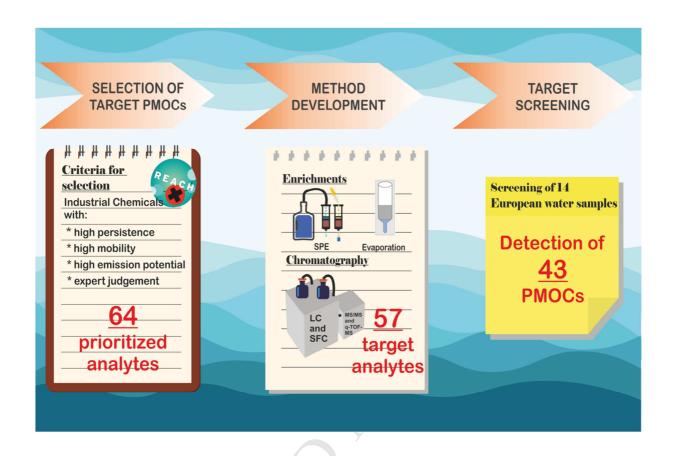
This is the accepted manuscript of the contribution published as:

Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J.B., Knepper, T.P., Reemtsma, T., Berger, U. (2019):


Occurrence of emerging persistent and mobile organic contaminants in European water samples

Water Res. **153**, 80 - 90

The publisher's version is available at:

http://dx.doi.org/10.1016/j.watres.2019.01.008

Graphical Abstract

Occurrence of emerging persistent and mobile organic contaminants in

2 European water samples

3

- 4 Stefanie Schulze¹, Daniel Zahn², Rosa Montes³, Rosario Rodil³, José Benito Quintana³,
- 5 Thomas P. Knepper², Thorsten Reemtsma¹, Urs Berger^{1,*}

6

- 7 Helmholtz Centre for Environmental Research UFZ, Department of Analytical Chemistry,
- 8 Permoserstrasse 15, 04318 Leipzig, Germany
- 9 ² Hochschule Fresenius University of Applied Sciences, Institute for Analytical Research,
- 10 Limburger Strasse 2, 65510 Idstein, Germany
- ³ Universidade de Santiago de Compostela, Department of Analytical Chemistry, Nutrition
- and Food Sciences, IIAA Institute for Food Analysis and Research, Constantino Candeira
- 13 S/N, 15782 Santiago de Compostela, Spain

14

- * Corresponding author e-mail, urs.berger@ufz.de; phone, +49 341 235 4654; fax, +49 341
- 16 235 450822

18	The release of persistent and mobile organic chemicals (PMOCs) into the aquatic
19	environment puts the quality of water resources at risk. PMOCs are challenging to analyze in
20	water samples, due to their high mobility. The aim of this study was to develop novel
21	analytical methods for PMOCs and to investigate their occurrence in surface and groundwater
22	samples. The target compounds were culled from a prioritized list of industrial chemicals that
23	were modeled to be persistent, mobile, and emitted into the environment. Analytical screening
24	methods based on mixed-mode liquid chromatography (LC), hydrophilic interaction LC,
25	reversed phase LC, or supercritical fluid chromatography in combination with mass
26	spectrometric detection were successfully developed for 57 target PMOCs and applied to 14
27	water samples from three European countries. A total of 43 PMOCs were detected in at least
28	one sample, among them 23 PMOCs that have not been reported before to occur in
29	environmental waters. The most prevalent of these novel PMOCs were methyl sulfate, 2-
30	acrylamino-2-methylpropane sulfonate, benzyltrimethylammonium, benzyldimethylamine,
31	trifluoromethanesulfonic acid, 6-methyl-1,3,5-triazine-diamine, and 1,3-di-o-tolylguanidine
32	occurring in \geq 50 % of the samples at estimated concentrations in the low ng $L^{\text{-}1}$ up to $\mu g \; L^{\text{-}1}$
33	range. The approach of focused prioritization combined with sensitive target chemical
34	analysis proved to be highly efficient in revealing a large suite of novel as well as scarcely
35	investigated PMOCs in surface and groundwater.
36	
37	Keywords: Persistent and mobile organic chemicals, PMOC, water, occurrence,
20	ahromatagraphy

- chromatography

4	T 4 1	
	Introd	luction

41	Persistent and mobile organic compounds (PMOCs, also referred to as PM substances) are
42	man-made, highly polar organic chemicals that only degrade very slowly (if at all) in the
43	environment and that show a low tendency to sorb to surfaces or to organic matter in soil and
44	sediments (Reemtsma et al. 2016). PMOCs can enrich in (semi-)closed water cycles, as the
45	only relevant process leading to decreasing concentrations in the aquatic environment is
46	dilution. Consequently, if PMOCs are emitted in significant quantities, they may threaten the
47	quality of surface water bodies, groundwater aquifers, and ultimately also our drinking water
48	resources (Reemtsma et al. 2016). Known examples of such PMOCs are melamine (Beltrán-
49	Martinavarro et al. 2013), saccharine, acesulfame (Buerge et al. 2009), and sulfanilic acid
50	(Holm et al. 1995). PMOCs are particularly critical if they also exhibit toxicological effects.
51	Such compounds are then denoted as PMT (persistent, mobile, and toxic) substances
52	(Neumann 2017). In Europe there is a currently ongoing discussion whether or not PMT
53	substances should be regulated under the European Union chemical regulation REACH
54	(European Parliament 2006) in a similar way as is the case for PBT (persistent,
55	bioaccumulative, and toxic) substances (Neumann and Schliebner 2017).
56	Whereas chemical analytical methods to detect and quantify PBT substances are well
57	established, PMOCs are much more challenging to analyze in environmental water samples.
58	This is due to their intrinsic property of high mobility, which makes PMOCs extremely
59	difficult to extract and enrich from water samples or to separate (retain) using routine liquid
60	chromatography techniques (Reemtsma et al. 2016). The most commonly applied separation
61	method for polar environmental contaminants is undoubtedly reversed phase liquid
62	chromatography (RPLC). However, in RPLC, PMOCs tend to elute with or close to the void
63	volume, together with most of the waterborne matrix constituents. Furthermore, they often
64	exhibit poor peak shape. This severely hampers unambiguous identification, sensitive
65	detection, and reliable quantification of PMOCs. Recently, alternative liquid chromatographic

66	methods for separation of highly polar compounds such as PMOCs have been developed,
67	based on either hydrophilic interaction liquid chromatography (HILIC) (Mazzarino et al.
68	2011; Christophoridis et al. 2016; Zahn et al. 2016) or tri-functional mixed-mode liquid
69	chromatography (MMLC) separation columns (Montes et al. 2017). Furthermore, also
70	supercritical fluid chromatography (SFC) with hybrid or normal phase columns and a polar
71	modifier/co-solvent can be used as an orthogonal technique to RPLC (Parr et al. 2016; Bieber
72	et al. 2017).
73	A recent modeling study identified potential PMOCs as well as precursors to PMOCs among
74	the high production volume substances registered under REACH (Arp et al. 2017). Arp and
75	co-workers came up with a list of 2167 unique substance identities, whereof 1811 have been
76	modeled to be persistent and mobile in the aquatic environment (PMOC score of 4 to 5 in Arp
77	et al. 2017) and 356 have been modeled to be PMOC precursors (i.e. to have the potential to
78	be hydrolyzed to PMOCs with a PMOC score of 4 to 5). Building on this work, we estimated
79	the environmental emission potential of the 2167 substances (Schulze et al. 2018). This study
80	resulted in two consolidated lists, one for PMOCs that are expected to be emitted into the
81	environment (936 substances) and a corresponding list for PMOC precursors (174 substances)
82	(supplementary data in Schulze et al. 2018). Both lists are ranked according to the
83	environmental emission potential, i.e. the magnitude of expected emissions. However, the
84	ultimate proof that a substance is released into the environment in significant quantities and
85	possesses PMOC properties is its presence in environmental water samples far from potential
86	points of emissions.
87	The aim of the present study was thus to screen for PMOCs of concern in selected water
88	samples from three European countries. The target analytes were primarily chosen from the
89	list of 936 PMOCs prioritized with regard to expected emissions (Schulze et al. 2018).
90	Enrichment methods based on solid phase extraction or evaporation as well as instrumental
Q1	methods based on MMLC (Montes et al. 2017). HILIC (Zahn et al. submitted), or SEC were

employed, as well as two RPLC-based separation methods. Target chemical analytical methods were used (rather than HRMS-based suspect screening) for two reasons. 1) PMOCs are not expected to be sufficiently retained on a generic RPLC-based separation column (Reemtsma et al. 2016). 2) We intended to screen for the PMOCs in surface and groundwater, rather than in WWTP effluent, to verify their persistence and mobility (i.e. their occurrence far from primary environmental emission points), and thus we needed methods of utmost sensitivity. The results of the present study should be used to validate the PMOC and emission modeling (Arp et al. 2017; Schulze et al. 2018) and to obtain a first picture of the potential magnitude of the problem of PMOCs in European water cycles.

2. Materials and methods

2.1 Target analytes

A total of 64 target analytes were selected for the present study. Table S1 in the supplementary data shows the structures and CAS registry numbers of all analytes and lists the suppliers and purities of the commercial standards. The majority of these analytes (54 substances) originated from the top 300 substances on the list of modeled PMOCs ranked according to their expected emission potential (Table S1 in the supplementary data in Schulze et al. 2018). The selection of the 54 target analytes was based on the prerequisites of availability of chemical standards and amenability to at least one of the employed instrumental methods (see section 2.4). Additionally, substances were excluded if they were assessed to be non-persistent or volatile by expert judgement. The remaining ten target analytes were ID-2, -22, -32, -37, -38, -41, -43, -49, -52, and -59 (Table S1). They were chosen based on knowledge or suspicion of their occurrence in environmental water samples (e.g. Stüber and Reemtsma 2004; Landesamt für Natur, Umwelt und Verbraucherschutz NRW 2015; Scheurer et al. 2016; Montes et al. 2017).

