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Abstract 

Water resources across the globe are projected to undergo significant changes as climate and 

socio-economic conditions change. A policy relevant question thus arises: whether climate change 

or population change exerts a greater control on future freshwater resources of a region? 

Understanding the relative importance of these factors in affecting water availability can help 

guide prioritization of policy level interventions. In this study, we quantify the changes in mean 

annual per capita water availability (PCWA) across India under 1.5°C, 2.0°C, and 3.0°C levels of 

global warming. We utilize projections of future climate from several general circulation models 

(GCMs) under three different representative concentration pathways (RCPs) along with 

projections of future population from five socio-economic pathways (SSPs). Using the estimated 

PCWA from these GCM–RCP–SSP combinations, we perform a sensitivity analysis to ascertain 

the relative importance of climatic (precipitation and temperature change) and demographic 

(population) factors in affecting per capita freshwater availability in a region. Our analysis shows 

that PCWA over India will decrease across all warming scenarios. In addition, a transition from the 

1.5°C warmer world to the 2.0°C warmer world leads to a reduction in PCWA for a majority (92.8

% ) of regions across India. The number of people likely to face severe water stress (PCWA <  

500 3 / /m year capita ) under 1.5°C, 2.0°C, and 3.0°C warming scenarios, are 354, 421, and 380 

million, respectively. Sensitivity analysis indicated that changes in both population and mean 

annual precipitation are dominating factors controlling PCWA, depending upon the historical 

setting of the region. Regions with historically lower populations and lower aridity indices tend to 

be more sensitive to population changes. On the other hand, as historical population of a region 

increases, sensitivity to changing climate (mainly mean annual precipitation) increases. These 

results indicate the complex interactions between demographic and climatic changes that need to 

be accounted for in policies that aim to manage water scarcity by either controlling global warming 

or via socio-economic interventions. 

 

Keywords: water availability, climate change, population, GCM, SSP, Budyko 
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1. Introduction 

Many parts of the world currently face varying levels of water stress due to over-exploitation of 

surface water and groundwater resources [Rodell et al. (2018); U. N. Water (2007)]. Impending 

changes in climate and socio-economic patterns is poised to worsen the situation further. There are 

numerous studies that project the impact of climate change on future water availability at various 

spatial scales such as global, regional, and catchment-scale [Arnell (2004); Schewe et al. (2014); 

Kummu et al. (2016); Mekonnen and Hoekstra (2016); Krysanova and Hattermann (2017)]. These 

analyzes indicate that changes in future water availability is driven mainly by changes in future 

precipitation. Multi-model assessments employing various general circulation models (GCMs) 

and hydrological models further show that for several regions across the globe, projections of 

future freshwater availability are highly uncertain mainly due to disagreement in the nature of 

precipitation change [Schewe et al. (2014)]. 

As regions are expected to undergo both socio-economic and climatic changes, a 

significant body of literature considers the impact of both factors on water availability. One of the 

first notable efforts in this direction is the work by Vörösmarty et al. (2000), who estimated the 

combined impact of climate and population change on global water resources. Subsequent studies 

highlighted the relative role of climatic and population changes in controlling water availability in 

a region [Vörösmarty et al. (2010); Arnell and Lloyd-Hughes (2014); Gosling and Arnell (2016)]. 

These analyses account for possible changes in future population by employing projections from 

state-of-the-art socio-economic models. These joint assessments generally conclude that increase 

in global water stress will in fact be primarily due to increasing population and a transition to more 

water intensive lifestyles, not climate change. The work by Wiltshire et al. (2013) explored an 

additional factor affecting water availability, the plant physiological response to carbon dioxide 

forcing. They find that generally increased carbon dioxide concentration will increase plant water 

use efficiency resulting in a net increase in runoff. However, when changing precipitation, 

temperature, population and plant physiological response are considered together, they also 

conclude that population increase is the most critical factor that will lead to increased water stress. 

In most studies, projected water availability under different future periods is analyzed to 

assess how each factor may affect water stress. For example, Vörösmarty et al. (2000) compare the 

relative role of population and climate change by projecting water availability in specific future 

periods considering only climate change, then only population change, and finally by considering 
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both factors together. Similarly, Arnell and Lloyd-Hughes (2014) estimate water stress related 

indicators for various combinations of climate and socio-economic scenarios. These results are 

then interpreted qualitatively to assess how climate and socio-economic changes may jointly affect 

water stress. In this study, we propose to use a recently developed novel sensitivity analysis 

method to formally quantify the relative impacts of climate and population change on water stress. 

Pianosi and Wagener (2015) propose a simple and efficient sensitivity analysis method to quantify 

the sensitivity of a dependent variable to various factors. The method is advantageous over others 

as it considers the probability density function of the dependent variable, as opposed to its 

variance, to estimate sensitivity. We propose a modification to this method so that it can be applied 

to estimate the sensitivity of a water stress metric to changing climate and population using only 

future projections of these independent variables. 

