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Abstract

Aliphatic amines are important constituents of itterine environment. However, their
biogenic origins, formation processes and roleatmospheric chemistry are still not well
understood. Here we present measurements of mohgia®ine (MMA), dimethylamine
(DMA) and diethylamine (DEA) from two intensive splimg campaigns at the Cape Verde
Atmospheric Observatory (CVAO), a remote marindi@bain the tropical Atlantic Ocean.
The amines were measured in the sea surface mjergl@8ML), in bulk seawater, in the gas
and the submicron particulate aerosol phase. Auditly, a 24-month record of amine
concentrations in aerosol particles, together witter particle constituents and biological and
meteorological parameters, is presented. In the SiHan amine concentrations were in the
range 20-50 nmol't The correlation of the amines to chlorophyll-& R0.52)and the
abundance of the diatom pigment fucoxanthin maicatd that amines were formed via algal
production. Amine concentrations in the gas andiqdate aerosol phases were dominated
by DMA, with average concentrations of 4.5 ng and 5.6 ng i, respectively. Average
MMA concentrations were 0.8 ngfin the gas phase and 0.2 ng in the particle phase.
DEA was present in the particle phase with an @eeoncentration of 3.9 nginbut was
not detected in the gas phase. Sea to air fluxeSIi@A and DMA were calculated from the
seawater and gaseous amine concentrations; theed fram -8.7 E-14 to +4.0 E-13 mol'm
s* and from -1.9 E-12 to +2.17 E-12 mol’ms, respectively. While the flux for MMA was
mainly positive, suggesting an oceanic source ligg &nalyte, the flux for DMA could be
both positive and negative, indicating that 2-wagnsport may be occurring. Principal
component analysis of the 24-month dataset of animeerosol particles revealed that the
particulate amines were not directly linked to ithentified sources. It seems that the transfer
of amines was being determined by gas to particleversion rather than via primary
processes. The correlation of both seawater- asghlgase- amines with biological indicators
suggests that they were partly linked and thatattne abundance in the atmosphere (gas
phase) reflected biological processes in seawiateontrast, particulate amine concentrations
did not show such a direct response and might hather significant sources and
environmental drivers.

Keywords: amines, marine atmosphere, sea surfao®layer, aerosol particles, sea-air-flux



81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

1 Introduction

Aliphatic amines are dynamic organic nitrogen coonus; they are ubiquitous in the
marine environment. Several studies have identifggroximately 150 amines in the
atmosphere and demonstrate that the ocean is aiwvggrtant natural source for these
volatile compounds (Ge et al., 2011a, b; Lee analgve2013).

Amines can be produced and consumed by differemiskiof phytoplankton and
bacteria (references in Gibb et al, 1999a). They @leased via direct emission from
phytoplankton as well as via degradation of orgamatter that contains proteins, amino acids
or other nitrogen-bearing compounds (King, 1988)difionally, biological degradation of
quaternary nitrogen osmolytes 4R, where R is an alkyl substituent on the N atom) is
proposed as a major source of methylamines in deawWBeale and Airs, 2016). These
osmolytes, such as glycine betaine (GBT), trimetinghe N-oxide (TMAO) and choline are
produced by marine organisms to maintain osmoesgure (Burg and Ferraris, 2008). Once
released from phytoplankton cells to the environim®npassive diffusion, during ‘sloppy’
grazing, or through cell lysis, they can be degdaolg bacteria to trimethylamine and further
modified to less-substituted methylamines. Pathwéys the degradation of nitrogen
osmolytes are starting to be elucidated. Model miggas of the marine roseobacter clade
(MRC) have been shown to grow on choline and GBtheas sole carbon source, resulting in
remineralisation to ammonia (Lidbury et al., 201%#)ilst MRC have also been shown to use
TMAOQO as an energy resource (Lidbury et al., 2019} degradation of TMAO has also
been demonstrated in members of the Pelagibacidratderia (SAR11 clade) (Lidbury et al.,
2014). In addition, marine metagenomics data-mirtiag identified the presence of genes
encoding the production of trimethylamine from ogen osmolytes in the open ocean
(Jameson et al., 2016). The methylated amines, sdin@and trimethylamine (MMA, DMA
and TMA, respectively), can provide a source ofboar and nitrogen for marine
microorganisms (Taubert et al., 2017). Recent studhow that heterotrophic bacteria utilize
methylamines (specifically TMA) as a supplementmgrgy source (Lidbury et al., 2015b).

In seawater, although the solvated amine catioitajly accounts for more than 90%
of the total dissolved amine concentration, thenarge of gaseous methylamines across the
sea-air interface is likely to represent an impuriass from the aqueous cycle, as reduced
nitrogen is an essential nutrient. The oceanic gxpibthe methyl amines may constitute a
potentially important source of basic compoundstite remote atmosphere (Gibb et al.,
1999a; Almeida et al., 2013). However, these fluxescurrently poorly characterized, which
makes their impact on atmospheric composition uauer

In the atmosphere, the high vapour pressure ofrtblecular weight amines explains
their presence in the atmospheric gas phase. Haowaeeording to their thermodynamic
properties, amines are likely to form aminium salith atmospheric acids resulting in the
formation of secondary aerosol mass (Ge et al.120They are highly water-soluble with an
acid dissociation constant (pKaround 10 (Christensen et al., 1969) and cantipartinto
acidic particles and neutralize them. In laboratsinydies, amines displaced ammonium from
inorganic salts to form aminium salts (Kurten ef aD08). The degree to which the amines
are scavenged by aqueous aerosol particles iy ldeggendent on the @Kof the amine and

the relative humidity. Recent laboratory studieslartine the importance of amines in new
3
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particle formation as a function of water vapor #mel concentration of gaseous precursors. It
was shown that, despite being 1 to 3 orders of madgless abundant than ammonia, amines
could still drive new particle formation (Chen dt, 2015; 2016). Furthermore, aliphatic
amines have a higher nucleation capability witHusid acid than ammonium (Glasoe et al.,
2015) and have high potential to stabilize sulfaged clusters (Jen et al., 2014). Pratt et al.,
(2009) investigated seasonal dependencies of ammpegaticle phase amines and found a
strong seasonal variation in gas to particle paniihg of alkyl amines suggesting that the
acidity of the particles greatly affected the gaparticle partitioning of amine species. Cape
et al., (2011) reviewed sources and methods fod#termination of organic nitrogen in the
atmosphere. Dall'Osto et al., (2017) underlinedt thi@anic nitrogen represents a large
fraction of total airborne nitrogen in gas partgcland dissolved phases, where aliphatic
amines are of interest due to their possible k&yironucleation (Kurten et al., 2008). In size-
resolved field measurements over the ocean, theekigamine concentrations were detected
in sub-micrometer particles (Facchini et al., 2088jller et al., 2009), and contributed a
significant amount to marine aerosol mass of upli#h. These observations correspond with
the outcome of theoretical considerations indigatinat aliphatic amines could form new
particles, similar to ammonia. Amine measuremeht8lace Head, Ireland (Facchini et al.,
2008) varied seasonally, correlating with otherinm@biogenic compounds, such as methane
sulfonic acid, a dimethylsulfide oxidation interniege, or non-sea-salt sulfate (nss,;S0As
such, the amines were assumed to be of marinerbmgegins. A link between particulate
amine occurrence and biological formation procesgas identified in the remote Atlantic
Ocean (Mduller et al., 2009; van Pinxteren et &1%) and in the Pacific Ocean (Yu et al.,
2016; Xie et al., 2018). Additionally, Finessi dt €012) identified marine sources for
amines on aerosol particles. Dall'Osto et al. (20 posed nitrogenated and aliphatic
organic vapors of marine origin (including alipltaimines) as possible drivers for marine
secondary organic aerosol growth. Miyazaki et @010) found that organic nitrogen and
carbon were twice as abundant in aerosols colleatedn oceanic region with higher
biological productivity compared to regions witlwier productivity. They underlined that the
enrichment of organic nitrogen was likely linkedoweanic biological activity and that the sea
surface was a source of organic nitrogen to rematene air.

