreach activities. 

We now demonstrate the stepwise application of our framework with four rewilding case studies, 

spanning a range of scales, ecosystem types, and degrees of intervention (Figure 2). As it will 

become apparent, the development of a rewilding project is rarely a linear process. Due to the 

adaptive nature of our approach, some of the steps will be carried out repeatedly and/or in parallel. 15 

Restoration of the natural flood regime in the Leipziger Auwald City Forest, Germany 

The Leipziger Auwald is an alluvial forest surrounding and crossing the city of Leipzig in 

Germany. Since the middle of the 19th Century, flood suppression and changes have led to a well-

documented change in tree community composition with increasing dominance of sycamore (Acer 20 

pseudoplatanus), Norway maple (Acer platanoides) and common ash (Fraxinus excelsior), mainly 

at the expense of hornbeam (Carpinus betulus) and oak (Quercus robur) (105). In its current state, 



18 

connectivity between the waterbodies in the Auwald is severely diminished, and active 

management is necessary to restore this process (Figure 2a). 

After identifying the flood disturbance as a major missing component of this ecosystem, city 

managers have started yearly experimental flooding of a pilot area in the early 1990s (106). Results 

of concomitant monitoring confirmed the effectiveness and suitability of this management action. 5 

Flooding lead to an increase of flood-tolerant species like oak and hornbeam and a decrease or 

local extinction of some plant species that are intolerant to flooding but had become dominant after 

flooding had been supressed (e.g., sycamore and Norway maple) (106). At the same time, 

colonization by moisture-tolerant slug species and (re-)colonization by several ground beetle 

species associated with alluvial forest systems was observed (106). The findings of this long-term 10 

experiment inform the implementation phase where the natural flood regime is restored in several 

drained branches of the river (Lebendige Luppe project) (73) (Figure 2a). 

The implementation phase is accompanied by an extensive outreach strategy that offers several 

opportunities for the public to engage with the ecosystem in the Auwald. It provides multimedia 

teaching material to support environmental education, and tools for interactive experiments (e.g., 15 

magnifying glasses, landing nets and maps) that allow children to learn about the ecology and 

topography of the alluvial forest and explore its flora and fauna. A local conservation NGO 

organizes excursions to inform about ongoing activities and regular public discussion forums offer 

the opportunity to engage actively in the project. Two concomitant research programs evaluate the 

ecological outcomes of the project and monitor and evaluate the acceptance and perception of 20 

natural processes in the Auwald, respectively (107). 
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Non-intervention policy in the Swiss National Park 

Established in 1914, the Swiss National Park is the oldest National Park in Europe and the largest 

protected area in Switzerland (108). Already in 1909, its founders, both botanists and naturalists, 

who were concerned with the widespread development of touristic infrastructure threatening the 

region’s unique flora and fauna, identified the region around the Pass dal Fuorn as a suitable target 5 

area owing to its remoteness and species richness (108). 

Making space for natural processes and conducting research on how these develop are central 

missions of the park management (108). The establishment of the park and management decisions 

were advised by cartographers and naturalists who had extensive knowledge about the area and its 

ecosystems (109). The protection status of the area was secured by a lease agreement that was 10 

negotiated with the local municipalities, and was financed through the foundation of the Swiss 

Federation of Nature Conservation. 

Since its establishment, the National Park has been subject to a strict non-management approach 

and has been fully protected from human activities such as hunting, agriculture or forestry. Trophic 

complexity was promoted through targeted reintroductions of ibex (Capra ibex) in 1920, 1923 and 15 

1926, and bearded vultures (Gypaetus barbatus; 1991 - 2007) (110). Natural disturbances are not 

managed and dispersal potential is high for most species (Figure 2 b). The development of the 

ecosystem has been monitored continuously, and many of the monitoring schemes have been in 

place for decades (109). Conflicts with local communities were mitigated via selected active 

management measures. For example, public discontent over sapling damage caused by red deer 20 

(Cervus elaphus) was mitigated by organizing hunting events outside the borders of the park (109). 