In lieu of analyzing changes in water availability at the end-of-century or other fixed future 

time periods, assessing how water availability changes at various levels of global warming is 

perhaps more decision–relevant. For example, if precipitation in a region first increases mildly and 

then drastically, an end-of-century assessment might show a overall increase in water availability 

even though the region may go through water scarcity in the early phases of climate change. Thus, 

an assessment of water availability considering the trajectory of changing climate is crucial for 

water resources planning. Such assessments are even more relevant when we consider recent 

geo–political developments related to climate change mitigation and adaptation. The Paris 

agreement sets a long–term goal of limiting global mean temperature rise below 2.0°C as 

compared to pre–industrial levels. In addition, it also indicates that limiting global warming below 

1.5°C may carry significant benefits [Schleussner et al. (2016)]. In order to substantiate the need to 

limit global warming to 1.5°C below pre–industrial levels, assessments are needed that compare 

the impacts of changing climate under 1.5°C and 2.0°C warming scenarios. Recent studies have 

reacted to this call by estimating water resources under 1.5°C and 2.0°C global warming levels in 

several regions such as China [Zhai et al. (2018)], Europe [Donnelly et al. (2017); Marx et al. 

(2018)], and selected large catchments across the globe [Gosling et al. (2017)]. However, there is 

no such study that provides these projections specifically for India at a fine spatial resolution. 

Being a developing country poised to undergo spatially variable climate change and increases in 

population over the next few decades, it is important to understand how climate and population 

change will alter freshwater availability under different global warming levels. 
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Climate change impact assessments also differ in the employed indicator of water stress. 

Depending upon the goal of the analysis, the metric of interest can be mean annual runoff, duration 

of low flows, peak floods, etc [Milly et al. (2005); Döll and Schmied (2012); Gosling et al. (2017); 

Krysanova and Hattermann (2017); Zhai et al. (2018)]. Other analyses focus on assessing the 

number of people under water stress under different future climates [Vörösmarty et al. (2000); 

Arnell (2004); Rockström et al. (2009); Schewe et al. (2014)]. Water stress is estimated either as a 

ratio of demand to supply of freshwater [Vörösmarty et al. (2000); Haddeland et al. (2014); 

Mekonnen and Hoekstra (2016)], or as freshwater available per person [Arnell (2004); Rockström 

et al. (2009); Gerten et al. (2011); Schewe et al. (2014)]. Either choices have their advantages and 

limitations [Xu and Wu (2017)]. 

In this study, we adopt the second metric, freshwater available per person, to estimate 

changes in long–term water availability for India at different levels of global warming. We employ 

a recently developed probabilistic Budyko model that allows us to estimate water availability at a 

relatively fine spatial resolution by using in–situ and remote sensing based information [Singh and 

Kumar (2015)]. Using this framework, we estimate how freshwater available per person will 

change under various climate and population growth scenarios that are obtained from 

state-of-the-art climate and socio-economic models. We aim to address the following questions: 

1. How does water stress vary under 1.5°C, 2.0°C, and 3.0°C levels of global warming? 

2. Is there an advantage for long–term water security of India if a transition to 2.0°C warmer 

world from a 1.5°C warmer world is prevented? 

3. What is the role of population growth `vis a vis   precipitation and temperature change 

in determining water stress? 

 

2. Material and methods 

The procedure followed to project mean annual per capita water availability (PCWA) under 1.5°C, 

2.0°C and 3.0°C increase in global mean temperature is shown in Figure 1. First, observed data is 

used to constrain a probabilistic Budyko model, which can project the upper limit of renewable 

freshwater under future climates (Section 2.2). Following this, projections of climate and 

population for 1.5°C, 2.0°C and 3.0°C warming levels are derived (Section 2.3). These projections 

are then used to force the probabilistic Budyko model and estimate PCWA under various 
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scenarios. The dataset on climate and population scenarios along with resultant PCWA is used to 

assess the sensitivity of PCWA to changes in long–term mean precipitation ( P ), long–term mean 

temperature (represented via potential evapotranspiration, PET ) and population of spatial units 

across India (Section 2.4). 

