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Highlights (for review)

In this study, for the first time, we propose a unified fracture - porous medium flow
model which is regularised with a phase-field variable consistent with the fracture
mechanics regularisation without defining extra variables or level set functions.
Although the methodology to compute the crack opening displacemer.t using the
gradient of the phase-field variable has been applied in numerous ¢ ner ~tudies
since our first introduction in a proceeding paper in 2012, proper ji’..fication has not
been reported anywhere to our knowledge. In this manuscript, w'- he /e included the
derivation of the methodology for the first time. Additionally, we noir.. 2ut erroneous
crack opening displacement computation under deformed domain, .‘hich has never
been discussed, and propose an approach to mitigate this e ror

The proposed model has been verified in the toughness don..» ited regime of
hydraulic fracturing.
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propagation is rarely considered. For a review of planar fracture mode!,, 1 aders are referred
to Adachi et al. [1] and references therein. Recently, non-planar comp ~x f acturing behaviors
induced by in-situ stresses, heterogeneity in rock properties, or interacti~n wi."> multiple fractures
and existing discontinuities have been observed in hydraulic fracturing su. ~nlation [52, 76] and
hydrothermal experiments in the earth crust condition [77]. Even in i oth »mal condition for single
phase fluid, a comprehensive mathematical model for hydraulic f ~ctr.ing analysis will require
incorporation of all of the following five mechanisms [10, 31, 85]; fract. = fluid flow, fluid flow in
porous medium, fracture mechanics, solid deformation and poro .lastici v.

The computational challenges stem from the fact that fracture oropag tion is a free discontinuity
problem in which the fractures are considered as lower dimer~ona. ' .aents. As a result, it is not
trivial to computationally represent fractures in the porous nedi ... in a way that permits solution
of the individual flow models on each subdomain while ensu.’ ¢ hyc raulic communication between
fractures and porous medium. Where attempts have been . -~ade .o represent fractures and porous
medium within the same domain, the numerous assumptions limit the ability of the models to
reproduce the complex fracture behaviors. For examp. spe .ial interface elements called zero-
thickness elements have been used to handle fluid flow ~ fractures embedded in continuum media
(see [11, 19, 48, 66-68]). This type of elements ~"'~== * ; explicit fracture representation and
easy solution of porous medium and fracture models . ~ their respective computational subdomains.
However, as the interface elements are inserte ' ~long tune edges of continuum grids, the fracture
propagation is constained to the prescribed direcy »r in most cases, one of the principal coordinates.
For other techniques that explicitly differen’ ~te th fracture from the reservoir, the computational
cost is expensive and the numerics cumbersor ¢, . haracterized by continuous remeshing to provide
grids that explicitly match the evolving f~~ture . urface [21, 35]. As an implicit approach, extended
finite element method (XFEM) has been ap,.*iad to the simulation of hydraulic fracturing [23, 33, 42,
65]. However, its complex numerical implementation especially in three dimensions and the fracture
propagation criteria for branching r. w. -ging still remain great challenges. Beyond conventional
boundary or finite element based approac ies, a non-local peridynamics method [62] and lattice
based method [24, 82] have also b2en «, lir 4, but the mesh/lattice discretization dependent fracture
topology is yet to be overcome

The variational phase-field o .el o fracture, which was originally proposed in the 90’s [14, 15,
29], has seen explosive appli- ations . > .ging from dynamic fracture [12, 16, 46], to ductile fracture [2,
3, 54], to thermal and dryi» g Jacture [17, 51, 53]. One of the strengths of this approach is to account
for arbitrary numbers of pre-exist.. g or propagating cracks in terms of energy minimization, without
any a priori assumptio’ on “heir geometry or restriction on the growth to specific grid directions.

The variational phL. ~e-f cld approach has been applied to the simulation of hydraulic fracturing
for the first time in 13, 2.} where the model was verified for fracture propagation in impermeable
and elastic mediur , dv . to injection of inviscid fluid. In [78], the phase-field model has been further
extended to porous > 2dia asing the augmented Lagrangian method for fracture irreversibility and
its quasi-static _caeme . analyzed in details in [56]. The quasi-monolithic solution scheme and
the primal-du | active set method for the fracture irreversibility along with mesh adaptivity were
proposed in [3." Wh'.e the pressures in the fracture and the porous medium were distinguished,
each of th pressure profiles was considered uniform throughout the domain(s) in these models.
Phase-fie 1 fractu ¢ models coupled with the Darcy-Reynolds flow were proposed in [43, 53, 54, 57,
58, 64, 81 ~nd v.th Darcy-Stokes type in [27, 36, 80]. Mikelié¢ et al. [57, 58] applied an indicator
funct? _ “~<ed on the phase-field variable to the fracture-reservoir diffraction system. The system
is solved ir a fully coupled manner in [58] and the fracture width computed using a level-set in [43]



O©CoO~NOUIAWNER

for computational efficiency. In [53, 54], the phase-field variable was used ' s a weight function to
homogenize the permeability in the system. A similar homogenization ¢ ~orc ach was also taken
by [81] as well as considering another phase-field variable for inclusion ~f inuv. “faces. Santillan et
al. [64] applied Reynolds flow equation in a 1D domain externally consti. ted out of the main
computational domain based on a certain value of the phase-field vari .ole. Heider and Markert [36]
and Ehlers and Luo [27] proposed the phase-field fracture modeliz ~ er .pedaed in the Theory of
Porous Media (TPM) where the phase-field variable was used to weiy. between the Darcy flow
in porous media and the Stokes flow in fracture. Alternatively, coupli: ¢ with fluid flow has been
achieved by linking to an external standalone fluid flow simulato. in [79, 3] where again the phase-
field variable was used to distinguish the fracture domain thr~—gh ' - permeability multiplier.

Instead of applying the phase-field variable as an indica or o .. nstructing weighting functions
from it, the present study derives a unified fracture-porous .ediu 1 flow model by following the
phase-field calculus (i.e. the phase-field variable as a reg “lari..ug function). Fluid flow in the
porous medium is modeled using the poroelasticity continuit, equation with Darcy’s law while
fracture fluid flow follows Reynolds equation with the cu. '~ law as the equation of state. Exchange
of fluid between the fracture and porous medium is cons. lered, leading to the derivation of a tightly
coupled model for fluid flow in the fracture and »~»~- .dium. Iterative solution of the varia-
tional fracture model and the coupled flow model prc -ides a simplified framework for simultaneous
modeling of rock deformation and fluid flow d o hya.aulic fracturing. The primary quantities
of interest are the fluid pressure, fracture geome vy (length, height, radius) and fracture propaga-
tion paths which are obtained from the sol' “‘ons « € the coupled flow and mechanical models. We
verify our model by comparing numerical resu'ts -itn analytical solutions in the storage-toughness
dominated region (K-regime) proposed b~ [25]. Ve also analyze the role of permeability and three-
dimensional layered fracture toughness on .. ~cture geometry, propagation paths and fluid diffusion
profile during hydraulic fracturing. Since the puase-field technique removes the limitation of know-
ing a priori, fracture propagation .cec.’ s, we use the model to highlight stress shadow effect
during propagation of multiple hy raulic fi actures.