Despite these findings, there are few measuremespgcially on longer time scales,
of amine concentrations in the remote ocean toruoh@te the roles of these small volatile
basic compounds in atmospheric processes, in addiiknowledge of their biogenic origins
and the formation processes. Most recent studadsgdarallel measurements of the amines in
the different marine phases as few have been cteditgimultaneously on both aerosol
particle and gas phase amines in pristine marigiems.

The aim of this work was to investigate the aburdarrigins and air-sea fluxes of
the low molecular weight aliphatic amines, namelylAM DMA and diethylamine (DEA), as
well as their tendency to convert to the partidege. Furthermore, we aimed to improve
understanding of the importance of oceanic bio-petigity and meteorological parameters to
amine formation. Concerted field measurements yeréormed, comprising measurements
of the amines in oceanic seawater (bulk water &adssirface microlayer, SML), in the gas
phase and in the submicron particulate phase remate marine environment. Finally, long-
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term measurements over a 24-month time series wfeaconcentrations in submicron aerosol
particles were performed to elucidate sources aadacteristics of these compounds.

2 Experiment

2.1 Sampling site

Field experiments were performed at the Cape Vekttmospheric Observatory
(CVAO), a remote marine station in the tropicalaitic Ocean, situated on the island of Sao
Vicente (16° 51' 49" N. 24° 52' 02" S). The statioexplained in detail in Carpenter et al.,
(2010) and Fomba et al., (2014). During winter (Ereber — February) the CVAO is
primarily influenced by desert dust, with air masseming from the Saharan, while from
spring till autumn the air masses mainly originfaten the open sea (northeastern inflow). At
the CVAO, year-round sampling of aerosol partickeperformed with different instruments.
During November 2011 and November 2013, two intensampaigns for seawater sampling
and gas phase sampling were carried out.

2.1.1 SML and bulkwater sampling

Water was sampled on board a fishing boat, withitistance of about 2 km from the
CVAOQO. The SML was sampled using the glass plateaggth (Cunliffe and Wurl, 2014). A
glass plate with a sampling area of 200 eras vertically immersed in the water and slowly
drawn upwards. The film that is attached to thdaser of the glass was taken off with a
framed Teflon wiper directly into a bottle (van Rieren et al., 2017). A uniform withdrawal
rate of about 10 cniswas consistently applied. Bulk seawater was satnipten a depth of
1 m into a glass bottle mounted on a telescopic Téd bottle was opened underwater to
avoid influences from the SML during bulk water gdimg. A fraction of each bulk water
sample (1-5 L) was filtered through Whatman GFHers (pore size: 0.7 um) for pigment
analysis (chl-a and fucoxanthin). All water samplesre stored in glass bottles at -20 °C
before analysis. Blank samples were collected bgliltg reagent water into bottles (the same
kind used for the purpose of bulk water/SML sangliThese bottles were taken to the field
and subjected to the same procedures applied tdiglte samples, such as filtering and
freezing. All materials were pre-cleaned extengivasing a 10% HCI solution and high
purity water. Within the two campaigns, 14 samgieSML and 7 bulk water) were obtained.

2.1.2 Aerosol particle sampling

The aerosol sampler was installed at the CVAO faight of 30 m on top of a tower
located directly at the coast. The sampling of s@r@articles for amine analysis was
conducted using a low volume sampler @@Mquipped with 47 mm PTFE filters (Fiberfilm
Wicom, Heppenheim, Germany). Additional particlanpéing at the CVAO station was
performed using a high-volume Digitel sampler DH@-8Valter Riemer Messtechnik.
Germany). Aerosol particles (RMwere collected on preheated 150 mm quartz fithers
(Minktell. MK 360) at a flow rate of 700 L mith Sampling time was 24 h from 12:00 to

5
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12:00 (UTC). After sampling, filters were storedalluminum boxes at -20 °C and transported
in a cooling container (-20 °C) to the TROPOS lalbares in Leipzig, Germany.

2.1.3 Gas phase sampling

The gas sampling device consisted of a gas/aepastitle sampling filter pack. It was
designed according to the filter pack describedGiyb et al., (1999a) and consisted of a
PTFE filter for aerosol particle sampling and aquddter coated with 0.01 M oxalic acid for
gaseous amine sampling. The filters were arrangelfuatrated in Figure 1. A PTFE net was
used to separate the aerosol particle filter aedgtis filter. In addition to the filter pack, a
“background” filter pack was deployed also conaigtof an aerosol particle filter and an
acidified gas filter but subject to zero gas floMfter probing, the filters were stored and
transported at -20 °C and analyzed in the labaeg@f TROPOS. Breakthrough was tested
by attaching a second acidified paper filter behihe paper filter in order to investigate
whether the amines were entirely captured on tisé fiiter. The second paper filter was free
of amines, and it was assumed that all gaseouseamwere retained on the first filter. The
number of extraction steps needed to extract themuan concentration of analytes to the
filter was tested, where a second extraction stepghe same filters was performed. No
analytes were found in the second extract and cetepmxtraction in the first step was
assumed. Quinn et al., (1990) performed inter-commpa studies of the filter pack systems
and showed that at ambient temperature (20—-25 ?@) lagh relative humidity (75%),
conditions similar to those at the Cape Verde adanhe acid coated filters had a collection
efficiency for ammonium close to 100%. Due to theager relative basicity of the amines, it
was assumed that the acid-base mode of amine sgmphks at least as efficient as for
ammonium (Gibb et al., 1999a).

2.1.4 Amine measur ementsin seawater

Analytical measurements of aliphatic amines in 8ML and in bulk water were
performed using ultra high performance liquid chabography with electrospray ionization
and Orbitrap mass spectrometry (UHPLC/ESI-OrbtHvép). To this end, a UHPLC system
(Vanquish Horizon UHPLC system, Thermo Fisher Sdief™, Waltham, Massachusetts,
USA) was coupled to an ESI-Orbitrap mass spectanf@e=xactive™ plus, Thermo Fisher
Scientific™, Waltham, Massachusetts, USA), applyihgtection in positive mode. The
separation was carried out on an ACQUITY UPLC® HBEScolumn (Waters, Eschborn,
Germany) with the following dimensions: 1.8 um, %1100 mm at 30 °C. The eluent
composition was (A) 0.2 vol% acetic acid in highripuwater (Millipore Elix 3 and Element
A10, Merck Millipore, Darmstadt, Germany) and (Bge&tonitrile (Optima® LC/MS Grade,
Fisher Scientific, Hampton, New Hampshire, USA) dhd separation was performed at a
flow rate of 0.3 mL miit. The eluent gradient program was as follows: 5%rBL min, 5% B
to 100% B in 16 min, 100% B held for 2 min, in @n back to 5% B and held for 3.9 min.
The duration of one analysis was 21 min. Befordyais the sample underwent a preparation
procedure comprising desalination, an enrichmedtderivatization steps. For desalination,
32 mL of the SML samples or 48 mL of the bulk wasamples were desalinated using

6
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Dionex™ OnGuard™Il Ag/H cartridges (Thermo Fisherciestific™, Waltham,
Massachusetts, USA). The volume of desalinated Emmpas reduced using a vacuum
concentrator at T = 30 °C to several pL (miVac sianfijpuo, GeneVac Ltd., Ipswich, United
Kingdom) and reconstituted in hugh purity water diigerd using 0.2 um syringe filters
(Acrodisc-GHP; 25 mm, Pall Corporation, New YorkSA). The amines were derivatized
using an AccQ-Tag™ precolumn derivatization mettfd¢aters, Eschborn, Germany) as
described in Miller et al., (2009). Amines concatins were calculated via external
calibration, with each sample measured in dupljcatel all values were corrected for field
blanks.

