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Abstract

In this study the variability of greenhouse gaseslGs) concentrations along lateral and
vertical dimensions of the chalk aquifer locatedha eastern part of Belgium was examined in
order to understand its dependence on hydrogee@logind hydrogeochemical conditions.
Groundwater samples from 29 wells/piezometers veer@yzed for concentrations of nitrous
oxide (NO), carbon dioxide (Cg&, methane (Ck), major and minor elements and stable
isotopes of nitrate (N§), nitrous oxide (MNO), sulfate (S@) and boron (B). For lateral
investigations, four zones with different enviromtsd settings were identified (southern,
central, north-eastern and northern). Groundwates ewersaturated with GHGs with respect to
its equilibrium concentrations with the atmosphémeall zones, except the northern one,
undersaturated in JO (0.07 = 0.08 pgN/L vs. 0.3 pgN/L). Vertical dinsgon studies showed
the decrease in GOconcentration and significant changes in bothoiget signatures and
concentration of pD with depth. The production of,® could be attributed to a combination of
nitrification and denitrification processes occagiat different depths. GOconcentration is
controlled by the process of dissolution of carltemainerals which constitute aquifer geology.
CH, is produced due to methanogenesis in deeper phtte aquifer, though its thermogenic
origin is also possible. Differences in hydrogeoulual settings and changing intensity of
biogeochemical processes across the area and eyt dhave considerable effect on GHGs
concentrations. Thus, before estimating GHGs fluiatethe groundwater—river interface insights
obtained from larger-scale investigations are negluiin order to identify the representative
spatial zones which govern GHGs emissions.

1 Introduction

Due to the rising concern about global climate dearsignificant research efforts have
been devoted to the refinement of the estimat&3HEs budgets (Mosier et al., 1998; Kroeze et
al., 2005; Denman et al., 2007; Battin et al., 20®gakila & Kroeze et al., 2011, IPCC 2013).
Contributing to these research efforts, severalistuhave persuasively argued that it is essential
to better understand and accurately quantify theridmtion of groundwater to 0, CQ, and
CH,4 emissions at the groundwater — surface waterfader(indirect emissions) (Worrall &
Lancaster, 2005; Johnson et al., 2008; Minamikatal. £2010; Jahangir et al., 2012; Borges et
al., 2015; Jurado et al., 2018a). Particular atienshould be paid to GHGs fluxes via aquatic
pathways in the agricultural catchments, since @assumed that their fluxes in such ecosystems
could be increased due to intensive applicationsheimical fertilizers and manure as well as
peculiarities of land cultivation (Wilcock & SorteR008; Smith, 2010; Kindler et al., 2011,
Anderson et al., 2014).

So far, research studies have been mainly con¢edton: 1) obtaining better insight into
the processes and factors that control the dynaafi€HGs (Clough et al., 2007; Koba et al.,
2009; Macpherson, G.L., 2009; Well et al., 2012nBeil-Young et al., 2017) and 2) calculation
of GHGs emissions from aquifers in different ecosys with contrasting land use and
hydrogeochemical conditions (Weymann et al., 2@@&terbach-Bahl & Well, 2010; Laini et
al., 2011, Vilain et al., 2012). While addressihg first question, for instance, von der Heide et
al. (2007) examined the influence of land use onGSHuxes in the subsurface and compared
the contributions of autotrophic and heterotroptanitrification into resulting D fluxes;
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Minamikawa et al. (2010) concentrated on the inftee of different cropping systems and
hydrological regimes; Jahangir et al. (2013) stddlee impact of geochemical conditions (DO,
Eh, pH, availability of electron donors — DOC odueed F&/S?), hydrological activity and
biological factors. While addressing the secondstjoe, Hiscock et al. (2003) compared
estimates of PD emission based on the Intergovernmental PaneTlonate Change (IPCC)
methodology and using the hydrogeological datapduret al. (2018b) calculated indirect
emission of GHGs from groundwater at the regionalesin Wallonia (Belgium) using the IPCC
methodology.

Nevertheless, large uncertainties remain associattd quantification of groundwater
fluxes of CQ, CH, and NO and it remains a significant source of uncenaintthe global
GHGs budgets (Weymann et al., 2008; Minamikawd.eP810; Jahangir et al., 2012). Firstly,
many studies so far have focused on the GHGs ptioduand consumption in the soil profile
and calculated the estimated groundwater GHGs $luséng the concentrations of these gases in
the subsoil (Beaulieu et al., 2011). Secondly, éhee difficulties related to the upscaling of
point estimates of GHGs concentrations in groundwtt larger scale and longer time periods
while taking into account the spatiotemporal vaitighbof their fluxes. For example, Vilain et al.
(2012) calculated annual groundwateXONflux in the Orgeval catchment (France) extrapotat
the data obtained from 3 piezometers, which cowddabrough estimate for heterogeneous
landscapes considered on the broader scale.nifpgrtant to constrain and better understand the
scope of uncertainties related to the upscalinggmores. That is why the studies devoted to the
distribution and dynamics of GHGs in groundwaterowdt consider the variability in
hydrogeology, hydrogeochemistry and land use actisssexplored area (Choi et al., 2007,
Cooper et al., 2017).

This study attempts to improve the understandingv hihe interplay between
hydrogeological and hydrogeochemical controls abered at the catchment scale could
influence groundwater contribution into GHG emissiovia rivers. To this end, it focuses on
analysis of experimental data obtained during #gional sampling campaign conducted to
explore the distribution of GHGs in the subsurfacea Cretaceous fractured chalk aquifer
extending across the border between Wallonia aaddeélrs in Eastern Belgium.

In our study we hypothesize that: 1) the magnitoflé&GHGs fluxes depends on the
distribution of N and C sources across the diffefgidrogeochemical zones and in relation to
groundwater flow patterns rather than absoluteesbf nitrogen (N) and carbon (C) loading to
groundwater; 2) estimates of the intensity of GHi@xluction/consumption processes within the
aquifer and their contribution to GHGs emissiorthe groundwater—river interface should be
based on large-scale investigations which provrgedpportunity to get better insight into their
spatial controls.
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In order to test these hypotheses this study atgengp 1) explore the variability of GHGs
concentration along groundwater flow paths takingoi account spatial changes in
hydrogeochemical, hydrogeological and land managéer@nditions; 2) identify the sources of
N and C loads across the aquifer; 3) reveal thegases that govern the biogeochemistry of
GHGs under different environmental settings. Th&ioled information will help to understand
how the GHG fluxes occurring on the groundwateerriinterface depend on catchment-scale
dynamics of biogeochemical process of their pradacind consumption.

2 Materials and Methods

2.1. Study site

The studied aquifer is located in Cretaceous chghglogical formations in the eastern
part of Belgium. While the southern part of the iéguis unconfined, the northern part is
confined under Tertiary clayey sediments. Subserfamv is from the South to the North and
the aquifer is mainly drained by the Geer river &miaux et al., 2011). Semi-confined
conditions may be observed under the Geer alldegpbsits close to the river. The piezometric
map for the area (Figure 1) shows that groundwdistharges into the Geer River in its
downstream part.

The basis of the aquifer is represented with tiierlaf smectite clay which is assumed to
be of low hydraulic conductivity (Orban, 2010). Bel the clay layer, the Houiller formation
(sandstones and shales with embedded coal bedsyso¢Boulvain, 2008). The area is
characterized with the presence of series of faatsing the fracturing of chalk, among which
the major one is the Horion-Hozémont fault.

