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ABSTRACT

Floating treatment wetlands are considered cost¥e remediation options for various
types of wastewater. Their effectiveness has bhewrs in several lab-scale and pilot-scale
studies; however, there is a paucity of publishath @n pilot-scale systems treating genuine
wastewater. This study aims to assess the perf@enah a pilot-scale system, carrying
Phragmites australis in combination with three plant growth promotingdapollutant-
degrading bacteriaACinetobacter junii strain NT-15,Rhodococcus sp. strain NT-39, and
Pseudomonas indoloxydans strain NT-38) for the treatment of textile indusimastewater
(Interloop Limited, Faisalabad, Pakistan). Fifteerating treatment wetlands macrocosms
were established employing plants and bacteriaragghg or in combination. Each unit was
capable to carry 1000-liter of wastewater and gstesn was operated in a batch-wise mode
for the period of 2 years. After a year of insttidia, performance of all FTWs units was
optimal. A high removal in organic and inorganidlp@ants was observed in the vegetated
tanks, whereas combined application of plants amctdnia further enhanced the removal
performance, i.e., chemical oxygen demand was estito 92%, biochemical oxygen
demand to 91%, color to 86%, and heavy metals psoxgmately 87% in the wastewater.
The augmented bacteria displayed persistence ierwatwell as in the roots and shoot® of
australis suggesting a potential partnership with the hostatds enhanced performance.
Treated wastewater met the National Environmentahli@y Standards of Pakistan to be
discharged in the surface water without any posémisks. This pilot-scale study is a step

forward towards sustainable remediation of theilextastewater in the field.

Keywords. Textile wastewater, wastewater treatment, floatireatment wetlands, plant-

bacteria partnership
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INTRODUCTION

Textile industry plays a key role in the economynadéiny developing countries including
Pakistan. However, it also causes severe wateutmoll due to the direct wastewater
discharges in the surface water (Noreen et al. ROIfle textile industry of Faisalabad
(Pakistan) represents a wide array of processds asicdesizing, bleaching, mercerizing,
dyeing, printing and finishing of products. Thisués into production of a broad range of
organic and inorganic pollutants, which are disghdrinto the Ravi river and Chenab river
through the Paharang and Madhuana drains withqupestreatment (Azizullah et al. 2011;
Imtiazuddin et al. 2012). These discharges consdlyuéeteriorate the water quality leading
to harmful effects on aquatic organisms, irrigatargps, and on human health (Ullah et al.
2017; Najam-us-Sahar et al. 2017; Daud et al. 208ince a few years, this condition has

become worse as the level of toxic pollutants ertlier's body has surged dramatically.

Many physicochemical techniques are effective eating textile wastewater but they
demand high operational costs, engineering skidsyvironmental incursions, labor
administration, and several other operational mesese (Liu et al. 2009; Srinivasan et al.
2014). Contrarily, advances in ecological engimeghave made us develop environmental-
friendly methods for the effective treatment of @oninated water (Giannetti et al., 2002;
ljaz et al., 2015; Saumya et al., 2105; Greenw@y,72 One such method is the installation
of floating treatment wetlands (FTWSs) in which egemt aquatic macrophytes are planted
artificially on a floating raft that allows plants grow hydroponically on the water body
(Nahlik and Mitsch 2006; Wu et al., 2017; Shahiclet2018). Plant roots hang down to the
pelagic zones in the water column offer both med@hmnd biological filtering. Mechanical
filtering is achieved through the physical effedt mlant roots such as sedimentation,

adsorption, filtration, etc. The biological filteg however is the result of bacterial
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degradation and plant uptake (Zhang et al. 210GkM#i et al. 2015). In both situations,
plant roots play several important roles such d3: their presence reduce the water
turbulence and avoid re-suspension of sedimentstiiSand Kalin 2000); (2) they attach
suspended matter onto the root surface which isesptently precipitated in the systems
bottom or adsorbed on to the biofilm; and (3) whesorbed, bacterial action results into the
degradation of organic pollutants (Prajapati et2@l17). Macrophytes can hinder the algal
growth by competing for nutrition and sunlight @tial. 2010). Lastly, these systems also act
as habitate for fish harvesting (Faulwetter et24l11), livestock grazing (Ladislas et al.
2013), improve landscape aesthetics (ljaz et d5p0and provide a significant amount of

biomass to be used for bio-energy purposes (Slalad 2018).