The outline of the paper is es fown. vs. The governing equations for the variational phase-field
fracture model, fracture and p -rov mearum fluid flows are first presented. Next, we outline the
fracture width computation a., ~ri.hm .nd present our modified fixed stress splitting scheme used
for decoupling and iterative.y solv. '« the flow and mechanical models. Thereafter, the model is
applied to the propagatior " KGD and penny-shaped fractures. Numerical results are presented
and analyzed.

2. Governing equatic  : for the coupled system

Consider a poela cic riedium occupying a region Q C RN of space. Let I be a known set of
fractures, i.e. a set . *twe dimensional surfaces in 2. We assume that the pore and fracture spaces
are fully occur'ca by a single phase Newtonian fluid, and that the same fluid is being injected.

2.1. Fracture fo.*d fl-w model

In the ractui ~ system, we make the classical assumption of a planar laminar flow following the
cubic law nd the generalized Reynolds equation [50, 69] which accounts for different orientations
along the frac...e path from lubrication theory [8]. Denoting by w the fracture aperture, we have
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then that
ow . . A

g‘*‘vr'(w%)‘*‘fﬂ:(ﬁs m . (1)

3

w
2 - T 2
@ = —[g] - 7ir on T, (3)
gr-m=0 on OT. (4)

In the above equations, nr and 7t denote the normal and tang~~t vec. _ to I, ¢ is the fluid velocity
in the fracture, ¢ is the fluid velocity in the porous medium py i «. = fluid pressure in the fracture,
1 is the fluid viscosity, and ¢; is the rate of leak-off between _.ie frz ;ture and the porous medium.
Using the definition of surface divergence and substituting () iuw (1), the continuity equation for
fluid pressure becomes

ow . wd
o~ i x Vo) o e x N =g (5)

Multiplying by a test function ¢y € H'(I') and integrau.. g over I', we obtain the weak form of (5):

w? ) ‘ ow
. = 2/ L — — — .
/Fnuvppf Vi g c /F by <qf& o ql) ds (6)

2.2. Porous medium fluid flow model

The governing equation for flow in the poro.s medium adjacent to the fracture is the continuity
equation from poroelasticity theory “.. ~ single phase, slightly compressible fluid [9, 45, 86]. Let
grs be source or sink terms in t} 2 porot: medium  \ ', with a unit of volumetric flow rate
per unit volume. Assuming a presc. hed sressure p on dp€) and a prescribed normal flux ¢, on
31{,9 =00\ 6};9, we have

0
87§+v'q;”:us in Q\T, (7)
¢ av-m%’“ in Q\T, ®)
K
G = —ZVPT in Q\ T, 9)
Dr=D on [“),ij, (10)
qr N =qp on 6}:,(2, (11)

where . is th» porow: medium flow rate related to the pore-pressure p, through Darcy’s law (9),
K is the perme. hilitv censor, « is the Biot’s coefficient, and M is the Biot’s modulus.
Upon - upstititing (9) into (7), the continuity equation in terms of pore-pressure becomes

%

K
ot ' EVPT = Qrs- (12)
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We can write (12) by multiplying both terms by a test function, v, ¢ n'(Q \ T') such that
¥, = 0 on OpQ2, and integrating over 2\ I'. Using Green’s formula, and (*' w have that

K K K
— V. —Vp).dV = / —Vpr -V, dV — / —Vp,-n .S
Q\T 1% o\r M a0y M

K K _ _
- / ) nped dS = S (Vp) et dS,
r+ M r— r

where I'* denote each side of T, ¢ and (Vpr)jE the trace of ¥,. a *d Vp, and nr+ the outer normal
vector to 2 along T'F, respectively. Using (9) and (11), we t¥ c.. get wuat

K K
- \E *VPM;ZJT dav = / *Vpr : Vlbr dv - l Anwr ds — /[[q_;“]] : nfﬂwrﬂ dSa
O\r 2 O\r M Joo v r

with the convention that nr is the normal vector to ™ pow.‘ir-, from I'™ to I't.
Using the expression above, the porous medium flow . ~ntinuity equation (12) becomes

K
/ %wr(ﬂu/ 2 py - Vi, dV =
o\r Ot o\r K

/Q A /6 s+ / [@] - nel ] dS. (13)

2.8. Combined flow equation

Traditionally, the reservoir and crack pressure are linked through leak-off law, derived empiri-
cally [70] or in specific asymptotic r g = [20]. In particular, Carter’s leak-off law can be derived
by assuming constant height and v «dth anc neglecting the pore pressure on the diffusion process of
the injection fluid in the formaticn. 1. ma .y applications, however, it is not clear if this assumption
is reasonable. In [34], for insts ace. the net pressure difference between fracture and formation is
approximately 20-35 MPa wi.'» “ne 7 ore pressure is 40-50 MPa. In conventional reservoir, the
ration of the fracture over p .re pres. = e is even smaller. Instead of using an ad-hoc leak-off law, we
propose to combine (6) ar + " ?) by identifying p, the thickness averaged pressure in the fracture,
and p,, i.e. neglecting the effect o. the net pressure difference. This may of course lead to underesti-
mating the amount of faid eaking-off the fracture. In the near toughness dominated regime, when
the pressure gradient .“ro .gh the thickness of the crack is small, we expect this approximation to
be reasonable.

Under this ass» mpt on, we have that p, = ps in I', so that the admissible test functions 1, need
to be continuous ac. ~ s I'. and using (3), the leak-off terms cancel out, and we obtain the combined
porous mediun aud frac. are flow equation in weak form:

a

K w3
1% '/Vp-vde—F/iVFp-VFQZJdS
avr 0 ©Ja r 12u

=/ qrsde—/ qnwd5+/qfswd5—/ai”wds. (14)
o\ aNQ r r Ot
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2.4. Mechanical equilibrium
We follow the formalism of Francfort and Marigo to derive the mechanic ~1 ec ailibrium and crack
propagation law. In all that follows, we assume a brittle-elastic porous ~ediu. ~ and denote by A
and G, its Hooke’s law and fracture toughness. Assume for the moment tu.* the pressure field p
and fluid-filled crack I" are given. Let 932 be a portion of its bounds .y a1 95 := 90\ OFQ the
remaining part. Following the classical formalism of Biot [9], we ii. “oc ice a poroelastic effective
stress 0 := o (i) — apl, @ denoting the deformation field in the norc. - medium, I the identity
matrix in RY, o the Cauchy stress, and p the pore pressure from (14). The consitutive relation for

a poro-elastic material reads
ol .= Ae(1), (15)

where e(@) := is the linearized strain. Static equi ibr’.m . nd continuity of stress at the
interfaces mandates that

Vitvi'
2

—V.o(@)=f in Q\T, (16)
oc-n=T on 0O, (17)

iU = g on 90’7, (18)

ot fips = —piips on I't, (19)

where f denotes an external body force and 7. a « «."ion force applied to a portion o3 of 9N
Let 1y be a given boundary displacement on 9758, = 90\ O Q.