The aquifer is recharged by infiltration of rainfghirough the overlying loess and the
residual conglomerate (Orban et al., 2006). Thenes¢éd annual recharge rate is between 175
and 275 mmly. Since the thick loess layer (up ton2@nd unsaturated chalky zone (up to 15 m)
located above the aquifer control its rechargeyéisalting water fluxes at the groundwater table
are smoothed, and seasonal fluctuations of hydrdudads are attenuated, which can be more
concisely observed on the multiannual scale (Broag al., 2004). The recharge zone of the
chalk aquifer mostly corresponds to the hydrologizessin of the Geer River — tributary of the
Meuse River.

The studied area is predominantly characterizet agricultural land use (nearly 65%).
Agricultural activities are the largest source loé¢ hitrate input into groundwater, followed by
domestic wastewater effluents (Dautrebande & SpBR04).

The chalk aquifer is one of the most exploited guobmater bodies in the Walloon
Region, with about 60,000°hgroundwater withdrawal per day, which are usegarticular, to
satisfy the drinking water needs of the city ofdeéand its suburbs (Orban, 2009). Groundwater
is abstracted from the aquifer using 45 km of dagengalleries and pumping wells that belong to
water supply companies. Groundwater consumersieiged between the following sectors: the
public water sector (87%), the industrial secto2%) and the agriculture and services (1%)
(Heérivaux et al., 2013).
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2.2. Sampling network

The sampling campaign intended to explore theildigion of GHGs within the chalk
aquifer. To this end, groundwater samples from 28smvere collected. The sampling network
included existing wells across the aquifer that eveelected considering hydrogeological
conditions along the main groundwater flow pathrfrthe South to the North and taking into
account the level of urbanization pressure (FigoBthe supporting information). Consequently,
after exploring the resulting groundwater samplimgfwork and considering the results of
previous investigations conducted within the aréahe study by Hakoun et al., 2017, the
selected wells were grouped into 4 zones taking imccount the differences in
hydrogeochemistry, hydrogeology and urbanizatiovelle(Figure 1): 1) southern zone -
unconfined conditions and the most urbanized las® 8) central zone — unconfined conditions
and predominantly agricultural activity; 3) northstern zone — zone of groundwater recharge to
the Geer river and predominantly agricultural larse (though sampling wells were located
close to the urban areas); and 4) northern zormfined conditions and mixed land use pattern.
In total, the monitoring network included 9 pumpiwglls (6 of them located in the confined
part of the area), 2 private wells and 18 piezorsefEigure 1). All these sampling points are
screened in the chalk aquifer, at depths varyiomflL6 meters to 70 meters (mean 39 meters) in
the unconfined part of the aquifer in the Southd #lom 51 meters to 120 meters (mean 80
meters) in the confined part of the aquifer in therth. In addition, three of the sampling
locations (Bovenistier, SGB and Overhaem, locatethe central and north-eastern zones) are
equipped with multilevel piezometers that provided opportunity to sample groundwater at
different depths (Table 2).
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Figure 1. Map of the studied area in the Geer basin shoviieg network, isopieses,
direction of groundwater flow and sampling poiniells and piezometers). Colors
indicate different zones used to aggregate data.

2.3. Groundwater sampling

Groundwater sampling was accomplished between #feahd 2% of August 2017.
Before the start of sampling, wells/piezometers evgurged until stabilization of field
parameters (pH, conductivity, temperature, dissblegygen) or by pumping three times the
volume of the water present in the wellbore (inatgdgravel pack). The samples collected in the
field for the analyses of the GHGs, major and miimors, dissolved organic carbon (DOC),
metals and stable isotopes were put on the icdenaifield refrigerator and transported to the
laboratory at the end of the sampling day. In aoldjtin-situ measurements of pH, electrical
conductivity (EC, uS/cm), dissolved oxygen (DO, h)gand temperature§) were conducted
using a portable multimeter HQ40d (HACH), with asgd flow cell inside which the measuring
probes were immersed.

Groundwater for the analyses of dissolvegONand CH was collected into 50 mL
borosilicate serum vials (two replicates per lama)j preserved by addition of 200 pL of
saturated HgGland sealed using a butyl rubber stopper and animalum seal. To measure the
partial pressure of CQpCQ,), four polypropylene syringes of 60 ml were fillethe samples
for major and minor ions were stored in 180 ml pobpylene bottles preventing the contact

6
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with atmospheric oxygen. For estimation of the @mtation of DOC, groundwater was filtered
through 0.22 pm polyethylsulfone filters, stored4® ml borosilicate vials and poisoned with
100 ul of HPO, (45%). Groundwater for the analysis of metals wiasréd through a 0.45 pum

polyethersulphone and microquartz fiber filter irit®5 mL polypropylene vials and acidified
with 1 ml of 12 N HCI for sample preservation.

Groundwater for°N and 'O isotopes of MD was sampled into 250 mL borosilicate
serum bottles (two replicates per location), presgiiby addition of 400 pL of saturated HgCl
sealed with a butyl stopper and crimped with armatum cap. For°N and*®0 of NOy, the
samples were collected into 60 ml polypropylendsyigreceded by filtration of the samples
through the 0.22 um nylon filters. FIS and*O isotopes of S§¥, 1 L of groundwater was
collected into a polyethylene bottle and stabilizeith 100 ml of zinc acetate solution (3%).
Groundwater samples fOB isotopes were collected into 60 ml polypropylénéles.

2.4. Analytical methods

The analyses of groundwater samples for major amdmions were performed at the
Hydrogeology Laboratory of the University of LiegBelgium). The concentrations of major
(Na", Mg*, K*, CI', SQ? and NQ@) and minor ions (N® and NH") were analyzed by means
of aqueous phase ion chromatography via specific @gchange resin and a conductivity
detector. The concentration of Cand total alkalinity were measured by potentiofeiiration
in the laboratory.

The concentrations of dissolved,® and CH were measured at the Chemical
Oceanography Unit of the University of Liege (Belmi) with the headspace equilibration
technique (25 ml of Nheadspace in 50 ml serum bottles) and a gas ckograph equipped
with electron capture and flame ionization detect@RI 8610 GC-ECD-FID), as described in
detail by Borges et al. (2015). The SRI 8610 GC-HEGD was calibrated with
CH4:CO,:N,O:N, mixtures (Air Liquide Belgium) of 0.2, 2.0 and pm NO and of 1, 10 and
30 ppm CH. The pCQ was directly determined in the field using an @fed gas analyzer (Li-
Cor Li-840) by creating a headspace with ambientraipolypropylene syringes (1:1 ratio of
water and air). The Li-Cor Li-840 was calibratedhwa suite of CQN, mixtures (Air Liquide
Belgium) with mixing ratios of 388, 813, 3788 ar?D8 ppm CQ.

The stable isotope analyses ofNwere conducted using an off-axis cavity ringdown
spectroscopy (OA-ICOS) (Los Gatos Research) instnirfor the measurements@PN®, §°N°P,
880 of N,O at the Chemical Oceanography Unit of the Universf Liége (Belgium), and the
1>N-site preference (SP, in %o) was calculated aglifierence betwees™N® ands*NP (§°N* —
8°NP). A 20 ml helium (He) headspace was created in25@ ml bottles ~24h before the
analysis in order to assure equilibration betwees @nd dissolved J®. Prior to the
measurement of the headspace samples, the instrmvasrwarmed and conditioned by a flow-
through calibration using a standard gas mix gdN\synthetic air (4ppm) during ~ 30 min. This
gas cylinder had been calibrated by Tokyo Instiaft€echnology & Nar® = 0.47 %o + 0.20 %o
: 5Nar? = 1.41%0 + 0.26 %o 5'®0Ovsmow = 37.63 %o + 0.18 %0). Headspace samples were
injected into a custom-built purge and trap dede flow : 120 ml mift) consisting of a C®
trap (soda lime), a water trap (magnesium perctéprand a stainless steel loop immersed in
liquid nitrogen to trap BD. 5 min after sample injection, the loop was isadafrom the rest of
the system by switching the position of 3-way valy8wagelok), warmed at room temperature,
and connected to the instrument to inject the samf@lume of headspace injection was adapted

7
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as function of the pO concentration in every sample in order to minan&ny concentration-
dependent effect (Wassenaar et al., 2018). Data waibrated against standard gas mix (see
above) injection following the approach of Wassenstaal. (2018) using the purge and trap
setup. The utilization of this purge and trap dewielped to avoid the possible interference from
CO,, HO (trapped) or CH(flow through the loop) and allowed to minimizdfeience in gas
matrix composition between different types of saes@nd the standard.