The non-management approach has resulted in the recovery of large populations of red deer, 
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chamois (Rupicapra rupicapra), ibex, and roe deer (Capreolus capreolus), species that were nearly 

extinct or very rare in Switzerland when the park was established (111). The increased red deer 

density has resulted in higher plant species richness in subalpine grassland (112). Additionally, 

wolves (Canis lupus) and brown bears (Ursus arctos) have recently been sighted, suggesting the 

imminent recolonization of the area by large predators. Socio-economic studies show that the park 5 

attracts around 150,000 visitors per year, contributing significantly to the economic prosperity of 

the region (109, 113, 114). 

Restoring ecological interactions in the Tijuca National Park, Rio de Janeiro City, Brazil 10 

The Atlantic Forest of Brazil is a globally important biodiversity hotspot. However, most of the 

protected areas containing Atlantic Forest remnants have been defaunated (115). One of these 

remnants is the Tijuca National Park in Rio de Janeiro. During the 17th and 18th century, 

deforestation for agricultural purposes and hunting pressure have led to severe losses of its native 

fauna. Since the forest is completely surrounded by urban infrastructure, the animal species 15 

community could not fully recover after the area was reforested in the 19th century (116), and 

dispersal of mammal species to other ecosystems is still inhibited. 

The REFAUNA project was established in 2012 to restore the mammal community via gradual 

reintroductions of species that have disappeared from the Atlantic Forest (116). Tijuca was 

considered suitable for first reintroductions because its relatively small size and its location in an 20 

urban area would allow for easy monitoring and control of the released animals (116). Researchers 

identified two native, locally extinct candidate species, the red-humped agouti (Dasyprocta 

leporina) and the howler monkey (Alouatta guariba), both of which were expected to promote 
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ecological interactions in the National Park. Agoutis are important dispersers of large seeded plants 

(117) and increase seed survival by transporting them to locations with lower densities of 

conspecific tree species. Howler monkeys influence dung beetle abundances and the 

decomposition of howler dung by the beetles can enhance nutrient cycling and soil fertilization 

(118). 5 

Concomitant monitoring revealed that the presence of agoutis and howler monkeys enhanced 

ecological interactions in the park. Agoutis broadened their diet and improved the dispersal and 

germination success of several large-seeded plants. By interacting with the dung-beetle 

community, howler monkeys promoted the dispersal of large seeds and with likely positive effects 

on forest regeneration (116) (Figure 2c). Although Tijuca is Brazil’s most popular National Park 10 

(119), there is little emotional connection between the park and people living in adjacent 

communities (120). To improve the linkage between the park and local communities, the 

management has installed a park council where representatives of governmental institutions, non-

governmental organizations and of the private sector, aim to reach satisfactory management 

decisions for all stakeholders (121). A community based, cooperative project has trained locals as 15 

tourist guides and offers tours through the park and a neighboring favela. Additionally, the 

cooperation runs a restaurant that offers products of local cuisine prepared with products growing 

in the forest and in community gardens (122, 123). 

Ecosystem and wildlife recovery in the Chernobyl exclusion zone 20 

The meltdown of the nuclear reactor in Chernobyl on 26th April 1986 resulted in massive 

contamination, especially in the immediate surrounding of the reactor (124–126). The evacuation 

of the entire local population within a 30km exclusion zone around the reactor, and the most 

strongly contaminated areas outside this zone resulted in the abandonment of about 1,400km2 of 
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agricultural land (40, 41). The breakdown of the Soviet Union, with widespread outmigration and 

an additional 36% of all farmland abandoned in Belarus and Ukraine, further lowered human 

pressure in the surrounding of the Chernobyl site (41). 

Two years after the meltdown, the Belarusian part of the exclusion zone and adjacent areas were 

turned into the strictly protected 1,300km² Polesie State Radioecological Reserve. In 1993, the 5 

reserve was extended by 850km2, making it the largest nature reserve in Belarus (127). 

