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In this study, for the first time, we propose a unified fracture - porous medium flow 
model which is regularised with a phase-field variable consistent with the fracture 
mechanics regularisation without defining extra variables or level set functions. 
Although the methodology to compute the crack opening displacement using the 
gradient of the phase-field variable has been applied in numerous other studies 
since our first introduction in a proceeding paper in 2012, proper justification has not 
been reported anywhere to our knowledge. In this manuscript, we have included the 
derivation of the methodology for the first time. Additionally, we point out erroneous 
crack opening displacement computation under deformed domain, which has never 
been discussed, and propose an approach to mitigate this error. 
The proposed model has been verified in the toughness dominated regime of 
hydraulic fracturing. 
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Abstract

Rigorous coupling of fracture-porous medium fluid flow and topologically complex fracture propa-
gation is of great scientific interest in geotechnical and biomechanical applications. In this paper, we
derive a unified fracture-porous medium hydraulic fracturing model, leveraging the inherent ability
of the variational phase-field approach to fracture to handle multiple cracks interacting and evolving
along complex yet, critically, unspecified paths. The fundamental principle driving the crack evolu-
tion is an energetic criterion derived from Griffith’s theory. The originality of this approach is that
the crack path itself is derived from energy minimization instead of additional branching criterion.
The numerical implementation is based on a regularization approach similar to a phase-field model,
where the cracks location is represented by a smooth function defined on a fixed mesh. The derived
model shows how the smooth fracture field can be used to model fluid flow in a fractured porous
medium. We verify the proposed approach in a simple idealized scenario where closed form solu-
tions exist in the literature. We then demonstrate the new method’s capabilities in more realistic
situations where multiple fractures turn, interact, and in some cases, merge with other fractures.

Keywords: phase-field models of fracture, hydraulic fracturing, variational approach

1. Introduction

Understanding the physical behavior of hydraulic fracturing is not only important in geophysical
processes such as dikes driven by magma [47, 72] but also in geotechnical applications including
environmental remediation [61], geomechanical integrity of underground storage [40, 59], mining
operation [39], wellbore drilling [60], productivity enhancements in hydrocarbon reservoirs [26],
and the stimulation of geothermal reservoirs [32, 44, 84].

Many of the early works have made assumptions in fracture geometries, constraining fracture
propagation paths to known directions and restricting the propagation on a single plane to simplify
modeling of the hydraulic fracturing process. In addition, fracture fluid loss is normally assumed
unidirectional while the coupled effect of fluid loss and poroelastic deformation on hydraulic fracture
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propagation is rarely considered. For a review of planar fracture models, readers are referred
to Adachi et al. [1] and references therein. Recently, non-planar complex fracturing behaviors
induced by in-situ stresses, heterogeneity in rock properties, or interaction with multiple fractures
and existing discontinuities have been observed in hydraulic fracturing stimulation [52, 76] and
hydrothermal experiments in the earth crust condition [77]. Even in isothermal condition for single
phase fluid, a comprehensive mathematical model for hydraulic fracturing analysis will require
incorporation of all of the following five mechanisms [10, 31, 85]; fracture fluid flow, fluid flow in
porous medium, fracture mechanics, solid deformation and poroelasticity.