Multiplying (16) by a test function ¢ € A *(>\ 1, vanishing on 00 and using Green’s formula
and (17) and (19), we get that

/ A(e(ﬁ)—im)-e(e})dvz ?-$dS—/p[[$~ﬁp]] s+ [ f-éav,
o\r Nk oam r o\r

where N = 2 and N = 3 for two .nd thrc > dimensions respectively and x denotes the material’s
bulk modulus. We finally recall th.' givea p and I', the previous relation is just the first order
optimality condition for the uni ,ue solutiun of the minimization among all kinematically admissible
displacement of

P(@Tip):= [ W (@),p)av — F~{[dS+/p[[ﬁ-ﬁp]] ds— | f-aav,  (20)
o\ aQm r O\l
where )
[e% «
1 ¥4 — 7)) — —— . i) — ——
Vo). p) = A (e(d) = 1-pl) - (e(@) - 3-p1) (21)

is the poroelastic s’ cain ene1gy density.

Following Fra: ~for and Marigo’s variational approach to brittle fracture [29], to any displace-
ment field @ and crac. o afiguration T' (a two-dimensional surface in three space dimension or a
curve in two d mensic ns), one can associate the total energy

]:(ﬁv F§p) = P(uu F;p) + GCHN_I(F>7 (22)

where G, is the material’s critical surface energy release rate and H™~1(I') denotes the N — 1
dimensior. °1 Haus lorff measure of I', that is, its aggregate surface in three dimensions and aggre-
gate length 1. .wo dimensions. In a discrete time setting, identifying the displacement reduces to
minim ~ing . w~ith respect to any kinematicaly admissible displacement and crack set satisfying a
growth ¢ 1straint.
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3. Phase-field approximation

The numerical implementation of the minimization of (22) involves hawu.” ing of displacement
fields that are discontinuous across unknown discontinuity surfaces (the -racks), which can be
challenging when using standard numerical tools. Instead, we propo ¢ .» adayt the now-classical
phase-field approach [14, 15] based on the work of Ambrosio and Tort .relli .n 1...age segmentation [4,
5], which we briefly recall in the case of an elastic material i.e. for p = -

8.1. Variational phase-field models of fracture

Let &€ > 0 be a regularization parameter with the dimension o1 = '~ gth, and v : Q@ — [0,1] be a
scalar function. We define

Fu(i,v;0) = W(e(ﬂ),v;O)dV—/ 7.qds

Q oy
- G. 1—v)"
—/f-a:uVJr / <(v)-‘r€|V1}|2> av, (23)
Q 4Cn Q 3

where W (e(@), v;0) = 102 A e(@)-e(), ¢, 1= fol(lf‘s,”'/zds (n = 1,2) is a normalization parameter.
We typically refer to the case n = 1 as the AT; = ~rov and to n = 2 as AT,.

It can then be shown [4, 5, 18] that as  ap, vc «ches 0, the minimizers of (23) approach that
of (22) in the sense that the phase-field func ~n v v kes value 1 far from the crack I' and transitions
to 0 in a region of thickness of order € along \ac.. ~rack faces of I'. Figure 1 shows the phase-field
v representing a simple straight crack i- ~ two 1imensional domain, for decreasing values of the
regularization length .

3.2. Extension to poroelastic media

In the context of crack propag tion in a poroelastic medium, the variational model (22) and
phase-field approximation (23) » wst 1. » odified to account for poroelasticity and pressure forces
along the fracture faces. Asin 13, 2], we approximate the work of the pressure forces acting along
each side of the cracks by

| @) i ds = / (@) i) - Vo(z) V.
Jr Q
The convergence proo’ is t chnical, but the following argument illustrates how the approximation

takes place.
We first recall t'.e construction of the optimal profile problem [15, 18], which is the construction

of a function w, 1. ir azin, [ % +e(w’)? do amongst all functions w such that 0 < w(z) <1
on (0,00), w(0) — 0, .~ . w(oco) = 1. Using a simple change of variable, it is easy to see that
we(x) = &(Z), where . = z/e, and & minimizes [~ (1 —®)" + (&) dZ amongst all functions @ such

that 0 < @(&) ~ 1on (),00),w(0) =0, and ©(1) = 1. Remark that the first integral associated with

the optime™ ./ couurvions of the optimal profile problem are (& )2 = (1-®)", and that we recover
2
the well 1 1own o timal profile wy(z) := 1 — e~ /*I/¢ for the ATy model and wy(z) = 1 — (1 - m)

2¢e
if |z] < 2e an’ _1(z) = 1 otherwise for the AT; model.
Fo. suw . aough ¢, the phase-field function v, is well approximated by v.(x) := @(dr(z)/e),

-

where dy ) := dist(z, I'). Consider then a function ®(z) defined on € and admitting traces * and
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Figure 1: Phase-field representation v of a line crack for ¢ .reasing values of the regularization length . The blue
region correspond to v >~ 1 and the crack faces corrc v nd tc the transition regions from blue to red.

&~ on each side of I'. Using the co-area 1o ™mula (a generalized version of Fubini’s theorem [28]),
we have

Q<

/ch(x)-wg(x) dV:/ i <“()> &(z) - Vdr () dV
e

- / Lo (f) B(z) - Vdp(z) dH " (z) ds
/o /{zeQ; dpr(z)=s} € €

B 1 ~7 S / = —1
= o' (= O(x) - Vdr(z) dH" " (z)ds
/0 € (f'?) {z€Q; dr(z)=s} r(@)

_ / 2'(5) / () - Vdp(z) dH" () d3,
0 {z€Q; dr(r)=es}

with § = s/e. Forr ally and under some mild regularity assumptions on I', when & — 0, the inner
integral becomes . ~ i-.tegr [ along each side of I', and Vdr becomes the oriented normal on each
side of I'; so tha*

lim i &(z) - Vo (z)dV = /F [®(x)] - 7ir dS. (24)

Taking ®( ) = plz)u(x), we recover our claim that

;i_rf(l) Qp(x)ﬁ(x) Ve (z)dV = /Fp(x) [d(x)] - 7ir dS.
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Remark 1. Another way to view (24) is to decompose

/ ®(x) - Vo (x) dV = / ;ZZ i§|Vve() s

and think of Vue(x)/|Vue(x)| as an approximation of fir+ and of '/ve( )| 5 a measure concen-
trating along T'.