Floating wetlands have been traditionally employedreat variety of wastewater
such as stormwater (Headley et al. 2008), sewalyeeefs (Todd et al. 2003), municipal
wastewater (Arshad et al. 2017; Sirage et al. 20ihdustrial wastewater (Li et al. 2012),
acid mine drainage and poultry processing wastew@&@mith and Kalin 2000; Todd et al.
2003). These systems, however, are limited in iced@antexts such as poor stability and less
efficient purification performance. Among them,dgsotential of indigenous bacteria toward
the degradation of toxic organic compounds and weakabolic capabilities of plants are
prominent ones (Arslan et al. 2017). To improvettbatment efficiency of FTWSs, additional
approaches have been recommended among which atiocubf plant growth promoting
(PGP) and pollutant-degrading bacteria is an affeanethod (Shehzadi et al. 2014; Saleem
et al. 2018). To date, a few studies have expltimecefficiency of FTWs in the presence of
bacterial partnership for the remediation of ddéfer wastewaters (Kabra et al. 2013;
Watharkar et al. 2015; Rehman et al. 2018). Manthem were conducted at microcosm
scale for which field-scale performance is speedatn this studyin situ pilot-scale FTW

system was established in combination with dye atigg bacteria for the enhanced cleanup
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of wastewater of a textile industry, i.e., Integpodimited, Khurrianwala, Faisalabad,
Pakistan. There were enhanced pollutant removaltaexidity reduction in the bacterially
assisted FTWs as a result of effective plant-badtgrartnership towards remediation of

textile industry wastewater.

MATERIAL AND METHODS
Collection and characterization of textile wastewater

The untreated textile wastewater was obtained faonoutlet of the wastewater equalization
tank of Interloop Limited, Khurrianwala, Faisalab&akistan. The wastewater was analyzed
for several physicochemical parameters such as goyr, electrical conductivity (EC),
chemical oxygen demand (COD), 5-day biochemicaberydemand (BOY), total dissolved
solids (TDS), total suspended solids (TSS), toi@bgen (TN), phosphate (R®), Phenols,

Chlorides, Sulphates, heavy metals and toxicityéipng standard methods (APHA, 2005).
Bacterial strains

Three bacterial strains, i.eAcinetobacter junii NT-15 (NCBI accession: MF478980),
Pseudomonas indoloxydans NT-38 (NCBI accession: MF478985), aRtdodococcus sp. NT-

39 (NCBI accession: MF326802), were used in thegestudy. The straif. junii NT-15
was isolated from the activated sludge, whereaainstP. indoloxydans NT-38 and
Rhodococcus sp. NT-39 were isolated from the root interior and dsghere ofPolygonum
aviculare andPoa labillardierei, respectively (Tara et al. 2018). These strainsevgereened
because of their high dye resistance and decotamzaotential. These bacterial strains were
cultivated as separate cultures at 30 °C for 24 buria-Bertani (LB) broth. The cells were
harvested by centrifugation (x12,000 rpm) for 5 més at 4 °C and resuspended together at
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ratio of 1:1:1 in 0.9% (w/v) sterile NaCl solutiofhe cell suspension of each pure culture
was adjusted as per the guidelines of the turbitlion@ethod (Sutton, 2011). In the end, one
liter of bacterial consortium was used as an inatuin the FTWs as per experimental

design.

Construction and implementation of FTWsfor textile wastewater treatment

Floating treatment wetlands were built in the Migirof Interloop Limited Khurrianwala,
Faisalabad (Fig. 1A-D). Plastic tanks of 1000 $itef capacity (dimensions: 1.2 meter length,
1.2 meter width, and 1.2 meter height) were usesktablish macrocosms. These tanks were
painted from all the sides to prevent algal growiccordingly, floating mats of equal
dimensions were prepared using polyethylene slseetc@mmended earlier (ljaz et al. 2015).
Aluminum foil was used to cover all sides of thetsnan order to protect them from
ultraviolet radiations. Eight holes of equal diaareivere drilled in each floating mat and
planted with 24 healthy seedlings Bifiragmites australis: three plants, with the height of
approximately 60 cm and weight of 45 to 65 g, waserted in each hole of the mé&t.
australis was selected based on its successful applicatigphytoremediation of industrial
wastewater as well as its ability to resist higimeantrations of azo dyes (Todorovics et al.
2005; Stefanakis et al. 2014; Ha and Anh 2017; Rehst al. 2018). These seedlings were
previously grown in the nursery developed in theinity of NIBGE, Faisalabad. Soil and
coconut shaving were used to support the plantlisged A total of 15 macrocosms were
established by placing floating mats on the taniase. The plant seedlings were then
allowed to augment roots in tap water for a penbd-month. When the plant growth was
optimum, tap water was replaced with the textilesteavater. The one-liter inoculum of
previously isolated bacterial strains was introduae the FTWs as per the experimental