The computational challenges stem from the fact that fracture propagation is a free discontinuity
problem in which the fractures are considered as lower dimensional elements. As a result, it is not
trivial to computationally represent fractures in the porous medium in a way that permits solution
of the individual flow models on each subdomain while ensuring hydraulic communication between
fractures and porous medium. Where attempts have been made to represent fractures and porous
medium within the same domain, the numerous assumptions limit the ability of the models to
reproduce the complex fracture behaviors. For example, special interface elements called zero-
thickness elements have been used to handle fluid flow in fractures embedded in continuum media
(see [11, 19, 48, 66–68]). This type of elements allows for explicit fracture representation and
easy solution of porous medium and fracture models in their respective computational subdomains.
However, as the interface elements are inserted along the edges of continuum grids, the fracture
propagation is constained to the prescribed direction, in most cases, one of the principal coordinates.
For other techniques that explicitly differentiate the fracture from the reservoir, the computational
cost is expensive and the numerics cumbersome, characterized by continuous remeshing to provide
grids that explicitly match the evolving fracture surface [21, 35]. As an implicit approach, extended
finite element method (XFEM) has been applied to the simulation of hydraulic fracturing [23, 33, 42,
65]. However, its complex numerical implementation especially in three dimensions and the fracture
propagation criteria for branching or merging still remain great challenges. Beyond conventional
boundary or finite element based approaches, a non-local peridynamics method [62] and lattice
based method [24, 82] have also been applied, but the mesh/lattice discretization dependent fracture
topology is yet to be overcome.

The variational phase-field model of fracture, which was originally proposed in the 90’s [14, 15,
29], has seen explosive applications ranging from dynamic fracture [12, 16, 46], to ductile fracture [2,
3, 54], to thermal and drying fracture [17, 51, 53]. One of the strengths of this approach is to account
for arbitrary numbers of pre-existing or propagating cracks in terms of energy minimization, without
any a priori assumption on their geometry or restriction on the growth to specific grid directions.

The variational phase-field approach has been applied to the simulation of hydraulic fracturing
for the first time in [13, 22] where the model was verified for fracture propagation in impermeable
and elastic medium, due to injection of inviscid fluid. In [78], the phase-field model has been further
extended to porous media using the augmented Lagrangian method for fracture irreversibility and
its quasi-static scheme is analyzed in details in [56]. The quasi-monolithic solution scheme and
the primal-dual active set method for the fracture irreversibility along with mesh adaptivity were
proposed in [37]. While the pressures in the fracture and the porous medium were distinguished,
each of the pressure profiles was considered uniform throughout the domain(s) in these models.
Phase-field fracture models coupled with the Darcy-Reynolds flow were proposed in [43, 53, 54, 57,
58, 64, 81] and with Darcy-Stokes type in [27, 36, 80]. Mikelić et al. [57, 58] applied an indicator
function based on the phase-field variable to the fracture-reservoir diffraction system. The system
is solved in a fully coupled manner in [58] and the fracture width computed using a level-set in [43]
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for computational efficiency. In [53, 54], the phase-field variable was used as a weight function to
homogenize the permeability in the system. A similar homogenization approach was also taken
by [81] as well as considering another phase-field variable for inclusion of interfaces. Santillán et
al. [64] applied Reynolds flow equation in a 1D domain externally constructed out of the main
computational domain based on a certain value of the phase-field variable. Heider and Markert [36]
and Ehlers and Luo [27] proposed the phase-field fracture modeling embedded in the Theory of
Porous Media (TPM) where the phase-field variable was used to weigh between the Darcy flow
in porous media and the Stokes flow in fracture. Alternatively, coupling with fluid flow has been
achieved by linking to an external standalone fluid flow simulator in [79, 83] where again the phase-
field variable was used to distinguish the fracture domain through the permeability multiplier.

Instead of applying the phase-field variable as an indicator or constructing weighting functions
from it, the present study derives a unified fracture-porous medium flow model by following the
phase-field calculus (i.e. the phase-field variable as a regularizing function). Fluid flow in the
porous medium is modeled using the poroelasticity continuity equation with Darcy’s law while
fracture fluid flow follows Reynolds equation with the cubic law as the equation of state. Exchange
of fluid between the fracture and porous medium is considered, leading to the derivation of a tightly
coupled model for fluid flow in the fracture and porous medium. Iterative solution of the varia-
tional fracture model and the coupled flow model provides a simplified framework for simultaneous
modeling of rock deformation and fluid flow during hydraulic fracturing. The primary quantities
of interest are the fluid pressure, fracture geometry (length, height, radius) and fracture propaga-
tion paths which are obtained from the solutions of the coupled flow and mechanical models. We
verify our model by comparing numerical results with analytical solutions in the storage-toughness
dominated region (K-regime) proposed by [25]. We also analyze the role of permeability and three-
dimensional layered fracture toughness on fracture geometry, propagation paths and fluid diffusion
profile during hydraulic fracturing. Since the phase-field technique removes the limitation of know-
ing a priori, fracture propagation directions, we use the model to highlight stress shadow effect
during propagation of multiple hydraulic fractures.