Further analyses of water samples were performéuedtniversity of Plymouth, UK,
using solid phase microextraction, gas chromatdgpamd nitrogen phosphorous detection
(SPME-GC-NPD) according to Cree et al., (2018)biief, 850 mL of the acidified filtered
sample was adjusted to pH 13.4 with sodium hydmsiolution (10 M) to convert the amines
to their gaseous form. The volumetric flask wasitimeemediately closed with a Suba-seal and
the SPME fibre inserted to the headspace of thepksarA mixture of polydimethylsiloxane
and divinylbenzene (PDMS-DVB) served as the SPNberficoating and effective extraction
material for the amines. After stirring for 2.5 mewat 60 °C, the SPME fiber was removed
then inserted into a GC injector for analyte sefiamaon a CP-Volamine column. The
analytes were detected using a nitrogen-phosplaetiector (NPD), a selective and sensitive
detection method for nitrogen-containing compounds.

2.1.5 Amine measurementsin the gas and particle phase

For amine analysis in the gas and particle phagePTFE filters (particulate amines)
and the coated paper filters (gas phase amine®) extracted in deionised water by shaking
for 2 h and measured on an ion chromatography giG)em (ICS3000, Dionex, Sunnyvale,
CA, USA) equipped with an lonPac CG16 guard coly@ix 50 mm) and an lonPac CS16
separation column (3 x 250 mm) at 60 °C. Separatvas achieved using a gradient of
methane sulfonic acid, at an initial concentratd® mM increasing to 15 mM (20 min) then
30 mM (30 min), and finally to 50 mM (31 min), whievas held until the end of the IC run
(42 min) (a more detailed account can be foundaim Rinxteren et al., (2015)). Field blanks
were obtained by inserting the filters into the plen for a duration of 24 hours without
loading them. Three field blanks were collectedirtyithe course of each campaign. The
filter concentrations for the coated paper phastersi (gas phase amines) were blank-
corrected, with blank values typically below 10% tbe filter concentrations. The amine
concentrations in the PTFE filters blanks were Wetloe detection limits of the methods.

From the quartz fiber filters, analysis of orgao&bon (OC), elemental carbon (EC),
water soluble organic carbon (WSOC) and the maidnganic ions calcium, sodium, sulfate,
chloride, and nitrate was performed as describddiitier et al., (2010) and van Pinxteren et
al., (2015; 2017).

Amine concentrations in all seawater and atmosphehnases were correlated to a
number of different variables to elucidate theisgible origins. If not stated otherwise, all
reported correlations were statistically significaha significance level af = 0.05.
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2.2 Chl-a, pigment and wind data

Chl-a is a commonly applied indicator for descrgolological activity in the surface
ocean (O'Dowd et al., 2004; de Leeuw et al.,, 20Chl-a values can be estimated from
satellite retrievals as well as from seawater mmegseants. During the intensive campaigns,
when seawater sampling was performed, concentgtioin chl-a and other pigments
(fucoxanthin, phaeophytin and lutein) were measuusthg HPLC with fluorescence
detection (Dionex, Sunnyvale, CA. USA). Briefly, &GFfilters were extracted in 5 mL
ethanol, and 20 pL aliquots of the extract weredtgd into the HPLC and the pigments
separated under gradient elution using methanabtaitele/water systems as mobile phase
solvents. For the interpretation of biological pwotivity during the 24-month time series,
chl-a concentrations were also obtained from seeaktrievals provided by the Ocean Color
Web operated by the NASA (http://oceancolor.gsfeangov/. 30.07.18). The concentrations
were obtained using MODIS-AQUA and MODIS-TERRA wiitha radius of 1° from the
sampling location and then averaged in order tal&ita gaps due to cloud coverage.

Wind speed measurements were achieved from thesDaather station at the CVAO
tower, provided by the BADC portal htfp:/data.ceda.ac.uk/badc/capeverde/data/cv-met-
davis/.30.07.1R

2.3 Back trajectories

Information regarding air mass origins was derifreth back trajectory analyses. Seven-day
back trajectories were calculated hourly within thempling intervals using the NOAA
HYSPLIT (HYbrid Single-Particle Lagrangian Integedt Trajectory model (Draxier and
Hess, 1998 and refs. therein) in the ensemble muttiean arrival height of 500 + 250 m (van
Pinxteren et al., 2010).

2.4 Calculation of amine sea-air fluxes

A commonly applied procedure to calculate the fidxa trace gas across the sea-air
interface is the application of a ‘two-phase’ resnge model of gas exchange (Liss and Slater,
1974). This model includes the measured conceotrgjradient of the trace gas across the
interface, and the transfer velocity. The mass Buxnol m? s?) of a certain trace gas across
the sea—air interface was expressed accordinguatiegs 1 and 2:

F=ke(cw—cq/H) (1)
with

= ! +1/Hk
kt - kw / a

)
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Where C,, and Cy are the seawater and gaseous concentrationsctiespe The seawater
concentration requires free gaseous dissolved aliplamines. MMA and DMA havelp
values of 10.64 and 10.73, respectively (Christereteal., 1969). At the pH of seawater (7.8
to 8.2), most of the dissolved MMA and DMA in seasvas protonated. The non-protonated
seawater concentration was calculated for purentgt&quation 3:

PHsea — PKa )

Gy = Copx 1000 1 ©
Where the parameté; represents the measured concentration as the fsmamgrotonated
and protonated amine form. From this approach, Oa#%b 0.3% of MMA and DMA were
non-protonated, respectively. The effect of salinkas not measured and therefore not
considered. However, assuming the calculation ntetdidsibb et al., (1999a) with a salinity
of 36 PSU the non-protonated ratio ranged for MM@nf 0.29% to 0.32% and for DMA
from 0.24% to 0.26% from 10 °C to 28 °C. Consedqyetihe calculated values in this study
represent upper limits but are close to reakhtys the dimensionless gas- over-liquid form of
the Henry’'s law constant. The parameter, andk, are the respective total, liquid and air
mass transfer coefficients (if)s The inverse ok, andk, are the respective water-side and
air-side resistances. Both transfer coefficientsewealculated according to the preferred
parameterizations (Equation 4) described in détaiCarpenter et al., (2012). The water side
resistancex, was calculated according to the approach of Nigialm et al., (2000).

k,, (cmhr=1) = (0.222u?, + 0.333u10)(5650”3)—1/2) (4)

Where yg is the wind speed (m’ at 10 m andy is the Schmidt number of the gas of
interest in waterS:,, was calculated according to Equation 5 with thepeeterisation given
in Khalil et al., (1999).