Management of the exclusion zone on both sides of the border has since followed a paradigm of 

minimum to no intervention. Targeted reintroductions of European bison (Bison bonasus) in the 

Polesie State Radioecological Reserve and of Przewalski’s horses (Equus ferus przewalskii) to the 

Ukrainian exclusion zone to restore trophic interactions in the Chernobyl area were exceptions to 10 

this passive approach. Recognizing the growing ecological and conservation value of the 

Chernobyl area, the Ukrainian government has recently established the 2,300km² Chornobyl 

Radiation and Ecological Biosphere Reserve in 2016 (128), establishing an almost 5,000km², 

contiguous rewilding area in the heart of Eastern Europe. Management activities in the biosphere 

reserve aim at the recovery of biodiversity and ecosystem resilience and include monitoring of the 15 

ecological, medical and radiation status of the area as well as educational activities (128). 

The region now harbors the entire portfolio of extant European large carnivores (i.e., wolf, lynx 

(Lynx lynx), and brown bear), large herbivores (European bison, wild horse, moose (Alces alces), 

red deer, roe deer, and wild boar (Sus scrofa), a rich meso-predator community (e.g., European 

badger (Meles meles), raccoon dog (Nyctereutes procyonoides), red fox (Vulpes vulpes)) and key 20 

ecosystem engineers, such as the Eurasian beaver. The Chernobyl exclusion zone is the only area 

where these species interact in sizeable numbers with one another in a large wilderness complex 



23 

and can thus be considered one of the most iconic natural experiments on rewilding in recent 

history. 

The way forward 

Rewilding directly targets restoring ecological functions instead of particular biodiversity 

compositional states. Therefore, the effects of rewilding may be indirect and unexpected. 5 

Consequently, the development of sound rewilding plans requires a deep understanding of 

interacting ecosystem processes leading to resilience, and of the socio-economic context in which 

rewilding takes place. Interdisciplinary training of scientists and practitioners is required to 

develop such understanding. Moreover, objective, evidence-based assessments of rewilding 

initiatives are needed to make rewilding projects fully accountable to funders, the public and the 10 

research community. A recently proposed method to assess progress of rewilding projects using a 

combination of expert-opinion and monitoring data (129) is a step towards this goal. 

Unfortunately, current landscape management and conservation policies do not provide sufficient 

opportunities for rewilding to be implemented on a broader scale. For instance, the common 

agricultural policy (CAP) incentivizes agricultural activities in low production areas, impeding 15 

opportunities for rewilding in such areas (130). Restoration policies often focus on the 

safeguarding of current or historical conditions (130) and the protection of certain species and 

habitats (24, 130, 131). Therefore, the successful contribution of rewilding to national and 

international biodiversity goals depends on policy changes that shift the conservation focus 

towards restoring the ecological processes identified in our framework (131). 20 

Discussions on post-2020 biodiversity strategies by the signatory countries of the Convention on 

Biological Diversity (CBD) are currently being initiated, and several parties support El Salvador’s 

proposal to declare the next decade a “decade of restoration” (132). We believe that rewilding 
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provides one of the possible pathways towards the vision where “By 2050 biodiversity is valued, 

conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet 

and delivering benefits essential for all people" (133). Perhaps innovative policy changes favoring 

rewilding can add to the current momentum for novel approaches to restoration (19, 134). For 

instance, Aichi Target 15, which aimed at restoring 15% of degraded ecosystems by 2020, could 5 

be revised to recognize rewilding as a major approach to ecological restoration. An ambitious 

positive target of increasing wildness across the globe by 2030 could be a truly inspiring goal, 

infusing new energy and public support into global biodiversity policies. 
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Figure captions: 

Fig. 0. Rewilding actions and outcomes are framed by the societal and the ecological context: 

Rewilding can be assessed by representing the state of ecosystems in a three-dimensional space 

where each dimension corresponds to an ecological process. Restoration of these processes can 

positively influence their interactions, e.g., species diversity and trophic complexity can be 5 

increased if dispersal to new ecosystems is possible. The difference in volume between the restored 

(yellow pyramid) and the degraded ecosystem (red pyramid) is a proxy for the effects of rewilding 

on the self-sustainability of the ecosystem. The dashed line around the yellow pyramid represents 

the societal boundaries that determine to what extent ecological processes can be restored. 