The outline of the paper is as follows. The governing equations for the variational phase-field
fracture model, fracture and porous medium fluid flows are first presented. Next, we outline the
fracture width computation algorithm and present our modified fixed stress splitting scheme used
for decoupling and iteratively solving the flow and mechanical models. Thereafter, the model is
applied to the propagation of KGD and penny-shaped fractures. Numerical results are presented
and analyzed.

2. Governing equations for the coupled system

Consider a poroelastic medium occupying a region Ω ⊂ RN of space. Let Γ be a known set of
fractures, i.e. a set of two dimensional surfaces in Ω. We assume that the pore and fracture spaces
are fully occupied by a single phase Newtonian fluid, and that the same fluid is being injected.

2.1. Fracture fluid flow model

In the fracture system, we make the classical assumption of a planar laminar flow following the
cubic law and the generalized Reynolds equation [50, 69] which accounts for different orientations
along the fracture path from lubrication theory [8]. Denoting by w the fracture aperture, we have

3
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then that

∂w

∂t
+∇Γ · (w ~qf ) + ql = qfs in Γ, (1)

w~qf = − w3

12µ
∇Γpf in Γ, (2)

ql = −[[~qr]] · ~nΓ on Γ, (3)

~qf · ~τΓ = 0 on ∂Γ. (4)

In the above equations, nΓ and τΓ denote the normal and tangent vector to Γ, ~qf is the fluid velocity
in the fracture, ~qr is the fluid velocity in the porous medium, pf is the fluid pressure in the fracture,
µ is the fluid viscosity, and ql is the rate of leak-off between the fracture and the porous medium.
Using the definition of surface divergence and substituting (2) into (1), the continuity equation for
fluid pressure becomes

∂w

∂t
−
[
(~nΓ ×∇Γ) · w

3

12µ
(~nΓ ×∇Γpf )

]
+ ql = qfs. (5)

Multiplying by a test function ψf ∈ H1(Γ) and integrating over Γ, we obtain the weak form of (5):

∫

Γ

w3

12µ
∇Γ pf · ∇Γ ψf dS =

∫

Γ

ψf

(
qfs −

∂w

∂t
− ql

)
dS. (6)

2.2. Porous medium fluid flow model

The governing equation for flow in the porous medium adjacent to the fracture is the continuity
equation from poroelasticity theory for a single phase, slightly compressible fluid [9, 45, 86]. Let
qrs be source or sink terms in the porous medium Ω \ Γ, with a unit of volumetric flow rate
per unit volume. Assuming a prescribed pressure p̄ on ∂DΩ and a prescribed normal flux qn on
∂fNΩ = ∂Ω \ ∂fDΩ, we have

∂ζ

∂t
+∇ · ~qr = qrs in Ω \ Γ, (7)

ζ = α∇ · ~u+
pr
M

in Ω \ Γ, (8)

~qr = −K
µ
∇pr in Ω \ Γ, (9)

pr = p̄ on ∂fDΩ, (10)

~qr · n = qn on ∂fNΩ, (11)

where ~qr is the porous medium flow rate related to the pore-pressure pr through Darcy’s law (9),
K is the permeability tensor, α is the Biot’s coefficient, and M is the Biot’s modulus.