The next step is to account for the phase-field variable in the joroela. tic energy density W. The
main modeling choice is whether the phase-field variable should a *ect the Cauchy or the poroelastic
effective stress. Although it can be shown that both choices ..inciac a1 the limit of € — 0, we use
the former. This choice is consistent with the current interp -eta’.on »f the phase-field variable as a
damage variable and the regularization length as a material .uterns. length [49, 63, 75], under the
modeling asumption that damage arises at the sub pore sc.'e, s.e. is induced by strong Cauchy
stresses. Our choice of the regularized strain energy density is 1 erefore

W(e(@),v;p) == 1A (v e(w) — ;\;K ) (vc ) — %I) , (25)

and for a given pressure field, the displacement and p.. <e-field variables are given as the minimizer

of
v; D) /W ),v;p)dV — / T owlS - /f'ﬁdV+/pﬁ-VvdV
oNQ Q Q

" f /Q <(1_5) +6W|2) dv  (26)

Note that Biot’s poroelasticity .node. can be seen as an upscaled model of a fluid-structure
interaction problem, when the por size asy mpototically approaches 0, so that the argument above
holds provided that € approache . 0 sic = than the pore size.

3.8. Phase-field approximation. ~f che “.ow model

Since our mechanical m del relies on a phase-field representation of the fracture set I', we need
to adapt our coupled flow eque *on (14).

The main difficulty ' -e is the approximation of the term originating from the fracture flow
fr %Vpp -Vry dS. Tollor ing the logic of Remark 1, we use the following approximation for the
surface gradients:

Vv '\ Vv
Vrp >~ Vip:=Vp— <VP' |Vv|) ﬁ (27)

Integrating on 7 agains. w? is more complicated, and cannot be obtained by a direct application

of (24). Prop r care as to be exerted in order to properly recover ([@-n])® and not [(@-n)’].
Assuming that . is <ach that we(z) = [u(z) - nr] on T, i.e. a “regularized fracture aperture”, we
propose t) - 1ollowing approximation:

/—vpp Vi dS ~ we Vip- Vay|VoldV. (28)
12 0 120

The con: ‘uction of w, is complicated and described in detail in Section 4.2
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Deriving a regularization for the fracture sources and sinks term fr qfs¥ o L ing the phase-field
function v would require some regularity on qys. In typical application, L wev r, g, consists of a
series of point sources qss(z) = > i, Qf0(x — x;), x; representing the loca. ™ of the source or
sink term, and @y, the flow rate. We introduce the regularized source term

qfs Z Qf, ) (29)

] . . .
where . (z) = ;‘Nj, and ay denotes the surface area of the 'mit sy iere of dimension N, i.e

ae = 2m and ag = 4w. Our phase-field approximation of the <_.rce ; »ink term is therefore

/ 4rothdS = / &0l av. (30)
N Q

The approximation of all remaining terms of (14, "= strair atforward, so that the phase-field
approximation of our combined flow model in weak 1. ™ be._mes
w?
o 12p

/ 28<¢dv+—/vp Vi dV + 7| Vol dV
Q

:/v2qm¢dV—/ Iny" ,v+/q;8¢\vu€\dV—/¢@-de. (31)
Q a, . Q o Ot

4. Numerical implementation

We implemented our model consisting of the variational principle for crack evolution (26) coupled
with fluid flow (31) using colocated Li-u. ~ar (for two dimensional models) and tri-linear (for three
dimensional models) finite element for @, p and v. For the sake of simplicity, our implementation is
limited to structured grids. The 'inea. ~lgr ora, constrained minimization and non-linear solvers are
provided by PETSc [6, 7]. The Hasic of our algorithm is an extension of the alternate minimizations
originally introduced in [14]. .." e ch t'me step, we alternate between solving for v for fixed @ and
p and solving for @ and p < atisfyn. - static equilibrium and coupled flow equation (31), for fixed
v. The former problem re «u. s to a box-constrained quadratic minimization problem, which can
easily be reformulated as a varia.'onal inequality. Convergence for this step is measured by the
difference between v v-ue: of consecutive fracture evolution steps. For the later, we extend the
stress-split approach ¢ 57 to account for the modified fluid flow problem. In this loop, the error
is defined as the dif" :rence “etween consecutive values of a volume averaged pressure. A tolerance
value of 1 x 10™% %, usr d to stop both solution steps.

4.1. Modified &'. 58 spio.

Substitutii g (8) in o (31) and introducing the volumetric stress oyo; := 3tro = KV - — ap, the
first term in (3. bec” mes

M

(Ll @ /W%
f/gv <M+ pav+ [ 2y ay. (32)

10

( o) 1
v? deV /Qv at(av u+p) W dV
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Following the stress-split proposed in [55], the mean stress is evaluated wit! tu previous iteration
step’s value (oyo1 = Uﬁol) while the pressure with the current iteration (p = , “*1*. Thus substituting
(32) into (31) then yields

1 k+1 K k
/112 —+— 37’ YdV 4+ — vpk+1-vwdv+/ (we)” Vir ' Viy|VoldV
Q Mk K Ja o 12p
e aﬁk v ¢ 2aaavol
= Qrs dV — qn dV + qf8w|Vv5|dV— Y—— - "JvdV / PdV, (33)
Q ONQ Q o Ot K

where superscript k represents the iteration step. Because o1 the regularized variable, (33) still
imposes an ill-conditioned system for v = 0. Here we propcse » mo 'ification similar to the stress-
splitting in [41, 55] to improve the stability by using the Bi~t’s comr: essibility (1/M) as a stabilizing
term in the following form:

1 o apkH K k1l b ek
22 de+ Vp Via, + Vip™ ™ - V|Vl dV
Q M K Q ].2

:/qrswdv— G dV + /qfcs'wlvvaldV—/¢7~VvdV
Q ONQ e

- v OoF Uol / 1 o OpF
- av 1- —dV. (34
[o2etav s [ 5 (=) Fovav. (30
In solving (26) and (34), the equations a _~~lea o convert the system to a more numerical benign
form (see Appendix for details about non-a.. ~ensionalization).

4.2. Computation of the fracture ar crtus.

Reasoning as in Section 3.2 for (24), for almost every point x € T', and almost every unit vector
U, we have that

w(x, = "d(x) - nr] = / - Vude,

where 27" denotes the on’ ‘imensional section of {2 through z in the direction .