 

2.1. Data availability 

For calibration of the Budyko model, we use a remote sensing based monthly actual 

evapotranspiration ( AET ) product, and ground based observations of precipitation and 

temperature. The AET  product is available at a spatial resolution of 0.073° (  8 km) from 

1983–2006 [Zhang et al. (2009)]. It has been cross-validated using eddy-covariance tower flux 

datasets and is available globally over a long time period, making it ideal for use in this study. The 

Indian Meteorological Department, Pune (India) provided monthly precipitation data for each 

district from 1901-2000, as well as daily maximum and minimum temperature data at a spatial 

resolution of (1 × 1)° for the period 1951-2000. We performed our analysis a decision–relevant 

spatial unit, termed districts in India. In total there are 637 districts over India with size varying 

between 10–86064 2km  with a median value of 3805 2km  (Supplementary Figure S1). An 

overlapping period of 1983-2000 was used to derive the long–term estimates of climatic variables. 

Districts with less than ten years of overlapping data or in violation of the physical constrains of 

atmospheric water supply (AE≤P) and demand (AE≤PE) were removed from the analysis. 

Climate projections from a combination of general circulation models (GCMs) and 

representative concentration pathways (RCPs) are used to project future water availability. Five 

GCM outputs from the CMIP-5 database are analyzed: GFDL–ESM2M, HadGEM2–ES, 

IPSL–CM5A–LR, MIROC–ESM–CHEM, and NorESM1–M. Three RCPs are used: RCP2.6, 

RCP6.0, and RCP8.5, each resulting in corresponding level of radiative forcing ( 2/W m ) by 2100. 

Historical (1971–2100) and future (up to 2100) daily precipitation and temperature projections for 

each GCM–RCP combination are used. The climate datasets are available from the Inter-Sectoral 

Impact Model Intercomparison Project [Warszawski et al. (2014)]. This is a global dataset 

downscaled using a bilinear interpolation scheme to a common 0.5°km horizontal resolution, and 

bias corrected using a trend-preserving approach based  on the WATCH observation dataset 

[Hempel et al. (2013)]. The grid size of downscaled and bias-corrected GCM data is roughly 50 

km. As the area of districts are generally large (median: 3805 2km , 10
th

 percentile: 1354 2km , 
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Supplementary Figure S1), for districts which encompass several GCM grids, area averaged P and 

PET are estimated from GCM outputs. For districts which fall under a single grid, the projected 

values are set as equal to the GCM grid value. We also note that the selected five GCMs cover a 

range of 0.55 (0.75) of the uncertainty of the entire CMIP5 ensemble for the precipitation 

(temperature) projections [McSweeney and Jones (2016)]. 

 

Future population projections for the world are based on five shared socioeconomic 

pathways(SSPs). We use SSP projected population data created by Jones and O’Neill (2016) 

available at a fine spatial resolution of 1/8° for the time period 2010-2100.The dataset is available 

from http://sedac.ciesin.columbia.edu. These SSPs are developed by accounting 

for different elements that exert control over demography such as land use, energy use, and 

emission pathways, as well as climate change vulnerability, impacts, and adaptation. As the 

population data is available at a resolution that is generally finer than the area of districts, future 

population for each district is obtained by aggregating various population grids together. For 

deriving average population estimates for an arbitrary time period from 2001–2100, the data is 

linearly interpolated at annual time steps and averaged. Historical baseline population data at 

district level is available from 2001 Census of India (available online at 

http://www.censusindia.gov.in/2011-common/census_data_2001.html). 

 

2.2. The Probabilistic Budyko model 

The Budyko approach exploits a well–known relationship between long–term averages of water 

and energy availability related indicators in a region [Budyko (1958); Pike (1964)]. The Budyko 

function relates a climate indicator, the aridity index ( PET / P ) to a water availability indicator, 

the evaporation ratio ( AET / P ). Here, we employ a form of the Budyko curve with a firm 

physical basis: 

 

(1/ )

=1 1 ,
AET PET PET

P P P

  
       

 (1) 

,where, PET  is estimated from temperature data [Hargreaves and Samani (1985)], and   is a 

parameter inferred using observed data [Fu (1981); Zhang et al. (2004)]. Long–term water 

availability is then estimated as the difference between P  and AET , assuming that changes in 
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storage over multi–decadal time scales are zero [Singh and Kumar (2015)]. This is one way to 

estimate the upper limit of long–term freshwater availability in a region [Mishra et al. (2017)]. 

Other sources of water like deep groundwater or derivation of freshwater from saline water in 

coastal regions are not accounted for in our estimates. To derive PCWA, P AET  is divided by 

population estimate of each district. 

  encapsulates in itself the physical and socio-economic controls on precipitation 

partitioning between runoff and evapotranspiration at long time scales. We use observations of P  

and PET  along with a satellite based AET  product to calibrate   for each district. The 

probabilistic model is then established following the methodology proposed by Greve et al. 

(2015), later applied by Singh and Kumar (2015) to Indian regions. A distribution of   is 

obtained for each district by grouping   values belonging to broader political regions together 

(see Supplementary Figure S2 for a map of the political regions). This results in a range of water 

availability ( P  AET ) values for each district. The median value of projected P  AET  is used 

for analysis. Once calibrated using historical data, the probabilistic Budyko model allows us to 

estimate the impact of changing climatic conditions on long–term freshwater availability. 