Upon substituting (9) into (7), the continuity equation in terms of pore-pressure becomes

∂ζ

∂t
−∇ · K

µ
∇pr = qrs. (12)

4
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We can write (12) by multiplying both terms by a test function, ψr ∈ H1(Ω \ Γ) such that
ψr = 0 on ∂DΩ, and integrating over Ω \ Γ. Using Green’s formula, and (3), we have that

−
∫

Ω\Γ
∇ · K

µ
∇prψr dV =

∫

Ω\Γ

K

µ
∇pr · ∇ψr dV −

∫

∂ΩN

K

µ
∇pr · nψr dS

−
∫

Γ+

K

µ
(∇pr)+ · nΓ+ψ+

r dS −
∫

Γ−

K

µ
(∇pr)− · nΓ−ψ

−
r dS,

where Γ± denote each side of Γ, ψ±r and (∇pr)± the trace of ψr and ∇pr and nΓ± the outer normal
vector to Ω along Γ±, respectively. Using (9) and (11), we then get that

−
∫

Ω\Γ
∇ · K

µ
∇prψr dV =

∫

Ω\Γ

K

µ
∇pr · ∇ψr dV −

∫

∂ΩN

qnψr dS −
∫

Γ

[[~qr]] · nΓ[[ψr]] dS,

with the convention that nΓ is the normal vector to Γ pointing from Γ− to Γ+.
Using the expression above, the porous medium flow continuity equation (12) becomes

∫

Ω\Γ

∂ζ

∂t
ψr dV +

∫

Ω\Γ

K

µ
∇pr · ∇ψr dV =

∫

Ω\Γ
qrs ψr dV −

∫

∂NΩ

qn ψr dS +

∫

Γ

[[~qr]] · nΓ[[ψr]] dS. (13)

2.3. Combined flow equation

Traditionally, the reservoir and crack pressure are linked through leak-off law, derived empiri-
cally [70] or in specific asymptotic regimes [20]. In particular, Carter’s leak-off law can be derived
by assuming constant height and width and neglecting the pore pressure on the diffusion process of
the injection fluid in the formation. In many applications, however, it is not clear if this assumption
is reasonable. In [34], for instance, the net pressure difference between fracture and formation is
approximately 20–35 MPa while the pore pressure is 40–50 MPa. In conventional reservoir, the
ration of the fracture over pore pressure is even smaller. Instead of using an ad-hoc leak-off law, we
propose to combine (6) and (13) by identifying pf , the thickness averaged pressure in the fracture,
and pr, i.e. neglecting the effect of the net pressure difference. This may of course lead to underesti-
mating the amount of fluid leaking-off the fracture. In the near toughness dominated regime, when
the pressure gradient through the thickness of the crack is small, we expect this approximation to
be reasonable.

Under this assumption, we have that pr = pf in Γ, so that the admissible test functions ψr need
to be continuous across Γ, and using (3), the leak-off terms cancel out, and we obtain the combined
porous medium and fracture flow equation in weak form:

∫

Ω\Γ

∂ζ

∂t
ψ dV +

K

µ

∫

Ω

∇p · ∇ψ dV +

∫

Γ

w3

12µ
∇Γp · ∇Γ ψ dS

=

∫

Ω\Γ
qrs ψ dV −

∫

∂NΩ

qnψ dS +

∫

Γ

qfsψ dS −
∫

Γ

∂w

∂t
ψ dS. (14)
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2.4. Mechanical equilibrium

We follow the formalism of Francfort and Marigo to derive the mechanical equilibrium and crack
propagation law. In all that follows, we assume a brittle-elastic porous medium and denote by A
and Gc its Hooke’s law and fracture toughness. Assume for the moment that the pressure field p
and fluid-filled crack Γ are given. Let ∂mNΩ be a portion of its boundary and ∂fDΩ := ∂Ω \ ∂mNΩ the
remaining part. Following the classical formalism of Biot [9], we introduce a poroelastic effective
stress σeff := σ(~u) − αpI, ~u denoting the deformation field in the porous medium, I the identity
matrix in RN , σ the Cauchy stress, and p the pore pressure from (14). The consitutive relation for
a poro-elastic material reads