ChemAxon (JChem for Office, JChem for Excel) was used to estimate substance properties, 117 as the studied chemicals are within its application domain (personal communication with D. 118 Szisz, ChemAxon). The majority of the selected analytes (44) are highly hydrophilic 119 compounds with a negative log D value at pH 7 (Table S1). Among the analytes there were 26 120 compounds possessing acidic properties, with either a carboxylic, sulfonic, sulfuric or 121 phosphonic acid moiety (strongest acidic p K_a between -4.6 and 5.5) and 35 compounds 122 possessing basic properties (strongest basic p K_a between 2.4 and 10.7) (ChemAxon). Stock 123 standard solutions of analytes were prepared in acetonitrile, acetonitrile:water (50:50) or 124 water (depending on solubility) at 1 mg mL⁻¹ and stored at -20 °C. Aliquots of the stock 125 standard solutions were combined to obtain standard mixture solutions, which were 126 subsequently diluted with acetonitrile or water depending on the chromatographic system to 127 be used (see section 2.4). 128 2.2 **Samples** 129 The 14 water samples analyzed in the present study were grab samples obtained from 130 131 different locations in Germany (DE, country code used in sample names), Spain (ES), and The Netherlands (NL). They consisted of surface water (SW, 7 samples), groundwater (GW, 132 4), bank filtrate (BF, 1), as well as reverse osmosis concentrate (ROC, 1) and permeate (ROP, 133 1) from a full-scale pilot plant for drinking water production. The samples were taken in 2016 134 and stored for up to six weeks at +4 °C in the dark until analysis. Details on all samples are 135 given in Table S2 and Figure S1 in the supplementary data. 136 Sample preparation 137 2.3 Chemical analysis of all samples was performed in parallel in three different labs with 138 complementary instrumental techniques. A number of sample preparation methods were used 139 in each lab, which are briefly described individually hereafter. In total 8 different sample 140 preparation techniques (denoted as Enrichment I-VIII) were developed, using spike and 141 recovery experiments at PMOC concentrations in the ng L⁻¹ to µg L⁻¹ range in surface and 142

143	drinking water. Materials, chemicals, and instrumentation used in the different enrichments
144	are listed in Table S3 in the supplementary data.
145	Enrichment I. The water sample was filtered through a $0.45~\mu m$ cellulose filter and an aliquot
146	of 100 mL was submitted to a mixed-mode weak anion exchange (WAX) solid phase
147	extraction (SPE) cartridge. The cartridge was previously conditioned with 5 mL of 2 % formic
148	acid in methanol and 5 mL of Milli-Q water. After sample loading the cartridge was dried and
149	analytes were eluted with 10 mL of 5 % ammonia in methanol. The extract was evaporated to
150	dryness and the residues were reconstituted in 200 μL of Milli-Q water:acetonitrile (90:10).
151	Finally, the extract was filtered through a $0.22~\mu m$ PP filter. For more details see Montes et al.
152	(manuscript).
153	Enrichment II. Identical to Enrichment I but employing a mixed-mode weak cation exchange
154	(WCX) SPE cartridge previously conditioned with 5 mL of 5 % ammonia in methanol and 5
155	mL of Milli-Q water. Elution of the analytes was performed with 10 mL of 2 % formic acid in
156	methanol (Montes et al., manuscript).
157	Enrichment III. A multi-layer SPE cartridge (3 mL) was prepared by filling in (from bottom
158	to top) 60 mg (± 5 mg) of graphitized carbon black (GCB), 60 mg (± 5 mg) of WCX bulk
159	material, and 60 mg (± 5 mg) of WAX bulk material, separated by polyethylene frits. The
160	cartridge was conditioned with 1 mL 5 % ammonia in methanol, 1 mL 2 % formic acid in
161	methanol, 1 mL methanol, and 3 mL deionized water. The water sample was filtered through a
162	glass fiber filter and the pH was adjusted to 5.5 ± 0.1 with formic acid or ammonium
163	hydroxide. An aliquot of 100 mL was passed through the cartridge. The cartridge was dried
164	and elution was performed with 3 mL 5 % ammonia in methanol, 3 mL 2 % formic acid in
165	methanol, and 1.5 mL methanol:dichloromethane (80:20). The combined extracts were
166	evaporated to dryness and the residues were reconstituted in 500 μL of acetonitrile:water
167	(95:5). Finally, the extract was filtered through a 0.2 μm cellulose syringe filter. For more
168	details see Köke et al. (2018).

169	Enrichment IV. An aliquot of 10 mL of the unfiltered sample was evaporated to dryness at
170	$45^{\circ}C$ and 9 mbar. The residues were reconstituted in 500 μL of acetonitrile:water (95:5) and
171	the extract was filtered through a 0.2 μm cellulose syringe filter (Köke et al. 2018).
172	Enrichment V. The water sample was filtered through a glass fiber filter. An aliquot of 50 mL
173	was adjusted to pH 2 (with 0.02 M Glycin/HCl buffer) and submitted automatically to a WAX
174	SPE cartridge. The cartridge was previously conditioned with 3 mL methanol and 3 mL
175	ultrapure water. After sample loading the cartridge was washed with 4 mL 2 % formic acid in
176	ultrapure water (discarded) and the analytes were eluted with 4 mL methanol and 4 mL 5 $\%$
177	ammonia in methanol. The combined extracts were evaporated to dryness and the residues
178	were reconstituted in 1 mL ultrapure water for Chromatography C_1/C_2 or in 1 mL
179	acetonitrile:ultrapure water (90:10) for <i>Chromatography D</i> ₁ / D_2 (see section 2.4). Finally, the
180	extract was filtered through glass wool in the tip of a Pasteur pipette.
181	Enrichment VI. Identical to Enrichment V but employing a strong mixed-mode cation
182	exchange (MCX) SPE cartridge.
183	Enrichment VII. Identical to Enrichment V with the following modifications. An aliquot of 50
184	mL was adjusted to pH 7 (with 0.02 M phosphate buffer) and submitted automatically to a
185	highly retentive non-polar SPE phase (ENV+) previously conditioned with 3 mL methanol
186	and 3 mL ultrapure water. After sample loading the cartridge was washed with 2 mL
187	methanol:ultrapure water (5:95, discarded) and the analytes were eluted with 4 mL methanol.
188	Enrichment VIII. Identical to Enrichment V with the following modifications. An aliquot of 50
189	mL was adjusted to pH 12 (with 0.02 M Glycin/NaOH buffer) and submitted automatically to
190	a graphitized non-porous carbon SPE phase (ENVI-Carb) previously conditioned with 5 mL
191	methanol:dichloromethane (20:80), 2 mL methanol, and 5 mL ultrapure water. After sample
192	loading the cartridge was washed with 5 mL ultrapure water (discarded) and the analytes were
193	eluted with 4 mL methanol, 2 mL methanol:dichloromethane (20:80), and 4 mL 2 % formic
194	acid in methanol:dichloromethane (20:80).

195	2.4 Instrumental analyses
196	In total 4 different, complementary instrumental analytical techniques (denoted as
197	Chromatography A - D) were used. Chromatography C and D were performed with two
198	different separation columns each (Chromatography C_1/C_2 and Chromatography D_1/D_2 ,
199	respectively). Chemicals and instrumentation used in the different instrumental analytical
200	techniques are listed in Table S4, the gradient profiles for all separation methods are shown in
201	Figure S2, and mass spectrometric parameters are listed in Tables S5A-D (for
202	Chromatography A-D, respectively) in the supplementary data.
203	Chromatography A was used with extracts from Enrichments I and II. Chromatography A
204	consisted of mixed-mode liquid chromatography (MMLC, Thermo Acclaim Trinity P1
205	column) coupled to triple quadrupole tandem mass spectrometry (MS/MS) (Table S4).
206	Aliquots of $10\mu\text{L}$ of the sample extracts were injected. MMLC separation was performed at a
207	flow rate of 200 $\mu L min^{1}$ using a water-acetonitrile gradient buffered with ammonium acetate
208	at pH 5.5 (Figure S2). The mass spectrometer was operated in positive and negative
209	electrospray ionization (ESI) and in the multiple reaction monitoring (MRM) mode, acquiring
210	two transitions for each analyte (Table S5A).
211	Chromatography B was used with extracts from Enrichments III and IV. Chromatography B
212	consisted of hydrophilic interaction liquid chromatography (HILIC, Waters Acquity BEH
213	Amide column) coupled to MS/MS (Table S4). Aliquots of 5 μL of the sample extracts were
214	injected. HILIC separation was performed at a flow rate of 500 μL min ⁻¹ using an acetonitrile-
215	water gradient buffered with ammonium formate (Figure S2). The mass spectrometer was
216	operated in positive and negative ESI and in the scheduled MRM mode, acquiring two to
217	three transitions for each analyte (Table S5B).
218	Chromatography C_1/C_2 was used with extracts from Enrichments V-VIII. Chromatography C_1
219	consisted of C_{18} -based liquid chromatography (Waters Acquity UPLC HSS T3 column) and
220	Chromatography C_2 consisted of porous graphitic carbon-based liquid chromatography