 

2.3. Future climate and population projections 

We derive estimates of future water availability for three possible futures, each resulting in a 

global mean temperature increase of 1.5°C, 2.0°C and 3.0°C. Specifically, we follow the 

procedure as described by Vautard et al. (2014), which has been also adopted in several recent 

climate change impact assessment studies [Jacob et al. (2018); Marx et al. (2018); Samaniego et al. 

(2018); Thober et al. (2018)]. The 30-year period corresponding to 1971-2000 is taken as a 

reference and is approximately 0.46°C warmer compared to preindustrial global mean temperature 

(1881-1910) based on different observational datasets [Vautard et al. (2014); Jacob et al. (2018)]. 

Using this value as a reference, we identify 30-year periods for 15 GCM–RCP (5 GCMs, 3 RCPs) 

combinations in which the global mean temperature increases by 1.04°C, 1.54°C, and 2.54°C, 

which in turn represent the conditions of 1.5°C, 2.0°C and 3.0°C warmer worlds, respectively. We 

estimate changes in projected population for each district based on the projections of population 

from 5 SSPs for the 30–year window in which each GCM–RCP combination reaches a given level 

of warming. This procedure results in a total of 75 (5×3×5) possible climate and population change 

combinations for each district under each warming level. Across three warming levels, 225 (75×3) 
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potential combinations of climate and population change scenarios can be obtained. 

 

2.4. Sensitivity analysis 

Understanding the relative importance of climate and population change on PCWA has significant 

policy relevance. Here, we assess the joint impact of these factors on PCWA by performing a 

sensitivity analysis that ascertains which of the three independent factors has most influence on 

future PCWA: P , PET , or population. Recall that we quantify PCWA, the dependent variable, 

for each of the three controlling factors across 225 possible futures. We use a recently developed 

sensitivity analysis technique to exploit this dataset and provide estimates of sensitivity of output 

variable to independent variables [Pianosi and Wagener (2015)]. We perform this exercise for 

each district, which allows us to explore the spatial variability of the most sensitive factors across 

the study domain. 

Pianosi and Wagener (2015) propose an efficient and computationally inexpensive method 

to estimate sensitivity of an output variable, y , to various factors, 
ix . Each subscript i  

corresponds to a factor and ranges from 1 to the number of independent factors, three in this case. 

The sensitivity index is a summary statistic based on the non-parametric measure, the 

Kolmogorov–Smirnof (K–S) statistic, that measures the distance between two CDFs as: 

 
|( ) = | ( ) ( ) |maxi y y x

iy

KS x F y F y  (2) 

,where Fy(y) is the unconditional CDF of y , i.e., the CDF constructed using all values of y . 

Fy|xi(y) is the conditional CDF of y  when a factor, ix  is fixed at a certain value. If the 

unconditional CDF of y  is very different from the conditional CDF of y , it implies that a 

substantial variation in y  is due to ix . A high KS–Statistic value indicates greater sensitivity to a 

factor ix . In order to obtain an estimate of the KS–Statistic that is independent of the specific 

value at which ix  is fixed, the statistic is estimated across all possible values of ix , and then a 

summary statistic is calculated. Thus, higher values of the summary statistic imply greater 

sensitivity of y  to ix  and vice-versa. 

In this study, like in many others that employ simulation modelling, the analytical 

derivation of the CDFs is not feasible and instead, empirical CDFs are employed as also 

recommended by Pianosi and Wagener (2015). Changes in each factor: P , PET  and population, 
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are divided into ten equally spaced bins, ranging from minimum to maximum projected value of 

change. The changes in climate and population along with corresponding values of PCWA within 

a bin are used to estimate the empirical conditional CDF, and the KS–Statistic thereafter. Finally, 

the median KS–Statistic is estimated across the ten bins and is used as a measure of sensitivity. 

Note that we do not perform any additional sampling of the factor space to estimate the sensitivity 

indices but use only 225 possible projections from various GCM–RCP–SSP combinations for each 

district. This allows us to estimate the sensitivity indices within decision–relevant ranges. 