σeff := A e(~u), (15)

where e(~u) := ∇~u+∇~ut
2 is the linearized strain. Static equilibrium and continuity of stress at the

interfaces mandates that

−∇ · σ(~u) = ~f in Ω \ Γ, (16)

σ · ~n = ~τ on ∂ΩmN , (17)

~u = ~u0 on ∂ΩmD , (18)

σ± · ~nΓ± = −p~nΓ± on Γ±, (19)

where ~f denotes an external body force and ~τ is a traction force applied to a portion ∂mNΩ of ∂Ω.
Let ~u0 be a given boundary displacement on ∂mDΩ := ∂Ω \ ∂mNΩ.

Multiplying (16) by a test function ~φ ∈ H1(Ω \Γ) vanishing on ∂ΩmD and using Green’s formula
and (17) and (19), we get that

∫

Ω\Γ
A
(

e(~u)− α

Nκ
pI
)
· e(~φ) dV =

∫

∂ΩmN

~τ · ~φ dS −
∫

Γ

p
r
~φ · ~nΓ

z
dS +

∫

Ω\Γ
~f · ~φ dV,

where N = 2 and N = 3 for two and three dimensions respectively and κ denotes the material’s
bulk modulus. We finally recall that given p and Γ, the previous relation is just the first order
optimality condition for the unique solution of the minimization among all kinematically admissible
displacement of

P(~u,Γ; p) :=

∫

Ω\Γ
W (e(~u), p) dV −

∫

∂ΩmN

~τ · ~u dS +

∫

Γ

p J~u · ~nΓK dS −
∫

Ω\Γ
~f · ~u dV, (20)

where

W (e(~u), p) :=
1

2
A
(

e(~u)− α

Nκ
pI
)
·
(

e(~u)− α

Nκ
pI
)

(21)

is the poroelastic strain energy density.
Following Francfort and Marigo’s variational approach to brittle fracture [29], to any displace-

ment field ~u and crack configuration Γ (a two-dimensional surface in three space dimension or a
curve in two dimensions), one can associate the total energy

F(~u,Γ; p) = P(u,Γ; p) +GcHN−1(Γ), (22)

where Gc is the material’s critical surface energy release rate and HN−1(Γ) denotes the N − 1
dimensional Hausdorff measure of Γ, that is, its aggregate surface in three dimensions and aggre-
gate length in two dimensions. In a discrete time setting, identifying the displacement reduces to
minimizing F with respect to any kinematicaly admissible displacement and crack set satisfying a
growth constraint.
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3. Phase-field approximation

The numerical implementation of the minimization of (22) involves handling of displacement
fields that are discontinuous across unknown discontinuity surfaces (the cracks), which can be
challenging when using standard numerical tools. Instead, we propose to adapt the now-classical
phase-field approach [14, 15] based on the work of Ambrosio and Tortorelli in image segmentation [4,
5], which we briefly recall in the case of an elastic material i.e. for p ≡ 0.

3.1. Variational phase-field models of fracture

Let ε > 0 be a regularization parameter with the dimension of a length, and v : Ω 7→ [0, 1] be a
scalar function. We define

Fε(~u, v; 0) =

∫

Ω

W (e(~u), v; 0)dV −
∫

∂mNΩ

~τ · ~u dS

−
∫

Ω

~f · ~u dV +
Gc
4cn

∫

Ω

(
(1− v)n

ε
+ ε|∇v|2

)
dV, (23)

where W (e(~u), v; 0) = 1
2v

2A e(~u)·e(~u), cn :=
∫ 1

0
(1−s)n/2ds (n = 1, 2) is a normalization parameter.