221	(Thermo Hypercarb column). Both these RPLC-techniques were coupled to MS/MS (Table
222	S4). Aliquots of 10 μ L of the sample extracts were injected. Separation for <i>Chromatography</i>
223	C_I was performed at 60 °C at a flow rate of 500 μ L min ⁻¹ using a water-methanol gradient
224	containing 5 mM ammonium formate (Figure S2). Separation for <i>Chromatography C_2</i> was
225	performed at 50 °C at a flow rate of 250 $\mu L min^{-1}$ using a water-acetonitrile gradient
226	containing 0.1 % diethylamine (Figure S2). The mass spectrometer was operated in
227	positive/negative ESI switching and in the scheduled MRM mode, typically acquiring two
228	transitions for each analyte (Table S5C).
229	Chromatography D_1/D_2 was used with extracts from Enrichments V-VIII. Chromatography
230	D_1/D_2 consisted of supercritical fluid chromatography (SFC, Waters Acquity UPC ² BEH (D_1)
231	or Waters Torus Diol (D_2) column) coupled to high resolution quadrupole time-of-flight MS
232	(HRMS) (Table S4). Aliquots of 5 μL of the sample extracts were injected. Separation was
233	performed at 55 °C at a flow rate of 1500 $\mu L \; min^{1}$ using a carbon dioxide-methanol/water
234	gradient containing 0.2 % ammonium hydroxide in the methanol/water co-solvent (Figure
235	S2). A methanol/water make-up flow at 300 $\mu L \ min^{1}$ containing 0.1 % formic acid was used
236	for transferring the column effluent into the mass spectrometer. The HRMS instrument was
237	operated in positive and negative ESI and full scan mode (m/z 50 to 600). A mass tolerance of
238	5 ppm was used when extracting high resolution mass chromatograms of the analytes (Table
239	S5D).
240	2.5 Method performance evaluation and concentration estimations
241	Method performance evaluation had the main purpose to prevent false positive results and to
242	allow for semi-quantitative concentration estimations. It consisted of the determination of
243	instrumental blanks, instrumental detection limits (IDLs), retention time repeatability,
244	procedural blanks, and estimation of method detection limits (MDLs). A full method
245	validation was not envisaged, as highly variable compound-specific and sample-specific
246	apparent recoveries (i.e. combination of extraction recovery and matrix effect) hampered

proper quantification in this multi-chemical screening approach. It is thus important to keep in mind that all concentrations given in the present study are semi-quantitative estimates. Details on how method evaluation (including procedural blank experiments and determination of MDLs) and semi-quantitative concentration estimation were performed are given in the supplementary data (page S24).

252

253

254

260

261

262

263

264

265

266

267

268

269

270

271

272

247

248

249

250

251

Results and discussion 3.

Performance of the different enrichment and instrumental methods 3.1

255 PMOCs, rather than optimization of parameters for certain analytes. Since the 64 targeted 256 PMOCs widely varied in their properties (functional groups, molecular weight, $\log D$, pK_a), a 257 number of complementary analytical methods were required to cover the large range of 258 259 analytes.

The method development targeted at analytical methods encompassing a maximum number of

3.1.1 Separation methods, instrumental blanks, and instrumental detection limits

Four principally different instrumental separation methods (section 2.4) were developed and compared for the analysis of the 64 selected PMOCs. The separation methods comprised MMLC, HILIC, RPLC, and SFC. In contrast to MMLC and HILIC, which were used with one separation column each, two different column types were tested for both RPLC and SFC (see 2.4). A total of 57 compounds were amenable to at least two separation methods, i.e. leading to a distinct chromatographic signal in two MRM transitions (Tables S5A-C) or, in case of HRMS data, in two extracted high resolution mass chromatograms (usually the quasimolecular ion and a fragment at higher collision energy, Table S5D). The remaining 7 compounds could only be analyzed by one separation method each, i.e. 3 by HILIC (bis(2dimethylminoethyl)ether (ID-7), pyrazole (ID-49), 5-chloro-2-methylaniline (ID-59)), 3 by RPLC (gluconate (ID-1), 1,5-naphthalenedisulfonic acid (ID-8), phenylphosphonic acid (ID-27)), and 1 by SFC (1,3,5-triallyl-1,3,5-triazinane-2,4,6-trione (ID-55)). Retention time

273	repeatability was excellent (max. +/- 0.1 min) for all PMOCs in all separation methods (Table
274	S6).
275	The instrumental detection limits (IDLs) for all PMOCs with the different instrumental
276	methods are listed in Table S7. Almost all PMOCs (60 out of 64) could be sensitively
277	detected (single digit pg to sub pg injected) with at least one of the tested instrumental
278	methods. The good sensitivity is facilitated by the high polarity of PMOCs, which
279	consequently tend to readily ionize in the ESI-source. Exceptions were bis(2-
280	dimethylaminoethyl)ether (ID-7, with an IDL of 0.13 ng injected), pyrazole (ID-49, IDL 0.5
281	ng), 1,3,5-triallyl-1,3,5-triazinane-2,4,6-trione (ID-55, IDL 0.013 ng), and 2,6-dimethylaniline
282	(ID-56, IDL 0.012 ng), for which higher IDLs were found. These four PMOCs were all
283	substances that were detected in positive ESI mode based on amine groups. Reasons for their
284	relatively high IDLs were poor ionization efficiency and/or poor fragmentation (in MRM).
285	Furthermore, the following analytes suffered from elevated IDLs due to instrumental blank
286	contamination: Methyl sulfate (ID-14), 4-hydroxy-1-(2-hydroxyehtyl)-2,2,6,6,-
287	tetramethylpiperidine (ID-17), N-(3-(dimethylamino)-propyl)methacrylamide (ID-29),
288	dicyclohexyl sulfosuccinate (ID-47), 1,3-diphenylguanidine (ID-52), 3,5-di-tert-butylsalicylic
289	acid (ID-54), 1,3-di-o-tolylguanidine (ID-58), and tri-(2-chloroisopropyl)phosphate (ID-63).
290	
291	3.1.2 Retention of PMOCs in the different separation systems
292	One challenge with highly mobile substances is to retain (and separate) them in a
293	chromatographic system (Reemtsma et al. 2016). Certain retention is, however, mandatory in
294	order to minimize matrix effects in ionization and to facilitate quantification. Table S8 and
295	Figure S3 show the retention factors k' of the PMOCs (i.e. their retention relative to the dead
296	time of the system) for the different methods. HILIC and RPLC show a clear trend of low
297	retention, i.e. early elution for many PMOCs. However, while RPLC shows early elution
298	especially for PMOCs with a very low logD value, HILIC shows an opposite trend (Figure

299

302

304

312

313

315

321

324

S4). In MMLC the retention factors of the PMOCs cover a wide range including very late elution (k'>30, predominantly for sulfonic acids), despite a steep gradient profile (though 300 ending at 80 % organic mobile phase, Figure S2). The SFC methods (Chromatography D₁ 301 and D_2) show moderate retention for most PMOCs, which is a favorable compromise in terms of separation from matrix components and time efficient chromatography. A strong positive 303 relationship of k' values and calculated logD values of the substances was observed in RPLC-HSST3 (*Chromatography C_1*), whereas this relationship was weaker (and partly negative) for 305 the other separation techniques (Figure S4). In conclusion, RPLC is generally only applicable 306 to PMOCs with moderate polarity (logD>0, Reemtsma et al. 2016). PMOCs with logD<0 307 should be analyzed with alternative methods such as HILIC, MMLC, or SFC (Figure S4), 308 whereby the MMLC method used in the present study was inefficient for many sulfonic acids 309 (long retention times). SFC showed moderate retention and very narrow signals for most of 310 311 the investigated PMOCs but has the drawback that it cannot be performed on a conventional LC system. 3.1.3 Evaluation of the analytical methods 314 Enrichment of mobile substances from water samples is another challenge in PMOC analysis (Reemtsma et al. 2016). A total of 8 different enrichment methods (section 2.3) were tested in specific combinations with the instrumental methods (section 2.4). Table S9 lists the method 316 combinations that were successfully applied for analysis of the different target PMOCs. For 317 seven of the 64 PMOCs (gluconate (ID-1), 1,1,4,7,7-pentamethyl-diethylenetriamine (ID-11), 318 3-mercapto-1-propanesulfonic acid (ID-19), phenylphosphonic acid (ID-27), pyrazole (ID-319 49), 5-chloro-2-methylaniline (ID-59), and N1-isopropyl-N4-phenylbenzene-1,4-diamine (ID-320 64)) none of the tested method combinations worked. These seven PMOCs could thus not be analyzed in the present study and are not discussed further. All in all 20 different 322 combinations of enrichment and instrumental methods were tested and used for environmental 323

water analysis (Table S9 and Figure S5). None of the method combinations was applicable to