S, = 335.6M/2(1 - 0.065T + 0.00204FT+0.000026F) (5)

The air side resistanég was calculated according to Equation 6 from John§010).

k, = 1x10° + S
13.3x§/2 + Cy/2 + 5 + e

(6)

The coefficient u* is the friction velocitysc, is the Schmidt number of the gas of interest in
the air,Cp is the drag coefficient arklis the Karman constant, which typically has a gaiti
0.4 in air (Carpenter et al., 2012). The requiréusion coefficient of the gas in air to
calculateS:, is calculated according to the approach of Fudferl., (1966). The friction
velocity u* is related to the wind speed by the drag coedffitCp and defined as follows in
Equation 7:
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The drag coefficient was calculated following tleeniulation of Johnson (2010) in Equation
8.

10%cp = 0.61 + 0.063w, (8)

The reorganisation of (8) and insertion into (7ade to u*. Further physicochemical
parameters of MMA and DMA used for the calculationsthis study are given in the Sl
(Table S1).

3 Results and Discussion
3.1 Intensive campaignsin November 2011 and 2013

3.1.1 Aminesin seawater

Table 1 presents the concentrations of the amimélsel SML and in the bulk water.
The amines were present in the SML samples in thel ! range, with two outliers
showing higher concentrations of DMA on the d2d 19 of November, 2013, that were
confirmed by replicate analysis (standard deviatidmelow 20%). In most of the
corresponding bulk water samples, the amines were detected. For all data, the
concentration of amines in the SML was quite simiaverage: 19 to 53 nmol*t. median: 11
to 22 nmol ). For the two intensive campaigns in 2011 and 2€48average concentration
of MMA was reasonably constant at 19 nmét (min.: 5 nmol [, max.: 33 nmol L).
Greater variability was observed for DMA (avera@ernol L, min.: 2 nmol !, max.: 197
nmol L) with higher variations in 2013. Significant contmtion differences were, however,
only detected for DEA within the two campaigns (evey anovap = 0.003). In 2011 the
DEA concentrations were twice as high as in 2023v& 11 nmol ).

The concentrations of the amines were at the sader of magnitude, though on the
upper end, compared to measurements from othenenatations, such as the Arabian Sea
(Gibb et al., 1999a) or the Baltic Sea (van Piredest al., 2012).

As only one out of seven bulkwater sample contairsdines at detectable
concentrations (Tablel), it can be concluded thasé¢ concentrations were not representative
of the underlying water in this area. Bulk watencentrations appeared to be much below the
SML concentrations. This finding could be explair®dthe strong enriching capabilities of
the SML for nitrogen-containing compounds (e.g.r@@ler et al., 2008). It is also possible
that amines are formed in the SML.

In the present study, the amine concentrations staavcorrelation with chl-aRf =
0.53, Fig. Sla), which is applied as a broad irtdicaf biological activity. To elucidate
further phytoplankton groups, we additionally meadu the pigments fucoxanthin,
phaeophytin and lutein. Among these pigments, @untpxanthin was detected; it showed a
weak positive correlation with the amines in the ISGR = 0.26, Fig S1b). Fucoxanthin
belongs to the group of xanthophylls and, in additio chl-a, fucoxanthin acts as a dye in the
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chloroplasts of diatoms and can, therefore, berdeghas a marker for diatoms (Cantonati et
al., 2009). It should noted that both the correladi of amines with chl-a and fucoxanthin
were based on a small number of data points (ie6ror 7). With p-values of 0.06 and 0.30,
respectively, they were statistically not signifitaat a significance level ofi = 0.05.
However, the visual trend observed in Fig. S1 isiradication that the amines might be
formed through algal production dynamics, as algmested by Gibb et al., (19998hd are
therefore partly linked to oceanic bioproductiohedly, more data are needed to support this
hypothesis.

The methylamine precursor, glycine betaine (GBW®s been measured previously
over a seasonal cycle, in the English Channel, ambsitive correlation with chl-a was
observed. Cree (2014) found that 7 of 10 primagmants also correlated positively with
GBT, including fucoxanthin, while a close relatibis of both GBT and chl-a with
phytoplankton carbon was observed. Although baxtenay be the primary source of
methylamines in the water column (Lidbury et al012; Lidbury et al.,, 2015a; 2015b;
Jameson et al.,, 2016), their short residence ti@reg et al., 2018) indicates that both
phytoplankton and bacteria play a role in methylarabundance and dynamics.

Regarding the biological cycling of amines, Steiaed Hartmann, (1968) discovered
that a wide range of alkylamines was present irfetifit kinds of algae (in detail:
rhodophyceen = red algae; phaeophyceen = browe alga chlorophyceen = green algae). In
rhodophyceen, they also detected amino acid cal@esywhich converts specific neutral
amino acids to amines. These enzymes are widdiyidited in marine algal species and their
high concentrations suggest that amine formati@andacarboxylation of amino acids might
substantially contribute to the abundance of pnnmaarine amines (Hartmann, 1972). In the
Cape Verdean seawater, a wide range of amino aaids as leucine, alanine, valine, glycine
and phenyl alanine are present at similar (or higb@encentration ranges to amines (personal
communication: Triesch et al., publication in pneji@n). However, formation of MMA (the
only primary amine measured in this study) froncgig has not been reported to date and the
degradation of TMA to DMA and MMA is an alternatif@mation pathway (Lidbury et al.,
2014; Lidbury et al., 2015a, b). More measureménts specific enzymes) would be needed
to elucidate the range of formation mechanism$&efethylamines.

It is likely that the cycling of amines in the ageis related to a variety of biological
and microbial parameters, which cannot be accoufdedvithin the scope of the present
study. Recently, Suleiman et al., (2016) showed thteractions between diatoms and
heterotrophic bacteria can be important for madmene cycling. In another study, Gibb et
al., (1999b) found evidence for amine productiora \the phytoplankton group of
dinoflagellates (together with diatoms). Measuretmenf the diagnostic pigments of
dinoflagellates (e.g. peridin, Uitz et al., 200@\v&, however, not been included in the present
study. Moreover, it has to be considered that,he present study, chl-a and pigment
concentration measurements could be obtained ooiy foulk water measurements, but
amine concentrations were observed almost exclysivéhe SML. It had been reported that
the SML neuston community can differ from the comityin bulk water (e.g. Cunliffe et
al.,, 2011. Therefore, it would surely be beneficial include biological measurements
(phytoplankton and bacteria parameters) directiynfthe SML in future studies. This would
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also help to answer the question of whether thenasnare formed in the SML or transported
to the ocean surface from the underlying water.

Such measurements are challenging due to theetinsample availability of SML
volume, at least with manual sampling techniques] at difficult (stormy) sampling
conditions. Nevertheless, studying bacteria andlapgecies explicitly in the SML should to
be tackled in future research for understandinghbiogeochemical cycle of amines in the
ocean.

3.1.2 Aminesin the atmosphere

Table 2 lists the amine concentrations in the gabkthe particulate phases together
with chl-a, wind speed, and particulate ammoniurd aulfate concentration from the two
intensive campaigns in 2011 and 2013. Both samjpimgs can be regarded as clean marine
case studies, since the back trajectories had wa hgh residence time over the ocean.
Furthermore, the concentrations of elemental cadomh calcium (tracers for anthropogenic
influence and dust events, respectively) were gdlyefow and consistent with marine
measurements (more details and the correspondiagcda be found in van Pinxteren et al.,
2017). Table 2 shows that the amines were presdmth the gaseous and particulate phase,
respectively, at the same order of magnitude.