We typically refer to the case n = 1 as the AT1 energy and to n = 2 as AT2.
It can then be shown [4, 5, 18] that as ε approaches 0, the minimizers of (23) approach that

of (22) in the sense that the phase-field function v takes value 1 far from the crack Γ and transitions
to 0 in a region of thickness of order ε along each crack faces of Γ. Figure 1 shows the phase-field
v representing a simple straight crack in a two-dimensional domain, for decreasing values of the
regularization length ε.

3.2. Extension to poroelastic media

In the context of crack propagation in a poroelastic medium, the variational model (22) and
phase-field approximation (23) must be modified to account for poroelasticity and pressure forces
along the fracture faces. As in [13, 22], we approximate the work of the pressure forces acting along
each side of the cracks by

∫

Γ

p(x) [[~u(x)]] · ~nΓ dS '
∫

Ω

p(x) ~u(x) · ∇v(x) dV.

The convergence proof is technical, but the following argument illustrates how the approximation
takes place.

We first recall the construction of the optimal profile problem [15, 18], which is the construction

of a function ωε minimizing
∫∞

0
(1−ω)n

ε + ε(ω′)2 dx amongst all functions ω such that 0 ≤ ω(x) ≤ 1
on (0,∞), ω(0) = 0, and ω(∞) = 1. Using a simple change of variable, it is easy to see that
ωε(x) = ω̃(x̃), where x̃ = x/ε, and ω̃ minimizes

∫∞
0

(1− ω̃)n+ (ω̃′)2 dx̃ amongst all functions ω̃ such
that 0 ≤ ω̃(x̃) ≤ 1 on (0,∞), ω̃(0) = 0, and ω̃(1) = 1. Remark that the first integral associated with

the optimality conditions of the optimal profile problem are (ω̃′)2
= (1− ω̃)

n
, and that we recover

the well known optimal profile ω2(x) := 1 − e−|x|/ε for the AT2 model and ω1(x) = 1 −
(

1− |x|2ε

)2

if |x| ≤ 2ε and ω1(x) = 1 otherwise for the AT1 model.
For small enough ε, the phase-field function vε is well approximated by vε(x) := ω̃(dΓ(x)/ε),

where dΓ(x) := dist(x,Γ). Consider then a function ~Φ(x) defined on Ω and admitting traces ~Φ+ and

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 1: Phase-field representation v of a line crack for decreasing values of the regularization length ε. The blue
region correspond to v ' 1 and the crack faces correspond to the transition regions from blue to red.

~Φ− on each side of Γ. Using the co-area formula (a generalized version of Fubini’s theorem [28]),
we have

∫

Ω

~Φ(x) · ∇vε(x) dV =

∫

Ω

1

ε
ω̃′
(
dΓ(x)

ε

)
~Φ(x) · ∇dΓ(x) dV

=

∫ ∞

0

∫

{x∈Ω; dΓ(x)=s}

1

ε
ω̃′
(s
ε

)
~Φ(x) · ∇dΓ(x) dHn−1(x) ds

=

∫ ∞

0

1

ε
ω̃′
(s
ε

)∫

{x∈Ω; dΓ(x)=s}
~Φ(x) · ∇dΓ(x) dHn−1(x) ds

=

∫ ∞

0

ω̃′(s̃)
∫

{x∈Ω; dΓ(x)=εs̃}
~Φ(x) · ∇dΓ(x) dHn−1(x) ds̃,

with s̃ = s/ε. Formally, and under some mild regularity assumptions on Γ, when ε→ 0, the inner
integral becomes an integral along each side of Γ, and ∇dΓ becomes the oriented normal on each
side of Γ, so that

lim
ε→0

∫

Ω

~Φ(x) · ∇vε(x) dV =

∫

Γ

[[~Φ(x)]] · ~nΓ dS. (24)

Taking Φ(x) = p(x)~u(x), we recover our claim that

lim
ε→0

∫

Ω

p(x)~u(x) · ∇vε(x) dV =

∫

Γ

p(x) [[~u(x)]] · ~nΓ dS.