325	more than 24 of the investigated PMOCs (Figure S5), which demonstrates the
326	complementarity of the methods. Nevertheless, there were distinct differences in the
327	broadness of applicability. Enrichments III and IV (multi-layer SPE and evaporation, both in
328	combination with HILIC) and Enrichment VII (ENV+ SPE, in combination with RPLC or
329	SFC) were the enrichment methods capturing most PMOCs. Multi-layer SPE methods have
330	also earlier been used successfully in environmental water analysis for a variety of polar
331	micropollutants (Huntscha et al. 2012). On the other hand, Enrichment VI (MCX) was only
332	successful for few PMOCs in the present study. MCX is a strong reversed-phase mixed-mode
333	cation-exchange polymer. Some cationic analytes may have sorbed too strongly on this
334	polymer to be eluted with the chosen elution method. In terms of separation methods,
335	Chromatography C_2 (RPLC with Hypercarb column) showed a comparatively poor
336	performance. It worked well for standard chemicals, but many signals broadened significantly
337	in the presence of sample matrix, preventing this method from a broad applicability range
338	among the selected target PMOCs (Figure S5).
339	3.1.4 Procedural blanks and method detection limits
340	The estimated method detection limits (MDLs) for all PMOCs applying the developed
341	methods (i.e. combinations of enrichment and instrumental methods) are listed in Table S9.
342	They were generally in the low to sub ng L ⁻¹ range, but covered overall five orders of
343	magnitude (0.02 to 2000 ng L ⁻¹) for the different PMOCs and methods. Also for some
344	individual PMOCs the MDLs of different methods varied considerably. It is important to note
345	that the MDLs were not only dependent on the enrichment and separation methods, but also
346	on the employed MS instrument and on the presence (or absence) of procedural blank
347	
	contamination. A total of 29 investigated PMOCs seem to be widely dispersed water
348	contamination. A total of 29 investigated PMOCs seem to be widely dispersed water pollutants or contaminants in lab consumables and equipment, as they were detected
348 349	

-36, -37, -39, -40, -43, -44, -46, -47, -51, -52, -54, -58, -61, and -63. No effort was made in the 351 present study to elucidate or eliminate the source(s) of the procedural blank contaminations. 352 **Detection frequencies in target screening of environmental water samples** 3.2 353 All developed method combinations were applied to 14 water samples (section 2.2 and Table 354 S2) to screen for the 57 PMOCs amenable to at least one of the methods (see 3.1.3). The 355 samples comprised surface water, groundwater, and bank filtrate as well as reverse osmosis 356 concentrate and permeate. In total 43 PMOCs (75 % of the investigated substances) were 357 detected above their MDL in at least one sample with at least one of the applied methods 358 (Figure 1). Figure 1 shows the detection frequency for the individual PMOCs in the 14 359 samples including information on the number of underlying principally different separation 360 methods (Chromatography A-D). Of the 43 detected PMOCs, 21 were found in at least 50 % 361 of the samples and often at relatively high concentrations (Figure S6 and section 3.3 below). 362 363 Chromatography method-specific detection frequencies are listed in Table S10, underpinning the complementarity of the employed separation methods in analysis of the target PMOCs. 364 The most important detected PMOCs are discussed in section 3.4 below. 365 3.3 **Concentration estimates** 366 Concentrations of the detected PMOCs in the water samples were estimated according to 367 section 2.5. They need to be considered as semi-quantitative estimates. Since extraction 368 recoveries and matrix effects (suppression more common than enhancement) were not taken 369 into account, it can be assumed that the estimated concentrations are mostly underestimations. 370 Figure 2 shows boxplots of estimated concentrations of selected PMOCs in the water samples. 371 The selection of PMOCs for Figure 2 was based on the quality criteria that the substance was 372 detected by more than one method and that the estimated concentrations by the different 373 methods for a given sample were consistent (i.e. typically within one order of magnitude, then 374 averaged over all methods in Figure 2). Furthermore, Figure S6 depicts the maximum 375

376	estimated concentration (gray shade) for all detected PMOCs together with the frequency of
377	detection.
378	Some PMOCs were detected in the high ng L^{-1} up to $\mu g \ L^{-1}$ range (Figure 2 and Figure S6).
379	Of the PMOCs shown in Figure 2, these were notably ID-13 (acesulfame), ID-25 (sulfanilic
380	acid), ID-26 (melamine), ID-33 (trifluoromethanesulfonic acid), ID-37 (cyanoguanidine), ID-
381	39 (p-toluenesulfonic acid), ID-40 (saccharine), ID-44 (dimethylbenzenesulfonic acid), and
382	ID-45(benzyldimethylamine). It is noteworthy that a high frequency of detection did not
383	necessarily go along with high concentrations. An example is ametryn (ID-61), which was
384	detected in 11 samples, but at a low maximum concentration (Figure 2).
385	3.4 Discussion of detected PMOCs
386	All of the 43 detected PMOCs were industrial chemicals registered under REACH with
387	calculated logD values at pH 7 ranging between -5.6 and 3.4 (average -1.9, ChemAxon).
388	Their uses cover many different fields of application, including coating products, inks and
389	paints, adhesives and sealants, water treatment products, leather and textile treatment
390	products, cosmetics and personal care products, vulcanization or polymerization processes,
391	and processing aids in other applications (Table 1). Also the tonnages manufactured in and/or
392	imported into the European Union vary widely. They range from single digit up to hundred
393	thousands of tons (Table 1, ECHA 2018).
394	The detected PMOCs were categorized according to two criteria: Frequency of detection and
395	level of awareness as environmental water pollutants (Figure 3 and Table 1). PMOCs that
396	were detected in at least half of the samples (≥7 samples) were placed in the category "high
397	frequency of detection", other detected PMOCs were placed in the category "low frequency
398	of detection". For the awareness criterion, three categories were made based on a literature
399	search using Google Scholar including the substance name (IUPAC or trivial name) and the
400	search terms 'environment', 'surface water', 'groundwater', or 'drinking water'. The three
401	categories were "novel" PMOCs, i.e. substances that have not been reported as environmental

402	water pollutants so far, "scarcely investigated" PMOCs, i.e. substances for which very few
403	reports on environmental occurrence exist (often only from industrial sites or waste water
404	treatment effluents), and "well-known" PMOCs, for which ample literature data exist. This
405	categorization allows a prioritization of the detected PMOCs for future investigations as
406	indicated in Figure 3, with PMOCs in the top left corner having the highest priority (priority
407	1), followed by PMOCs in the top middle (priority 2), PMOCs in the bottom left corner
408	(priority 3), and so forth. The PMOCs in the two top priority categories are shown with their
409	structures in Figure 3 and shortly discussed individually in the following sub-sections, while
410	all detected PMOCs are presented in Table 1.
411	3.4.1 Priority 1 PMOCs
412	Methyl sulfate (ID-14) as a relatively small surfactant was detected in surface and
413	groundwater samples primarily from The Netherlands at levels up to the high ng L ⁻¹ range.
414	The present study is the first report on the occurrence of methyl sulfate in the environment.
415	2-Acrylamino-2-methylpropane sulfonate (ID-16) was one of several sulfonic
416	acids/sulfonates frequently detected in the present study. This compound was typically found
417	in the range of 1-10 $\rm ng~L^{-1}$, but occasionally also exceeding 100 $\rm ng~L^{-1}$. ID-16 was detected in
418	every analyzed sample type. The occurrence of ID-16 in environmental waters is reported
419	here for the first time.
420	Benzyltrimethylammonium (ID-23), a permanently charged quaternary ammonium cation,
421	and benzyldimethylamine (ID-45) are two PMOCs with similar basic structures that were
422	frequently detected here for the first time. They were both primarily found in surface water,
423	but in single cases also in groundwater samples. ID-23 was detected in single digit ng L ⁻¹
424	concentrations while ID-45 occurred in up to several hundreds of ng L ⁻¹ .
425	Trifluoromethanesulfonic acid (TFMSA, ID-33) was found in all analyzed samples with the
426	exception of the reverse osmosis permeate and at levels up to the $\mu g \ L^{\text{-1}}$ range (Figure 2).
427	TFMSA could be analyzed by all of the separation methods (Table S9), even though the

428	retention in HILIC and RPLC was poor (Table 58). We have chosen to categorize TrivisA as
429	"novel" since we are the only ones so far who have reported on the occurrence of TFMSA in
430	environmental water samples (Zahn et al. 2016; Montes et al. 2017, in another context and in
431	other samples from the same larger collaborative study). TFMSA belongs to the group of
432	short-chain perfluoroalkane sulfonic acids. Other short-chain perfluoroalkyl acids, such as
433	trifluoroacetic acid, have already been found in drinking water (Mak et al. 2009; Janda et al.
434	2018).
435	6-Methyl-1,3,5-triazine-diamine (acetoguanamine, ID-42) was detected in all of the 7
436	surface water samples at concentrations typically around or below 10 ng L ⁻¹ (Figure 2). To the
437	best of our knowledge the presence of acetoguanamine in environmental water samples is
438	reported here for the first time.
439	1,3-Di- <i>o</i> -tolylguanidine (DTG, ID-58) was detected in all 14 analyzed samples (in 11
440	samples with at least two methods, Figure 1) at estimated concentrations typically around 10
441	ng L ⁻¹ (Figure 2). Likewise TFMSA (ID-33), so far only our reports exist on the presence of
442	DTG in surface water, groundwater, and drinking water (present study and Montes et al. 2017
443	with a different sample set).
444	3.4.2 Priority 2 PMOCs
445	Adamantan-1-amine (amantadine, ID-32) is a pharmaceutical used as antiviral (against
446	influenza A virus) and antiparkinsonian medication. Moreover, amantadine is also a chemical
447	registered under REACH because of its use as an intermediate in industrial processes (ECHA
448	2018). Also this PMOC was identified in every sample with the exception of the reverse
449	osmosis permeate. It has earlier been identified in German municipal effluent water (Möhle
450	and Metzger 2001).
451	All of the three guanidine derivatives that were analyzed (including DTG discussed above and
452	DPG discussed below) were detected in the majority of samples. Cyanoguanidine (CG, ID-
453	37) was detected in 8 of the analyzed water samples, i.e. in all 7 surface water samples and in