Rewilding actions can help to push the societal boundaries further towards the ecological potential 10 

(orange arrows), by promoting societal support and opportunities for people to experience the 

autonomy of ecological processes in enjoyable ways. Societal outcomes can be assessed by 

mapping positive and negative impacts on non-material, regulating and material contributions 

from nature (bar plot, right panel). 

15 
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Fig. 1. Promoting interactions among ecosystem processes enhances resilience of rewilding 

areas. A) Intensively managed areas, are often characterized by decreased trophic complexity. 

Dispersal barriers between ecosystems impede the movement of individuals, particularly at higher 

trophic levels. Natural disturbances are often suppressed or altered in their magnitude and 5 

frequency, potentially leading to even larger disturbance events. Impoverished trophic networks, 

dispersal barriers and deterministic disturbances can hamper recovery of depressed populations 

(open nodes in the trophic webs) after major disturbance events. B) Rewilded areas have restored 

complex trophic webs, with functional roles of top predators (red nodes) and herbivores (yellow 

nodes). Improved connectivity among habitats allows for dispersal of species at all trophic levels. 10 

Frequent disturbance events occur in the landscape. Dispersal among habitats aids recovery of 

ecosystems after disturbance events by allowing recolonization and recovery of populations of 

affected species. Large vertebrates present in complex ecosystems often act as dispersal agents for 

plants and can introduce stochasticity into a system, e.g. through predation or grazing. 

15 
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Fig. 2.: Restored ecological processes and their influence on contributions from nature. The 

ecological state of each case study is represented in a three-dimensional space with one axis for 

each ecological process of our framework (trophic complexity, dispersal, and stochastic 

disturbances). The initial ecological state is represented by the red pyramids while the yellow 5 

pyramids represent the ecological state after the rewilding actions. The barplots indicate the 

number of contributions to people (42) that are positively or negatively affected by rewilding 

actions. (A) Rewetting of a river branch in the Leipziger Auwald led to increases in flood-tolerant 

species and an overall increase in species richness in several taxa. Management actions increased 

the provision of non-material (e.g., opportunities for learning and inspiration) and regulating 10 

services (e.g., habitat creation and maintenance). Impacts on material services are negligible as the 

project neither affects large agricultural areas nor significantly improves nature-based income 

opportunities. (B) Non-management, a hunting-ban and reintroductions improved trophic 

complexity and stochastic disturbance in the Swiss National Park. Management actions promoted 

economic prosperity of the region (positive material contributions) and agricultural abandonment 15 

(negative material contributions). The park provides non-material and regulating contributions, 

e.g., opportunities for nature experiences, and habitat creation and maintenance. (C)

Reintroductions of mammals to Tijuca National Park improved ecological interactions. 

Restoration potential of all three processes is limited due to the urban location of the park. 

Management actions may increase material contributions (i.e. income generation through 20 

ecotourism). Non-material contributions, e.g., supporting identities or maintenance of options can 

potentially emerge from community based projects. (D) Land abandonment, protection and 

reintroductions led to the recovery of the large mammal community in the Chernobyl exclusion 
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zone. Positive regulating, non-material and material contributions include habitat creation and 

maintenance, opportunities for learning and inspiration, and for wildlife tourism. 

(Picture credits: A) pxhere creative commons license CC00, B) pxhere creative commons license 

CC00, C) Brian Gratwicke/Wikimedia Commons, D) Max/Adobe Stock) 
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