The isotope analyses of NCand SGQ® were carried out at the Helmholtz Center for
Environmental Research (Department of Catchmentrélgdy, Halle, Germany). Nitrogen
(6"°N) and oxygen&-®0) isotope analyses of NQvere performed using a G-IRMS (gas isotope
ratio mass spectrometer) DELTA V plus connecteé tGasBench Il from Thermo using the
denitrifier method that converts all sampled N@ N,O (Sigman et al., 2001; Casciotti et al.,
2002). In order to determine té*S ands'®0 of SQ?, the dissolved S£ in groundwater
samples was precipitated as Ba3®® adding 0.5M BaGl The §**S-SQ* was measured after
converting BaS@® to SQ using an elemental analyzer (continuous flow flagimbustion
technique) coupled with a G-IRMS (delta S, Thermoigan, Bremen, Germany). The analysis
of '%0-SQ%on BaSQ was conducted by high temperature pyrolysis aD145 in a TC/EA
connected to a delta plus XL spectrometer G-IRMBe(MmoFinnigan, Bremen, Germany). The
notation was expressed in terms of dedjaper mil relative to the international standardsdll
the stable isotopes (V-SMOW fé1%0 of NOy, AIR-N, for 8*°N of NOs, V-CDT for §*'S of
SO, and V-PDB fors*®0 of SQ?). The reproducibility of the samples was + 0.4%&5N; +
1.6%o for 3*%0 of NO;’; + 0.3%. for §**S, and + 0.5%. fo'®0 of SQ?. The isotope results
represent the mean value of the true double measmts of each sample.

The concentration and stable isotope compositionD&fC were analyzed at the
department of Earth and Environmental Sciencebeiatholieke Universiteit Leuven. Samples
analysis was carried out with an IO Analytical Ard 030W (persulfate oxidation) coupled to a
Thermo delta V advantage IRMS as described in Mortnal. (2015). Quantification of DOC
concentration and correction of its stable isotopmposition was performed against IAEA-CH6
and an internally calibrated sucrose standastfC( = -26.99 %o + 0.04 %o). Typical
reproducibility for DOC analysis was on the ordex&%.

2.5. Data analysis

2.5.1. Descriptive analysis

This study explores the distribution of GHGs conrcaions in the subsurface from two
perspectives: in lateral and vertical dimensionshil®Vanalyzing the lateral distribution, it
attempts to demonstrate the variability of GHGscemtrations along the groundwater flow,
which helps to reveal factors and processes cdinggahe distribution of NO, CQ, and CH in
groundwater across four spatial zones characteri#d contrasting hydrogeological and
hydrogeochemical conditions. The analysis focusomg vertical dimension investigates the
possible impact of variations in hydrogeochemiaahditions with depth on GHGs dynamics.
While exploring the distribution of GHGs conceniwats in both dimensions, this study
considers the same set of chemical and isotopenedeas used to identify and characterize N
and C sources and GHGs production/consumption psese(see sections 3.1.1 and 3.1.2.).
Moreover, during the analysis of groundwater chémite concentrations of such major ions as



278
279

280

281

282
283
284
285
286
287
288
289
290
201
292

293

294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312

313

314

315

Na’, CI and SQ* were included alongside with NOsince they are the most frequently used
water pollution/anthropogenic impact indicators K¥elev et al., 2015).

2.5.2. Statistics

For the purposes of data analysis in course ofstidy, Kohonen’s Self-Organizing Map
method (SOM) was applied using the Matlab softw@fesanto et al., 2000). This approach
allows projecting multidimensional data on a twodnsional grid and capturing complex
(nonlinear) relationships between variables (Peg¢tral., 2007). In this study, it was used to
develop maps of individual component planes andhtifje clusters within the obtained
experimental dataset. The visual comparison ofvddrindividual component planes provided an
opportunity to reveal the statistical relationshiggtween the analyzed variables, while k-means
clustering on SOM allowed exploring the data prapsrin more detail, as it enables separating
the dataset into different groups of similar hydroghemical features (Gamble & Babbar-Seben,
2012). Moreover, Pearson correlation and linearesgon analyses were carried out with R
software.

2.5.3. Isotopomer and isotope maps

Isotopomer and isotope mapping approach is usettydrogeochemical studies to
identify sources of N in the aquifer andaracterize its subsurface dynamics (Koba ef@09;
Well et al., 2012; Clagnan et al., 2018; Jurad@let2018b). For our study °N-NOz (%)
versusd*0-NOs (%0) and5*N-NOs™ (%) versuss''B (%) isotope maps were used in order to
distinguish sources of N input to the aquifer. B¢ same timeAd > Nnos - N.0 (%o) versus SP (site
preference) (%o) isotopomer majg"N—NoO (%o v. AIR) versus$'*0—NO (%o v. VSMOW) and
§%5-SQ? versus$'®0-SQ? maps were applied in order to identify theONproduction-
consumption processes.

The AS"™NNO; - N,O (%o) versus SP (site preference) (%.) isotopomep mas
developed taking into accoum3*>NNOs; - N,O ranges for nitrification and denitrification
processes proposed by Koba et al. (2009), anderefes therein, and SP intervals reported by
Lewicka-Szczebak et al. (2017), and referencesihefhe second one, plotting > N—NO (%o
V. AIR) versuss'®0-N\;O (%o v. VSMOW), was created consideristO—N,O nitrification and
denitrification ranges provided by Snider et al0X2), Snider et al. (2013) and Rosamond
(2013). Thed">N-N,O values corresponding to denitrification and fiitsition processes were
calculated using equations proposed by Zou eR@ll4), assuming that NHfertilizers, sewage
and manure were the main sources o Nfdd NH" in groundwater (the ranges of the sources
were taken from the literature review provided bigdienko et al. (2017)):

1) bacterial denitrification:
8™ Ny2o = €nvozonzo + 6 Nyos 1)

2) bacterial nitrification:
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6°Ny20 = enmz-nzo T 0 °Nyua

(2)

The enrichment factors)( for these processes were taken from previous pulteire
studies:eyps-n20 = —45 %o to =10 %o (Snider et al., 2009 and refeesntherein) for bacterial
denitrification; eyyz_n20 = —66 %o to —36.8 %o (Yoshida, 1988; Sutka et al., 2006; Snider et al.,
20009; Li et al., 2014) for bacterial nitrification.

3 Results

3.1. Variability of hydrogeochemical parameters madopes across the chalk aquifer

3.1.1. Lateral dimension

According to the Piper diagram, the majority oflecled groundwater samples fell into
the range typical for Ca — HGQvater type (Fig. S2 of the supporting informaticimpugh
several points located in the southern zone cooresgd to the Ca — HGO- ClI type. The

decrease in EC was observed from the south todha:80 + 87 puS/cm in the southern zone,
803 = 87 uS/cm in the central zone, 794 + 32 puSfcitie north-eastern zone and 717 + 97
pnS/cm in the northern zone. The pH values variechf6.77 to 7.23 across the aquifer. The

concentration of DOC was lower than 2 mg/L at eaictine sampled locations. The variability in
hydrogeochemical and isotopic composition of grauaigr between four spatial zones of the
area of study is summarized in Figures S3 to SBeStupporting information and Table 1.