For each cell e, if max. v > 1 4., we set w.(e) = 0. We then integrate @- Vv through the centre
of e along the streamlir . v." Vv over the segment [.(e) by taking a discretized step Al.(e) where v
is decreasing if moving tow .rd the fracture and is increasing if moving away from it. Therefore, the
line integration is pe-forn. 1 twice at every cell in both descending (s = —1) and ascending (s = 1)
directions of v by sett’.ig the search direction, s, accordingly. If the search crosses a fractured
cell (fir j41 - 7r,; -~ O, thea the search direction is flipped to the ascending direction (s = 1). If
the search leave~ the v. .sition zone (v > 1 — J.) or enters a transition zone by another fracture
(fir,j+1 -7, < 0), the » the integration is stopped (see Figure 2). Detailed procedures are described
in Algorithm .

Figure = how. vne computed aperture of a crack in an impermeable medium subject to a
constant Hressure for decreasing discretization size. An excellent match with the exact solution
of [71] is ¢ “tainec .

Firmre 4 suows the same computation for a slant crack. We notice that whereas along the
fractur si es, the aperture computed using our algorithm is invariant by rigid motion, it is not

11
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Algorithm 1 Fracture aperture opening computation at the element e;

1: Let v; = v(e;) and x; be the centroid of element e;
2: Set j =1, fir; = Vv;/|Vu;|, and s =1

3: repeat

4: Let xj41 1= x; + sAl.fip ;.

5: Find the element to which x;41 belongs to and let fip ;41 := 7vs .1/|Vviya]
6: if ﬁl",j—i—l =0 then

T firj+1 = 7r,j

8: else if 7ir j41 - 7ir; < 0 then

9: fir; = —Nr,;

10: 5= —s5

11: w:i=w+ Als(ﬁj . V’Uj + ﬁj+1 . VUj+1)/2
122 =g+l

13: until Vjt1 >1—96. or ﬁ]_“)j_i'_]_ 'ﬁF,i <0

14: Set j =1, ﬁr,,’ = —VU1/|VUL| and s = —1

15: repeat 4-12

16: until Vj41 >1-96.or ﬁp1j+1 : ﬁp’i <0

the case near the crack tip (see how the apertu e density does not vanish near the crack tip in
Figure 4-(right)).

This effect is easily understood by looking & ti.. variations of Vv along one dimensional sections
as in Figure 5. Away from the crack t7_ '™~ I.1e average of Vv along one-dimensional sections
vanishes as € — 0, which is consistent wit.. the construction of the near optimal phase-field in
I'-convergence recovery sequence as a funtion of the distance to the crack. Near crack tips, this is
evidently not the case.

We propose to mitigate this ef. ~t by ir ;roducing a small tolerance §. and constructing the tip

indicator function

: /

P o) Vol da| < (35)
0 otherwise,

which vanishes near the ¢ acn “ins while taking the value 1 away from them and can be computed
together with we, at a verv smal cost. Our regularized aperture function is then simply given by
we(e) := I.(e)ws(e). Tiote that when using the AT; model for which the transition zone of the
phase-field v is finite «. 1 :qual to 2¢, §. can be made arbitrarily close to 0, or in practice of the
order of the machir : precis. "n. Figure 6 shows the indicator function I, and modified regularized
aperture w, for th. cra « pe*ttern of Figure 4-(right). We observe that the modified aperture density
properly vanishes nc - the crack tips.

5. Numerica' Resu ;s

5.1. Veri’ cation KGD Hydraulic Fracture Propagation in the Near K-regime:

The dc 7eloped numerical model is verified by solving the plane-strain fluid-driven fracture prop-
agation prob.c..., under the near K-regime defined in [25, 38]. This regime is characterized by the
consta t 1 ,ce.ion of a low viscosity fluid with no leak-off from the fracture. Of course, as the
name su, ‘ests, this fracturing regime is different from the K-region, and its deviation from the

12
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Figure 2: Computation of we. The grayed area is such that v > 1 — §., so that w. = 0. The blue cell is the current
cell, the line I (e) is the dashed black line and w, ‘e) = fls(e) i - Vvdz. The green cells are components used for the
line integral.

K-region solution is depender on i dir iensionless fluid viscosity, M. The semi-analytical solution
in [30] corrects for this devia ion 1. ™ .he K-vertex, by providing good approximations for the time
evolution of the fracture ¢ ning displacement, fracture length and fluid pressure as functions of

M,
M= 9 <£>4 (36)

B \K'
where B/ = 12,/ = 2p. and K’ = |/ 326eE"

The compt .ation~l domain is a square of size 200 m x 200 m with an initial fracture of length
lp = 3 m, incl ned at - 5° and centered in the domain as shown in Figure 4-left. Fluid is injected
into the center " +ho ,racture at a constant rate of Q = 5 x 10"*m?s~!. The initial and boundary
conditions are p = 0 and @ = 0. Table 1 show the values of reservoir, fluid and model parameters
used for .1 this ¢ mputation. All the properties are assumed homogeneous and isotropic where
applicable.

Fi.w, .. ‘~vestigated the mesh sensitivity of the numerical model by running computations at
three di." -ent mesh resolutions. The ratio of mesh resolution to phase field characteristic length

13
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Figure 3: Fracture width profile computed for a pressurized line cre - in an ir yermeable medium. The plot labeled
Sneddon is the analytical solution of the fracture width taken from |, "' (left): phase-field representation of the
crack. (right): pressure profile along the crack compared to the exact solu. on for multiple mesh resolutions.

*(m) w(m)
X g 2
EJ.03 %0.03
%0.02 §0.02
—%0.01 EO.OI
0 0

Figure 4: Pressurized slant crack in an i ci.. able medium. (left): Phase-field description of the crack. (center):
Computed regularized aperture. (right): Comput. 1 regularized aperture in the computational domain subject to a
rigid body translation.

scale was kept constant for al, "h« cor putations (i.e. ; = 4). The results are shown in Figure 7,

where the dashed lines are the an.' tical solution for M & 0.0. The linear component of the
analytical solution is the .. =l pressure path prior to propagation for the given initial fracture
length, while the curve is the crit.cal pressure for all fracture lengths. As evident in the figure, our
numerical solution app vacs es the analytical solution as the mesh resolution increases. A tolerance
value of 1 x 107% was sc A for both the inner and outer loops of the algorithm. Although we
imposed a combined maxn.. “m iteration of 101 for the inner and outer loops at each time step, the
solution convergec in ‘.oou* 20 iterations prior to fracture propagation and in over 60 iterations
during fracture proy, = satic a time steps.