454	one German groundwater sample (Figure 1) at concentrations exceeding 3000 ng L ⁻¹ (Figure
455	2). Few studies have previously reported the environmental occurrence of CG. Scheurer and
456	co-workers detected CG in German surface water in the mg L ⁻¹ range, with an industrial site
457	as a point source (Scheurer et al. 2016). In surface water samples in a coastal agricultural
458	catchment from New Zealand CG was quantified with a maximum concentration close to 1
459	mg L ⁻¹ (Smith and Schallenberg 2013).
460	<i>p</i> -Toluenesulfonic acid (ID-39) was detected in all 14 samples and at concentrations
461	exceeding 1000 ng L ⁻¹ . It has earlier been detected in drinking water in the United Kingdom
462	(Crathorne et al. 1984).
463	The two isomers of dimethylbenzenesulfonic acid (ID-44), i.e. xylenesulfonic acid and 2,3-
464	dimethylbenenzenesulfonic acid, were both detected in 13 samples (Figure 1). Only the
465	reverse osmosis permeate from the Netherlands showed levels <mdl. and="" betowski="" co-<="" td=""></mdl.>
466	workers have earlier reported on the presence of xylenesulfonic acid in groundwater
467	(Betowski et al. 1996).
468	Two isomers of the compound toluenesulfonamide (ID-51) were detected in 12 out of 14
469	samples, with the exception of one groundwater sample and the reverse osmosis permeate. In
470	a study by Richter et al. (2017) with different types of water from Berlin ID-51 was found at
471	concentrations up to 50 $\mu g \; L^{1}$ in wastewater and 0.27 $\mu g \; L^{1}$ in drinking water.
472	Likewise DTG, 1,3-diphenylguanidine (DPG, ID-52) was detected in all 14 analyzed
473	samples, but at higher estimated concentrations up to 100 ng L ⁻¹ (Figure 2). In an earlier study
474	on drinking water in China DPG was found at levels up to 0.74 mg L ⁻¹ due to migration from
475	high density polyethylene pipes (Tang et al. 2015).
476	3.5 Evaluation of the prioritization and analytical strategy
477	While a number of prioritization approaches for chemicals (based on regulatory databases or
478	other available datasets) with respect to environmental and/or human exposure and risk have
179	been published (as reviewed in e.g. Muir and Howard 2006: Ru et al. 2013: Mitchell et al.

2013), relatively few chemical analytical studies have been conducted taking direct advantage
of such prioritization exercises (McLachlan et al. 2014; Singer et al. 2016; Sjerps et al. 2016;
Montes et al. 2017; Gago-Ferrero et al. 2018). Nevertheless, monitoring is necessary to
validate the prioritization approaches.
The present chemical analytical study builds on a prioritized list of industrial chemicals that
have been modeled to be persistent, mobile, and to possess a high environmental emission
potential (Schulze et al. 2018). Additionally, we used targeted analytical methods with
generally very high sensitivity. Still, several target analytes were not detected in the analyzed
samples. This could be due to one or several of the following uncertainties of our overall
prioritization and analytical strategy. I) The modeling of especially persistence, but also
mobility and emission potential, is tainted with considerable uncertainties, as discussed in
detail in Arp et al. 2017 and in Schulze et al. 2018. II) For some of the target analytes
enrichment from water, chromatographic retention and/or peak shape, or ionization in ESI
was poor, hampering sensitive detection. III) The analyzed water samples were not
representative for all European countries or regions. Some PMOCs may have well defined
points of emission that were not covered by the sampling design.
Despite these uncertainties, our overall strategy was highly successful. Among the 54 target
PMOCs selected from the prioritized list in the supplementary data in Schulze et al. 2018
(section 2.1), 49 were amenable to at least one of the developed methods. Out of these 49
substances 35 PMOCs were found in surface and/or groundwater, among them 23 PMOCs
that have not been reported before to occur in environmental waters. The high detection rate
of 71 % (35/49) validates the good accuracy of the modeling and corroborates the strength of
the chosen approach, i.e. a focused prioritization combined with sensitive target analysis.

4 Conclusions

The present study has validated and proven the strength of the chosen modeling and analytical
approach consisting of a focused prioritization combined with sensitive target chemical
analysis. The developed enrichment and chromatographic methods proved to be useful and
complementary for analysis of PMOCs in water samples. They can be used individually or in
combination with each other to further investigate the occurrence and fate of PMOCs in water
cycles. In the present study 75 % of the analyzed PMOCs were detected in selected water
samples from Germany, Spain and The Netherlands. This high rate of detection together with
the fact that more than 1000 PMOC candidates with an environmental emission potential were
identified only among the substances registered under REACH (Schulze et al. 2018) leads to
the conclusion that there are likely hundreds of so far undiscovered PMOCs present in
environmental waters, threatening the quality of drinking water resources. An important
follow-up study would thus be to use the list published by Schulze et al. (2018) in order to
better characterize the number and identity of PMOCs occurring in environmental waters.
Furthermore, the development of quantitative analytical methods for PMOCs would enable
more detailed fate studies of PMOCs, e.g. investigating the removal in different steps of
drinking water production. Finally, the toxicity of the most abundant of the identified PMOCs
(e.g. TFMSA, CG, and p -toluenesulfonic acid occurring in high ng L^{-1} up to μ g L^{-1}
concentrations) needs to be investigated as another important step in PMOC risk assessment.
In this respect, activities are ongoing by national and European authorities to classify
substances according to their persistence, mobility, and toxicity (PMT) properties (Neumann
and Schliebner 2017). The results of the present study inform such activities.

Acknowledgments

This work has been funded by the German BMBF (02WU1347A/B) and the Spanish MINECO/AEI (JPIW2013-117) in the frame of the collaborative international consortium (WATERJPI2013 – PROMOTE) of the Water Challenges for a Changing World Joint

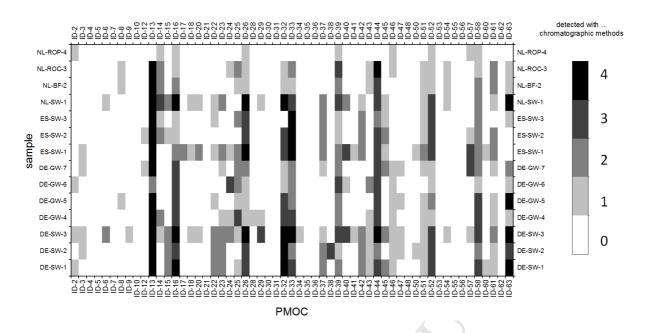
531	Programming Initiative (Water JPI) Pilot Call. RM, RR and JBQ also acknowledge Galician
532	Council of Culture, Education and Universities and FEDER/EDRF funding
533	(ED431C2017/36). The authors are thankful for the support in sample acquisition by
534	Hessenwasser GmbH & Co. KG (Darmstadt, Germany), Peter Seel (Hessian Agency for
535	Nature Conservation, Environment and Geology, Wiesbaden, Germany), Mónica Velo and
536	Raquel Piñeiro (Augas de Galicia, Santiago de Compostela, Spain), Oasen drinking water
537	(Gouda, the Netherlands), and Vittorio Albergamo (Institute for Biodiversity and Ecosystem
538	Dynamics, University of Amsterdam, The Netherlands). Finally, we would like to thank
539	Heidrun Paschke and Till Meier for technical help in the lab.
540	
541	Appendix A. Supplementary data
542	Supplementary data related to this article can be found at
543	
0.0	
544	References
	References Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231.
544 545 546	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass
544 545 546 547 548 549	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231. Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19,
544 545 546 547 548 549 550 551 552	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231. Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19, 939–955. Beltrán-Martinavarro, B.; Peris-Vicente, J.; Rambla-Alegre, M.; Marco-Peiró, S.; Esteve-Romero, J.; Carda-Broch, S. (2013) Quantification of Melamine in Drinking Water and Wastewater by Micellar Liquid
544 545 546 547 548 549 550 551 552 553 554 555	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231. Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19, 939–955. Beltrán-Martinavarro, B.; Peris-Vicente, J.; Rambla-Alegre, M.; Marco-Peiró, S.; Esteve-Romero, J.; Carda-Broch, S. (2013) Quantification of Melamine in Drinking Water and Wastewater by Micellar Liquid Chromatography, J. AOAC Int., 96 (4), 870–874. Betowski, L.; Kendall, D.; Pace, C.; Donnelly, J. (1996) Characterization of Groundwater Samples from Superfund Sites by Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry,
544 545 546 547 548 549 550 551 552 553 554 555 556 557	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231. Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19, 939–955. Beltrán-Martinavarro, B.; Peris-Vicente, J.; Rambla-Alegre, M.; Marco-Peiró, S.; Esteve-Romero, J.; Carda-Broch, S. (2013) Quantification of Melamine in Drinking Water and Wastewater by Micellar Liquid Chromatography, J. AOAC Int., 96 (4), 870–874. Betowski, L.; Kendall, D.; Pace, C.; Donnelly, J. (1996) Characterization of Groundwater Samples from Superfund Sites by Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry, Environ. Sci. Technol., 30, 3558–3564. Bieber, S.; Greco, G.; Grosse, S.; Letzel, T. (2017) RPLC-HILIC and SFC with Mass Spectrometry: Polarity-
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231. Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19, 939–955. Beltrán-Martinavarro, B.; Peris-Vicente, J.; Rambla-Alegre, M.; Marco-Peiró, S.; Esteve-Romero, J.; Carda-Broch, S. (2013) Quantification of Melamine in Drinking Water and Wastewater by Micellar Liquid Chromatography, J. AOAC Int., 96 (4), 870–874. Betowski, L.; Kendall, D.; Pace, C.; Donnelly, J. (1996) Characterization of Groundwater Samples from Superfund Sites by Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry, Environ. Sci. Technol., 30, 3558–3564. Bieber, S.; Greco, G.; Grosse, S.; Letzel, T. (2017) RPLC-HILIC and SFC with Mass Spectrometry: Polarity-Extended Organic Molecule Screening in Environmental (Water) Samples, Anal. Chem., 89 (15), 7907–7914. Bu, Q.; Wang, D.; Wang, Z. (2013) Review of screening systems for prioritizing chemical substances. Crit. Rev.
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561	Alonso, M. C.; Barcelo, D. (1999) Tracing polar benzene- and naphthalenesulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry, Anal. Chim. Acta, 400, 211–231. Arp, H. P. H.; Brown, T. N.; Berger, U.; Hale, S. E. (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci.: Processes Impacts, 19, 939–955. Beltrán-Martinavarro, B.; Peris-Vicente, J.; Rambla-Alegre, M.; Marco-Peiró, S.; Esteve-Romero, J.; Carda-Broch, S. (2013) Quantification of Melamine in Drinking Water and Wastewater by Micellar Liquid Chromatography, J. AOAC Int., 96 (4), 870–874. Betowski, L.; Kendall, D.; Pace, C.; Donnelly, J. (1996) Characterization of Groundwater Samples from Superfund Sites by Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry, Environ. Sci. Technol., 30, 3558–3564. Bieber, S.; Greco, G.; Grosse, S.; Letzel, T. (2017) RPLC-HILIC and SFC with Mass Spectrometry: Polarity-Extended Organic Molecule Screening in Environmental (Water) Samples, Anal. Chem., 89 (15), 7907–7914. Bu, Q.; Wang, D.; Wang, Z. (2013) Review of screening systems for prioritizing chemical substances. Crit. Rev. Environ. Sci. Technol., 43, 1011–1041. Buerge, I. J.; Buser, HR.; Kahle, M.; Müller, M. D.; Poiger, T. (2009) Ubiquitous Occurrence of the Artificial