Table 1 Hydrogeochemical and isotopic composition (mealne + standard
deviation) of groundwater in the chalk aquifer &srgpatial zones (see Figure 1).

Parameter Southern zone Central zone Nort:(—)izstern Northern zone
DO (mg/L) 6.3+2.3 9.4+0.6 5.9+2.6 1.5+2.1
NOs (mg/L) 60.7 £8.9 38.8+8.1 29.1£9.0 0.2 +0.4
Na" (mg/L) 30.1+12.3 12.1+25 14.8 +3.8 11.4 % 3.
CI" (mg/L) 73.1 +£30.2 51.7+7.2 44.4+7.8 15.1 £310
SO~ (mg/L) 113.9 £ 45.9 51.7 +17.5 38.5+6.9 39.2%1
B (ug/L) 22.3+17.0 10.7 £3.3 23.3+6.7 39.8851
N2O (ug N/L) 14.6 +3.2 49+15 52+2.1 0.07 8.
pCO; (ppm) 34032 + 9799 24097 + 3201 28552 + 3327 2866324
CHa (ugl/L) 0.4+0.5 0.6+0.8 09+1.6 19.5 + 25.8
8"°N-N,O (%o) -14.7+3.1 -11.9+56 -10.2+5.1 not available
87°0-N,O (%o) +38.7+3.1 +36.9+14.4 +31.5+9.6 naditable
8°N-NOs (%o) +6.5+35 +5.1+0.7 +6.1+1.1 not avaiéab
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8%0-NO; ™ (%) +25+15 +0.9+3.1 -2.4+36 not available
§%'S-SQ7 (%o) +0.6+0.3 +0.3+0.5 -17+15 -18.1+6.7
8°0-SQ” (%o) +33+21 +22+0.7 +19+1.3 +5.7+3.1
8B (%o0) +28.0 £ 20.0 +10.7+7.2 +15.1+6.8 +9.4.4
8°C-DOC (%o) -41+34 - 35.5+3.4 -36.9+3.9 -32+28
8°H-H20 (%o) —49.2 +1.4 —49.4+0.7 —-50.3+0.2 - 5016
81%0-H,0 (%o) -75+0.1 - 7.6+0.1 — 7.7+0.06 -70.2

In general, the decrease in the concentration gdmmans and GHGs was observed from
the South to the North along the groundwater fldtwe highest concentrations of major ions and
dissolved GHGs (except GHwere detected in the most urbanized southern, zonwkethe lowest
— in the confined northern zone. In the majoritygodundwater samples collected from all three
zones located in the unconfined part of the aqguifier concentrations of /@ exceeded the
equilibrium with ambient atmosphere concentrati@3 (tgN/L) (Hasegawa et al., 2000). On the
contrary, groundwater from the northern, confinedne appeared to be undersaturated with
respect to MO concentration. At the same time, the concentnataf dissolved Cldwere higher
than the equilibrium with ambient atmosphere cotregion (0.05 pg/L) (Bell et al., 2017) in all
of the locations, with the highest concentratioted&d in the northern zone. The pQdfid not
vary significantly between the different zones,hagroundwater being supersaturated with, CO
across the whole area of the study (the atmosplegudibrium of CQ is approximately 400
ppm).

Due to the low concentration of NGnd NO in the northern zone, it was not possible to
measure their isotopic signatures in the sampldected there. At the same time, the data
obtained from three other zones showed that thepgovalues of MO varied from —18.6 %o to
— 3.8 %o ford™N and from +14.7 to +42.6 %o fér°0. As for the isotopic signals of NQthey
covered the interval from + 3.8 %o to + 8 %o BN and from — 6.6 %o to + 4.7%&2S-SQ”
was characterized with the most negative valugsemorthern zone, while southern and central
zones exhibited values slightly above 0 %:0-SQ? did not change significantly between
different zones and varied from approximately +2if%eentral and north-eastern zones to +5.7
%o in the northern zone. The highest values- & were detected in the southern and north-
eastern zones, while the lowest — in the northerres'*C-DOC values were similar across all
zones, and varied in the interval from — 41.8 %e 8.8 %.. The isotopic signaturesséH-H,0O
(%0) and5'®0-H;0 (%o) varied insignificantly between the four zones

3.1.2 Vertical dimension

The hydrogeochemical conditions in the aquifer mako significantly vary with depth.
To evaluate if this variability had an influence ¢me fate of GHGs in the subsurface,
groundwater samples were collected from collocaiedometers screened at different depths at
Bovenistier, Overhaem and SGB sites. The data abimuthydrogeochemistry and isotopic
composition of groundwater along the three vertprafiles are compiled in Table 2.
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368 Table 2.Hydrogeochemical and isotopic composition of gromaiegr in the chalk aquifer
369 at the Bovenistier, Overhaem and SGB sites (sagré&ib).
Name Bovenistier Overhaem SGB
® | Piezometer| 28 27 26 12 11 10 21 22 25
| Type shallow| medium deep| shallow mediym deep shallow iumed deep
o |SCTeN o8 32| 24-49 46-51 3-4 10-11 26-31 ©6-116-26] 30-4(
depth (m)
EC 955 859 564 1121 1068 909 765 752 665
(uS/cm)
pH 7.0 7.01 7.11 7.03 7.15 7.0 7.0 7.08 7.12
DO (mg/L) 8.8 9.5 1.8 0.3 0.1 1.3 6.1 9.3 8.7
NOs 60.9 51.3 4.2 23.3 36.9 11.4 43.4 38.1 274
(mg/L)
Na" (mg/L) | 14.8 14.0 6.7 92.5 52.6 21.1 10.9 10.6 8.2
Cl" (mg/L) 61.6 56.5 10.5 49.6 48.3 48.2 22.[ 45.p 836.
-
SOy 58.1 52.3 17.4 107.6 94.4 88.5 35.9 33.6 21.2
o | (mg/L)
~ | B (ug/L) 11.0 9.7 12.0 21.0 33.0 9.6 20.0 8.6 8.8
@ mfg (g 8.5 7.4 0.7 8.5 15.1 14.2 9.2 5.1 4.6
e (ppCpCr)nz) 32,540 | 27,763| 16,947 48,614 27,896 29,117 34,454 ,1485| 21,253
S
o CH, (ug/L) | 0.09 0.17 0.19 0.21 0.19 0.39 0.59 0.19 00.6
15
- ?%J;I'NZO -13.7| - 15.2 NA -203 -291 +20 -—-249 514. - 6.2
© [3%0-N;0
2 | (%) 2 +38.2 | +328 NA +63.1] +53.7 +504 +477 +357+36.4
15 -
?%o';"'\'o3 +61 | +58 | +45| +30§ +102 +69 +77 +49 48
18 -
?%0?"\‘03 ~ 02| +14| —02| +174 +50 +49 +75  +31+47
34 7-
?%S'SQ +12 | +07 | —251 +25 +14 —04 +15 +03 36
18 2-
?%OC)D'SQ‘ +25 +2.6 +5.0 +5.8 +4.6 +3.8 +5.0 +1.7 9qQ
3"'B (%o) +120| +3.4 +0.1| +95 +19.0 +08 +29.0+110| +54
370
371 N>O tended to accumulate in higher quantities instielow groundwater at Bovenistier
372 and SGB sites, while at Overhaem its highest cdrnatton was detected in the middle part of
373 the aquifer. For all of the locations the high camication of NO coincided with the high
374 concentration of N@. The highest BD content (14 — 15 pg N/L) was revealed at Overhaem
375 where high N@ and low level of DO were detected. In all of tlases the amount of dissolved
376 CO, was the highest in the shallowest part of the faguin Bovenistier the concentrations of
377 CH, were higher in the locations with the lower cortcatipns of DO, N@ and SGQ, which
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decreased with the depth. At Overhaem the condeniraf CH, did not change noticeably
between different depth intervals. And SGB showweal liighest concentrations of ¢bhimong

the three studied vertical profiles, with its highealues detected at the shallowest and the
deepest sampling locations. general, in all of the groundwater samples cbtdlé from the
multilevel piezometers the concentration ofON CQ, and CH exceeded the equilibrium with
the ambient atmosphere concentration.