design. Different treatments were established udyst(1) effect of textile effluent on plant
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growth; (2) effect of vegetation on textile effliedegradation; (3) effect of bacterial
augmentation on textile effluent degradation; (#eat of bacterial augmentation on plant
growth and textile effluent degradation; and (5anplgrowth in tap water (control). The
sequencing fill-and-draw batch mode method was tseslithdraw decontaminated water.
Hydraulic retention time was set to 10 days basedlab-scale observations where a
continuous decrease in organic and inorganic load wabserved in initial 10-days. The
system was operated for 2 years from March 201Blaoch 2018. The water samples of
approximately 1.5 liters were collected every tvaysl However, in this article, the results
are reported when the system’s performance wasnapiiconstant (after 6 months of
installation). The treatment performance was estaptl by measuring wastewater
parameters such as pH, EC, TDS, TSS, COD, BAN, PQ?, color, phenols, chlorides,

sulphates, and heavy metals (Fe, Ni, Cr, and Cdhadiately after sample collection;

elsewise samples were stored until analysis aqugrtti standard methods (APHA, 2005).
The experiment was performed in the ambient camstiof the industry for the period of 2
years. In this period, precipitation on average 2&snm (Faisalabad’s climate conditions);
however, during rainy period, water level was mdlgueaintained to 1000 litters by

covering the macrocosms with plastic sheets.
Deter mination of persistence of inoculated bacteria

The survival/persistence of inoculated bacterighia treated wastewater and plant interior
(root and shoot interior) was enumerated by vighllte count method. Samples were
collected every 3 months. Shoots and roots weriaairsterilized, homogenized, and the
slurry was plated onto LB agar plates having 100™af azo dyes as established previously

(laz et al. 2015). Similarly, treated wastewatesswalso plated on LB agar plates and
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incubated at 30 °C for 24 h. Restriction fragmemigth polymorphism (RFLP) analysis was

performed to identify the identity of inoculatedashs (Afzal et al. 2012).

Plant biomass

The plant tissues were harvested every 3 monthsemsure shoot height, root length, shoot
dry weight, and root dry weight. Briefly, shoot-daimots were harvested one inch above and
below the mats, respectively. The root length dmmbs height were measured by using hand
ruler. To measure dry biomass, plant samples westetfansported to the laboratory, placed

in an oven at 80 °C for 72 h, and then weighedguaidigital balance. Samples were stored

at -80 °C until further analysis.

Fish toxicity bioassay

Fish bioassay was performed once, during the op{per@od, to test the toxicity of untreated
and treated wastewater. A freshwater dwelling fsgfecies Rohulabeorohita rohita
(Family: Cyprinidae, Order: Cypriniformes) was stéel for the bioassay due to the local
ecological significance. Briefly, the species iggant in the local streams and lakes and
therefore direct discharges may lead to healthesgihan et al. 2017). This species has
previously found to accumulate heavy metals abbeentatural/background levels (Hamid et
al. 2016). In this study, healthy specimens wertaiobd from Faisalabad Fish Hatchery,
treated with KMnO4 solution (0.05 %) for two minsitede remove dermal contamination, and
then shifted to glass aquaria containing uncontatath water. Each fish specimen had an
average body length of ~8.5 = 0.8 cm and weight#4f0 + 0.1 g. The specimens were
acclimatized for 15 days prior to the effluent esipe. Subsequently, four fish groups each

containing 10 individuals were placed in the aquas (dimensions: depth 30 cm, width 30
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cm, and length 45 cm). These aquariums were fil&th 30 L of treated and untreated
wastewater, as per the experimental design. Findily survival rate was determined by

counting the number of alive fish every 24 h fgresiod of four days.
L ong-term maintenance strategy

Maintenance strategy of the system involved hamgsif the plants and inoculation of the
bacterial consortium in the wetland macrocosmsrattgery 3 months during the

experimental period. Accordingly, long-term systerperformance was also monitored by
measuring temporal response of basic water quaditgmeters, i.e., COD, BOD, Color, TSS,

TDS, TN, Phosphates.
Statistical analysis

R-statistical language was used to compare diftareatments for water quality parameters
(pH, EC, COD, BOIp, TDS, TSS, color, Phenols, Chlorides, and Sul@ateutrients (TN,

and POZ), heavy metals (Fe, Cr, Ni, and Cd), plant gropé#inameters (root length, shoot
length, fresh biomass, and dry biomass), and 6gfcity assay. The comparison was made

through one-way ANOVA and Duncan’s test was uséel &sting homogeneity of variance.