- 568 ECHA (2018) https://www.echa.europa.eu/information-on-chemicals/registered-substances. Last accessed
- 569 31.07.2018.
- 570 European Parliament (2006) Regulation (ec) 1907/2006 of the European parliament and of the council of 18
- 571 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH),
- establishing a European chemicals agency, amending directive 1999/45/ec and repealing council regulation (eec)
- 573 793/93 and commission regulation (ec) 1488/94 as well as council directive 76/769/eec and commission
- 574 directives 91/155/eec, 93/67/eec, 93/105/ec and 2000/21/ec, Official Journal of the European Union, 30.12.2006,
- 575 L 396/1–849.
- Gago-Ferrero, P.; Krettek, A.; Fischer, S.; Wiberg, K.; Ahrens, L. (2018) Suspect Screening and Regulatory
- 577 Databases: A Powerful Combination To Identify Emerging Micropollutants, Environ. Sci. Technol., 52, 6881–
- 578 6894.
- Holm, V. J.; Rügge, K.; Bjerg, L. P.; Christensen, H. T. (1995) Occurrence and Distribution of Pharmaceutical
- 580 Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark), Environ. Sci.
- 581 Technol., 29 (5), 1415–1420.
- Huntscha, S; Singer, H.P.; McArdell, C.S.; Frank, C.E.; Hollender, J. (2012) Multiresidue analysis of 88 polar
- 583 organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase
- extraction coupled to high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A,
- 585 1268, 74–83. Janda, J.; Nödler, K.; Brauch, H.J.; Zwiener, C.; Lange, F. T. (2018) Robust trace analysis of polar
- 586 (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: method
- development and application to surface water, groundwater and drinking water, Environ. Sci. Pollut. Res. Int.,
- 588 doi: 10.1007/s11356-018-1731-x.
- Jiang, J.-O.; Durai, H. B. P.; Winzenbacher R.; Petri, M.; Seitz, W. (2015) Drinking water treatment by in situ
- 590 generated ferrate(VI), Desalin. Water Treat., 55 (3), 731–739.
- Knepper, T.P.; Sacher, F.; Lange, F.T.; Brauch, H.J.; Karrenbrock, F.; Roerden, O.; Lindner, K. (1999)
- 592 Detection of polar organic substances relevant for drinking water, Waste Manag., 19 (2), 77–99.
- Köke, N.; Zahn, D.; Knepper, T. P.; Frömel, T. (2018) Multi-layer solid-phase extraction and evaporation-
- enrichment methods for polar organic chemicals from aqueous matrices, Anal. Bioanal. Chem., 410 (9), 2403–
- 595 2411.
- Lanchote, V. L.; Bonato, P. S.; Cerdeira, A., L.; Santos, N. A. G.; de Carvalho, D.; Gomes, M. A. (2000) HPLC
- 597 Screening and GC-MS Confirmation of Triazine Herbicides Residues in Drinking Water from Sugar Cane Area
- 598 in Brazil, Water Air Soil. Pollut., 118 (3), 329–338.
- 599 Landesamt für Natur, Umwelt und Verbraucherschutz NRW (2015) Warn- und Alarmdienst Rhein Pyrazol im
- Rhein, 26 August 2015, available at
- 601 https://www.lanuv.nrw.de/fileadmin/lanuv/umwelt/schadensfaelle/rhein/2015/2015_08_26_Pyrazol.pdf
- Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (2011) Tätigkeitsbericht 2011,
- Teil 1 Arbeitsbericht, available at
- 604 http://www.rheinguetestation.de/dokumente/Taetigkeitsbericht_2011_der_Rheinguetestation_Worms_Teil_1_Ar
- 605 beitsbericht.pdf
- 606 Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. (2014) Occurrence of
- organophosphate flame retardants in drinking water in China, Water Res., 54, 53–61.
- Mak, Y. L.; Taniyasu, S.; Yeung, L. W. Y.; Lu, G.; Jin, L.; Yang, Y.; Lam, P. K. S.; Kannan, K.; Yamashita, N.
- 609 (2009) Perfluorinated Compounds in Tap Water from China and Several Other Countries, Environ. Sci.
- 610 Technol., 43 (13), 4824–4829.
- Mastroianni, N.; Lopez de Alda, M.; Barcelo, D. (2014) Analysis of ethyl sulfate in raw wastewater for
- estimation of alcohol consumption and its correlation with drugs of abuse in the city of Barcelona, J.
- 613 Chromatogr. A, 1360, 93–99.
- Mazzarino, M.; Fiacco, I.; de la Torre, X.; Botrè, F. (2011) Screening and confirmation analysis of stimulants,
- 615 narcotics and beta-adrenergic agents in human urine by hydrophilic interaction liquid chromatography coupled to
- 616 mass spectrometry, J. Chromatogr. A, 1218 (45), 8156–8167.
- 617 McLachlan, M. S.; Kierkegaard, A.; Radke, M.; Sobek, A.; Malmvärn, A.; Alsberg, T.; Arnot, J. A.; Brown, T.
- N.; Wania, F.; Breivik, K.; Xu, S. (2014) Using model-based screening to help discover unknown environmental
- 619 contaminants. Environ. Sci. Technol., 48, 7264–7271.