Concentrations of MMA ranged from 0.2 ng*r(0.2 ppt) to 1.8 ng M (1.4 ppt) with
an average of 0.8 ng' (0.6 ppt) in the gas phase, and from 0 NYtm0.6 ng 1t (average:
0.2 ng n) in the particle phase. The DMA concentrationggehfrom 0.8 ng i (0.4 ppt) to
19.2 ng ¥ (10 ppt) with an average of 4.5 ng*r(2.4 ppt) in the gas phase, and from 2.2 ng
m3 to 13 ng nt (average: 5.6 ng M in the particle phase. The sum of the amine
concentrations in the particulate phase was natifgigntly different between these two
campaigns (one-way anova, p = 0.12). In the gasehaowever, the amine concentration
was significant different (one-way anova, p = 6:5)Ebeing higher in 2013 (Fig. 2). The
measured gas-phase concentrations of DMA during2@18 campaign were above 3 ppt.
Almeida et al., (2013) found that, if DMA reacheasgous concentrations of 3 ppt, new
particle formation rates with sulfuric acid are anbed 1000-fold compared with ammonia.
Consequently, these results suggest that DMA cbelldery important for initialising particle
nucleation in the marine boundary layer.

The concentration ranges of gas and particulatenesnagreed well with amine
measurements in other marine regions, such asdge@BBengal (Gibb et al., 1999a). In the
particulate phase the amines contributed, on aeer@® (min 2%, max. 13%) to the water
soluble organic carbon content, which is within Same order of magnitude as previous
studies (Facchini et al.,, 2008), and confirms thase basic compounds comprise a
substantial fraction of submicron water solubleamig carbon.

The gas phase amines (i.e. MMA and DMA) were stiprgrrelated to both chl-a
and to the pigment fucoxanthin (Fig. 3a,b). Thisaration agreed well with the correlation
between the amines and the biological indicatorsemwater (Section 3.1.1). Correlating the
amine concentrations in seawater with their gas@ltancentrations showed a mild positive
trend & = 0.37, Fig. S2). Again, based on a very small lpenof SML data points and p-
values of 0.15 this correlation was statisticalbt significant at a significance level af=

12



506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

0.05. However, the visual trend that is observablEig. S2, indicates that the variability in
the gas phase slightly followed the variabilitythe seawater. Amines are short-lived in the
gas phase; their lifetimes with respect to the bygrradical reaction are in the order of hours
(Nielsen et al., 2012). Therefore, their link tee thiological tracers chl-a and fucoxanthin
suggests that their formation process and tramsfére gas phase are at least in part linked to
marine (diatom) productivity.

A mild correlation of the gaseous amines with wapeed and sodium (Fig 3c, d) was
found. It is known that the SML is strongly pronged during calm conditions and acts as a
physical barrier, causing a damping of wave fororaind reduced gas transfer (e.g. Liss and
Duce, 1997; Cunliffe et al., 2013; Engel et al. 120 During stronger winds, the SML
coverage is usually less prominent, which may ogusetly enhance the transfer of the
volatile amines from the water to the gas phasea lrevious study, van Pinxteren et al.
(2012) reported that the transfer of amines toatineosphere increased at higher wind speeds
due to enhanced wave formation. These findingsirar@greement with the present study,
however, detailed mechanisms can not be conclueed h

Gas phase amines were also correlated to solati@uiand particulate oxalate (Fig.
3e, f), the latter being a tracer for secondaryanig aerosol (SOA) formation (van Pinxteren
et al., 2014). This correlation suggests that faiwnaof amines and their transfer to the gas
phase is supported by photochemical processesistamtswith data reported by Facchini et
al., (2008).

3.1.3 Partitioning between gas and aer osol particle phase

In this data set, both the gas and particulateggha®re dominated by DMA and only
traces of MMA with slightly higher concentrations the gaseous phase. DEA was absent in
the gas phase, which might be a consequence lofaes vapour pressure (boiling point, b.p.:
55 °C) compared to the other amines measured (MMA.: -6.3 °C, DMA: b.p.: 7.4 °C;
(Weast, 1986)). This suggests that either DEAasdferred directly from the seawater to the
aerosol particle phase (via primary processes asdiubble bursting) or that gaseous DEA is
immediately scavenged by the aerosol particle phlasi&boratory studies it was observed
that gaseous amines were irreversibly taken upargolfuric acid solution (mimicking acidic
aerosol particles) with the highest uptake coedfitirecorded for DEA (Shi et al., 2011). This
indicates that DEA, especially, can be rapidly $farred from the gaseous to particulate
phase. In the present study, the molar ratio of amuam to sulfate was always below two
(Table 2), suggesting that sulfate in the aerosoligges was not completely neutralized by
ammonium and that the particles were acidic, fawgue rapid transfer of DEA from the
gaseous to the (acidic) particle phase

In acidic particles, the amines will be protonated remain in the particle phase as
sorbed compounds. Therefore, it would be expedtatl the more acidic the particles, the
more amines partition in the particle phase (ergttRet al., 2009). Such observations were
reported for the gas to particle partitioning of ia@s in continental areas with strong
variations in particulate sulfate and pronounceanges in day and night temperatures (You
et al., 2014; Pratt et al.,, 2009). In the presentlys however, a correlation of particulate
amines with sulfate concentrations or the molaorat ammonium to sulfate (as a tracer for
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particle acidity) was not apparent. Furthermore, thtio between the particle and the gas
phase amines was not correlated to sulfate. Ontamagoon could be that the particulate
amines participate in further reactions; for examnphey may form aminium salts or salts
with other organic acids or high molecular weighbdqucts and therefore resist extraction
(Murphy et al., 2007)Such reactions might be different in the tropicalrime region with
little variation in temperature and humidity andlifferent aerosol composition compared to
continental regions. To further elucidate the fait¢he amines, their reaction products in the
marine particles would need to be studied. Howettegre is to date a lack of parallel
measurements of amines in the gas and particleephabe remote marine environment and
the relation to their respective aerosol charasties (e.g. chemical composition and
hygroscopicity). The amine concentrations repothtere expand the still limited database of
amines in the marine atmosphere; the characteyistiche particulate amines are further
discussed in Section 3.2.

3.1.4 Exchange of amines acrossthe air-sea interface

The exchange fluxes between sea and air were atdubpplying the ‘two-phase’
resistance model of gas exchange (Liss and Slag4). Concerning the measurements
conducted here, six pairs of DMA and four pairdA measurements in seawater and in
the gas phase (performed at the same time pericete wsed. From the respective
concentrations, the mass flux F was calculated #kgu 1). The input parameters were the
concentrations in the seawater (SML and bulk water)l the wind speed (Table 3).