RESULTS AND DISCUSSION
Wastewater characteristics

In developing countries, unprecedented advancesextile industry have escalated the
discharge of wastewater into the natural stream&rg¥t et al. 2018). In this study,
physicochemical analysis of the textile industrysteavater displayed a high pollution due to

COD (513 mg1), BOD (283 mg1), TDS (5251 mg1), TSS (324 mg?), Phenols (0.85 mg
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1Y), Chlorides (1383 mg?), Sulphates (311 mg'), Fe (14.4 mg?), Ni (7.57 mg 1), Cr
(9.67 mg 1), and Cd (0.88 mg?). Their concentrations were higher than the eistaddi
National Environmental Quality Standards (NEQS)Pakistan (Table 1). This suggests an
initial treatment of the wastewater of textile isthy of Pakistan befordischarging into the

Ravi and Chenab rivers.
Perfor mance evaluation for physicochemical parameters

The performance of FTWs in the presence of vegetabiacteria, and vegetation and bacteria
together, was evaluated by studying wastewatempetexs at different time intervals (Table
2 - 4, Fig. 2). In the beginning of the second ydlae system performance was relatively
optimal. Based on these observations, in-depthstigegtions were performed. Briefly, it was
found that FTWs vegetated witR. australis removed a high proportion of organic and
inorganic pollutants as compared to the un-veget®&€&Ws. This removal was further
enhanced wheR. australis and bacterial consortium were applied in combimatiriefly, in

the presence of both partners, COD was reduced %, 8OD to 92%, and color to 86%
(Fig. 2A-C). Earlier studies have also shown higlipediution reduction of textile wastewater
when plants and bacteria employed synergistic8lyefizadi et al. 2014; Watharkar et al.
2015; Hussain et al. 2018a); this could be attedub the combined enzymatic activities of
both bacteria and plants to transform organic matt® simple metabolites (Kabra et al.
2013; Khandare et al. 2013). These transformedyatsccan be taken up by plants as a part
of nutrient assimilation process or eliminatedna form of gases, e.g., G@nd N. With the
passage of time, this reduction in organic load iwaseased and maximum remediation was
observed in the period of 10 days. Accordingly,ogifive correlation for reduction of COD
and color was seen in textile wastewater. It hasnbeeported previously that COD

determines the extent of oxidizable contaminantd la@ence establish positive correlation
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with the color of wastewater (Tara et al. 2018)e Tbservation was consistent in this study
as well. Likewise, pH of the remediated water mofredh basic to neutral conditions (Table
2). This could also be associated with the combawtibn of dyes transformation by bacteria
and plants (Watharkar et al. 2015). Accordinglgignificant amount of phenols, chlorides,
and sulphates were removed from the wastewateur@&igD). Earlier studies have reported

similar results in different types of CWs (Shehzetdal. 2014; Hussain et al. 2018a,b).

Vegetation had a prominent effect on TDS and TSBowal as compared to the
unvegetated but inoculated treatments (Table 2&flBy vegetation reduced TDS from 5251
mg I to 2265 mgt (up to 57%) and TSS from 324 mgto 165 mg T (up to 49%). The
bacterial inoculation in vegetated treatment furihereased reduction in TDS and TSS up to
1399 mg 1 (73%) and 148 mg'l(54%), respectively. These results are in accarelan the
previously published findings (Shehzadi et al. 200&a et al. 2018; Hussain et al. 2018a,b).
As of these findings, vegetated treatments alspladred better removal of nutrients (TN and
PO, ?) than the un-vegetated treatments whereas higaesival efficiency was seen in the
presence of plant-bacteria synergism (Table 3).r€heoval efficiency for TN was recorded
up to 60% in the vegetated FTWSs, which was increé&s&7% on bacterial inoculation. In an
earlier study, Sun et al. (2009) reported simienuits where TN removal was enhanced up to
72% by the addition of bacteria in FTWs whereasy @0% removal was achieved in the
treatments without bacteria. Similar results webtamed for P@? reduction as bacterial
augmentation improved the removal as compared ¢o vigetation only. Nevertheless,
percent removal for TN was higher than the,PQOwhich can be linked to the fact that
nitrogen, in addition to the plant uptake, is efiated in the form of Ngas whereas RO

stays in the system due to precipitation (Tao arch§\2009; Vymazal, 2010).
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Long-term system’s performance was monitored tduate pollutant removal during
the studied period, as shown in Figure 3. It wasmibthat the system was relatively stable
throughout the experimental period; neverthelessfopmance was better in the warm

months.