As for the trends in the variation of isotopic satures of groundwater samples along the
vertical profile, no clear tendency comprisingailalyzed cases was revealed, which highlights
the importance of local-scale variations in therbggochemical conditions and suggests that
resulting isotope signatures could be influenced doyultaneous occurrence of various
biogeochemical processes at different depth le(gde section 4.3. for more details). The
highest5'°N-NO; isotopic signatures overall were detected in gdwater samples collected
from Overhaem, which was also the only site thaiitgited the positive value o§*°N-N,O
(detected in the deepest piezometer). The notigewgative value 0§**S-SQ? was detected in
the deepest part of the aquifer in Bovenistier, n@htbe low concentration of & did not allow
to measuré™N-N,0O and5'®0-N,0. 5B values increased with depths both at Bovenistiet
SGB sites, though this tendency was not confirnoedhie Overhaem location.

4 Discussion

4.1 Sources of N and C loading across the aquifer

The sources of N within the aquifer were identifieg analysis of isotopic signatures
data, using the plots &f°N-NO5 versus3*®0-NOs, §'°N-NO5 versus3!'B. At the same time,
the origin of C loading was determined by analyzthg findings of conducted correlation
analyses. Since within the distinguished four gpationes with contrasting environmental
settings the concentration of DOC did not vary sigantly, it was expected that there would be
no considerable differences regarding the sourt€s @mpounds in the subsurface across the
studied area. Therefore, the following section a=uat first on the analysis of the distribution of
N sources across four spatial zones of the stuatied, and afterwards considers the results of the
correlation analyses elucidating origin of the @pounds in the subsurface.

The NG&™ and B isotopic signatures of samples collectethensouthern zone suggested
the presence of several N@ources, including manure (locations 29 and 38 [sgure 1))and
NH," fertilizers or soil organic N (point 2) (Figure.2ih addition, NQ fertilizers might also be
considered as the possible primary source of NOthe groundwater, since once applied they
can in part be turned into soil organic N and mined as N@ later on due to the consequent
ammonification and N oxidation processes. The observed differencesimncss of N input
could be attributed to the fact that point 2 wasated in close proximity to the agricultural areas.
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Figure 2.5"N versus3*?0 values of N@ (a) ands*°N-NOs" versuss*'B (b) of
groundwater samples. The shape of the points shtiikation to different zones
presented in Figure 1. Colors indicate differemaamntrations of N@ in groundwater
samples. The isotopic compositions for ;Nénd B sources are derived from Michener &
Lajtha (2008), Xue et al. (2009) and Widory et(2004). Areas in the red circles are
zoomed and displayed in Fig. S9 of the supportifigrmation.

In the central zone, NfOand B isotopic signatures were in most cases ¢m#ee range
typical for NH," fertilizers. According to the data, sewage did seém to be a dominant N
source, except, likely, at Bovenistier locationip® 26 and 27). Isotopic signal for manure was
detected at point 3. Groundwater samples collefrtadd multilevel piezometers at Overhaem
(10, 11 and 12) and SGB (21 and 25) exhibited thlees which showed the simultaneous
presence of two pollution sources: manure and sewag

NO;3; and B isotopic signatures of groundwater samptdected in the north-eastern
zone suggested the presence of different typeslaition sources, namely manure (points 16,
15 and 24) and sewage (point 17).

As for the northern, confined zone of the aquitee concentrations of N compounds
detected there were too low for analysis of N ipetoomposition and identification of pollution
sources.

Pearson correlation analysis (Fig. S10 of the sdjpmp information) indicated that
carbonate minerals and organic matter were thecipah sources of C compounds loading to
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subsurface system occurring across the area ofy.stadparticular, the significant positive
correlation between Gand NO (r = 0.446, p < 0.05), GGand C&' (r = 0.473, p < 0.05), G4
and NQ (r = 0.707, p < 0.05), Gaand NO (r = 0.721, p < 0.05) indicated the link between
concentrations of the inorganic C and N compoundiéch suggested the ongoing dissolution of
carbonates following water acidification due to gireduction of protons during nitrification or
bacterial respiration activities (Laini et al., AQFitts, 2002). Though the correlation between
CO, and DOC was non-significant (r = 0.353, p > 0.QBg strong negative correlation which
was observed between t*C-DOC and DOC (r = -0.42, p < 0.05) showed that the
decomposition of organic matter occurs.

In general, the results of the isotope analysexated clear difference in the origin of
NOs, B and SG between the northern zone, corresponding to théired part of the aquifer,
and three other zones, located in the unconfinet gfathe aquifer. Among the zones which
belong to the unconfined part of the aquifer, iswle southern and north-eastern zones, which
demonstrated N© and B isotopic signatures associated with manudeich might have
originated as the sewage from the residential anedsakage from septic tanks. In the central
zone, NQ@Q was likely derived in the vast majority of casesnirmineral fertilizers. In addition,
NOs; might have also partly originated from hHderived from soil mineralization processes,
though the isotope signal of this source was mbtedther large pollution sources. As for the
sources of C in the subsurface, it was most likielgived partly from the dissolution of carbonate
minerals, and partly from decomposition of organatter.

4.2 Biogeochemistry of BD, CH, and CQ. Lateral dimension

4.2.1 N3O production/consumption processes

In order to understand which processes govern gtmardics of NO production and
consumption processes in the chalk aquifer, theemxgntal data were interpreted using
correlation analysis along with linear regressiomlgsis, results of examination 81'S-SQ*
versuss'®0-SQ? plot, self-organizing maps (SOMs), isotope andoigomer maps.

The correlation analysis and linear regression wapelied to the subset of data
representing the sampling locations in the uncexfipart of the studied aquifer (the southern,
central and north-eastern zone) in order to idgntihe dominant processes of N
production/consumption occurring in this area.

Pearson correlation analysis (Figure 3) revealg positive correlation between SP and
8'%0-N,O (r = 0.7, p < 0.05), while linear regression galed positive dependency with the
slope of 0.3 between these variables, which acegrth Ostrom et al. (2007) (and references
therein) should suggest the occurrence of incorapiienitrification in the aquifer (while the
slopes close to 2.2 indicate the occurrence & keduction in the absence of®l production).
However, the absence of correlation betw&&IN-NO; and NQ (r = 0.25, p > 0.05) and
relationship betweedN-NO; and §*0-NO;™ (Y = 5.557 + 0.1212X, R= 0.105) does not
support the hypothesis about ongoing denitrificgtlmecause this process should lead to a strong
negative correlation betwe@’N-NO; and NQ, and a slope of regression betw@&&iN-NO3
ands'®0-NO; ranging from 0.5 to 0.8 (Aelion et al., 2009; Miret al., 2017). Pearson analysis
also indicated strong positive correlation betwt#enconcentrations of NOCand NO (r = 0.8, p
< 0.5) and between SP andON(r = 0.6, p < 0.05), which also does not suppi@toccurrence of
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denitrification (Ostrom et al., 2007; Jurado et 2017), but rather indicate ongoing nitrification.
Moreover, groundwater chemistry data from the ufined part of the aquifer demonstrated that
aerobic conditions prevail across the area of s{gég section 3.1.1), which also supports the
idea regarding occurrence of nitrification, andiloiron of denitrification. According to Wankel
et al. (2006) and McMahon and Bohlke (2006), theuaence of nitrification can be evidenced
by the existence of correlation betwedfO-NO; and §°0-H,O, while the absence of
correlation, on the contrary, suggests ongoingtdéoation. Nevertheless, as shown in Figure 7,
there was no correlation betwedfO-NO; and §*%0-H,O (r = 0.1, p > 0.05). Moreover, the
average theoretical®0-NO; nitrification values defined from the following eation (Aelion et
al., 2009):

§'%0-NOy = 2/360-H,0) + 1/36'°0-0,) (3)

for the three unconfined zones of the studied aqui.8 for the southern and central
zones, and 2.7 for the north-eastern zone) wefereift from the obtained results &fO-NO;
analyses (2.5 for the southern zone, 1 for theraembne and -2.4 for the north-eastern zone).
However, it should be emphasized that the abovatemuis just a rough estimate, since isotope
exchange of intermediates with water messes uPtlsetope signature (Casciotti et al., 2010).