The calculated ocean-atmosphere mass fluk¢safe listed in Table 3 and ranged
between -1.9 E-12 and +2.17 E-12 mof st. The majority of the fluxes for MMA were
positive, suggesting that in this area the oceanssurce of MMA. For DMA, however, the
ratio between positive and negative fluxes is nima@nced. This non-uniform trend suggests
that the ocean can act as either a sink or a séowrd@VIA. The calculated positive fluxes are
one to two orders of magnitude lower as the gldldg flux from the ocean, which ranges
from 1.4 E-11 mol if s* to 3.2 E-11 mol M s* (Paulot et al., 2015). However, MMA and
DMA can initialise much stronger nucleation ratieant NH. For example, in the laboratory
work of Glasoe et al., (2015) it was shown thattla® same gaseous sulfuric acid
concentrations, 2 ppt MMA or DMA initialise nucleat rates equivalent to 220 ppt BH
Hence, the positive fluxes can be crucial for mamew particle formation at the measuring
site. That the order of magnitude of the fluxeswall as the discovery that the oceans could
be either a source or a sink, is in agreement prgwious findings by Gibb et al., (1999a). It
is likely that the source/sink capabilities of theean vary due to different ambient conditions.
For example, during midday, when radiation is hgthand photochemistry is triggered,
oxidation reactions in the atmosphere might ochat, tin turn, affect the amine fluxes. In the
following, such oxidation reactions are exemplairilystrated for the reaction of the amines
with OH radicals. Amines are known to react fasthwOH radicals in the gas phase; the
determined experimental rate coefficients for MM#& around 2.0E-11 cirmoleculed s*
and for DMA around 6.5E-11 chmoleculed s* (Nielsen et al., 2010). The global mean OH
gas-phase concentration is 1.0E+6 moleculed ¢Rinlayson-Pitts and Pitts, 2000). The
corresponding calculated tropospheric lifetime & dnd 4 hours for MMA and DMA,
respectively. However, in the unpolluted marine ritary layer, the OH radical typically
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exhibits a diurnal behavior with measured maximuatues in the range from 2.0 to 7.0E+6
molecules crif around noon (Heard and Pilling, 2003; Stone et2012). Therefore, the
oxidation by OH radicals is assumed to be muchefadtiring midday resulting in a quick
oxidation of MMA and DMA as well as other aminesorSequently, amine gas-phase
concentrations and related amine emission fluxes expected to show a diurnal
concentration trend. Such diurnal variations cohlohvever, not be captured in the present
study as the gas phase concentrations consistgdsophase measurements with a 24-hour
average sampling time that was needed to meeteipeired sensitivity of the analytical
measurements. To this end, analytical techniquéls an enhanced sensitivity, as well as
better time resolution e.g. through online (atmesjg) measurements of amines to
investigate diurnal variability and diurnal fluxese highly desirable.

Another uncertainty in the flux calculation is thhe transfer of the amines between
the gaseous and the aerosol particle phase iscladed in the gas exchange model, and the
same holds true for wet deposition (though theetatine was mostly negligible at the
sampling area).

To roughly estimate the potential total amount mirees in the atmosphere based on
theoretical considerations, we used a simple agproeluding the pKa values of the amines,
a typical liquid water content (LWC) and pH-valuienoarine aerosol particles (Seinfeld and
Pandis, 2006; Herrmann et al., 2015; Fallona, 2088¢ording to the equations 9-12 (listed
in the Supplement), and applying the gas phaseecdrations of MMA and DMA measured
in the present study, we calculated the particude®sol concentration, assuming that the
amines in the particle phase mainly originated ftbengas phase and subsequent partitioning
processes between the gas and particle phase. Easeastudy, we applied the average
measured gas phase concentrations of MMA (0.8 fiyand DMA (4.5 ng i) from this
study, a LWC of 1le-4 g thand a pH-value of 4 (Herrmann et al., 2015; Fall@@09). The
calculated aerosol concentrations were 0.8 figanMMA and 3.3 ng rif for DMA resulting
in a total amount of atmospheric amines of 1.6 fitfon MMA and 7.8 ng rif for DMA. The
calculated values are in the same order of magmittmmpared to the ambient aerosol
concentrations obtained from this study (listedTable 2), indicating that the measured
concentrations were plausible and that the trardfamines from the gas phase could be an
important source for the particulate amines. Howgtdas to be noted that this estimation is
strongly affected by the LWC and the pH-value amalschanges in the input parameters can
have a big effect on the results. A further, moetailed exploration of such calculations,
including sensitivity and robustness tests, wilshbject of future studies.

Despite these limitations, the data presented Bepport the still limited body of
knowledge with respect to marine amine sea-aireffux

3.2 24-month dataset of amines on aerosol particles
3.2.1 Observations

While bulk seawater, SML and gas phase samplinddconly be performed during
the intensive measuring campaigns, aerosol pastatlthe CVAO were sampled continuously
over the years 2012 and 2013, with a typical samgplime of 72 hours. These data were
interpreted with respect to sources and charatiterisf the particulate amines. Figure 4
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illustrates the annual cycles of the particulateinemconcentrations together with chl-a
concentrations and sea surface temperature (S$€)ainine concentrations within the 24-
month were in the same order of magnitude with ayewalues of 12 ng frand 8 ng i in
2012 and 2013, respectively. This is consistenh w&ported amine concentrations in the
North Atlantic (Facchini et al., 2008). Miller etl.,a(2009) reported lower amine
concentrations in aerosol particles at the CVAOwdner, they only focused on particles
sampled with an impactor in a very narrow size eafigm 0.14 to 0.42 yum. The composition
of aliphatic amines changed during the 24-montlowf observation period. While in 2012,
both, DEA and DMA were the dominating amine specias2013 DEA was much less
abundant and occurred only during the summer mantlesnsiderable concentrations (June
/July 2013). This could be related to the signiiitya lower concentrations of DEA in the
SML in 2013 compared to 2011.

The chl-a concentration is mostly low in this regi@round 0.2 pg 1), but within
this 24-month observation period, some variatiothm chl-a abundance was apparent, with
two pronounced peaks in February 2012 and July 2618 4). These peaks in chl-a
coincided with a lower sea surface temperature JSShe lower SST could point to
upwelling influences that potentially bring nutrieich water to the region of the CVAO and
might trigger biological productivity in the oceahlowever, upwelling influences, their
seasonality and impacts on oceanic productivity rase well constrained for this region.
Figure 4 shows that the particulate amine conceotrgartly coincided with the high chl-
a/low SST period (February 2012). During other tisegies with high chl-a/low SST levels,
no elevated response in the particulate amine cwrat®ns was observed (July 2013). This
ambivalent behaviour points to varying sources lef amines that might depend on the
season. Another reason for this varying connedigtiveen chl-a and amine peaks could be a
time lag between the oceanic productivity and tagigulate amine abundance. Such delays
between the production of biological material dgrimgh chl-a periods and their release and
transfer to the particulate phase have been repf@®owd et al., 2015). Furthermore, there
might be other biological processes not reflectgcchi-a which need to be considered for
amine production.

The combination of the submicron particulate amimeasurements with biogeochemical
tracers from the 24-month time series revealed learcconnection of the amines to
submicron non-sea salt calcium (dust tracer) arlmmgzron non-sea salt sulfate (particle
acidity tracer). In addition, correlations to submn sodium and wind speed were absent. It
may be that since wind speed data represented emages value of 72 hours, short but
pronounced changes in the wind speed were notleigibthe average wind speed value.
However, Carpenter et al., (2010) showed that thmel wpeed generally exhibits strong and
repetitive cycles within each 72 hour period. Herteenporary maxima in wind speed are
similarly represented in each 72 hour mean valoeliudh mass is more pronounced in the
bigger aerosol particles and therefore acts asre mobust sea salt tracer when measured in
the supermicron aerosol particles. However, O'Dawal. (1993) presented evidence for
wind-speed-related submicron sea salt aerosol ptmiu Therefore, we conclude that the
missing connections of submicron particulate amiieewind and sodium imply that wind-
mediated processes, such as bubble-bursting, maydominantly determine the direct
transfer of amines to the particulate phase. Mgy, wind affects transfer of amines to the
gas phase (Section 3.1.2), but does not impacarhiaes™ distribution between the gas and
the particulate phase.
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3.2.2 Statistical source attribution of the submicron particulate amines

A principal component analysis (PCA) was appliedthe 24-month dataset of
particulate amines as a statistical procedure titqtively explore the potential sources of
the particulate amines. All key parameters, asdish Table 4, were included in the PCA to
support the interpretation of the principal compuse elemental carbon (EC) for primary
anthropogenic influences, WSOC for anthropogentt lsingenic organic emissions, non-sea
salt sulfate (non-ss sulfate), oxalate and ammorasrsecondary aerosol formation tracers, as
well as submicron potassium as a tracer for biorbassing. Chloride and sodium serve as
tracers for sea spray emission and non-ss calcgim teacer for desert dust. From the back
trajectory analysis, the relative residence timeerobare areas and the sunflux (solar
irradiance) at the receptor site were included.if\althlly, data for chl-a as a biological tracer
was included in the PCA. The data were log tramséal, mean-centered and scaled to unit
variance. The principal components, were calcul&tad the correlation matrix. The number
of factors to extract from the PCA was defined kgraining the scree plots of eigenvalues
(Figure S3) for the number of principal componentarimax rotation was applied to the
extracted principal components to result in rotatesmponents with easier-to interpret
component loadings (more details in Jolliffe, 200=2ye factors were selected from the scree
analysis, in sum explaining 71% of the total deddance. Table 4 shows the loadings of the
variables on the five rotated components, whiclcidles the correlation of the variable and
the component. Loadings below 0.2 are regardedsignificant and thus not shown and
loadings above 0.6 are printed in bold.