Using the o~ _su resoluion of h = 0.25 m, we compare computations for M = 0.0 and M = 0.041.
In order to re licate t e near K-regime, very low reservoir permeability (k = 2.83 x 10716 m?) is
used in the sim 'atior Figure 8 compares the numerical results for injection fluid pressure, fracture
half lengt}) and fracture mouth width for both cases of M = 0.0 and M = 0.041, with the analytical
solution ¢ *[30]. A : we prescribe an initial fracture, mismatch is observed in the early time until the
initial crac. is fi'.ed with fluid. Considering the various assumptions that have been made in the
develc ... ~* of the regularized flow model and in the fracture width computation, the pressure and
the wia. Y\ how fairly good comparisons between our numerical results and the analytical solutions

14
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0<v<1-94,

Figure 5: Computation of the average of normal dis, «. me1. across the fracture through one-dimensional section.
Far from the crack tip, the one-sided averages of Vv ve « good approximation of fir, whereas near crack tips or
kink, they are not.

while the computed length does not - *~h as good as the others. The reason for this is that while
the pressure and the width are exp’.citly cc mputed, the length is extracted from the surface energy
term which is influenced by the pro.'= of ne phase-field variable and is overestimated due to the
profile around the tip [73, 74]. “Jne obse. ves that M = 0.041 results in a higher injection pressure
and fracture mouth aperture - ad < aort r fracture length than those obtained for M = 0.

5.2. Effect of Reservoir Pr. ~eability on Fracture Propagation in the Near K-regime:

In the previous section, we . rified the model by simulating hydraulic fracture propagation
characterized by very lc v i id viscosity and reservoir permeability. Here we investigate the effect of
increasing reservoir pc. mes oility on hydraulic fracture propagation in the same regime. Specifically,
we compare numerir al res.'*s for fluid pressure, fracture geometry and propagation direction with
the analytical resv’cs fc - the K —regime. The computational domain is the same as in Figure 4-left
but with k = 2.8 x *0 1542 57x 1071 m? 1.1 x 107* m?, 1.7 x 107 m? and 2.3 x 10714 m?
respectively, ar © Jther . rrameters are the same as in Table 1.

Figure 9 ¢ »mpare. the numerical injection pressure, change in fracture half length, fracture
mouth apertur and f acture volume with those of the toughness dominated regime derived from
Sneddon’s wualytical solution [13]. Omne observes that the critical pressures are not significantly
affected 1y reser\»ir permeability for the low fluid viscosity. However, increasing reservoir per-
meability < ~lays he onset of fracture propagation due to increasing fluid loss to the surrounding
reserv - Correspondingly, the fracture propagation rate is slower as reservoir permeability in-
creases. [r addition, the large fluid loss experienced in higher permeability computations leads to

15
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Figure 6: Crack tip indicator function I. and (left): moc "~ °

(right).
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Table 1: Reservoir Lropr ties for verification of coupled hydraulic fracture model

?ar: meter Value
x 200 m
At 0.283 s
E 17 GPa
v 0.2
G. 100 Pam
¢ 0.2
« 1
K 10 GPa
Ky 0.625 GPa
m 4 x 107 Pas
Qfs 5x 1074 m2s7!

16
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Figure 7: Injection fluid pressure as  “'nctic » of time, for different mesh resolutions

smaller fracture mouth opening displaceme. * anu fracture volumes respectively. For all the quanti-
ties plotted, the deviation of the numerical resuits from the analytical solutions (M = 0) increases
as reservoir permeability increases. 7 ... is so since the fracture propagation regime changes from
storage dominated to leak-off dom aated.

In another set of numerical compu’ ~tio’ 3, we study the effect of directional variation in reservoir
permeability on fracture prope satirn duections. Anisotropy in reservoir permeability is created
by keeping k. constant at 2. x “07!% m? and varying k,. The numerical results for fracture
propagation are shown in Fi jure .2 for k, = 5.7 x 1073 m?, 2.3 x 1073 m?, 1.1 x 10~ '3 m? and
5.7 x 10~'* m? respectivel". *s propagation initiates, the fracture kinks for anisotropic permeability
ratio (k;/k.) greater than 10. ‘1.~ change in propagation direction occurs as the fracture seeks the
direction that offers thr iec 't resistance to fluid flow, which in this case is the horizontal direction
(ks > k). The kinkir_- an e also increases with increasing k;/k..

5.8. Well Shut-in ifter Fracture Propagation

In a minifrac te." verformed in the petroleum industry, after the initial fractures are created
and extended, .uc iniecv.on well will be shut-in. During the shutin period, fluid pressure decline
occurs becaus the flu. 1 flows back into the well or leaks-off into the adjoining reservoir. To mimic
the minifrac te.* we erform numerical experiments by shutting-in the well after a period of fluid
injection # 1d frarcture propagation. The fluid pressure and fracture geometry changes are analyzed
before an | after 1 1e well shut-in. The reservoir model and initial fracture geometry are the same
as in Subsc 5 7. Fluid viscosity is = 1 x 10"%Pas while other parameters are the same as in
Table .. ™%vee different reservoir permeabilities of k = 4 x 10715, 2 x 1071%, and 1 x 10~ "5 m? are
conside, °d  Fluid is injected into the fracture at a constant rate of Qs = 5 x 1072ms™" for 42 s,

17
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Figure 9: Plots of fracturing injection pressure, c.. nge in fracture length, fracture mouth aperture and fracture
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Figure 11: Change in fracture length and f actu. mouth aperture during well shut-in operation for different reservoir
permeabilities. The well is shut-in after 42s. (to -left) Injection rate as a function of time. (top-right) Injection
pressure as a function of time. (bottom-ler., Chan : in fracture half length. (bottom-right) Fracture mouth aperture.

after which the well is shut-in. . : nu aerical results for fluid injection with well shut-in are shown
in Figure 11 while results wi .hout we.. shut-in are those in Figure 9. The pressure responses are such
that after fluid injection s’ ops . * 42 s, pressure decline increases as fluid leaks-off into the reservoir.
The rate of this decline *~ directly proportional to the reservoir permeability. Similarly, fracture
mouth aperture decre  ses vith declining fluid pressure. The fracture length remains constants
after well shut-in, since “v.d pressure falls below the critical value necessary for continued fracture
propagation. Figur 12 sho..: the evolution of fluid pressure in the reservoir at different times for
k =4x10"""m? Tb. fro ture length increases until t = 42 s and remains constant thereafter.
Fluid leak-off into t.. vescrvoir is highlighted by the decreasing pressure inside the fracture and
increasing fluic diffusion into the reservoir as time progresses beyond the well shut-in time.