Such mixed evidence regarding the ongoingDNoroduction/consumption processes,
obtained from the application of statistical anayts the data describing unconfined part of the
aquifer, suggests that the occurrence and inteosifyese processes vary throughout the aquifer
across the zones with different environmental cioois.
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Figure 3. The results of Pearson correlation and linear s=joa analyses for the subset
of data representing the unconfined part of thefaqu

The values 06**S-SQ* versuss'®0-SQ? isotopic signals were examined, since; 50
isotope measurements are a unique tool allowingueal the connection between denitrification
and sulphide oxidation during autotrophic denitation (Mayer, 2005). Figure 4 shows the
overlap between mineralization of organic matted amidation of sulphides processes in all
three zones located in the unconfined part of thgfar. However, exceptions from this trend
were detected for two points in Overhaem (12 anyg WBich fell into the range typical for
anthropogenic sources, and one point in Bovenig¢®6), which showed the values typical for
sulphide oxidation. Samples from the northern zehewed SGF isotope values reflecting
sulphide oxidation (points 7 and 9). So, the domingrocess of S§& and, consequently, N
transformation in three unconfined zones cannatiéarly identified.
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Figure 4.5%S versus'®0 values of S¢F for groundwater samples. The shape of the
points shows affiliation to different zones presehin Figure 1. Colors indicate different
concentrations of S@ in groundwater samples. The isotopic compositfonshe SQ* sources
are derived from Krouse & Mayer (2000), Mayer (208bd Knoller et al. (2005).

Previous conclusions are supported by the exarmmatf the component matrices
resulting from the SOM application to the datagagre 5). Visual inspection reveals clear
positive correlation between concentrations of Me,and CH, which are negatively correlated
with DO, thus indicating variations in oxido-redwct conditions across the aquifer. Results also
show similar distribution patterns for,®@ and NQ, suggesting nitrification as the production
mechanism of PD in groundwater (Hiscock et al., 2003; Koba et 2009; Minamikawa et al.,
2011). However, there is no clear relationship leetw NO and DO, which does not allow
claiming that nitrification is the only productigrathway for NO. A positive correlation is also
observed between SP aftfO-N,O, which suggests the occurrence of denitrificaias NO
reduction proceeds), which leads to the simultasanarease of both parameters (Well et al.,
2005; Well et al., 2012).

18



532
533

534
535
536
537
538
539

540
541
542
543

544
545
546
547

DO (mg/L)
g 9.21

@

5"S - SO, (%)

il

DOC (mgCIL)

0.618

8"0 = N,O (%)

v‘i

Fe,, (mg/L)

145

0.235

0.0303

16.79
MZQS
1.35

8"0 - SO,” (%)

N,O (ugNIL)

435

0.0367

CH, (ug/L)
596

0.49

‘ 0.049

Mn,, (mg/L)

0.0549

0.0278

0.00701

&N - NO, (%)
713

579

443

-5.02

-153

NO, (mglL)
539

‘ 212
0.0403
8"0 - NO, (%)

4
( 343

1.16

473

26.7

189

103

Figure 5. The component matrices derived from the applicatibBOM procedure.

This evidence suggests thatONproduction throughout the chalk aquifer could het
attributed unequivocally to one pathway, as nonéhein seems to be omnipresent and clearly
dominant across the whole area under considerafioerefore, it appears that intensity ofON
production/consumption processes might vary spwatiath in lateral and vertical dimensions
(i.e. the simultaneous occurrence of nitrification the shallower part of the aquifer and
denitrification in its deeper part).

In order to obtain better understanding into thatigpvariability of subsurface processes,
the clustering of the dataset was conducted by smme&ar5OM, and the isotope signatures of
samples belonging to various clusters were analysetdy isotopomer maps in order to consider
the probable occurrence of denitrification andifigixtion.

Figure 6 shows four different groups obtained bpliaption of k-means clustering on
SOM. The dark blue (Group 1), green (Group 2) ale §Group 3) groups include all of the
groundwater samples collected from the unconfinad pf the aquifer, while yellow group

(Group 4) covers all of the studied points from tiegthern confined zone.
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Figure 6. Clustering of the groundwater samples using SOMrétlgm. Group 1
— dark blue, group 2 — green, group 3 — blue andm# — yellow. The numbers of
sampled locations are presented within each ofjtbep.

Group 1 includes locations in the unconfined zor@civ are characterized with the
lowest SP (mean 11.2 %o £ 1.6 %0), the lowest comaéioh of dissolved PD (mean 3.5 %o *
1.2 %o), high DO level (mean 8.2mg/L + 1.9 mg/L) dod/ NO; (mean 28.7 mg/L + 3.8 mg/L).
Group 2 corresponds to the highest SP (mean 26+13% %.), the highest concentration of
(mean 13.6 %o + 6.3 %0), the lowest amount of DO (m&& mg/L £ 2.4 mg/L) and the highest
concentration of N@ (mean 48.7 mg/L £ 18.7 mg/L). Group 3 demonstratesmediate values
of these parameters (see Table 1). Finally, GrospoWs characteristic values for groundwater
from the confined part of the aquifer, namely lotin@mncentrations of NOand DO (see section
3.1.1 and Table 3).

Table 3.Mean hydrogeochemical parameters of the groundwgataples clusters
produced by k-means clustering on SOM.

Group NO (ug N/L) SP (%o) DO (mg/L) NQO(mg/L)
Group 1 34+12 11.2+1.6 82+19 28.7+3.8
Group 2 13.6 +6.3 26.1+3.4 57+24 48.7 +18.7
Group 3 6.7+34 19.1+6.7 7.2+26 39.6 +16.2
Group 4 0.1+0.1 not available 15+21 0.2+04

The majority of SP values are lower than typical &P hydroxylamine (NHOH)

oxidation (nitrification) reported in previous stad. These data could support the hypothesis
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about the occurrence of both denitrification arndfrgéation processes with the following mixing
of deep denitrified and shallow nitrified groundesaf{which leads to the decrease in SP values
produced by nitrification). To test this hypothediso isotopomer maps for the area of study
(Figures 7 and 8) were developed.

From the A3"™Nno, - N0 (%o) versus SP (%o) isotopomer map (Figure 7), it ten
concluded that the majority of data points repréagnthe isotopic signatures of respective
samples in the southern, central and north-eastenes fall into the mixing zone between
nitrification and denitrification processes. Growader samples from Group 1 (points 17, 23 and
18) seem to be affected the most by denitrificaiiorcomparison to other samples, which is
illustrated by their closer location to the defigation box. However, in this group the
denitrification in the deeper part of the aquifemswvnot complete, since Group 1 was
characterized with the lowest SP, and th€@® Meduction to N produces SP values close to the
ones caused by nitrification (Well et al., 2012)isThypothesis is also supported by the fact that
the corresponding groundwater samples show higlc@@entration (see Table 3), which would
not be possible if mixing with anoxic waters (< 4/ir) occurred.

