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Abstract 8 

High-frequency sensor measurements enable calculation of continuous autotrophic 9 

nitrate uptake rate based on its intrinsic relationship with gross primary production 10 

(GPP). The spatiotemporally available data offer prospects to advance process 11 

understandings across scales. We used continuous 15-min data (2011-2015) from a 12 

forest upstream reach and an agricultural downstream reach of the Selke River, 13 

Germany. Based on the high-frequency data, we developed a parsimonious approach 14 

for regionalizing the autotrophic uptake rate, considering effects of global radiation and 15 

riparian shading. For networked modeling, we integrated this approach into the fully 16 

distributed mesoscale hydrological nitrate model (mHM-Nitrate). Daily GPP-based 17 

uptake rate calculations showed distinct seasonal patterns and ranges in the agricultural 18 

and forest streams (mean values were 80.9 and 15.5 ��	�	������, respectively). 19 

Validation in the two streams showed acceptable performance (R2 = 0.47and 0.45, 20 

respectively) and spatial transferability of the regionalization approach, given its 21 

parsimony. Networked modeling results showed high spatiotemporal variability in nitrate 22 

transport and uptake throughout the river network. The magnitude of gross uptake 23 

increased, whereas uptake efficiency decreased significantly along stream order. 24 

Longitudinal analysis in the main stem of the Selke River revealed that riparian shading 25 

and inter-annual hydrochemical variations strongly influenced daily dynamics of the 26 

uptake efficiency. This study provides a parsimonious and transferable procedure for 27 

regionalizing in-stream autotrophic nitrate uptake based on high-frequency data at 28 

reach scale. Integrating this approach in the mHM-Nitrate model allows detailed nitrate 29 

transport and in-stream uptake processes to be investigated throughout river networks. 30 
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regionalization; network upscaling; the fully distributed mHM-Nitrate model. 32 

 33 

1. Introduction 34 

Streams deliver nutrients to catchment outlets and estuaries, and also transform and 35 

remove nutrients as traveling through the river network (Alexander et al. 2009). 36 

Hydrological, morphological and biogeochemical characteristics influence in-stream 37 

nutrient processing greatly, resulting in high spatiotemporal variability throughout the 38 

river network (Bernhardt et al. 2005). The in-stream processing is also influenced by 39 

factors resulting from terrestrial processes, such as nutrient availability and hydrological 40 

conditions (Mulholland et al. 2008). With such a high level of complexity, investigating 41 

nutrient dynamics at the river network scale remains challenging (Helton et al. 2011). 42 

Following the nutrient spiraling concept (i.e., the cycling of nutrient being assimilated, 43 

temporarily retained and mineralized (Ensign and Doyle 2006)), reach-scale studies 44 

have provided much information on influential factors and in-stream uptake 45 

quantifications (Mulholland et al. 2008). Due to experimental constraints, traditional 46 

tracer studies are mostly conducted in headwater streams rather than in large streams 47 

and rivers. Networked nutrient spiraling metrics (e.g., uptake rate constant		) have been 48 

correlated with influential factors (e.g., water depth or nutrient concentrations) 49 

(Mulholland et al. 2008, Ye et al. 2017) using empirical functions. Selections of these 50 

functions (e.g., first-order kinetics) and their corresponding parameters are based on 51 

measurements across experimental sites/reaches (Alexander et al. 2009, Helton et al. 52 
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2011). However, the limitations of regionalizing and upscaling procedures are reflected 53 

in (1) dubious representativeness of measurements in small headwater streams for 54 

large streams with diverse natural characteristics and anthropogenic impacts, (2) 55 

inadequate quantification of distal factors (Helton et al. 2011), e.g., riparian vegetation 56 

and land cover conditions that influence stream light availability, and (3) insufficient 57 

coverage of spatiotemporal variations in in-stream processes and terrestrial 58 

allochthonous inputs. 59 

Nitrate (�
�
�) has been intensively investigated due to its mobility and environmental 60 

impacts (Grant et al. 2018). The in-stream fate of �
�
�is strongly correlated with 61 

ecosystem metabolism in lotic systems due to biotic demand in benthic biofilms and 62 

hyporheic zones (Bernhardt et al. 2018, Gomez-Velez et al. 2015, Rode et al. 2016a). 63 

Measurements in small headwaters demonstrate a strong relationship between total 64 

�
�
� uptake and ecosystem metabolism rates, and a significant linear regression 65 

between �
�
� diel amplitude (due to autotrophic uptake) and gross primary production 66 

(GPP) (Roberts and Mulholland 2007). However, traditional sampling campaigns are 67 

mostly conducted in streams where and when stream conditions are optimum 68 

(Bernhardt et al. 2018). Consequently, they are not sufficient for estimating temporal 69 

dynamics (Heffernan and Cohen 2010), nor for transferal to different stream conditions.  70 

The development of sensor techniques allows continuous monitoring under a much 71 

wider range of stream conditions and therefore improves understanding of ecosystem 72 

processes (Rode et al. 2016b). Among others, �
�
� sensors are widely available and 73 

the autotrophic �
�
� uptake rate (�
�����, ��	�	���	���) can be measured directly from 74 

high-frequency �
�
� concentration measurements, i.e., the diel amplitude. Based on 75 
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high-frequency monitoring, Heffernan and Cohen (2010) found a strong correlation 76 

between measured �
����� and calculations based on measured GPP and the 77 

stoichiometric ratio in a subtropical spring-fed river in the USA. Rode et al. (2016a) 78 

related measured �
����� to GPP based on high-frequency data in forest and 79 

agricultural streams in Germany, and demonstrated the agreement between regression 80 

and stoichiometric methods. Therefore, high-frequency monitoring facilitates reliable in-81 

stream measurements, which can stimulate new insights into �
�
� uptake processing 82 

across stream conditions. 83 

Given abundant �
�
� availability, stream metabolism is usually controlled by physical 84 

factors, such as light, temperature and flow disturbance (O'Connor et al. 2012, 85 