 

3. Results 

3.1. Climate and population projections 

GCMs vary in terms of model structures and associated parameterizations. Similarly, each RCP 

differs in its trajectory of radiative forcing due to greenhouse gas emissions and the final radiative 

forcing at the end of century. Therefore, each GCM–RCP combination reaches 1.5°C, 2.0°C and 

3.0°C increase in global mean temperature in different time periods. We identify 30-year periods 

for each GCM–RCP combination that result in different target warming levels [Supplementary 

Table 1]. Various GCM–RCP combinations reach the global mean temperature increase of 1.5°C, 

2.0°C, and 3.0°C between 2004–2047, 2016–2060, and 2035–2067, respectively. Note that for 10 

out of 45 GCM–RCP combinations, we could not identify any 30-year period for selected warming 

levels. This was mainly observed with the RCP2.6 scenarios under the 3°C warming level. Thus, 

only 35 climate scenarios across various GCM–RCP combinations are possible, which combined 

with 5 SSPs result in a 175 (instead of 225) total GCM–RCP–SSP combinations for estimating 

PCWA for each district. We estimate the changes in P  and PET  for each district across 

GCM–RCP combinations for each warming scenario [Figure 2]. The median change across all 

GCM–RCP combinations is shown using color and the degree of agreement in the nature of 

change (increase or decrease) is indicated using transparency levels [Figure 2a–c]. P  is projected 

to increase under 1.5°C warming for 95.8% of districts, but 90% of these increases are less than 

10% [Figure 2a]. Only the northern Himalayan region is projected to witness a decrease in P , 

though these decreases are small, ranging from 0.2% to 3.4%. Under 2.0°C warming [Figure 2b], 

the percentage of districts likely to undergo reductions in P  increases to 69 (10.8%). The regions 

expecting reductions in P  expand across the northern Himalayan regions including downstream 
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plain regions, and few coastal districts on the western coast. The remaining parts of India are 

projected to witness a greater than 10% increase in precipitation for 2.0°C warming levels. 

Projections of PET  have lesser spatial variations across all warming levels when 

compared with projections of P  [Figure 2d–f]. All GCM–RCP combinations project an increase 

in PET , in line with expected increases in temperature. Under 1.5°C warming, median projected 

increases in PET  stays below 10%. Under the 2.0°C warming level, PET  increases 

considerably for the northern and eastern parts of the Himalayas, and continues to increase under 

the 3.0°C warming level. 

Population projections suggest an overall increase from 1.5°C to 2.0°C warming levels, 

and stabilization between 2.0°C and 3.0°C warming levels [Figure 3]. Across all districts and 

SSPs, the median of relative change in population from the year 2001 is 37.3%, 46.7%, and 45.5% 

for 1.5°C, 2.0°C, and 3.0°C warming levels, respectively. As we transition from 2.0°C to 3.0°C 

warming, population decreases across 75.1% districts, though the magnitude of reduction is small 

(median: 1.8%, inter–quartile range: 1.5%). Thus, between 2.0°C and 3.0°C warming, population 

tends to stabilize but P  becomes increasingly variable. Note that the uncertainty in population 

projections across SSPs are relatively small as compared to those for P  projections. There is a 

high (> 80%) agreement between various SSPs regarding the nature of change in population for 

more than 90% of the districts for each warming scenario. 

 

3.2. Per capita water availability (PCWA) under 1.5°C, 2.0°C, and 3.0°C 

We employ the probabilistic Budyko model to estimate median values of PCWA across various 

climate and population change scenarios. PCWA is projected to decrease across all warming levels 

over majority of India [Figure 4], when compared to the historical period. Under 1.5°C warming, 

92.3% of districts are projected to witness a reduction in PCWA. The projected decrease lies 

between 0–15%, 15–30%, and > 30% for 14.3%, 51.6%, and 26.4% of districts, respectively. The 

number of districts with large (> 30%) reductions in PCWA are higher (41.8%) under 2.0°C 

warming. This indicates considerably greater water stress under 2.0°C warming when compared to 

the 1.5°C warming. A transition from 2.0°C to 3.0°C warming results in an increase in PCWA for 

93.0% districts. However, considerable number of districts (43.3%) are projected to experience 

15–30% reductions in PCWA even under 3.0°C warming. There is a concurrent increase in the 

spatial variability of changes in PCWA from 2.0°C to 3.0°C warming. 
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The uncertainty in PCWA projections arising from various GCM–RCP–SSP combinations 

are similar under both 1.5°C and 2.0°C warming levels. However, 3.0°C warming entails an 

increase in uncertainty, with 8.3% districts not agreeing on the direction of change in PCWA 

(compared to 2.3% under 1.5°C and 2.0°C warming). The regions where uncertainty increases 

under 3.0°C warming are concentrated in inland parts of southern India, which is already water 

scarce. Overall, 61.2%, 62.9%, and 61.4% of districts have a strong (> 80%) agreement on the 

nature of change for 1.5°C, 2.0°C, and 3.0°C warming levels, respectively. 

Further discussion on how changes in P , PET  and population are related to projected 

changes in PCWA is provided in Supplementary Text S1. 

 

3.3. Sensitivity analysis 

We find that for majority of districts, PCWA is most sensitive either to changes in population or 

P  [Figure 5]. Changes in PET  generally have lowest sensitivity values among the three factors. 