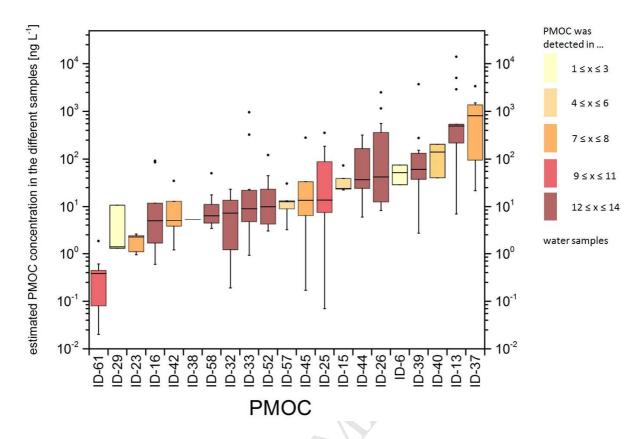
- 620 Mitchell, J.; Arnot, J. A.; Jolliet, O.; Georgopoulos, P. G.; Isukapalli, S.; Dasgupta, S.; Pandian, M.; Wambaugh,
- 621 J.; Egeghy, P.; Cohen Hubal, E. A.; Vallero, D. A. (2013) Comparison of modeling approaches to prioritize
- 622 chemicals based on estimates of exposure and exposure potential. Sci. Total Environ., 458-460, 555–567.
- 623 Möhle, E.; Metzger, J. W. (2001) Drugs in Municipal Sewage Effluents: Screening and Biodegradation Studies,
- 624 Chapter 11 in ACS Symposium Series "Pharmaceuticals and Care Products in the Environment", Vol. 791, 192–
- 625 205.
- Montes, R.; Aguirre, J.; Vidal, X.; Rodil, R.; Cela, R.; Quintana, J. B. (2017) Screening for Polar Chemicals in
- Water by Trifunctional Mixed-Mode Liquid Chromatography-High Resolution Mass Spectrometry, Environ. Sci.
- 628 Technol., 51 (11), 6250–6259.
- Montes, R.; Rodil, R.; Cela, R.; Quintana, J. B. (manuscript) Determination of persistent and mobile organic
- contaminants (PMOCs) in water samples by mixed-mode liquid chromatography-tandem mass spectrometry.
- Muir, D. C. G.; Howard, P. H. (2006) Are there other persistent organic pollutants? A challenge for
- environmental chemists. Environ. Sci. Technol., 40, 7157–7166.
- Neumann, M. (2017) Vorschlag für Kriterien und ein Bewertungskonzept zur Identifizierung von persistenten,
- mobile und toxischen (PMT-) Stoffen zum Schutz des Rohwassers zur Trinkwassergewinnung unter der EU-
- Verordnung REACH, Zbl. Geol. Paläontol. Teil I 1, 91–101.
- Neumann, M.; Schliebner, I. (2017) Protecting the sources of our drinking water. A revised proposal for
- 637 implementing criteria and an assessment procedure to identify Persistent, Mobile and Toxic (PMT) and very
- Persistent, very Mobile (vPvM) substances registered under REACH. German Environment Agency, Dessau-
- Rosslau (16 pages, ISSN 2363-8273). Online available at
- 640 https://www.umweltbundesamt.de/publikationen/protecting-the-sources-of-our-drinking-water-from
- Parr, M. K.; Wuest, B.; Naegele, E.; Joseph, J. F.; Wenzel, M.; Schmidt, A. H.; Stanic, M.; de la Torre, X.;
- Botrè, F. (2016) SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping
- 643 control, Anal. Bioanal. Chem., 408 (24), 6789–6797.
- Reemtsma, T.; Quintana, J. B.; Rodil, R.; Garcia-Lopez, M.; Rodriguez, I. (2008) Organophosphorus flame
- retardants and plasticizers in water and air I. Occurrence and fate, Trends Analyt. Chem., 27 (9), 727–737.
- Reemtsma, T.; Alder, L.; Bansiak, U. (2013) A multimethod for the determination of 150 pesticide metabolites
- in surface water and groundwater using direct injection liquid chromatography mass spectrometry, J.
- 648 Chromatogr. A, 1271, 95–104.
- Reemtsma, T.; Berger, U.; Arp, H. P. H.; Gallard, H.; Knepper, T. P.; Neumann, M.; Quintana, J. B.; de Voogt,
- 650 P. (2016) Mind the Gap: Persistent and Mobile Organic Compounds Water Contaminants That Slip Through,
- 651 Environ. Sci. Technol., 50 (19), 10308–10315.
- Richter, D.; Dünnbier, U.; Massmann, G.; Pekdeger, A. (2007) Quantitative determination of three sulfonamides
- in environmental water samples using liquid chromatography coupled to electrospray tandem mass spectrometry,
- 654 J. Chromatogr. A, 1157, 115–121.
- Ruff, M.; Mueller, M. S.; Loos, M.; Singer, H. P. (2015) Quantitative target and systematic non-target analysis
- of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry Identification
- of unknown sources and compounds, Water Res., 87, 145–154.
- 658 Scheurer, M.; Brauch, H.-J.; Lange, F. T. (2009) Analysis and occurrence of seven artificial sweeteners in
- 659 German waste water and surface water and in soil aquifer treatment (SAT), Anal. Bioanal. Chem., 394, 1585–
- 660 1594.
- Scheurer, M.; Brauch, H.-J.; Schmidt, C. K.; Sacher, F. (2016) Occurrence and fate of nitrification and urease
- inhibitors in the aquatic environment, Environ. Sci.: Processes Impacts, 18 (8), 999–1010.
- 663 Schulze, S.; Sättler, D.; Neumann, M.; Arp, H. P. H.; Reemtsma, T.; Berger, U. (2018) Using REACH
- registration data to rank the environmental emission potential of persistent and mobile organic chemicals, Sci.
- 665 Total Environ., 625, 1122–1128.
- Singer, H.P.; Wössner, A.E.; McArdell C.S.; Fenner, K. (2016) Rapid Screening for Exposure to "Non-Target"
- 667 Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure
- 668 Modeling, Environ. Sci. Technol., 50, 6698–6707.
- Sjerps, R.M.A.; Vughs, D.; van Leerdam, J.A.; ter Laak, T.L.; van Wezel, A.P. (2016) Data-driven prioritization
- of chemicals for various water types using suspect screening LC-HRMS, Water Res., 93, 254–264.

- Smith, I.; Schallenberg, M. (2013) Occurrence of the agricultural nitrification inhibitor, dicyandiamide, in
- 672 surface waters and its effects on nitrogen dynamics in an experimental aquatic system, Agr. Ecosyst. Environ.,
- 673 164, 23–31.
- 674 Stüber, M.; Reemtsma, T. (2004) Evaluation of three calibration methods to compensate matrix effects in
- environmental analysis with LC-ESI-MS, Anal. Bioanal. Chem., 378 (4), 910–916.
- Tang, J.; Tang, L.; Zhang, C.; Zeng, G.; Deng, Y.; Dong, H.; Wang, J.; Wu, Y. (2015) Different senescent HDPE
- 677 pipe-risk: brief field investigation from source water to tap water in China (Changsha City), Environ. Sci. Pollut.
- 678 Res. Int., 22 (20), 16210–16214.
- Wang, H.; Wang, C.; Wu, W.; Mo, Z. Wang, Z. (2003) Persistent organic pollutants in water and surface
- sediments of Taihu Lake, China and risk assessment, Chemosphere, 50, 557–562.
- Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P. K. S.; Moon, H.-B.; Jeong, Y.; Kannan, P.;
- Achyuthan, H.; Munuswamy, N.; Kannan, K. (2015) Bisphenol A and other bisphenol analogues including BPS
- and BPF in surface water samples from Japan, China, Korea and India, Ecotoxicol. Environ. Saf., 122, 565–572.
- Zahn, D.; Frömel, T.; Knepper, T. P. (2016) Halogenated methanesulfonic acids: A new class of organic
- micropollutants in the water cycle, Water Res., 101, 292–299.
- Zahn, D.; Meusinger, R.; Frömel, T.; Knepper, T.P. (submitted) Halomethanesulfonic acids a new class of
- polar disinfection by-products: standard synthesis, occurrence, and indirect assessment of mitigation options.

Table 1. PMOCs detected in at least one water sample classified according to their frequency of detection and level of awareness (Figure 3). The underlying analytical methods are listed in Table S9.


Index	Substance name	$logD^*$	CAS no.	Use**	Tonnage/yr**	Literature
Priority	1: Novel and high frequency of detec	tion				
ID-14	Methyl sulfate	-2.84	512-42-5	Surface active agentLaboratory chemical	10 - 100	
ID-16	2-Acrylamino-2-methylpropane sulfonate	-2.71	5165-97-9	Monomer for polymerization and in hydrogels	10 000 - 100 000	
ID-23	Benzyltrimethylammonium	-2.24	56-93-9	 Process regulator, surface active agent Used in vulcanization or polymerization processes Removal of charged micropollutants from water by ion exchange polymers 	100 - 1 000	
ID-33	Trifluoromethanesulfonic acid	-1.23	1493-13-6	 Processing aid, process regulator, laboratory chemical Used in vulcanization or polymerization processes Ingredient of ionic liquids 	100 - 1 000	Zahn (2016) Montes (2017)
ID-42	6-Methyl-1,3,5-triazine-diamine	-0.39	542-02-9	 Stabilizer for formaldehyde solutions Used in the manufacturing of melamine resins, in adhesives and sealants, in the decorative layer of high-pressure laminates 	0 - 10	
ID-45	Benzyldimethylamine	0.02	103-83-3	 Process regulator Used in vulcanization or polymerization processes Used in binding agents, fixing agents, polymers, adhesives and sealants, and coating products 	100 - 1 000	
ID-58	1,3-Di- <i>o</i> -tolylguanidine	2.25	97-39-2	 Process regulator Used in vulcanization or polymerization processes and in rubber products 	100 - 1 000	Montes (2017)
Priority	2: Scarcely investigated and high fre	quency o	f detection			
ID-32	Adamantan-1-amine	-1.49	768-94-5	Intermediate Antiviral and antiparkinsonian pharmaceutical	Intermediate	Möhle and Metzger (2001)
ID-37	Cyanoguanidine	-1.03	461-58-5	 Modifying agent for melamine resins Processing aid Used in fertilizers, textile treatment products, and dyes Used for the manufacture of textile, leather and fur 	10 000 - 100 000	Scheurer et al. (2016) Smith and Schallenberg (2013)
ID-39	<i>p</i> -Toluenesulfonic acid	-0.71	104-15-4	 Processing aid, process regulator, pH-regulating agent Used in vulcanization or polymerization processes and in water treatment products 	10 000 - 100 000	Crathorne et al. (1984)