Uehlinger 2006). Among proximal factors, light (i.e., photosynthetically active radiation - 86 

PAR) dominates the variation in GPP (Mulholland et al. 2001, Roberts et al. 2007). 87 

Meanwhile, distal factors (e.g., land cover and riparian vegetation) largely impact the 88 

stream surface light availability (Bernot et al. 2010). However, the surface light regime 89 

and its impact on GPP have not been quantified adequately, most likely due to the 90 

difficulty in relating the light regimes to widely available data (Bernhardt et al. 2018). 91 

Based on continuous high-frequency sensor deployment, Rode et al. (2016a) explicitly 92 

showed different seasonal patterns of GPP in closed- and open-canopy streams. 93 

Interestingly, the patterns are highly consistent with those of PAR measured above 94 

forested stream surface and above forest canopy, respectively (measurements in 95 

Roberts et al. (2007)). Therefore, information derived from continuous high-frequency 96 

monitoring can be used for relating in-stream autotrophic �
�
� uptake to its driving 97 

factors, especially under diverse light regimes.  98 
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One main challenge in modeling networked �
�
� uptake, especially uptake efficiency 99 

(i.e., the percentage of the uptake amount to the load), is covering the spatiotemporal 100 

heterogeneity of terrestrial exports (e.g., �
�
� load). Most network models emphasize 101 

in-stream processes and simplify greatly representations of terrestrial processes. They 102 

either statistically relate terrestrial exports to catchment characteristics (e.g., the 103 

SPARROW model) (Wollheim et al. 2008) or define one or more flow components as 104 

end-members. Those simplifications restrict the ability to model river networks that have 105 

heterogeneous conditions, and in which allochthonous terrestrial inputs are likely more 106 

diverse (Dupas et al. 2017). Alternatively, mechanistic catchment water quality models 107 

describe catchment characteristics thoroughly (Rode et al. 2010); Among them, grid-108 

based models are preferable due to their inherent higher degree of spatial 109 

representation (Yang et al. 2018). Moreover, the grid-based routing structure provides 110 

detailed reach-scale information (e.g., stream geomorphological features) for analyzing 111 

in-stream processes. To our knowledge, mechanistic catchment models that provide 112 

detailed terrestrial exports have rarely been used to upscale reach-scale advances to 113 

the network scale. 114 

In this study, we propose a parsimonious regionalization approach for	�
����� based on 115 

continuous high-frequency �
�
� concentration and stream metabolic data (2011-2015) 116 

in a forest and an agricultural stream reach of the Selke River, Germany. We upscale 117 

the findings to the river network scale based on the fully distributed catchment �
�
� 118 

model (mHM-Nitrate) (Yang et al. 2018). Influential factors of global radiation (GR) and 119 

riparian shading are chosen to quantify the stream surface light availability. The new 120 

data and the modeling approach allow us to (1) obtain continuous daily �
����� data 121 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

from the high-frequency measurements and the intrinsic relationship between �
����� 122 

and GPP, (2) validate the performance of the �
����� regionalization approach and test 123 

the spatial transferability for deviating stream riparian conditions, and (3) upscale the 124 

approach to the whole Selke river network based on the mHM-Nitrate model and 125 

provide detailed spatiotemporal information on �
�
� transport and uptake at the river 126 

network scale. 127 

2. Materials and Methods  128 

2.1. Study site and high-frequency data collection 129 

The Selke River, central Germany, has a drainage area of 456 km2. It is part of the 130 

TERENO (TERrestrial ENvironmental Observatories) project 131 

(http://www.tereno.net/overview-de, last accessed October 31, 2018). The elevation 132 

ranges from 605 m in the upper mountains to 53 m in the lowlands. The two study 133 

reaches are located upstream of the gauging stations Meisdorf and Hausneindorf, 134 

representing the dominant forested and agricultural land, respectively (Figure 1). Due to 135 

gradients of meteorological and geomorphological conditions, the catchment is 136 

characterized by high hydrological heterogeneity (Table S1). Due to highly fertile soils, 137 

the agricultural land is dominated by arable land cropped mainly with winter wheat, 138 

winter barley and maize. Pasture accounts only for 3.5% of total catchment area and is 139 

exclusively located in the upper part of the catchment. Agricultural streams are mostly 140 

characterized by open canopy. This is confirmed by a detailed survey from the State 141 

Agency for Flood Protection and Water Management of Saxony-Anhalt (LHW) on 142 

riparian vegetation using 100 m stream segment. At the two largest agricultural 143 
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tributaries of the Selke River (i.e., the Getel and the Hauptseegraben, Figure S1), only 144 