Across all districts, the sensitivity index (median KS–Statistic) ranges from 0.23–0.82, 0.18–0.66, 

and 0.27–0.88 for P , PET , and population changes, respectively. Recall that higher values of 

the index indicate greater sensitivity. The median (inter-quartile range) of index is 0.51 (0.22), 

0.35 (0.10), and 0.55 (0.16) for P , PET , and population changes, respectively. 

We observe that when PCWA is most sensitive to P  changes in a region, it is less 

sensitive to population changes. This is evident by a strong negative correlation between the 

sensitivity indices for P  and population changes across districts (-0.64, p–value < 0.01). 

Additionally, there is a weak positive correlation between sensitivity indices for P  and PET  

changes (0.33, p–value < 0.01) and a negative correlation between sensitivity indices for PET  

and population changes (-0.53, p–value < 0.01). Thus, when PCWA is more sensitive to P  

changes, it is also more sensitive to PET  changes [Supplementary Figure S3]. 

Interesting patterns are observed on visualizing the relative importance of factors spatially 

[Figure 6]. For each district, the rank of each factor according to their sensitivity index is shown in 

Figure 6. We find that changes in P  have the highest sensitivity in western, midwestern, and 

southeastern regions. Northeastern regions, northern Himalayan regions, and southwestern coastal 

regions are most sensitive to increases in population. Overall, there are 249 (46.9%), 11 (2.1%), 

and 271 (51.0%) districts for which PCWA is most sensitive to changes in P , PET , and 

population, respectively. 
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Regions where population change is the most important factor have relatively low aridity 

indices and low population in the historical time period [Figure 7]. These regions have a median 

aridity index of 1.2. Almost all districts with very low historical populations (< 0.5 million) show 

population change as the most dominant factor. Similarly, regions with historically lower PET  

tend to be most sensitive to population changes. Thus, the future sensitivity of PCWA for a region 

seems to depend on its historical climatic and demographic setting. 

 

4. Discussion 

We find that the categorization of a region’s water stress based on absolute values of PCWA does 

not change much as we move across different warming scenarios [Figure 8 and Supplementary 

Figure S4]. Typically, values less than 500 3 / /m year capita  are assumed to indicate high levels 

of water scarcity, while values greater than 1700 3 / /m year capita  indicate water sufficiency. 

Intermediary values indicate varying levels of water stress often distinguished by the 1000 

3 / /m year capita  threshold. Overall, 354, 421, and 380 million people are likely to face severe 

water stress (PCWA < 500 3 / /m year capita ) under 1.5°C, 2.0°C, and 3.0°C warming levels, 

respectively. Also, 261, 256, and 270 million people are likely to remain water sufficient (> 1700

3 / /m year capita ) under 1.5°C, 2.0°C, and 3.0°C warming levels, respectively. The number of 

people under water stress are greater than those under water sufficient conditions at all warming 

levels. 

The approach employed for assessing future water availability depends mainly on the 

availability of ground-based streamflow data and the temporal scale of the hydrologic indicator 

that needs to be predicted. In our analysis, we aimed to predict long–term water availability, which 

can be predicted with reasonable accuracy using the parsimonious Budyko model. Our method 

provides a long–term hydrologic budget at relatively fine spatial resolution of decision-relevant 

unit (a political unit) in absence of naturalized streamflow [Singh and Kumar (2015)]. On 

comparing our results with studies that utilize complex hydrologic models, we find a reasonable 

agreement among projected changes in renewable freshwater [Schewe et al. (2014); Gosling et al. 

(2017)]. 

Under 3.0°C warming, our analysis as well as Schewe et al. (2014) project strong and 
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certain increases in renewable freshwater for southern India and a reduction northern Himalayan 

region [Supplementary Figure S5]. In fact, the magnitude of change is also similar for both 

regions. The only region for which our analysis projects a different outcomes from Schewe et al. 

(2014) is the western desert region. Using several hydrologic models, Schewe et al. (2014) project 

large uncertainties for this region but the Budyko model projects a certain increase in freshwater 

availability. A likely cause of this difference is that hydrological models, from low to moderate 

complexity, are unable to capture the hydrological processes adequately in very arid 

environments. Similarly, Gosling et al. (2017) report an expected increase of > 20% in mean 

annual runoff for the Ganges basin under 3.0°C warming. The Budyko framework shows a 

projected increase between 10–30% for most of the Ganges basin. 