ID-44	Dimethylbenzenesulfonic acid	-0.20	1300-72-7 25321-41-9	 Process regulator Used in vulcanization or polymerization processes pH-regulating agent Laboratory chemical 	1 000 - 10 000	Betwoski et al. (1996)
ID-51	Toluenesulfonamide	1.09	70-55-3 88-19-7	 Processing aid, laboratory chemical Used in polymers	10 - 100	Richter et al. (2007)
ID-52	1,3-Diphenylguanidine	1.23	102-06-7	 Process regulator Used in vulcanization or polymerization processes In rubber products, polymers, tires, treated wooden products, bridges a.o. 	1 000 - 10 000	Tang et al. (2015)
Priority	3: Novel and low frequency of detecti	on				
ID-2	2-Piperazin-1-ylethylamine	-5.61	140-31-8	 Used in adhesives and sealants Coating products, fillers, putties, plasters, modelling clay, finger paints and polymers 	1 000 - 10 000	
ID-3	Isophoronediamine	-4.59	2855-13-2	 Adhesives and sealants Coating products, fillers, putties, plasters, modelling clay Laboratory chemical 	10 000 - 100 000	
ID-6	Methacrylamido propyl trimethyl ammonium	-3.74	51410-72-1	IntermediateIndustrial use of monomers for manufacture of thermoplastics	100 - 1 000	
ID-9	2-[4-(2-hydroxyethyl)-1- piperazinyl]ethanesulfonic acid	-3.25	7365-45-9	• Used in water treatment products, adhesives and sealants, coatings, fillers, putties, plasters, modelling clay, inks, toners, leather and textile treatment products, lubricants, greases, perfumes, fragrances, polishes, waxes, dyes, cosmetics, and personal care products	100 - 1 000	
ID-12	3-Allyloxy-2-hydroxy-1- propanesulfonic acid	-3.13	52556-42-0	Processing aids at industrial sitesCorrosion inhibitorAnti-scaling agent	1 000 - 10 000	
ID-15	1,4-Diazabicyclo-[2.2.2]octane	-2.83	280-57-9	Process regulatorUsed in vulcanization or polymerization processes	1 000 - 10 000	
ID-17	4-Hydroxy-1-(2-hydroxyehtyl)- 2,2,6,6,-tetramethylpiperidine	-2.62	52722-86-8	• Used for the manufacture of chemicals and plastic products	1 000 - 10 000	
ID-18	Vinylsulfonate	-2.60	3039-83-6	Plating agents and metal surface treating agentsSurface active agentUsed in metal working fluids	100 - 1 000	
ID-24	2-Methyl-2-propene-1-sulfonic acid	-2.21	1561-92-8	 Process regulator Used in vulcanization or polymerization processes	1 000 - 10 000	


				• Used for the manufacture of textile, leather, and fur (water repellent)		
ID-28	Carbodihydrazide	-1.96	497-18-7	Corrosion inhibitor and anti-scaling agentUsed in water treatment chemicals and polymers	100 - 1 000	
ID-29	<i>N</i> -(3-(Dimethylamino)-propyl)methacrylamide	-1.85	5205-93-6	• Used in adhesives and sealants	1 000 - 10 000	
ID-34	Dimethyl-5-sulfoisophthalate	-1.22	3965-55-7	 Processing aid Used for the manufacture of plastic products and chemicals Used in textile and leather treatment products and dyes, polymers, and non-metal-surface treatment products 	100 - 1 000	
ID-47	Dicyclohexyl sulfosuccinate	0.42	23386-52-9	• Used in adhesives and sealants, coating products and fillers, putties, plasters, modelling clay	100 - 1 000	
ID-50	4-((4- Aminophenyl)diazenyl)benzene- sulfonic acid	0.36	104-23-4	IntermediateLaboratory chemical	Intermediate	
ID-54	3,5-Di- <i>tert</i> -butylsalicylic acid	1.62	19715-19-6	Surface active agentUsed in inks and toners, electrical batteries and accumulators	10 - 100	
ID-60	4,4-Diaminodiphenylmethane	2.40	101-77-9	• Used in lubricants and lubricant additives, polymers, greases	10 000 - 100 000	
	, 1			, g, g, g		
	4: Well-known and high frequency o	f detectio		, , , , , , , , , , , , , , , , , , ,		
		f detection		• Sweetener	1 000 - 10 000	Buerge et al. (2009)
Priority	4: Well-known and high frequency of		n			Buerge et al. (2009) Reemtsma et al. (2013)
Priority ID-13	4: Well-known and high frequency of Acesulfame	-3.06	on 55589-62-3	 Sweetener Water treatment chemical Used in health services and municipal supply (e.g. electricity, steam, gas, water), in sewage treatment, and in swimming pools for pH control 	1 000 - 10 000	Reemtsma et al.
Priority ID-13 ID-22	A: Well-known and high frequency of Acesulfame Cyanuric acid	-3.06 -2.39	55589-62-3 108-80-5	Sweetener Water treatment chemical Used in health services and municipal supply (e.g. electricity, steam, gas, water), in sewage treatment, and in swimming pools for pH control Used for the manufacture of plastic products pH regulator Water treatment product	1 000 - 10 000 10 000 - 100 000	Reemtsma et al. (2013)

				dyestuffs	available	(1999)
ID-46	ε-Caprolactam	0.31	105-60-2	 Processing aid Used in tanning agents, solvents, impregnation agents, reprographic agents (roners), bleaching agents, inks and toners, plastic products, textile, leather, and fur Laboratory chemical 	1 000 000 – 10 000 000	Wang et al. (2003)
ID-61	Ametryn	2.57	834-12-8	Plant protection active substance	1 000 - 10 000	Lanchote et al. (1999)
ID-63	Tri-(2-chloroisopropyl)phosphate	3.36	13674-84-5	 Flame retardant Used in adhesives and sealants, coating products, laboratory chemicals, leather treatment products, plastic and rubber products 	0 - 10	Reemtsma et al. (2008) Li et al. (2014)
Priority	5: Scarcely investigated and low freq	<i>quency o</i>	f detection			
ID-38	2-Amino-4,5- dichlorobenzenesulfonic acid	-0.84	6331-96-0	• Intermediate (for paints)	10 - 100	Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz (2011)
ID-41	1,2,4-Triazole	-0.41	288-88-0	Semiconductors and photovoltaic agentsIn fertilizers, forestry, fishing	1 000 - 10 000	Scheurer et al. (2016)
Priority	6: Well-known and low frequency of	detection	n			
ID-8	1,5-Naphthalenedisulfonic acid	-3.43	81-04-9	• Intermediate	Intermediate	Knepper et al. (1999)
ID-20	Ethyl sulfate	-2.48	342573-75- 5	Anti-static agent	Pre-registration process	Mastroianni et al. (2014)
ID-40	Saccharine	-0.49	81-07-2	 Food/feedstuff additive (sweetener) Used in cosmetics and personal care products, textile treatment products, fur, leather Pharmaceutical substance 	100 - 1 000	Buerge et al. (2009) Scheurer et al. (2009)
ID-57	Bisphenol S	2.17	80-09-1	 Homologue to BPA Used in leather treatment products, polymers, coating products, pH regulators, water and textile treatment products, paper chemicals and dyes 	10 000 - 100 000	Yamazaki et al. (2015)

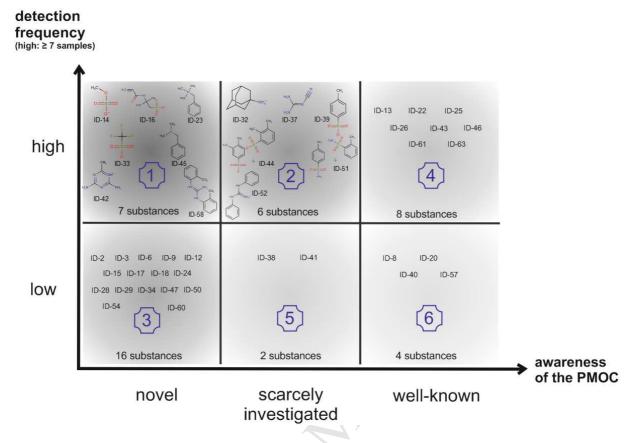

^{*} Calculated at pH 7.0 using ChemAxon (https://www.chemaxon.com/download/jchem-for-office/#jc4x)
** ECHA 2018

Figure 1. Detection frequencies of the target PMOCs in the 14 water samples. The gray shading shows the number of principally different separation methods (*Chromatography A-D*) with which the PMOCs were detected.

Figure 2. Estimated concentrations of selected PMOCs in the water samples. The color shading indicates the detection frequency in the 14 samples. The horizontal line marks the median value, the box comprises the interquartile range (IQR), and the whiskers reach to the outmost measuring points that are within 1.5 times the IQR. Dots represent single high concentrations. ID-6: methacrylamido propyl trimethyl ammonium, ID-13: acesulfame, ID-15: 1,4-diazabicyclo-[2.2.2]octane, ID-16: 2-acrylamino-2-methylpropane sulfonate, ID-23: benzyltrimethylammonium, ID-25: sulfanilic acid, ID-26: melamine, ID-29: N-(3-(dimethylamino)-propyl)methacrylamide, ID-32: adamantan-1-amine, ID-33: trifluoromethanesulfonic acid, ID-37: cyanoguanidine. ID-38: 2-amino-4,5-dichlorobenzenesulfonic acid, ID-39: *p*-toluenesulfonic acid, ID-40: saccharine, ID-42: 6-methyl-1,3,5,-triazine-diamine, ID-44: dimethylbenzenesulfonic acid, ID-45: benzyldimethylamine, ID-52: 1,3-diphenylguanidine, ID-57: bisphenol S, ID-58: 1,3-di-*o*-tolylguanidine, ID-61: ametryn.

Figure 3. Classification of PMOCs in priority classes (1-6) according to their frequency of detection and level of awareness as environmental water pollutants.

Highlights

- Persistent and mobile organic chemicals (PMOCs) occur in drinking water resources
- Innovative methods for analysis of PMOCs in water samples are presented
- 57 PMOCs are selected and analyzed in 14 European water samples
- 43 PMOCs (75 %) are detected, among them 23 for the first time PMOC concentrations range up to $\mu g L^{-1}$ in surface and groundwater