6% of the surveyed stream segments have gallery trees (80% of them occur only on 145 

one side of the stream). Most of the agricultural streams have no high riparian 146 

vegetation. Only the main stem of the lowland Selke River (4th and 5th order) is partly 147 

shaded by bushes and riparian gallery trees. The open canopy allows high irradiance at 148 

the water surface and the subsequent development of large mats of periphyton and 149 

macrophytes (Rode et al. 2016a).  150 

Figure 1. near here 151 

Figure 1. The Selke catchment, river network and land cover types. Multi-parameter 152 

sensors were deployed at station Hausneindorf and station Meisdorf, representing 153 

agricultural and forest streams, respectively. 154 

The outlet station Hausneindorf measures flow and �
�
� dynamics of the entire 155 

catchment. Reaches upstream of this station represent open or very-sparse canopy 156 

agricultural streams. Upstream reaches of the station Meisdorf are mostly forest 157 

streams, of which riparian zones are dominated by trees with a closed-canopy during 158 

the vegetation period. In the lowland streams, �
�
� concentrations are much higher than 159 

those in the upper streams (values of biweekly grab samples 1997-2015 at the two 160 

stations are 3.61 ± 1.09 and 1.60 ± 1.00 ��	���, respectively) due to long-term 161 

agricultural activities. Concentrations of soluble reactive phosphorus (SRP) are similarly 162 

high (0.040 ± 0.022 ��	���) at both stations.  163 

Multi-parameter sensors (YSI 610 and TRIOS ProPS-UV) were deployed at the two 164 

stations. We continuously measured dissolved oxygen (DO), water temperature, pH, 165 
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turbidity (only available in 2015) and �
�
� concentration at a 15-min interval. The quality 166 

of high-frequency sensor �
�
� measurements was validated using parallel grab samples 167 

(see Rode et al. (2016a)). We collected five years of data (from January 1, 2011 to 168 

December 31, 2015) from the two stations. High-frequency discharge and air pressure 169 

data were collected from the state agency (LHW) and the German Weather Service, 170 

respectively. For more details on the high-frequency monitoring and maintenance, refer 171 

to Rode et al. (2016a).  172 

2.2. Calculation of metabolism rates and ���
� uptake rate  173 

Daily GPP (�	
�	���	���) and ecosystem respiration (ER, �	
�	���	���) from 15-min 174 

DO measurements were calculated based on the single-station method (Odum 1956). 175 

The determination of the reaeration coefficient is one of the key issues in metabolic 176 

calculation (Raymond et al. 2012). The energy dissipation method (Bott et al. 2006, 177 

Tsivoglou and Neal 1976) was used in this study, which has been evaluated with a 178 

propan tracer test in the study site (Rode et al. 2016a). DO saturation percentage was 179 

determined from the measured DO concentration, water temperature and barometric 180 

pressure. Rates of GPP and ER were calculated using the measured DO differences 181 

between consecutive 15-min records, considering the effects of DO saturation deficit 182 

and reaeration. Day-time ER was assumed to be equal to the night-time ER. Daily net 183 

ecosystem production (NEP) was calculated as daily	��� − ��. For more details on the 184 

calculation, please refer to the Supplementary Materials. Values during over-bank flow 185 

periods (discharge > 7	�����) were not considered, and unrealistic negative GPP and 186 

ER values were omitted (11% and 14% for Meisdorf and Hausneindorf, respectively). 187 

For detailed quality control of metabolism rate calculation, refer to Rode et al. (2016a).  188 
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Theoretically, �
����� 	(��	�	���	���) can be obtained directly from the diel amplitude of 189 

�
�
� concentration (i.e., measured	�
�����, modified from Heffernan and Cohen (2010)): 190 

�
����� = 	 �� ∑ [!" ∙ ([�
�
��%&'(	()) − [�
�

��%")+
",) %    (1) 191 

where [�
�
�%&'(	()) and [�
�

�%" (��	���) denote the preceding predawn peak of �
�
� 192 

concentration and �
�
� concentration at time step -, respectively; !" (�	���) denotes 193 

discharge at time step -; . denotes benthic area (��), which is estimated from the 194 

reaeration coefficient and flow velocity measured upstream of each gauging station 195 

(Rode et al. 2016a); and / denotes the number of measurements per diel change.  196 

As mentioned by Hensley and Cohen (2016) and Rode et al. (2016a), upstream effects 197 

propagate over a longer distance for �
�
� than for DO and the diel change of �
�

� can 198 

be disturbed rapidly by additional upstream inputs. Therefore, the measured �
����� 199 

from diel amplitudes of �
�
� concentration can only be obtained during steady low-flow 200 

conditions. Based on the five years of measurements, we defined the regression 201 

between measured �
����� and GPP to obtain continuous daily �
����� calculations (i.e., 202 

GPP-based	�
����� calculations). 203 

2.3. Stream surface light availability and the 01����
� regionalization approach 204 

Light availability near the stream surface is increased by PAR above the canopy and 205 

decreased by shading of riparian vegetation. We collected daily sunshine duration data 206 

from the Ummendorf weather station (35 km north of the Hausneindorf station) and 207 

calculated the theoretical daily GR (Allen et al. 1998) from 2011-2015. For details on the 208 

GR calculation, please refer to the Supplementary Materials. Since the daily series of 209 
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GR fluctuated greatly, we smoothed the data using a 5-day moving average method 210 

and obtained averaged daily global radiation ��" (23	������	). The time window of 5 211 

days was arbitrarily chosen to balance the trends and fluctuations. The impact of GR on 212 

light availability was calculated by min-max normalization of the smoothed GR data 213 