The first rotated component (Factor 1) explaine@1@&f the total variance of the
dataset. This factor strongly correlated with amimomn non-ss sulfate and the sunflux and
likely represents a photochemical source, probatihbuted to secondary aerosol formation.
Factor 2 described 17% of the total data set vagiahhe factor strongly correlated with EC,
non-ss calcium, potassium and the relative reseléinte over bare areas (desert) and might
therefore represent a continental long-range faetdh contribution from biomass burning
and the desert. Factor 2 also correlated to civkhach might be an indication for dust input in
the ocean and a corresponding biological respofise.third loaded component (Factor 3)
also described 17% of the total dataset varianee © the high loading of sodium and
chloride, this factor could mainly be attributedsia salt emissions.

Factor 4 and Factor 5 are the factors that cogelatith the particulate amines and
explained 10% and 9% of the total dataset variamspectively. Factor 4 correlated to DMA
and DEA and showed no pronounced correlation toother parameters investigated in the
PCA. Factor 5 had a high loading of MMA and furthere slightly correlated with WSOC.
The finding that the amines appeared as separatergain the PCA and their missing
correlation to Factors 1 — 3 suggested that théicpdate amines could not directly be
attributed to a photochemical, a continental orea salt (bubble-bursting) source. The
absence of a correlation between DEA and Factge& ¢alt) suggested that bubble-bursting
(formation of sea spray aerosol) is not the domtineansfer mechanism for DEA from the
ocean to the atmosphere. More likely is that DEAdavenged from the gas phase by the
aerosol phase (as suggested in Sections 3.1.3.2149. 3'he results are in agreement with the
study of Facchini et al. (2008) who observed tmatfreshly produced sea spray aerosol
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particles, the concentrations of DMA and DEA welwagys below the detection limit,
excluding the existence of an important primary sgay source. The results of the present
study furthermore indicate that DMA and DEA werengected in their sources, whereas
MMA had a different origin. Altogether, the resufisggest that primary processes were not
the main transfer mechanism for submicron partteulamines and, more likely, the
partitioning between the gas and particle phasdagga their abundance in marine aerosol
particles. However, distinct sources or formatioachmnisms of the submicron particulate
amines remain unclear and need to be elucidatedure studies.

4 Summary and Conclusion

Within this study, the roles of the low moleculdiphatic amines MMA, DMA and
DEA in the tropical marine environment were invgated. The amines were measured in all
relevant marine compartments, the bulk seawaterSML, the gas and the submicron aerosol
phase; precipitation is mostly absent is this negim seawater, the amines were almost
exclusively detected in the SML, leaving the questopen: are the amines formed at the
ocean surface or transported there due to phygroakesses (e.g. rising bubbles). Amines in
the SML and in the gas phase both showed a posdoreclation towards biological
(phytoplankton) indicators which suggested closikdge and indicated that the amine
abundance in the atmosphere (gas phase) partbctedl biological processes in seawater.
Future studies should include additional phytoplankas well as bacterial parameters,
preferably directly from the SML, for a more comipeasive understanding of the
biogeochemical cycle of amines in the ocean. Seartfluxes of MMA and DMA varied
between -8.7 E-14 to +4.0 E-13 mol’ns® and -1.9 E-12 to +2.19 E-12 mol“ns"
respectively. This suggests that the ocean caasaetsink (negative flux) or, especially for
MMA, as a source (positive flux) for the amineseTpositive fluxes can be crucial for marine
new particle formation at the measuring site.

It is likely that the source/sink capabilitiestbé ocean vary due to different ambient
conditions such as a diurnal oxidation capacityhef atmosphere. To investigate the air-sea
exchange of amines further, atmospheric measurenweitlh a high spatial resolution and
diurnal investigation of the amines in the gaseph@se and in the aerosol phase, as well as
size-segregated aerosol sampling are required.

In contrast to the seawater and gas phase amiodsological response was observed
for the particle phase amines. The combinatiorhefgarticulate amine measurements with
biogeochemical tracers confirmed that a direct firdm the amines to chl-a was missing.
High amine concentrations coincided with high cldemcentrations in winter; however, in
summer, lower amine concentrations were observddgat chl-a peaks. No correlations of
particulate amines to submicron calcium (dust maaad submicron sulfate (particle acidity
tracer) were found. In addition, a correlation admicron sodium and wind speed was absent,
implying that wind-mediated processes such as ledbbisting were not essential for the
transfer of amines. A statistical source apportientnapproach (PCA) revealed that the
particulate amines are not correlated to the ssudEntified here, namely (1) photochemical
formation, (2) continental/desert transport and &3a spray/bubble-bursting transfer.
Furthermore, particulate DMA and DEA appeared toseha similar origin, whereas
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particulate MMA had a different source. Based anrisults, we suggest that the amines are
rather scavenged from the gas phase by the papiedse and bubble-bursting (formation of
sea spray aerosol) is not the main transfer meshafor amines moving from the ocean to
the atmosphere.

Although, the number of seawater samples was ldr(itd samples consisting of SML
and bulk water, with detectable amine concentration8 samples) these results are still a
contribution to reduce the gap of knowledge abmihas in the marine environment. Beyond
that, it could be shown that aliphatic amines waesent as a source of atmospheric base in
the remote, often oligotrophic, region of the Ca@ede islands in all marine compartments.
Their particulate concentrations showed strong taaland interannual variations relating to
several little understood factors, including gasptticle phase partitioning, long-range
transport, ocean bioproductivity, air-sea exchaagd photochemistry. In the submicron
particulate phase especially, the amines contrtb&® on average to the water-soluble
organic carbon pool and are, therefore, importantstituents of the oceanic organic carbon
and nitrogen cycle.
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Table 1: Concentration of amines in the sea surface microlayer (SML) and in the bulk water in nmol L™, together with their enrichment factors (EF) in the SML
calculated as the quotient of the average amine concentration in the SML versus the amine concentration in the bulk water sample. Furthermore, the

concentrations of chlorophyll a (chl-a ) and fucoxanthin (ug L™ ) and the wind speed (m s™) during the water sampling time and as average value over 24h and

are listed.

wind speed

(during wind speed

Sampling date Water type MMA DMA DEA sum amines chl-a* fucoxanthin* sampling) (24 h)
11.11.2011 SML 5 11 22 38 0.07 0.02
14.11.2011 SML 32 15 22 69 0.17 0.04 7 6
20.11.2011 SML 33 2 21 56 0.29 0.06 11 11
22.11.2011 SML 8 4 23 35 0.20 0.02 10 10
12.11.2013 SML 23 197 14 234 0.39 0.06 8 10
13.11.2013 SML 11 7 9 27 0.05 <LOD 11 8
19.11.2013 SML 20 135 <LOD 155 0.19 0.19 11 11
12.11.2013 Bulk 19 28 10 57 0.39 0.06 8 10
average - 19 53 19 88 0.23 0.06 9 9
median - 20 11 22 56 0.20 0.06 9 10
minimum - 5 2 9 27 0.05 0.02 3 6
maximum - 33 197 23 234 0.39 0.19 11 11

*Note that chl-a and fucoxanthin measurements \getely achieved from bulk water measurements,aedsin Section 2.1.1.
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811 Table 2: Concentration of amines in the gas and the particle phase (ng m™), particulate ammonium, sulfate and sodium concentrations (g m?), the ratio of the
812  particle to the gas phase amines, the molar ratio of ammonium to sulfate, solar radiation (W m?), particulate oxalate (ng m™), chl-a and fucoxanthin in

813  seawater (ug L™®) as well as air and sea surface (SST) temperature (°C) and wind speed (m s™).