Another approach to estimate changes in freshwater availability in a region is to directly 

use raw GCM outputs of P AET  [Xu et al. (2005)]. This approach was recently appraised by 

Padrón et al. (2018) at a global scale, who showed that raw GCM outputs generally project more 

extreme changes when compared to observationally constrained GCM outputs. We find similar 

results using our GCM based P AET  datasets. The 30–year mean annual P AET  estimated 

from the Budyko model forced with downscaled and bias-corrected GCM climate data projects 

less extreme changes when compared to raw GCM projected P AET  [Supplementary Figure 

S6-S7]. Additionally, the historical estimates of P AET  obtained from the Budyko model 

forced with downscaled and bias-corrected GCM climate data is in closer agreement with those 

obtained from observationally forced Budyko model, when compared to raw GCM projected 

P AET  [Supplementary Figure S8]. 

Several sources of uncertainty affect future estimates of renewable freshwater resources in 

a region such as those from choice of GCM, RCP, hydrologic model and its parameterization 

[Schewe et al. (2014)]. GCMs are a significant source of uncertainty in estimating future water 

availability, particularly for monsoon dominated regions such as India [Ashfaq et al. (2017); Chen 

and Zhou (2015); Saha et al. (2014)]. In our analysis, we found that the uncertainty from GCM 

structure varies based on the warming level and RCP scenario [Supplementary Figures S9-S10]. 

As compared to uncertainty in P , uncertainty in projections of PET  are quite small. 

Furthermore, uncertainty across RCPs for different GCMs is much smaller as compared to 

uncertainty across GCMs for each RCP. Finally, additional uncertainty stems from the presence of 

decadal oscillations in Indian monsoonal rainfall, which may affect estimates of long–term 
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changes in P  and PET  [Zhang et al. (2018)]. Though using a 30-year window to identify a 

given warming level likely reduces the impact of decadal oscillations, as compared to those that 

consider a 9-year window as in Zhang et al. (2018), this effect should be explored studies. 

We have already established that for estimating long–term water availability, the Budyko 

model is a suitable candidate. Historical uncertainty in parameterization of the Budyko curve is 

considered in the probabilistic version of the model, but it is not further considered for the 

sensitivity analysis.   varies from 1.1-5.6 across all districts units with a median (inter–quartile 

range) of 1.5 (0.4). The median (inter-quartile range) of regionally grouped   values are 1.7 

(0.3), 1.4 (0.2), 1.4 (0.1), and 1.9 (0.6) for northern, eastern, western, and southern regional 

divisions, respectively [see Supplementary Text S2 for further details]. Uncertainty also stems 

from variation of   with time, which is not considered here for two reasons. First, a number of 

studies have already proposed analytical or numerical approaches to quantify the sensitivity of 

Budyko projected water availability to changes in   and /PET P  (see Gudmundsson et al. 

(2016) and references therein). Second, our sensitivity analysis method relies on identifying 

possible future changes in independent variables. Thus, to understand the sensitivity of water 

availability to changes in  , we need a method that can predict how   may change in the future 

for each district. Kumar et al. (2016) provide a global scale GCM based analysis of possible 

changes in   in the future. However, their analysis was carried out with coarse resolution GCM 

data. Given the issues with raw GCM data to adequately reproduce the historical estimates of 

water availability as discussed earlier, we have opted here to not to explore possible effects of 

changes in   in the future. Thus, characterizing future uncertainty in   is an important area to 

be explored in future work. 

Our estimates of freshwater availability are conditioned on a hydro-climatic database and 

as such they do not consider the role of technology in enabling access to water, water quality 

issues, and temporal variability of water supply. Global scale analyses have shown that these 

additional factors further constrain water availability [van Vliet et al. (2017)]. Uncertainties are 

also introduced due to the choice of method used for estimating PET  from temperature data 

[Milly and Dunne (2016)]. More physically based estimation methods may provide accurate 

estimates but require greater data support. We also ignore the role of deeply mined groundwater in 

alleviating water stress, by focusing only on renewable shallow groundwater. This assumption 

does not take away from the utility of this analysis as many parts of India are already at their limits 
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of groundwater abstraction and perhaps it is prudent to estimate and plan for renewable water 

resources [Wada et al. (2012); Anantha (2013); Lapworth et al. (2014)]. 

 

5. Conclusions 

Preventing a transition from 1.5°C to 2.0°C global warming levels is likely advantageous due to 

the certainty of reduction in per capita water availability under 2.0°C warming. We find that the 

number of people likely to face severe water scarcity (PCWA < 500 3 / /m year capita ) increase 

from 354 million to 421 million as we transition from 1.5°C to 2.0°C warming levels. We also 

conclude that it is not just climatic changes that will govern the future of water availability in India 

but also population changes. Using SSPs that depict likely changes in population, we show that 

despite certainty of precipitation increase under 3.0°C warming, water availability remains 

uncertain or decreases as compared to the historical baseline due to compensatory role of 

population increase. 