Reduction in heavy metals from wastewater and their bioaccumulation in plant tissues

The studied heavy metals (Fe, Ni, Cr, and Cd) weagificantly removed by FTWs (Table
4). The removal efficiency was equally valid fortlhh@ssential (Fe and Ni) and non-essential
(Cr and Cd) heavy metals. Nevertheless, bacteraaulation improved the bioaccumulation
and phytoremediation potential &f australis. The mean concentration values of heavy
metals in root, shoots, and leaves were observéldeirfollowing order: Fe > Cr > Ni > Cd.
Absorbed metals were partitioned among differemtspaf P. australis. Roots retained higher
concentration of heavy metals than shoots and $eaw#h the following order:
root>leaf>stem. These results are in accordanddeocearlier findings demonstrating that
underground part oP. australis shows a higher storage capacity than the abovedrou
organs (Strbac et al. 2014; Kucaj and Abazi 201%irA and Leghouchi 2017). It has been
established that roots and rhizomesPofaustralis possess large intercellular air spaces of
cortex parenchyma that allow accumulation of heaeyals far away from the metabolically
active structures to avoid toxic effects (Mendoetal. 2015). The present study confirms
such a potential oP. australis in phytoremediation for the studied heavy metdtsctv was
further enhanced by bacterial inoculation, i.ee, slgstem was able to remove Cr and Fe more
than 90%, Ni more than 80%, and Cd more than 608%.rdle of bacteria in sorbing metallic
ions on their cell walls is prominent and has dis®n reported in terms of increasing

bioavailability followed by uptake by plants (Jiland Khan 2013; Khan et al. 2014).
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Inoculated bacteria displayed persistencein FTWs

In phytoremediation, plant-associated microbial ydapons play a key role to mineralize
organic pollutants (Khan et al. 2014). Many studiaese reported that the phytoremediation
potential of plants can be correlated with the propn of bacteria in the surrounding
environment (Yousaf et al. 2011; Shehzadi et al42@Rehman et al. 2019). The atrtificial
augmentation of bacteria in such a system estaslightimacy with their host depending
upon the environmental conditions such as nutrseipply and their ability to colonize the
host environment. Moreover, bacteria improve plgmwth by reducing biotic and abiotic
stress, followed by Nfixation, production of phytohormones, and solizlaition of various
essential nutrients (Glick et al. 2010; Khan et2@l14). In this study, in order to confirm the
improvement in performance &f. australis due to bacterial augmentation, persistence of
inoculated bacteria was evaluated within the plessues and wastewater at the beginning of
the experiment. Results showed a high persisteficenazulants in the plant interior,
especially in the roots, followed by the wastewdtég. 4). Furthermore, RFLP analysis
indicated that the relative proportion of inocuthtbacterial with roots and shoots was
increased significantly in the initial 3-months ipel; which later became stable. Although the
trend was similar for both plant parts, their neltproportion was higher in the roots as
compared to the shoots. This might be due to tke tfeat The inoculated bacteria were
previously isolated from the roots and shoot®oéustralis grown in the textile wastewater
and therefore they probably have adapted necessachanism for proliferation in these
hostile conditions (Afzal et al. 2014). By contsast decline in bacterial counts was observed
in the water, which might be due to the fact thahtaminated water is less favorable
environment for the inoculated bacteria. More dpeadly, rhizo- and endophytic bacteria
needs a symbiotic partner such as plant rootsriov&uand proliferate, however, the absence

can cause poor survival and growth (Arslan et@l42. Additionally, this might be attributed

12
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to the natural selection pressure for the newlywgra&community that allows bacteria to

migrate from less favorable environment to the nfaverable environment.

Plant biomass and growth

An important parameter in phytoremediation efficigms the plant tolerance and survival in
the presence of pollutants. The growthPotwustralis was increased sharply in the first year,
which was then sustained or remained unaffectemhgitine remaining studied period (Figure
5). This could be attributed to the senescencetefi¢evertheless, when compared with the
contaminated water, it was found that wastewatbibited the plant biomass significantly
(Table 5). This shows the toxic effects of textilastewater on plant metabolism (Watharkar
et al. 2015; Shehzadi et al. 2016; Ramya et al7R0h an earlier studylypha domingensis
exhibited similar behavior in which reduction inapt growth was seen in the presence of
textile wastewater (Shehzadi et al. 2014). NevéHse inoculation with bacteria
rehabilitated the plant growth with a prominentrease in root length (46%), shoot length
(37%), root fresh weight (58%), shoot fresh wei@8%), root dry weight (55%), and shoot
dry weight (46%) (Table 5). This increase in plgndwth parameters could be associated
with the pollutant degrading capabilities as wel ACC deaminase potential of the
inoculated bacteria. Fatima et al. (2016) reposiadilar results in which plant growth was
significantly improved by the augmented of endophpacteria due to their PGP activities

such as indole acetic acid production, siderophfor@sation, and ACC deaminase activity.