5.4. Hydraulic .72t re Propagation in Layered Reservoirs:

Three dimen. ‘onal computations are carried out to highlight the role of varying mechanical
properties of rese voir layers on hydraulic fracture height growth. Figure 13 shows the computa-
tional eeome.. , with the initial penny-shaped fracture in the middle of the domain. The reservoir is
a cube ot 8.0 C) m X 50 m x 50 m while the initial fracture has a radius of 5 m. Inviscid fracturing
fluid (- 4 x 1077 Pas) is injected into the center of the fracture. The reservoir is divided into
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Figure 12: Snap shots of pressure distribution in the reservoir with k = 4 . 10715, 2 at times ¢t = 144, 175, 1416,
and 2826s.The well is shut-in after 42s
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Table 2: Reservoir properties for fracture propagation in a thr e lav re« three dimensional reservoir

Parameter Value
x JYm
At 14 .
FE 17 G-
v U.2
G, 1ue Pam
k 2o . 0713 m?
1) 0.2
« 1
K 2 GPa
K; 0.125 GPa
1 4 x 1077 Pas
N, 5x 1072 m?s7!

three vertical layers with inter’ices at 17 m and 25 m respectively. This means that the fracture is
located in the middle layer #nu ~ per sendicular to the interfaces. We assume that both top and
bottom layers are similar, v (th the s.me values for reservoir properties as highlighted by the color
contrast in Figure 13. La; erin, in the reservoir is created by varying the values of either E, G, or
k between the layers wb'~ the other properties are the same for all the layers. The base reservoir
properties for all the 17 yers wre as in Table 2. Our numerical results for fracture propagation in the
reservoir with uniform , - perties (base values) in all layers are shown in Figure 13 and obviously,
the penny shape is unchang. 1 throughout the propagation of the fracture.

Results for fra turr s prs pagation in reservoir with varying G. between the layers are shown in
Figure 14. Higher fro. ‘ur- toughness of the external layers favors hydraulic fracture growth within
the middle lay r. Ur-er these conditions, the fracture extends more in length than in height. In
fact, for very 1igh gc‘ ]"—; ratio, the fracture is completely confined in the middle layer as seen in
Figure 14c. As & - ut, the height is constant, approximately equal to the thickness of the middle
layer. Or the olher hand, a reduction in g et fayvors fracture growth into the top and bottom

¢,mid

layer, wit. a geor etry that is longer in the vertical direction than in the horizontal direction.
Figure 15 o..ows the propagated hydraulic fracture geometries in the layered reservoir for different
Young " m’ uu.us. Higher Young’s modulus in the surrounding layers impedes fracture growth out
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Figure 13: Penny shaped fracture in a three dimensional reservoir v ith 2 .ay vs. Fracture shape is taken as the
contour at v = 0.1. The layers are identified by different colors. Top = bott m layers have the same properties,
hence the same color representation

Figure 14: Propagated hydraulic fracture in a threc '~vers reservoir with different fracture toughness. (left to right):

Seext — 07,0.9,1.2, and 10.
|
1

G mid
Figure 15: Propagatec hyd- iulic iracture in a three layers reservoir with different Young’s modulus. (left to right):
Lext = 0.1,02,2,2 15

mid

of the middle ayer wl le lower modulus in the surrounding layers encourages fracture growth out
of the middle la, -

Lastly the el"sct of varying reservoir permeability in the layered reservoir on the fracture ge-
ometry is thown i . Figure 16. For higher permeability in the middle layer, the fracture propagates
more in the . '.cal direction than in the horizontal direction. On the other hand, lower permeabil-
ity in ne . .7 'le encourages fracture propagation in that layer with less extension in the vertical
directior. As a result, the fracture has a higher length compared to its height.
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¢

Figure 16: Propagated hydraulic fracture in a three-layered reservo’ with permeabilities. (left to right): Kkext
=2.83%x10"1% m? and kpyiq = 2.83 x 10717 m?2, kext = 2.26 x 107 > v an | kpig = 2.83 x 10717 m2, kext =
2.83 x 1071% m? and kpig = 1.70 x 1071° m?, and kext = 2.83 x 10~ 7 .02 an . kpig = 2.83 x 1071% m?,

We observe non-symmetric propagation in the co.. hinatio . of reservoir properties that oth-
erwise would have favored uniform and equal prop. ratio.. .nto the external layers, as in Fig-
ures 14a, 14b, 15a, 15b, 16¢ and 16d. In these figures, th. ‘racture extends more into the bottom
layer than into the top layer. The evolution of thesce “ractures is such that propagation is symmetric
prior to reaching the boundary interfaces. However, du. to floating point errors, the bottom part
of the fracture reaches the lower interface befor. the v part reaches the top layer interface. Sub-
sequent fluid injection favors fracture growth into 'ae bottom layer. Although this geometry could
have been reversed to favor growth into the . laycr, the results indicate that it may be difficult
to control hydraulic fracture growth in conditic s where fractures propagate into layers with lower
resistance to fluid flow and rock deformatic ~ aud ~abtle differences such as rock property can trigger
asymmetric fracture growth at least in the tou_hness dominated region.

5.5. Propagation of Multiple Fract res:

One of the unique features nf o. de cloped model is the ease in simulating propagation of
multiple hydraulic fractures. T iree cases containing, two, three and four initial fractures are con-
sidered to highlight this capal 'itv In ‘ae first example, the two initial vertical fractures have half
lengths of I[j = 3 m and a2 bot.. ~ atrally located in a reservoir of size 200m x 200m. Four
different fracture spacings 1. considered (20m, 30 m, 40m, 50 m and 80m) and for each spacing,
the reservoir permeability is als. —aried. For this problem, K, = 2GPa, Ky = 0.125GPa and p
=1 x 107® Pas while t} - ov \er parameters are as in Table 1. Fluid is injected in the center of both
fractures at equal rat =~ of Qs = 5 x 107*m?s™!. The first row in Figure 17 is the phase-field
representation of th initi ' fractures at different fracture spacings. Subsequent rows in the same
figure are simulate « res ults for increasing reservoir permeability. Stress shadow effect is evident in
all the computatio. ~ s t} 2 fractures interact by propagating away from each other along curved
paths. With ir . :asing racture spacing, the curvature of propagation reduces. Comparing the
patterns from top to . ottom for each column, one observes that decreasing reservoir permeability
reduces fractui * curvs ,ure and complexity. The computed fluid pressures are shown in Figure 18.