(feature scaling): 214 

456," = 567�&89:567∈[<,=%>
&'(:567∈[<,=%>�&89:567∈[<,=%>

     (2) 215 

where 456," ∈ [0,1% denotes the GR coefficient at time -; maxD��"∈[�,+%E and 216 

minD��"∈[�,+%E denote the maximum and minimum ��" values, respectively; and / 217 

denotes the day number of the time series. Field measurements of GR and PAR in a 218 

nearby weather station (Wulferstädt station, 2013-2015) showed a strong linear 219 

relationship between GR and PAR (�.� = 0.64 × ��, �� = 0.98) and agreement 220 

between calculated GR at Ummendorf and measured GR at Wulferstädt (�� = 0.96, 221 

Figure S2). Normalization also eliminated the scale effect. Therefore, we used GR 222 

directly, instead of PAR.  223 

We assumed that riparian vegetation is the same as that in the surrounding landscape. 224 

Therefore, the condition of the riparian vegetation was represented by land cover type. 225 

Leaf area index (LAI) was chosen to represent spatiotemporal distribution of the riparian 226 

canopy. The negative impact of riparian shading on light availability was calculated by 227 

min-max normalization of LAI among all land cover types (i.e., the riparian shading 228 

coefficient). To simplify preparation of LAI data, we calculated generic daily LAI values 229 

for each land cover type using the mean monthly values and applied each annual 230 
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pattern for all five years. When year-to-year LAI changes significantly, the measured 231 

values or remote sensing data are recommended. 232 

The overall stream surface light availability was calculated as: 233 

4N,"
O =	456," ∙ (1 − ∑ PO

Q ∙R
Q,� 4N�S,"

Q )     (3) 234 

where 4N,"
O 	 ∈ [0,1% denotes the overall coefficient of near surface light availability of 235 

stream segment T at time -; 4N�S,"
Q  ∈ [0,1% denotes the riparian shading coefficient of land 236 

cover type U; and PO
Q denotes the areal proportion of each land cover type U surrounding 237 

stream segment	T. From grid-based modeling perspective, one stream segment was 238 

defined for each modeling grid cell. Therefore, PO
Q was equivalent to the length 239 

proportion of each riparian vegetation type. We further assumed that no significant 240 

shading for streams surrounded by non-forest types (e.g., agricultural streams) and set 241 

4N�S,"
Q  values of these stream segments to zero.  242 

The light availability coefficient (4N,"
O ) provides a spatiotemporal estimate of the combined 243 

impact of GR and riparian shading. Therefore, �
����� was simply quantified as: 244 

�
�����,"
O =	�
,V
W ∙ 	 4N,"

O       (4) 245 

where �
�����,"
O  denotes �
����� of stream T at time -, and �
,V
W denotes the general 246 

parameter (i.e., the potential uptake rate). This parameter can be explained physically 247 

as the �
����� value under optimal GR conditions (e.g., on clear-sky dates with the 248 

longest sunshine duration of the year). Based on this parsimonious 249 
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approach,	�
�����	and its spatiotemporal variability can be easily obtained based on 250 

commonly available data (i.e., GR, LAI and land cover information). 251 

2.4. The grid-based mHM-Nitrate model and networked upscaling 252 

The mHM-Nitrate model is a fully distributed catchment nitrate model (Yang et al. 2018). 253 

The model is developed on the multi-scale platform of the mHM model (Samaniego et al. 254 

2010). The mHM-Nitrate model provides reliable spatial simulations of hydrological and 255 

nitrate fluxes, as well as spatial details of physical and environmental characteristics of 256 

the catchment. These characteristics are upscaled from basic geographical data levels 257 

to the modeling level using the multi-scale parameter regionalization procedure 258 

(Samaniego et al. 2010). Each stream segment contains a complete set of flow routing 259 

and nitrate processing (i.e., assimilatory uptake, mineralization and denitrification). 260 

Therefore, stream morphological information can be linked directly to simulating �
�
� 261 

transport and uptake processes.  262 

The new approach of �
����� regionalization (Eqs. 2 - 4) was integrated into the mHM-263 

Nitrate model. Since assimilated nitrogen can be remineralized and return to the in-264 

stream nitrate pool, mineralization was refined to equal a proportion of autotrophic �
�
� 265 

uptake, while denitrification remained as that of the original mHM-Nitrate. The model 266 

was set up in the Selke catchment using a 1 km2 cell size for both terrestrial and in-267 

stream phases, and was calibrated against observations of the two gauging stations. 268 

Daily discharge and	�
�
� concentration were simulated and provided for each stream. 269 

The proportion of each land cover type in the area of each model cell was calculated 270 

using the basic land cover map (100 m resolution). Morphological characteristics were 271 
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calculated for each stream, as follows: Stream length was calculated as the distance to 272 

the adjacent or diagonal cell based on the Digital Elevation Model (DEM, 100 m 273 

resolution) and summed up to the modeling level (1 km resolution); Stream width was 274 

estimated from simulated discharge, based on the empirical equation by Rode et al. 275 

(2016a). GR data from the Ummendorf station were used for the entire catchment. We 276 

matched the modeled river network to the real network that generated from the DEM 277 

and modified according to topographical maps (source from the State Agency for 278 

Survey and Geoinformation of Sachsen-Anhalt, Germany). We assigned model 279 

simulations to corresponding streams in the real network. The main stem of the Selke 280 

River from the modeled network was used for the daily longitudinal analysis (Figure S1).  281 