The isotopic signatures of Group 2 (sampling poid®%s 31 and 4) indicate mixing
between nitrified groundwater and deep groundwateere complete denitrification occurred.
The intensive denitrification processes are eviddnuy the fact that all points fall outside the
mixing zone (Figure 7) and are shifted in the dicetcorresponding to typical A reduction.

In addition, the lowest DO concentration was obsénmw this group.

In Group 3 (see Figure 7), all samples are sligllijted to the right of the mixing zone,
suggesting mixing between nitrified and reducedugdwater. However, compared to Group 2,
N>O reduction processes are probably less pronouneeduse of the high DO concentrations
observed for groundwater samples from Group 3.
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Figure 7. A5**Nno, -noversus SP (%dsotopomer map. The shape of the points shows
affiliation to different zones presented in FigdreColors indicate different concentrations of
NOjs in groundwater samples.

The secondA8™N — N,O (%o v. AIR) versuss*®0 — NO (%o v. VSMOW) (Figure 8),
isotope map provides further evidence supportirey hlgpothesis that groundwater from the
unconfined part of the aquifer is affected by buwithification and denitrification processes. The
majority of the samples fall close to 80 — N,O value of +35 %o, reported to be the boundary
value between nitrification and denitrification pesses (Koba et al., 2009; Li et al., 2014).
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Figure 8. AN — N,O (%o v. AIR) versus'®0 — NbO (%o v. VSMOW) isotopomer map.
The shape of the points shows affiliation to difetrzones presented in Figure 1. Colors indicate
different concentrations of NOin groundwater samples.

Finally, in the northern zone, considering the lmamcentrations of DO and DOC as well
as the data obtained from $Qsotope analysis (Figure 3), the occurrence 9 Nould possibly
be attributed to autotrophic (points 9 and 7) otetwrophic (points 8, 14, 19 and 20)
denitrification.

4.2.2 CH, production/consumption processes

The chalk aquifer was characterized with high lefeCH, accumulation despite the fact
that there were detected high concentrations of B0y and SGQ” in the unconfined part of the
aquifer, and the high concentration of S@ the confined part of the aquifer (except poiat 1
Fig. S8 of the supporting information), which proits CH, production.

In the northern confined zone, characterized wiatv concentration of DO and
negligible content of N©, the concentration of CHwas fifteen times higher in comparison to
three other zones. At the same time, the concémraf SQ*, which varied from 15 mg/L to 90
mg/L within the confined area, might have prohidit@H, production that usually occurs under
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lower SQ? concentrations (< 19 mg/L) (Whiticar, 1999, Moloft al., 2016). Whiticar (1999)
claimed that methanogenesis using non-competitivestances (e.g. methylated amines or
dimethyl sulphide) might occur in the media wher®,%S exists; however, their relative
importance in Chl production is currently uncertain. Therefore, thgh values are more likely
to be explained by its thermogenic origin or pregenf anaerobic microsites with favorable
conditions within the aquifer.

The concentration of CHn the groundwater samples from southern, ceatndl north-
eastern zones could be explained by occurrenceethanogenesis in the deeper part of the
aquifer with the following mixing of deep Gkenriched and shallow oxic water, which
happened during the pumping activities. Moreovee, arigin of CH in the deeper part of the
aquifer might be related to its upward migratioa geological faults and fracture networks from
the Houiller formations enriched in coal. This lassumption could be supported by previous
investigations conducted by the Hydrogeology andiiienmental Geology group of the
University of Liege in 2015 which showed high acalation of radon (28945 Bg/fnin the
deepest part of the aquifer at Bovenistier whiclghibe the evidence of its origin from the
underlying layers. Consequently, this observatiaggests the possibility of gases diffusion
through the smectite clay layer which was previggsinsidered impermeable.

In general, additional investigations are requiredrder to obtain better insight into the
CH, production pathways. It will be useful to obtamta about the isotopic composition of £H
8*C-DIC and microbiological community, which have beaesed in many studies for the
identification of CH origin (Teh et al., 2005; Molofsky et al., 2013 cPRhillips et al., 2014,
Currell et al., 2017; Iverach et al., 2017).

4.2.3 CO, production/consumption processes

Groundwater in the chalk aquifer demonstrated deray towards accumulation of GO
It is possible to suggest four pathways of the, @@duction in the subsurface, namely —
rhizomicrobial and root respiration, microbial degmosition of soil organic matter,
denitrification and, possibly, methane generatibuazyakov & Larionova, 2005).

First two processes lead to the production of, @Othe soil and its leaching into the
groundwater during the rainy periods. The occureesfanicrobial decomposition was evidenced
by the data obtained from $O isotope analysis and parameters of water chemisiry
particular, the observed S0 isotope signals indicated the occurrence of miizion
processes in the subsurface, which under aerobidittans produce Sg£ and DOC (Mayer et
al., 1995; Kellman & Hillaire-Marcel, 2003). Howayeccording to the experimental data, the
studied aquifer was characterized with low con@ditn of DOC in groundwater, which could
be the consequence of its further oxidattonCQO, in the unsaturated or saturated zones
(MacQuarrie et al.,, 2001). The assumption regaradiogurrence of DOC decomposition was
also supported by the obtained strong negativeelation between the concentration of DOC
and3**C-DOC.

Since it was revealed that the aquifer was chainaetke with suitable conditions for the
occurrence of denitrification and methanogenesizxcgsses in its deeper anoxic part, their
contribution to the Cegproduction could also be considered.

However, as our study was conducted in the chaliferg the amount of dissolved GO
in the groundwater is strongly influenced by thé&icen carbonate equilibrium. GDproduced
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within or leaked to the aquifer, reacts with@Hto form HCOs;, a weak acid, which stimulates
the dissolution of carbonate rocks. That is whg, ithitially produced concentration of G@ill

be altered by equilibration processes. In partigidaturation indexes (Text S1 of the supporting
information) varied from 0.22 to — 0.18 (mean 0#86.08) for calcite and from —-1.25 to —0.21
(mean -0.71 £ 0.23) for dolomite, indicating thedughdwater was in equilibrium with respect to
the first mineral and undersaturated with respedhé second one (Table S1 of the supporting
information) (Moore & Wade, 2013). This situatiog attributed to the lower solubility of
dolomite in comparison to calcite (Moore & Wadel12)

So, it appears that the latter two pathways op @@duction governed the concentration
of CQ, in the northern confined zone, while in southerentral and north-eastern unconfined
zones the presence of g@Was determined by the simultaneous occurrencell giracesses
discussed in this section.

4.3 Biogeochemistry of BbD, CH, and CQ. Vertical dimension

4.3.1 N0 production/consumption processes

According to the obtained hydrogeochemical and opet data, nitrification and
denitrification could be observed at different deptlong the vertical profile of the studied
aquifer. Also, these data provide evidence thatingiyrocesses between the deep and shallow
groundwater and slow infiltration of pollutantsindhe surface to the deeper parts of the aquifer
affected the distribution of GHGs within the sulface.

The high concentrations of DO, NCas well ass!®N and §*0 isotopic signatures of
NOj" at two shallowest piezometers at Bovenistier 28 2n (Table 2) provided the evidence of
N>O production by nitrification processes. At the satime, the SP values of,0 at this site
were considerably lower (19.2 % and 20 %., respebtjvthan SP typically reported for
nitrification. The analysis of S@) isotopes showed that this location was the onky where
obtained values of isotopic composition of the @s¢mroundwater (26) clearly fell into the
range typical for sulphide oxidation (Figure 3), ighh might be associated with autotrophic
denitrification (Jurado et al., 2018b). Such evitEesuggested that the isotopic signature £ N
of groundwater samples collected from the shallgveet of the aquifer (28 and 27) was affected
by both nitrification and denitrification procesgsse section 3.1.2.).