The sensitivity analysis revealed interesting spatial patterns of relative importance of 

climate and population in controlling PCWA. Changes in PCWA are driven by both population 

increases and mean annual precipitation changes, while changes in mean annual potential 

evapotranspiration plays a secondary role. Thus, it revealed that temperature change itself is not a 

major driver of water stress, precipitation change is. Also, we show that population change plays a 

major role in controlling water stress in many regions, an observation confirmed by previous 

studies. Our main contribution is to show that the factor that dominates most in a region depends 

upon the regions historical climatic and population settings, an observation previously unexplored. 

Areas with relatively lower populations and greater historical PCWA tend to be more sensitive to 

population changes, while others are more sensitive to precipitation changes. This indicates that 

policies need to account for the possibility that each region is unique and will respond to initiatives 

depending upon its own climatic and socio-economic history. Thus, socio-economic policies will 

have an important role to play alongside policies related to climate change abatement in 

determining the future of water security in India. 

Our analysis highlights the complex interactions of population growth, rising temperatures 

and changing precipitation that influence future water availability. In most cases, projected 

increases in precipitation do not translate directly to increasing per capita water availability, as 
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they are offset by increasing temperature and population. Despite considerable spatial variability 

in the projected changes, there is a strong agreement among GCM–RCP–SSP combinations that 

over majority of India PCWA will decrease in the future. Our analyses only considered freshwater 

available in rivers and shallow groundwater, generally termed as blue water. Further analyses need 

to consider the role of green water (water transpired by plants) and virtual water trade (water 

embedded in products) in affecting water availability. 
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Figure 1: The methodology used to estimate per capita water availability (PCWA). Long–term 

mean values of historical precipitation (P), potential evapotranspiration (PET), and actual 

evapotranspiration (AET) are assimilated within a probabilistic Budyko framework that predicts 

water availability as P–AET for each district. Using historical population data, PCWA is 

estimated. Future climate and population information from climate models (GCMs) and 

socio-economic models (SSPs) is then used to predict future PCWA followed by sensitivity 

analysis. 

 

Figure 2: Projections of median change in (a-c) long–term precipitation ( P ), and (d-f) long–term 

potential evapotranspiration ( PET ), across 5 GCMs and 3 RCPs for each district. The change is 

estimated for 30-year windows that result in a) 1.5°C, b) 2.0°C, and c) 3°C rise in global mean 

temperature compared to preindustrial levels. Color denotes the median of the change relative to 

the baseline values (1971-2000) across all GCM–RCP combinations. Transparency denotes the 

degree of agreement between different GCM–RCP combinations on the direction of change 

ranging from white (no agreement) to solid color (full agreement). Note that not all GCM–RCP 

combinations may result in a given warming level; these are ignored while estimating the median. 

 

Figure 3: Same as Figure 2 but for projected changes in population as provided by 5 SSPs. 

 

Figure 4: Same as Figure 2 but for projected changes in the median of PCWA as estimated by the 

probabilistic Budyko framework using climate and population projections for time periods with 

1.5°C, 2.0°C, and 3.0°C rise in global mean temperature. The baseline period for estimating 

relative change is 1971-2000. 

 

Figure 5: Ranges of sensitivity index quantified via the median KS–Statistic (x-axis) for changes 

in long–term precipitation ( P ), potential evapotranspiration ( PET ) and population (Pop). The 

boxplot shows the median and the interquartile range of the sensitivity index across all districts 

with available data. Greater values indicate greater sensitivity of PCWA to a given factor. 

 

Figure 6: Relative importance of changes in long–term precipitation ( P , blue), long–term 

potential evapotranspiration ( PET , red), and population (POP, green) across all districts in India 
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where data was available. The spatial distribution of factors with a) first, b) second, and c) third 

highest sensitivity index is shown. 

 

Figure 7: The relative importance of P , PET , and population in controlling PCWA. Each panel 

shows the importance of a factor across the range of historical values of a) P , b) PET , c) aridity 

index ( PET / P ), and d) population. In each panel, the length of a colored vertical bar (y-axis) 

denotes the number of districts for which the particular factor ranked first: blue for P , red for 

PET , and green for population. 

 

Figure 8: Same as Figure 2 but for projected estimates of PCWA. 
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Highlights 

 We quantify the per capita water availability across India for 1.5°C, 2.0°C and 3.0°C levels of 

global warming  

 We show that, for most regions in India, there is a considerable reduction in per capita water 

availability for the transition from 1.5°C to 2.0°C warming  

 We propose a method to quantify the sensitivity of per capita water availability to changes in 

climate and population  

 We show that per capita water availability can be most sensitive to either historical population 

or historical mean annual precipitation  

 The historical socio-economic and climatic settings of a region determine the dominance of 

factors 
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