2.5 Approach validation at reach scale and statistical analysis methods 282 

The approach was firstly validated using the daily GPP-based �
����� calculations from 283 

the agricultural stream (station Hausneindorf). Potential outliers in the calculations were 284 

detected using the interquartile range (IQR) method, and the �
,V
W value was assigned 285 

as 1.5 IQR of the upper quartile (ca. 99.65%). This parameter value was then applied 286 

directly to the forest stream (station Meisdorf), whose daily �
����� calculations were 287 

used to validate the performance of the approach and the transferability of the 288 

parameter under different riparian conditions. 289 

To evaluate the spatial pattern and seasonality of modeled autotrophic �
�
� uptake, 290 

each stream was identified by three attributes: stream order, riparian vegetation type 291 

and mean uptake values of each season. We summarized three types of vegetation at 292 

the modeling level: agriculture (streams surrounded by > 80% of agricultural land), 293 
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forest (streams surrounded by > 80% of forest) and mixture (all other streams). Analysis 294 

of variance (ANOVA) was conducted using R software (R Core Team 2017). Normality 295 

of the data was ensured using log-transformation, and homogeneity of variance was 296 

tested using the Levene’s test (results not shown). Significant ANOVA results (X < 0.01) 297 

were examined further using post-hoc test (Tukey’s Test) for pairwise comparisons. The 298 

beta coefficient (lm.beta package in R) was calculated to identify the most descriptive 299 

attributes (higher absolute beta value indicates a stronger effect). 300 

3. Results and Discussion 301 

3.1. Metabolism rates and GPP-based 01����
� calculations 302 

In the agricultural stream (Figure 2), GPP (mean ± standard deviation (SD) = 2.10 ± 303 

1.78 �	
�	������) was moderately correlated with GR (�� = 0.42, X < 0.01) and 304 

therefore generally peaked in summer. ER (mean ± SD = 3.28 ± 1.75 �	
�	������) was 305 

slightly higher than GPP but within the same order of magnitude. It was also correlated 306 

with global radiation (�� = 0.33, X < 0.01), but the correlation was sometimes influenced 307 

by flooding events. NEP was generally close to zero (mean = - 1.10 ± 1.83 308 

�	
�	������), with slightly positive values in spring (0.50 ± 2.03 �	
�	������) and 309 

mostly negative values in late autumn (-2.38 ± 1.10 �	
�	������). Results generally 310 

agreed with the first two-year calculation by Rode et al. (2016a). However, seasonal 311 

patterns of metabolism rates in the last three years were more diverse. For instance, 312 

during the months of June-October, GPP was significantly lower in 2014-2015 than in 313 

2011-2013 (mean = 1.66 vs. 2.74 �	
�	������, respectively; ANOVA, X < 0.01). In 314 

2014, comparable degree of reductions in GPP and ER were observed and mean NEP 315 
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(- 0.97 �	
�	������) was similar to the annual mean value. The reductions may be 316 

attributed to higher discharge during the dry months (mean = 1.26 vs. 0.62	����� for 317 

other years) which increases bottom shear stress, possibly resulting in moderate 318 

removal of benthic communities. Biofilm aging and algal sloughing may also contribute 319 

to the reduction in both GPP and ER during moderate flow (Uehlinger 2006). In 2015, 320 

GPP decreased more than ER, resulting in higher negative NEP (mean = - 2.04 vs. - 321 

1.22	�	
�	������ for other years). Turbidity is the most likely cause of this stronger 322 

decrease in GPP than in ER (Figure S3). Increased turbidity reduces the amount of 323 

light that penetrates from the surface to the riverbed, while the fine sediments being 324 

transported stimulate respiration due to their high concentrations of labile organic 325 

carbon (O'Connor et al. 2012, Roberts et al. 2007).  326 

Figure 2. near here 327 

Figure 2. Daily metabolism rates (i.e., gross primary production-GPP, ecosystem 328 

respiration-ER and net ecosystem production-NEP) at Hausneindorf, representing 329 

typical agricultural streams. ER was shown as negative values for better visibility. 330 

Metabolism rates in the forest stream (Figure S4) had distinctly different behavior than 331 

those in the agricultural stream. GPP (mean ± SD = 0.54 ± 0.62 �	
�	������) was 332 

significantly lower (ANOVA, X < 0.01), and the seasonal pattern differed completely. It 333 

increased in spring due to the increase in GR and peaked (mean = 2.85	�	
�	������) at 334 

the beginning of May, when significant shading from riparian vegetation occurred. In the 335 

following month, GPP decreased dramatically to a low level (mean = 0.25	�	
�	������) 336 

and remained low until late autumn. After litterfall, GPP increased slightly (e.g., in 2013-337 
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2015), but the increase was low due to the already reduced GR in late autumn (Roberts 338 

et al. 2007). ER (mean ± SD = 4.65 ± 5.61 	�	
�	������) was generally much higher 339 

than GPP, indicating strong net heterotrophic behavior in the forest stream (��� < 0 340 

throughout the year). The seasonal ER pattern was more diverse, with generally higher 341 

values in winter and spring and high variability throughout the year. ER was correlated 342 

with stream flow (�� = 0.60, X < 0.01), most likely because ER can be stimulated by 343 

hydrological events which provide more allochthonous labile organic inputs (Mulholland 344 

et al. 2001). 345 

Linear regressions between measured �
����� and GPP at stations Hausneindorf and 346 

Meisdorf (n = 90 and 67, respectively, Figure 3) were similar to those of a former study 347 

using the first two years of data (2011-2012) (Rode et al. 2016a). This demonstrated 348 

that the correlation was robust in the Selke catchment. 349 

Figure 3. near here 350 

Figure 3. Linear regressions between measured autotrophic �
�
� uptake (�
�����) and 351 