Detoxification of wastewater
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Fish toxicity bioassay suggested a successful tedudn wastewater’'s toxicity after
treatment with FTWs. This reduction was partialffeetive when plant and bacteria were
applied separately, i.e., death of three and fisie 6ut of 10 specimens. Whereas, bacterial
inoculation in vegetated FTWs resulted in compbtoxification as no fish died even after
72 h of exposure (Table 6). These results strengthe earlier observations in which high
reduction was observed for COD, BQODS, TSS, color, and heavy metals in the presence
of vegetation and bacteria. Earlier studies algmmed similar findings in which use of
plants in combination with bacteria was an effitistrategy to remove wastewater toxicity

(Tanner and Headley 2011, ljaz et al. 2016; Rehetah. 2018).

CONCLUSIONS

This study investigated the performance of FTWthapresence of three bacterial strains to
remediate textile wastewater at pilot-scale. FT\Wgetated withP. australis and inoculated
bacteria displayed highest pollutants removal. &aait persistence was prominent in the root
and shoot interior suggesting optimal partnershmppollutant degradation. The system
attenuated both organic and inorganic contaminamg wastewater was found to be
completely detoxified. The system was operatedvior years suggesting long-term potential
for the on-site remediation practices. It is codeld that bacterially assisted FTWs can be
exploited to treat industrial wastewaters in costiwith more economic constraints like

Pakistan, where capital and operational cost apgiofe importance.
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Tablel

Quality parameters of textile industrial wastewatewllected from Interloop,
Khurrianwala located in Faisalabad, compared toNGgonal Environmental Quality
Standards (NEQS), Pakistan (Hussain et al., 2018b)

Parameter Unit Wastewater NEQS
Temperature °C 38 (2.63) 40
pH - 8.8 (0.82) 6-10
Electrical conductivity (EC) mSch 8.2 (0.64) NG
Color m* 66 (4.4) NG
Chemical oxygen demand (COD) mg1* 513 (37.6) 150
Total organic carbon (TOC) mg | 201 (15.9) NG
Biochemical oxygen demand (B@D mgl™ 283 (17.9) 80
Phenol mg1* 0.85 (0.06) 0.1
Chloride mg1* 1383 (61.8) 1000
Sulphate mg't 311 (21.9) 600
Nitrogen mg T 28.7 (6.0) 40
Phosphate mgl 16.4 (3.6) NG
Total dissolved solids (TDS) mg1* 5251 (404) 3500
Total solids (TS) mg 5420 (395) NG
Total settleable solids (TSeS) my | 19.9 (1.1) NG
Total suspended solids (TSS) mg1* 324 (29.7) 150
Iron (Fe) mg1* 14.4 (0.64) 2.0
Nickel (Ni) mgI* 7.57 (0.38) 1.0
Chromium (Cr) mgI* 9.67 (0.26) 0.1
Cadmium (Cd) mg1* 0.88(0.02) 0.1
Toxicity -- Highly toxic NG

Each value is the mean of three replicates; stdndapr among three replicates is
presented in parenthesis. NG, not given in Nati@mslironmental Quality Standards
(NEQS) list.



Table?2
Remediation of the textile industrial wastewatefflogting treatment wetlands vegetated witiragmites australis and inoculated with bacterial consortium

Days Control T1 T2 T3

pH EC TDS TSS pH EC TDS TSS pH EC TDS TSS pH EC TDS TSS

0 8.73 822 5251 324 874 834 5252 325 875 827 5251 325 874 825 5252 324
(0.20) (0.64) (404) (30) (0.16) (0.66) (404) (31) (0.19) (0.61) (404) (29) (0.20) (0.61) (404) (29)

2 8.49  7.72 4934 319 843 7.27 4635 275 819  6.64 4250 256 855 7.34 4699 310
(0.18) (0.64) (411) (29) (0.17) (0.55) (354) (19) (0.12) (0.55) (355) (18) (0.08) (0.67) (430) (28)

4 8.38 7.36 4677 306 8.14 6.42 4103 241 7.83 573 3632 225 835 6.84 4356 296
(0.17) (0.69) (442) (28) (0.13) (0.43) (279) (18) (0.13) (0.43) (277) (12) (0.13) (0.61) (389) (29)

6 858 6.7 4295 300 7.67 535 3397 224 746 435 2735 206 858 6.37 4016 290
(0.09) (0.72) (462) (29) (0.10) (0.53) (339) (16) (0.10) (0.49) (314) (11) (0.09) (0.69) (441) (27)