Note t'.wv some of our numerical solutions are non-symmetric, which is consistent with the
stability . nalysis n [73, 74]. Loosely speaking symmetric crack patterns are critical points of the
fracture ew.rgy, ' ut become more and more unstable when pre-existing cracks become closer. In
this ¢© ~ 2 minimization-based model will naturally bifurcate towards one possibly non-symmetric
realizav o of a family of stable fracture patterns.
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Simulation results for the propagation of three and four initial fractv es re also presented.
Initial fracture half-lengths are 10m and 3m for the three and four fre turr cases respectively.
Both examples use a fracture spacing of 35m and k = 2.83 x 107 m? Fig. ~ 19 highlights the
evolution of the fractures while Figure 20 shows the corresponding fluid ores. e distribution in the
reservoir. For both examples, at early times, the external fractures row faster than those in the
center of the configuration. As the outer fractures propagate, they e: ~rt ¢ bmpressive stresses on the
centrally located fractures. The compressive stresses oppose the erowu. of the internal fractures,
leading to fluid pressure build up in the compressed fractures, is can be seen in the two middle
columns of Figure 20. However, with continuous fluid injectior the fli id pressure in the middle
fractures builds up enough to eventually overcome the opposir~ ~owu., = _sive stress exerted on them.
Rapid fracture growth is experienced and the final patterns seer .. the right column of Figure 19
is obtained.

6. Conclusions

In this paper, a unified fracture-porous medium flow ~odel, which is regularized with a phase-
field variable, is derived and coupled with the var’ ..c..cu puase-field fracture model for simulation
of hydraulic fracture propagation in poroelastic mea.  The fracture width and its cube are the
primary links between the fracture fluid flow a. . © “»mation, and our approaches to approximate
these explicit quantities are described in detail. "t : phase-field fracture representation technique,
which is the foundation of the variational . «del, . ~duces computational cost and places no con-
straints on the complexity of fracture behavii r «. 4 interactions. In contrast to existing models
that utilize additional indicator functior ... '~ve set variables to distinguish the fracture and the
porous medium domains, our model is uniti. ! with a single phase-field variable which regularizes
both mechanical and flow equations without need for ad-hoc assumptions about extra parameters.

The numerical model was verifi’ 4 age st the plane-strain (KGD) fracture near the toughness
dominated regime and then applie * to stuc y the effect of reservoir parameters and fluid properties
on fracturing fluid pressure, frac .ure g. ~v etries (length, height, width, radius) and fracture prop-
agation paths. In addition to <aow ag the applicability of the method in highlighting the effect of
reservoir and fluid properties ¢. «GI' fracture propagation, other numerical examples also illus-
trate the ability of the met 10d to s. aulate multiple fracture propagations and three dimensional
fracture height growth in "aye. ~d reservoirs. Stress shadow effect was found to influence the inter-
action between multiple fractures uuring propagation and decrease with increasing spacing between
fractures (or with decrr asin | permeability of the reservoir). For penny-shaped fracture propagation
in reservoirs with vary.. ~ Jroperties between layers, numerical results demonstrate that the varia-
tional based energv minim.. “tion approach can indeed simulate the confinement or the breach of
fractures into laye s w'.h lc wer resistance to fluid flow and rock deformation.

7. Appendi:

Solving (?6) . * 81) can pose some numerical instability when realistic properties are assigned.
By denot ag sca. 1 parameters with (-) and scaling factors with subscript o, following four input
parameter ' are sc Jed to numerical favourable values (e.g. 1.0):

E= EoEa G.= Gcoéc; = xoi; Q = QOQ' (37)
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Figure 17: Propa -ation of wo pre-existing fractures with injection wells in the center of both fractures. The columns
are for an initial 1. ~* _ spacing of 20, 30, 40, 50, and 80 m respectively. The rows are for k = 1.70 x 10—,
5.66 x 10717, 2.83 - 10715, and 1.41 x 10~ m? respectively
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Figure 19: Evolution of propagation paths for three nd fou parallel fractures with fluid injection into the center of
each fracture. The top row are snapshots of the v-fie 1. ~ th.ee fractures at 28.3, 570, 846, and 990 s. The bottom
row shows snapshots of the v-field for four fractures at 7.1, .82, 354, and 426 s.
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Figure 20: eservo'~ fluid pressure during the evolution of propagation paths for three and four parallel fractures
with fluid i jection i1 ‘o the center of each fracture. Top row is snapshot of the pressure distribution during evolution
of the three ™acturr . at 28.3, 570, 846, and 990 s. Bottom row is the snapshot of the pressure distribution during
evolutirn of the wvur fractures at 7.1, 282, 354, and 426 s.
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Similarly other computed mechanical parameters are scaled as

1l
1y

U= Upll, P=PoPy K =Kok, A:E(,A, f=rfrf

I
T

and the fluid flow related paramters as
w=u,w, M =E,M, W= poft, K= koK, . :tof.
In addition, the phase-field regularization parameter ¢ is repres¢ ated as
€ = X,€

Substituting (37), (38), and (40) into (26) gives

. Neo [ ax (o= Poto @B\ (o pewe 0B\ -
F.(d,v;p) = Epx,, uo/Q%A <ve(u) - Eooui N,%I/ . (ve(u - Ezui NRI) av
—pouoxf)v_l/ ?~ﬁd§—fou0xf,v / f-ﬁa:'{—pouoxév_l/ﬁﬁ Vo dV
6NQ o Q

s N—1 1 — )" _ N
 Geotrio /(( v) +5|Vv|2> av.
=Cn Q €

Dividing both sides by E,u2xY~2 and settin -

o

lead to a more numerical favour «ble for. -

f(ﬁv~~)—/lA ve(®) — < P00 (ve(@) - 221 dv—/ Zoias— [ foiav
€ yUiDP) = {2 ) N:‘ﬂ,/ s 9

where fs(ﬁ, v; D) =, = Fe (U, v;p).

= —F
LoURTo

For (34), we ce 1 sir .ilarly set

(41)

(44)
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and (34) becomes

1 2 ophtt / k41 /(UN’E)?’*a R R
/*(M—H] /%) 5 vdV + = | Vit Ve dV + o 127 Vip© - Vi VoldV

Q

N - N - o7 - -
:/(jrswdv_/ ~dn¢dV+/~d§c81/)|Vv|dV—/~ \/’*:f-V’UdV
Q ONQ

' <o
_/v2aa”““l wdV +/ = (1w )87{ wdV. (49)
Q

6 K Ot

In all the analyses, scaled equations (44) and (49) were solvec and ... resulting variables were scaled
back accordingly. We should note, however, that the dimens’ .less - iscosity parameter introduced
in (36) can now be expressed with the dimensionless para.. ~ters ws:

N
M = ,LLOQOEO ﬁ/Q EI _ N //J E/
Geo E/ K/ A E’ K/
For the line fracture problem, N = 2, it becomes
[ E
M- PG (50)
2T

Therefore, the dimensionless viscosity pe u.c.”~ 's identical in the dimensionless space.
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