GPP at (a) Hausneindorf and (b) Meisdorf, representing the agricultural and forest 352 

streams, respectively, during low flow conditions (discharge< 0.8	��	���).  353 

3.2. Performance of the 01����
� regionalization approach 354 

The GR coefficient (Figure S5a) showed a clear seasonal pattern with considerable 355 

differences among years (e.g., unimodal or multimodal). The shading coefficient based 356 

on LAI (Figure S5b) demonstrated clear differences in shading among forest types: 357 

deciduous trees provided the highest shading in July-August and almost no shading 358 

before leaf-out and after litterfall; conifers provided constant high shading throughout 359 
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the year; and the other forest types in the Selke catchment provided intermediate levels 360 

of shading. Based on our assumptions, non-forest shading was set to zero. The overall 361 

light coefficient (Eq. 3) for each stream depended on the proportions of each land cover 362 

type (see an example in Figure S5c).  363 

Daily GPP-based �
����� calculations for agricultural and forest streams (Hausneindorf 364 

and Meisdorf, respectively, Figure 4) were estimated based on continuous daily GPP 365 

and correlations between measured �
����� and GPP, respectively. The potential 366 

uptake rate (�
,V
W) was determined as 283	��	�	������ based on the dataset from 367 

Hausneindorf (n = 1563, Figure S6). For the open-canopy agricultural stream, 368 

simulations from the regionalization approach reproduced the seasonal pattern of the 369 

calculated �
����� relatively well (Figure 4a), especially in the first two years, when 370 

discharge in low-flow periods was relatively low and stable. In 2013, GPP-based �
����� 371 

calculations were extremely high (≥ 300	��	�	������) during March-June (i.e., the off-372 

set and in-between periods of two extreme flooding events). Simulations 373 

underestimated by more than 50%. The higher discharge (mean = 2.50 ��	���) and 374 

lower temperature (ca. 4 ℃ lower than the daily mean) during these periods might have 375 

introduced high uncertainty in metabolism rate calculations (Riley and Dodds 2012). 376 

Similarly, in March 2014 and 2015, measured �
����� (mean = 66.6 ��	�	������, n=12) 377 

were similar to the simulations (mean = 76.1 ��	�	������, n=62), but much lower than 378 

the GPP-based calculations (mean = 131.5 ��	�	������, n=59). This further suggests 379 

that uncertainty in calculated metabolism rate may increase with increased discharge.  380 
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We determined the proportion (P) of each land cover type in a 1 km2 area surrounding 381 

Meisdorf, i.e., coniferous forest (0.00), deciduous forest (0.52), mixed forest (0.25) and 382 

pasture (0.23). The simulated �
����� reproduced the range and seasonal pattern of 383 

GPP-based calculations remarkably well (Figure 4b). Although we observed 384 

discrepancies for the agricultural stream and transferred the potential uptake rate 385 

directly to the forest stream, the approach clearly captured the large differences of 386 

calculated �
����� between the two riparian conditions. Slight overestimates occurred 387 

from May-June, most likely due to aspect shading from the steep valley alongside the 388 

stream (Bernhardt et al. 2018). The approach missed several observed spikes, which 389 

likely correspond to pulses of discharge and turbidity. The dramatic decrease in 390 

calculated �
����� in 2012 is probably due to the sharp decrease in water temperature 391 

(Rode et al. 2016a).  392 

Figure 4. near here 393 

Figure 4. GPP-based calculations and approach simulations of the N uptake rate (i.e., 394 

�
�����) at (a) Hausneindorf and (b) Meisdorf, representing the agricultural and forest 395 

streams, respectively.  396 

In addition to the visual consistency in seasonal patterns, the simulations correlated 397 

reasonably with the GPP-based �
����� calculations (�� = 0.47	and	0.45	for 398 

Hausneindorf and Meisdorf, respectively), given the parsimony of the approach and the 399 

distinct uptake behaviors at the two sites. Therefore, light can be identified as the main 400 

factor influencing the seasonal autotrophic �
�
� uptake in the Selke River. Other 401 

influential factors were similar at the two sites. The C/N ratios of benthic biofilm were 402 
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similar (8.7 and 8.5 for the agricultural and forest streams, respectively) (Kamjunke et al. 403 

2015). From June-October, water temperature was 14.2 ± 4.3 and 12.0 ± 4.2 ℃, 404 

respectively, which is sufficient in supporting high growth rates of diatoms (Anderson 405 

2000). 406 

We assumed that riparian vegetation is the same as the surrounding landscape. This 407 

assumption is validated by the LHW survey data in the catchment. Although the lowland 408 

main stem of the Selke is dominated by sparse gallery trees, GPP values at 409 

Hausneindorf are comparable with values reported in other agricultural streams (e.g., 410 

Beaulieu et al. (2013) and Griffiths et al. (2013)) and the approach performed well. This 411 

indicates that the gallery trees do not provide sufficient shading on the stream surface, 412 

presumably due to the relatively large side-to-side distance and less shading density of 413 

the trees. Still, the assumptions might not completely valid for agricultural or urban 414 

streams with a significant buffer of trees planted along the stream corridor. However, 415 

such information is rarely available at river network scale (e.g., resolution mismatching 416 

of satellite data and expensive to survey all tributaries) and extrapolating the shading 417 

effect from on-site measurements remains challenging (Davies-Colley and Rutherford 418 

2005). 419 

Our regionalization approach focuses on quantifying stream surface light availability. 420 

Other factors are not included in its design. Water temperature is not explicitly 421 

considered because it is not available network wide, and spatiotemporal estimates of 422 

water temperature can be quite uncertain. The impact of water temperature is partly 423 

considered by light and is more relevant for ER than for GPP (Demars et al. 2011). 424 