8 8.88 6.2 3974 294 7.41 442 2843 199 7.14 349 2183 171 881 567 3632 286
(0.08) (0.70) (447) (29) (0.10) (0.43) (278) (16) (0.10) (0.46) (295) (12) (0.11) (0.62) (394) (26)

10 9.04 57 3655 285 7.35 357 2265 165 7.12 226 1399 148 8.87 5.13 3292 271
(0.04) (0.61) (389) (28) (0.06) (0.35) (222) (12) (0.09) (0.30) (185) (10) (0.09) (0.46) (296) (24)

Floating treatment wetlands vegetated withaustralis (T1), P. australis and bacteria (T2), and bacteria only (T3). Eacluedk the mean of three
replicates; the standard error of three replicat@sesented in parenthesis. TDS and TSS are nmextion mg ', whereas EC in mS cih



Table3
Nutrients (TN and P§)) removal from textile industrial wastewater bydtimg treatment wetlands vegetated whiiragmites australis and inoculated with
bacterial consortium

Days TN (mg 1™ PO,* (mg 1™
Control Tl T2 T3 Control T1 T2 T3
0 28.7 (6.0) 28.7 (6.0) 28.9 (5.6) 28.9 (5.7) 16.4 (3.6) 16.4 (3.6) 16.5 (3.6) 16.5 (3.6)
2 27.0 (5.4) 22.6 (4.5) 19.3 (4.1) 25.9 (5.1) 16.1 (3.6) 15.7 (3.4) 15.1 (3.4) 15.9 (3.3)
4 25.9 (5.1) 20.3 (3.9) 15.7 (2.9) 23.6 (4.7) 15.9 (3.4) 14.5 (3.1) 13.2 (2.8) 15.6 (3.5)
6 24.5 (4.9) 17.4 (3.2) 12.0 (1.9) 22.2 (4.4) 15.8 (3.4) 13.1 (2.8) 11.8 (2.7) 15.2 (3.2)
8 23.2 (4.6) 14.8 (2.7) 8.7 (1.8) 20.1 (3.7) 15.6 (3.4) 11.3 (2.3) 10.0 (2.3) 14.8 (3.0)
10 22.3 (4.5) 11.3 (2.0) 3.7 (0.6) 19.0 (3.5) 15.3 (3.3) 10.1 (2.1) 8.2 (1.9) 14.2 (2.9)

Floating treatment wetlands vegetated viRthaustralis (T1), P. australis and bacteria (T2), and bacteria only (T3). Eaclueas the mean of three replicates; the
standard error of three replicates is presentg@éianthesis.



Table4

Heavy metals removal from textile industrial wastitev and their accumulation in different part$bfagmites australis

Metal Control T1 T2 T3
Initial conc. Water Root Shoot Leaves Water Root Shoot (mg Leaves (mg Water (mg]l
(mg ") (mg ") (mg kg') (mg kg*) (mg kg*) (mg ") (mg kg*) kg™) kg™) )

Fe 14.4 (0.64) 2.63(0.27) 5.90(0.45) 1.97(0.15) 3.94(0.30) 1.05(0.11) 6.69 (0.37) 2.23(0.12) 4.46(0.25) 9.0 (0.47)

Ni 7.57 (0.38) 1.72(0.12) 2.92(0.19) 0.97(0.06) 1.95(0.13) 1.08(0.09) 3.25(0.18) 1.08(0.06) 2.16(0.12) 5.43(0.35)

Cr 9.67 (0.26) 150 (0.14) 4.08 (0.09) 1.36(0.03) 2.72(0.06) 0.40(0.10) 4.63(0.16) 1.54(0.05) 3.09 (0.10) 6.53(0.38)

cd 0.88 (0.06) 0.29 (0.06) 0.24 (0.03) 0.08(0.01) 0.16(0.02) 0.26 (0.03) 0.31(0.01) 0.10(0.01) 0.21(0.01) 0.72 (0.04)

Floating treatment wetlands vegetated withaustralis (T1), P. australis and bacteria (T2), and bacteria only (T3). Eachueds the mean of three
replicates; the standard error of three replicet@sesented in parenthesis.



Table5
Effect of bacterial inoculation on biomass and rantl shoot length dPhragmites australis vegetated in floating
treatment wetlands

Treatment Length (cm) Fresh biomass (g) Dry biomass (g)

Root Shoot Root Shoot Root Shoot
Tap water 67.8(2.6) 407 (19.1) 1189(52.1) 21Mqp 152(6.1) 510 (13.9)
Wastewater 43.6 (2.5) 294 (14.8) 936 (64.2) 18@39)Y 84 (7.9) 370 (13.9)

Wastewater and bacteria ~ 54.8 (4.9) 336 (6.9) 1@883] 1994 (94.4) 122 (7.5) 434 (26.5)

Each value is the mean of three replicates; thedata error of three replicates is presented ienghesis.