The anaerobic conditions and distribution '8N and *°0 isotopes of N@ in the
groundwater along vertical profile at Overhaem (1Q, and 12) (Table 2) suggested the
occurrence of denitrification. Since the SGsotopes did not indicate the occurrence of sdlghi
oxidation (Figure 3), the occurrence of heterotroptienitrification could be a production
mechanism of BD in this location.

The high level of DO, relatively high concentrasoof NO; (Table. 2), results of NO
and SQ” isotopes analyses (Figure 2 and Figure 3, reséygiat the SGB location (21, 22 and
25) indicated the occurrence of nitrification preses. The SP value ob® at the shallowest 21
piezometer was equal to almost 32 %o, which als@astpd the idea about ongoing nitrification
(Toyoda et al., 2017). However, the SP values efgtoundwater samples collected from the
deeper SGB 3 and SGB 1 piezometers were 14.1 %018l %o, respectively. Such data
indicated that the production of,@ might be the result of the simultaneous occueesfcboth
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nitrification and denitrification or nitrifier-detrification processes in the groundwater system at
SGB site.

4.3.2 CH, production/consumption processes

The concentration of CHbetween 0.09 pg/L and 0.6 pg/L) was higher thgnligrium
with the atmosphere concentration in all locati@tsoss the vertical profile of the aquifer.
However, no common trend in the distribution of G#ith depth for Bovenistier, Overhaem and
SGB sampling locations was revealed.

The only site which showed the suitable conditifamghe in situ biological production of
methane was the deepest sampling point at Boven(3iable 2). As for the Overhaem and SGB,
the high concentrations of NOQ SQ; and DO (only in case of SGB) along the whole depth
interval excluded the possibility of methanogeneSiserefore, detected co-existence of ,CH
with considerable concentrations of NOSQ?® and DO might be the evidence of its
thermogenic origin and vertical migration througlke system of fractures, surface contamination
or methanogenesis that occur in anoxic micrositéisimthe aquifer.

4.3.3 CO, production/consumption processes

The amount of C@varied noticeably within the vertical profile dig aquifer from the
lowest concentrations in deep groundwater to thghdst concentrations in the shallow
groundwater. Such distribution might be explaingd dironger effects of rainwater on the
composition of shallow groundwater and the decréagte microbial activity with depth. In
particular, it is likely that rain water washes dbe CQ produced in the soil due to the
decomposition of DOC (see section 4.2.3.) and megpiration (Tan, 2010).

5 Conclusions

In this study the distribution of GHGs within thleatk aquifer under agricultural area
was explored both across lateral and vertical dgioers. Lateral studies focused on the
variability of GHGs concentrations taking into agnb the differences in hydrogeology,
hydrogeochemistry and urbanization level across ékplored region. Vertical dimension
investigations attempted to elucidate the impadtei€rogeneity of aquifer conditions along the
depth profile on GHG concentrations.

Lateral explorations showed that among the thrgem@HGs it was the amount of,®,
which exhibited the greatest cross-zonal varigbitietween identified zones with contrasting
environmental settings. The highest concentratiad,® was detected in the unconfined aerobic
part of the aquifer under most urbanized area wtiereconcentration of NOwas the highest,
while the lowest MO content was measured in the confined anaeroloie with the very low or
almost absent N9and/or NH" concentrations in the groundwater. In the zongrofindwater
discharge to the Geer River, the average concarirat N,O was of the same magnitude as in
the central zone, despite the fact that thegNOntent there was the lowest within the unconfined
part of the aquifer. Also, in this zone the contehiN,O varied significantly between different
locations, as well as the level of DO, implying ttilae availability of NO was governed by
complex spatially heterogeneous pattern of diffebémgeochemical processes.

CH; revealed the high tendency towards the accumulaiio groundwater. Its
concentration was substantially higher in the rerirconfined zone in comparison to three other
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zones. However, even in the unconfined southemiraleand north-eastern zones despite the
oxic conditions and presence of electron acceptdtshigher energy yield the concentration of
CH,; was, in average, approximately 13 times highemthts equilibrium atmospheric
concentration.

Though the concentration of G@&as high in comparison to its equilibrium concahtn
in the ambient air, it fluctuated less in comparmiso N,O and CH concentrations. C{Qdetected
in the subsurface derived from root respiratioml@composition of organic matter. However, the
relative uniformity of its spatial distribution mmostly attributed to the fact that in general the
amount of CQdissolved in the groundwater was controlled by phecess of dissolution of
carbonate minerals which constitute aquifer gealogy

The spatial differences in hydrogeochemical sesdtingpnsiderably influenced the
dynamics of transformation of N and C loading ie Bubsurface, thus making tangible impact
on the magnitude of the resulting indirect GHGdisl occurring on the groundwater-surface
water interface. It was particularly noticeable the case of highly volatile JO
production/consumption processes. The productiomletécted PO could be attributed to a
combination of nitrification and denitrification guesses, likely occurring at different depths.
However, the observed isotopic signals gPNlemonstrated that the intensity of these prosesse
as well as their relative contribution to the cartcation of NO in the groundwater varied across
different sampling locations.

Vertical dimension studies showed that differentaldons were characterized with
different distribution pattern of major ions, GH@nrd isotopes along the depth. However, in
each of the cases they registered the shift inemanation of CQ (decreasing with depth in all
cases considered) and significant changes in Isotiope signatures and concentration level of
N,O across the depth profile. The latter observatmicated that production/consumption
dynamics of NO was highly dependent on the hydrogeochemistrthefambient subsurface
environment. It was revealed that the variabilifychemical composition of groundwater in
different locations was controlled by different gmchemical processes changing in intensity
with depth.

The observed heterogeneity of biogeochemical psesesleading to GHGs
production/consumption in the subsurface across atyeifer show that the magnitude of
occurring GHGs fluxes (especially in the case gDNh this study) could vary significantly due
to the change in the amount of N and C inputs aslilolition of their sources across different
hydrogeochemical zones and in relation to grounew#iow pattern. Therefore, our study
provides evidence to the assumption regarding entst of uncertainty of indirect GHGs fluxes
related to upscaling of the point-derived estimadi®o the catchment level. In order to reduce
this uncertainty, it is advised before the estioratof GHGs fluxes at the groundwater — river
interface (and possible development of measuradatgg their intensity) to take into account
the insights obtained from larger-scale investwai in order to identify the representative
spatial zones which shape the dynamics of GHGsstonis. As demonstrated by the results of
combined application of SOM-derived clustering amderpretation of isotopomer maps,
combination of insights from hydrogeochemical asmtope studies is essential in this regard, as
it helps to get more profound insight into the @®x dynamics within the underground
environment where the microbiological structure andifer matrix might be additional factors
that affect the transformation of N and C compoumisreover, due to the high heterogeneity of
N and C sources and subsurface processes, ittisytarly important to pay attention to the
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biogeochemical processes and modeling of GHGs goahsn the hyporheic zone, since this
zone is the buffer controlling the highly volatdignamics of GHGs fluxes at the groundwater-
river interface. In addition, further research efowithin the case study area are necessary in
order to better understand the influence of fluhgapiezometric levels on the dynamics of
hydrogeochemical processes and GHGs productioniogotson.
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Highlights:
» Lateral and vertical variations in hydrogeochemistry affect dynamics of GHGs in subsurface.
* Magnitude of GHGs fluxes depends on N and C inputs across hydrogeochemical zones.
« Large-scale studies are required before estimating GHGs emissions from aquifers.