814
gas phase amines particle phase amines
B - 5 @

5E TE s < 3 = < £ 5 e oo & E 2E é £8 % S g g § o 2

» 3 Tl s 3 8 3z s 3 4 3 888 3 E &3, % &8 & § % S 5 8 s
08.11.2011 11.11.2011 b 2.0 a 2.0 0.1 3.4 5.5 9.1 4.6 1.0 0.29 153 0.13 9.9 9.9 160 0.15 b 24 25 6.8
11.11.2011  12.11.2011 a 11 a 11 02 42 39 82 7.7 0.9 0.26 153 0.11 4.1 55 176  0.14 0.02 24 25 3.0
12.11.2011  13.11.2011 a 21 a 21 00 45 56 102 49 07 0.24 1.70 0.08 6.5 a 144 014 b 24 26 40
13.11.2011 14.11.2011 a 1.3 a 1.3 0.0 2.5 3.7 6.2 4.8 0.6 0.18 1.63 0.04 6.2 4.2 118 0.15 b 24 25 58
14.11.2011  15.11.2011 a 14 a 14 02 51 76 129 90 05 0.14 151 0.06 13.4 4.8 157  0.13 0.04 25 25 7.0
15.11.2011 16.11.2011 a 42 a 42 02 26 51 79 19 06 0.16 148 0.08 6.9 10.2 126 0.16 b 25 24 110
16.11.2011 17.11.2011 0.6 2.4 a 3.0 0.3 2.2 4.7 7.2 2.4 0.7 0.22 1.75 0.10 1.4 a 143 0.18 b 24 24 90
17.11.2011  18.11.2011 a 13 a 13 02 41 52 96 76 08 0.25 161 0.08 2.3 6.8 150  0.17 0.05 24 25 6.0
18.11.2011 19.11.2011 02 09 a 1.2 02 69 91 162 139 09 0.27 160 0.07 4.1 5.7 153 0.14 0.05 24 24 60
19.11.2011 20.11.2011 0.6 1.9 a 2.4 0.0 4.9 6.3 11.2 4.6 0.6 0.19 1.62 0.07 3.0 13.1 156 0.18 b 24 24 11.0
20.11.2011 21.11.2011 b - 02 60 55 117 - 0.4 0.11 142 0.14 2.7 11.4 154 0.18 0.06 24 24 94
21.11.2011 22.11.2011 b - 01 55 54 111 - 0.4 0.10 132 0.16 3.0 16,5 161 0.21 0.02 24 24 102
22.11.2011 23.11.2011 0.7 4.5 a 5.2 0.2 7.0 72 144 2.7 0.4 0.13 150 0.10 6.3 9.9 159 0.18 b 24 24 98
23.11.2011 24.11.2011 11 42 a 53 02 61 44 107 20 04 0.11 1.50 0.15 3.6 2.0 150  0.20 0.02 24 24 8.6
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Table 3: Seawater concentrations (nmol L™) and gas phase concentrations (ng m>) of DMA as well as
the corresponding wind speed u (m s*) and u, the drag coefficient after Johnsson et al., (2010) and
the calculated sea-air flux (F) in mol m?s™ .

Sampling Water Gas phase Wind  Friction  prag Sea-air flux
date concentrations concentrations  speed  velocity  coefficient F
ulo u*
MMA DMA MMA DMA CD MMA DMA

11.11.2011 5 11 - 1.1 3.0 0.0848 0.0008 - 2.6 E-15
14.11.2011 32 15 - 1.4 7.0 0.2269 0.0011 - 2.6 E-14
20.11.2011 33 2 0.6 1.9 11.0 0.3971 0.0013 4.0 E-13 -3.8 E-13
22.11.2011 8 4 0.7 45 9.8 0.3430 0.0012 -8.7E-14 -8.1 E-13

12.11.2013 23 197 0.2 9.7 7.8 0.2589 0.0011 23E-13 21E-12

12.11.2013

19 28 0.2 9.7 7.8 0.2589 0.0011 19E-13 -9.8E-13
Bulk water
13.11.2013 11 7 0.2 10.6 9.7 0.3390 0.0012 95E-14 -19E-12
19.11.2013 20 135 - 19.2 11.4 0.4168 0.0013 - -1.2 E-12
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Table 4: PCA loadings after Varimax rotation. Loadings below 0.2 are not shown and high loadings
above 0.6 are printed in bold red. All reported aerosol constituents were measured in the submicron

mode.
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
photochemistry continental sea salt amines | amines |l
MMA 0.88
DMA 0.23 0.71
DEA 0.85
EC 0.23 0.77 0.25
chloride 0.92
sodium 0.91
ammonium 0.85
non-ss sulfate 0.87
oxalate 0.58 0.48 0.29
non-ss calcium 0.63 0.53
potassium 0.3 0.6 0.42 -0.28
WSOC 0.34 0.4 0.54
RT_bare areas -0.3 0.65
sunflux at
receptor 0.63 -0.37 -0.3
chl-a 0.55
variance 0.18 0.17 0.17 0.1 0.09
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Figure Caption:

Figure 1. lllustration of the filter pack applied for gas apdrticle phase amine sampling,
designed after Gibb et al., (1999a). The filterkpeansisted of a PTFE filter for particle phase
amine sampling and a paper filter coated with 0/dxalic acid for gaseous amine sampling.
A PTFE net was used to separate the aerosol gaginel the gas phase filter.

Figure 2. Box and whisker plot of the concentrations of ths ghase amines (ng*jrand the
particle phase amines (ng>nin the two intensive campaigns. Each box encl&é€8s of the
data with the mean value represented as an opamnesgnd the median value represented as a
line. The bottom of the box marks the 25% limittbé data, while the top marks the 75%
limit. The lines extending from the top and bottarh each box are the 5% and 95%
percentiles within the dataset, while the asteriskigcate the data points lying outside of this
range (“outliers”).

Figure 3. Correlations of the gas phase amifreg m?) to (a) chl-a (ug ), (b) fucoxanthin
(kg L), (c) wind speed, (d) particulate sodium (ug)nm(e) solar radiation (W fjy and (f)
particulate oxalate (ug .

Figure 4. Time series of the particulate amine concentratiogsni®) together with chl-a (1g
LY and the SST (°C) for the 24-month time series.
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Aliphatic amines are present in the tropical remote Atlantic Ocean and Atmosphere.
Aminesin the seawater and gas phase are connected to biological activity.
Ocean can be asink or a source of amines.

Sources of aminesin the submicron particle phase are probably not of primary nature.
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