Turbidity decreases the amount of light that penetrates to benthic areas (Julian et al. 425 
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2008), which likely resulted in the overestimation of the simulated �
����� in the 426 

summer/autumn periods of 2014-2015. Based on the continuous measurements in 2015 427 

(Figure S3), we observed a plausible correspondence between the increase in turbidity 428 

and the decrease in GPP, but the relationship is quantitatively unclear, let alone linking 429 

turbidity to widely available discharge data for regionalization purposes. Flow 430 

disturbance likely has significant episodic impact on stream metabolism, following a 431 

threshold behavior (O'Connor et al. 2012, Uehlinger 2006). The resilience of GPP to 432 

flow disturbance is suspected to be relatively quick, especially in high PAR seasons, 433 

except for highly complicated cases in which successive disturbances occur (O'Connor 434 

et al. 2012). The impact of flow disturbance is mechanistically controlled by turbulence 435 

and sediment interactions (O'Connor et al. 2012), which are challenging to determine 436 

and require adequate descriptions of hydraulics and sediment properties. Therefore, 437 

flow disturbance is excluded from the approach. Nutrient limitation may constraint the 438 

autotrophic uptake in certain cases. However, the relationship between nutrient supply 439 

and GPP increase is also reported as weak (Bernot et al. 2010), most likely due to the 440 

already high nutrient levels in anthropogenically impacted streams. 441 

3.3. Network upscaling and spatiotemporal variability of ���
� uptake 442 

Integrating the approach into mHM-Nitrate model predicted a strong spatial variability of 443 

seasonal mean �
����� (Figure S7). Agricultural streams had much higher uptake rates 444 

than forest streams (mean ± SD = 86.4 ± 1.9 vs. 18.8 ± 6.2	���������, respectively) 445 

due to less riparian shading. The differences between the two main riparian vegetation 446 

types were much smaller in winter (10.1 ± 0.42 vs. 4.6 ± 2.2 ��	�	������) probably 447 

due to the universally low winter GR. The higher SD for forest streams indicated more 448 
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diverse uptake patterns due to different shading patterns (represented by different LAI 449 

patterns) in different forest types. We used only basic information (i.e., global radiation, 450 

LAI and land cover information), but did provide the varied seasonality of �
����� under 451 

different light regimes. 452 

By multiplying modeled stream benthic areas, seasonal mean gross �
�
� uptake 453 

(�
``, 	�	�	���) was calculated for each stream in the network (Figure 5). The 454 

coefficient of variance (CV) of �
`` was much higher than that of �
����� (CVs of annual 455 

mean = 1.51 and 0.57, respectively), indicating a higher overall spatial variability. Due to 456 

variations in stream morphological properties, �
`` varied among areas with the same 457 

shading condition. Two-way ANOVA showed that �
`` varied significantly among 458 

different stream orders and vegetation types in all seasons. A post-hoc test (Tukey’s 459 

test) identified that the �
`` of 1st (annual mean = 0.27 	�	�	���) and 2nd (0.51 	�	�	���) 460 

order streams was significantly lower than that of higher orders (1.77 	�	�	��� for all 3rd 461 

-5th order streams) due to flow accumulation in higher order streams. The	�
`` of forest 462 

streams differed significantly from those of agricultural and mixed streams, except in 463 

winter, when all values were low. �
`` also showed significant seasonal variability in all 464 

streams (ANOVA, X < 0.01). However, Post-hoc test revealed that mean values in 465 

spring and summer differed significantly only in forest streams. The differences in 466 

agricultural and mixed streams (X = 0.50 and 0.93, respectively) attenuated due to the 467 

larger benthic area in spring, albeit generally higher �
����� in summer. The beta 468 

coefficients indicated that season and stream order had the greatest effect on �
``, 469 

whereas season and vegetation type had the greatest effect on �
�����. 470 
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Figure 5. near here 471 

 Figure 5. Seasonal mean gross �
�
� uptake amount (�
``) at the Selke river network. 472 

The color ramp of the legend within the range of [0,1] 	�	�	��� was zoomed in on the 473 

right side. 474 

We used the detailed spatial simulations of nitrate loads (a���� , 	�	�	���) from the mHM-475 

Nitrate model (Figure S8) to calculate the uptake efficiency (i.e., the uptake percentage, 476 

�b = �
`` a����⁄ × 100) for each stream in the network. �b peaked in summer (mean ± 477 

SD = 21.4 ± 17.8%), when the highest	�
`` encountered the lowest a���� (Table S2), 478 

whereas in winter, �b values were extremely low throughout the river network (1.0 ± 479 

1.7%) due to the high a���� and low �
``. �b	was consistently lower in higher order 480 

streams (e.g., annual means were ca. 14% and 4% in 1st and 4th order streams, 481 

respectively), mainly due to the greater increase in	a���� than in	�
`` with increasing 482 

stream order. However, all pairs of adjacent stream orders (i.e., 1st-2nd, 2nd-3rd and 3rd-483 

4th) did not differ significantly (X > 0.01) in summer. This can be attributed to the 484 

consistently low a���� from 1st to 4th order streams in summer (mean = 5 to 55 	�	�	���, 485 

respectively).  486 

Longitudinal daily �b in the main stem of the Selke clearly showed the strong impact of 487 

riparian vegetation on �b seasonal dynamics and its inter-annual variation (Figure 6). 488 