Table6
Fish toxicity assay of textile industrial wastewatetoxified by floating treatment wetlands vegethtvith Phragmites australis and inoculated with
bacterial consortium (BC)

Treatment Death over time Total deaths  Detoxification status
Oh 1h 2h 4h 8h 12h 24h 48h 72h 96h

P. australis (T1) 0 0 0 0 0 0 0 0 1 2 3 Partial

P. australis + BC (T2) 0 0 0 0 0 0 0 0 0 0 0 Complete

BC (T3) 0 0 0 0 0 0 2 1 1 1 5 Partial

Control 0 2 0 1 1 1 4 0 0 0 9 Negligible




Fig. 1. Development and implementation of floating treatment wetlands (FTWs) macrocosms for the
remediation of wastewater at Interloop Limited Khurrianwala, Faisalabad. Wastewater equalization
tank (A), floating mat for the plantation of Phragmites australis seedlings (B), nursery of P. australis
in the vicinity of NIBGE, Faisalabad (C), and growth of P. australis in FTWs macrocosms at the end of

experimentation (D).



B C oD (mg 1))

600 - e : - 100 100 - = o ~ 100
A) COD reduction (%) C) B Color (m™') —— Color reduction (%)
L]
- 20 - Lso &
450 L7s & <
= =
=
=
- - >
= - 60 4 L6029
- - | I =
50 300 o I k50 O g o
E = 19 B
a o < a0 Lao S
o o e ©
) %) Q Q
150 4 L 25
l 20 - | L 20
0 - I =0 0 | 0
& m SN T o eHAam T M AN® | — e N0 Ny ™ ° ° b= i ° =
ERnP|ERRE[Temp| T RRR| EERR| B ERF Rt RN EREE EEETS R Y.
c = c < c = c =4 c [= c <
o =} (=] =} o o =] -] o o a o
I ¥} Y] o ) v %] % o 9] 9} %)
0 Day 2 Days 4 Days 6 Days 8 Days 10 Days 0 Day 2 Days 4 Days 6 Days 8 Days 10 Days
B)' 375 100
& 1 =
Bl eOD (mgl") ——BOD reduction (%) ) 100 -
D . Il Phenols X chlorides [l S ulphates
s
300 - o~
L7s ™
= 75 o
=
©
~ 225 - —_
b, = 8
- Lso D c
£ ) . o 505
]
~ 150 + = 1%
o = S
o] (=a] B i
)
L 25 = 25 J 7
75 =
0 - 0 0 ’ I [ I | I ’ I I
— m _ AN m - ~ e ~N M b m - — — — —_ -
SFRF| SRR SRER| gRRE[ERRE R B RER i B R (i R R
c c c c c c T e c s T
o ) o o o a 5 ° ) o o
o o o ) g o o ¥ o o o
0 Day 2 Days | 4 Days 6Days | 8 Days 10 Days 2 Days 4 Days 6 Days 8 Days 10 Days

Fig. 2. Reduction of COD (A), BOD (B), Color (C), and for Phenols, Chlorides, and Sulphates (D) in
the textile wastewater by floating treatment wetlands vegetated with P. gustralis (T1), P.
australis and bacteria (T2), and bacteria only (T3). Each value is the mean of three biological
replicates. Error bars indicate standard error among three replicates.
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Fig. 3: Performance evaluation of FTW in terms of individual parameters, and overall response.



—8— shoot —*— root —8— shoot —*— root

(=3}
L

i -

1 |

m —

un =

o

= °°°

X 4+ A

-] X

[Tt

o 2

"5 v
LY

oo (o]

2 =

: w
(o]
-

T T T 1 0 :

0 20 40 60 80 100 ; ) ;

Days

(Begninning of Experiment)

Days

Fig. 4. Bacterial survival and colonization in water and in root and shoot interior of Phragmites

australis for the macrocosms containing wastewater with vegetation and bacterial inoculation
(T2).



Biomass (g) / plant

363 3,7

203
161
147|
I
94
78
AV
1
© © © WU O N N NNNN ©
MR R T R = L il LT
- C B = O o - € o+ O O
Q IS o O
< 3 2 0aa g2 Fol8

Fig. 5: Biomass of Phragmites australis per plant obtained after every 3-months of harvesting.



Highlights

Bacterialy assisted FTWs macrocosms were engineered to treat real textile effluent

Combined application of plants and bacteria had a prominent effect on pollution reduction

Inoculated bacteria displayed persistence in different components of the FTWs

Treated wastewater met the National Environmental Quality Standards (NEQS) of Pakistan