Critical locations and periods of high �
�
� uptake percentage (e.g., > 40%) could be 489 

explicitly identified. The critical period was longer in upper agricultural streams (≥ 23 km 490 

from the outlet) than in lower agricultural streams (≤ 11 km from the outlet). The shallow 491 

impermeable bedrock in the upper Selke catchment results in a preference of flashier 492 
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flow path, which prevents �
�
� accumulation in the soil (Dupas et al. 2017). Whereas 493 

loess sediments dominate the lower agricultural part of the catchment and �
�
� 494 

concentration in the soil can reach up to ca. 40 ��	��� due to agricultural activities 495 

(Yang et al. 2018). Therefore, a���� was much lower in the upstream of the Selke River 496 

than in the downstream, especially during baseflow dominant periods. This presumably 497 

prolonged the periods of high uptake percentage in the upper agricultural streams. �b in 498 

forest streams (ca. 12-22 km from the outlet) generally increased from winter to spring 499 

and peaked in May or June, then sharply decreased to a low level (mean = 3%). 500 

Seasonal dynamics of �b differed among years, depending on the spatiotemporal 501 

combination of a���� and �
``. The spatial distributions and temporal dynamics of a���� 502 

had more influence on �b due to its higher order of magnitude, compare to those of �
``. 503 

In lowland agricultural streams, the period of high uptake percentage in 2011 was much 504 

more pronounced in streams upstream of the confluence than downstream, where the 505 

Getel stream joins the main Selke (Figure 6). This is due to much lower a���� from the 506 

upper Selke stream in June-October of 2011 (mean load = 41.6 vs. 107.3 	�	�	��� for 507 

the five-year mean of this dry period) and higher relative contribution of a���� from the 508 

Getel stream (32% vs. 15% for the five-year mean). 509 

Figure 6. near here 510 

Figure 6. Longitudinal daily dynamics of the uptake percentage (�b) in the main stem of 511 

the Selke (marked in Figure S2). The width of each horizontal band indicates the length 512 

of each stream. The gray dashed line identifies the location where stream Getel joins 513 

the main Selke.  514 
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3.4. Implications 515 

An increasing number of water quality parameters, such as pH, DO, turbidity,	�
�
� and 516 

SRP, can be measured at high temporal resolution by sensors. The new data thus 517 

provide potential insights of in-stream processes at reach scale (Rode et al. 2016b). 518 

However, regionalizing those processes remains challenging, because in-stream 519 

processes (e.g.,	�
�
� assimilation and remineralization) always interact intensively, and 520 

only a few can be individually linked to observations (e.g., the autotrophic 	�
�
� uptake 521 

in this study). Therefore, novel reach-scale experimental designs are needed in 522 

current/future research to provide direct measurements of individual processes. e.g., A 523 

new reach scale mass balance approach by Kunz et al. (2017) can potentially be used 524 

to regionalize the in-stream denitrification process.  525 

In the regionalization procedure, the selection of key environmental factors is critical at 526 

both reach and network scales. There is a high risk of over-parameterizing approaches 527 

based on reach-scale understandings. We are unable to consider certain influential 528 

factors due to data limitations, and catchment-scale behavior might be simpler than that 529 

expected from detailed process understanding (Jackson-Blake et al. 2017). Therefore, a 530 

parsimonious approach can be an appropriate initial step for upscaling issues (Kirchner 531 

2006). Specifically, the parsimony of an approach is reflected, in our opinion, in two 532 

perspectives: (1) input data requirements (i.e., the applicability of an approach depends 533 

largely on the input data it requires and the accessibility of these data) and (2) the 534 

parameterization (i.e., the introduced parameter should be easily identifiable and 535 

transferable with clear physical meaning). The proposed regionalization of �
����� used 536 

only GR, LAI and land cover data, which are widely available for entire catchment, but 537 
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quantified spatiotemporal variations in stream surface light regimes well. The physical 538 

meaning of the parameter �
,V
W indicates that it can be measured directly by traditional 539 

field experiments and be transferred to regions with similar radiation condition. 540 

4. Conclusions 541 

• Five-year continuous high-frequency measurements revealed strong correlations 542 

between in-stream autotrophic	�
�
� uptake and ecosystem metabolism 543 

(specifically GPP), and distinct seasonal behaviors in forest and agricultural 544 

streams were observed in this study. 545 

• A parsimonious approach was proposed to quantify stream surface light 546 

availability (i.e., using basic GR, LAI and land cover information) and to 547 

regionalize	�
�����. The approach performed well in terms of capturing seasonal 548 

variations and improving spatial transferability to different riparian shading 549 

conditions. 550 

• The parsimonies of data requirements and parameterization suggest that the 551 

approach has a strong upscaling capability. By integrating the approach into the 552 

fully distributed mHM-Nitrate model, more detailed spatiotemporal variability 553 

of	�
�
� transport and uptake could be investigated at river network scale, which 554 

is informative in guiding water quality management.  555 

• This study provides a working procedure for regionalizing in-stream process 556 

understandings inspired from new high-frequency data and upscaling such 557 

reach-scale findings to river network scale using fully distributed catchment 558 

models. 559 
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Highlights: 

• Stream metabolism differs significantly under different riparian conditions 

• Continuous ������� can newly be obtained based on its robust correlation with 

GPP 

• A parsimonious approach for regionalizing �������  is validated using the new 

data 

• Networked upscale modeling reveals high spatiotemporal variability of nitrate 

uptake 

• Uptake efficiency varies depending on riparian shading and hydrochemical 

conditions 
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