8
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Remark 1. Another way to view (24) is to decompose

∫

Ω

~Φ(x) · ∇vε(x) dV =

∫

Ω

~Φ(x) · ∇vε(x)

|∇vε(x)| |∇vε(x)| dV,

and think of ∇vε(x)/|∇vε(x)| as an approximation of ~nΓ± and of |∇vε(x)| as a measure concen-
trating along Γ.

The next step is to account for the phase-field variable in the poroelastic energy density W . The
main modeling choice is whether the phase-field variable should affect the Cauchy or the poroelastic
effective stress. Although it can be shown that both choices coincide in the limit of ε→ 0, we use
the former. This choice is consistent with the current interpretation of the phase-field variable as a
damage variable and the regularization length as a material internal length [49, 63, 75], under the
modeling asumption that damage arises at the sub pore scale, i.e. is induced by strong Cauchy
stresses. Our choice of the regularized strain energy density is therefore

W (e(~u), v; p) := 1
2A
(
v e(~u)− αp

Nκ
I
)
·
(
v e(~u)− αp

Nκ
I
)
, (25)

and for a given pressure field, the displacement and phase-field variables are given as the minimizer
of

Fε(~u, v; p) =

∫

Ω

W (e(~u), v; p) dV −
∫

∂NΩ

~τ · ~u dS −
∫

Ω

~f · ~u dV +

∫

Ω

p ~u · ∇v dV

+
Gc
4cn

∫

Ω

(
(1− v)n

ε
+ ε|∇v|2

)
dV (26)

Note that Biot’s poroelasticity model can be seen as an upscaled model of a fluid-structure
interaction problem, when the pore size asympototically approaches 0, so that the argument above
holds provided that ε approaches 0 slower than the pore size.

3.3. Phase-field approximation of the flow model

Since our mechanical model relies on a phase-field representation of the fracture set Γ, we need
to adapt our coupled flow equation (14).

The main difficulty here is the approximation of the term originating from the fracture flow∫
Γ
w3

12µ∇Γp · ∇Γψ dS. Following the logic of Remark 1, we use the following approximation for the
surface gradients:

∇Γp ' ∇εΓp := ∇p−
(
∇p · ∇v|∇v|

) ∇v
|∇v| . (27)

Integrating on Γ against w3 is more complicated, and cannot be obtained by a direct application
of (24). Proper care has to be exerted in order to properly recover (J~u · nK)3

and not J(~u · n)
3K.

Assuming that wε is such that wε(x) = Ju(x) · nΓK on Γ, i.e. a “regularized fracture aperture”, we
propose the following approximation:

∫

Γ

w3

12µ
∇Γ p · ∇Γ ψ dS '

∫

Ω

w3
ε

12µ
∇εΓ p · ∇εΓ ψ|∇v| dV. (28)

The construction of wε is complicated and described in detail in Section 4.2

9
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Deriving a regularization for the fracture sources and sinks term
∫

Γ
qfsψ dS using the phase-field

function v would require some regularity on qfs. In typical application, however, qfs consists of a
series of point sources qfs(x) =

∑n
i=1Qf,iδ(x − xi), xi representing the location of the source or

sink term, and Qfi the flow rate. We introduce the regularized source term

qεfs(x) =

n∑

i=1

Qf,iδε(x− xi), (29)

where δε(x) := e−|x|

aNεN
, and aN denotes the surface area of the unit sphere of dimension N , i.e.

a2 = 2π and a3 = 4π. Our phase-field approximation of the source / sink term is therefore
∫

Γ

qfsψ dS '
∫

Ω

qεfsψ|∇v| dV. (30)

The approximation of all remaining terms of (14) is straightforward, so that the phase-field
approximation of our combined flow model in weak form becomes

∫

Ω

v2 ∂ζ

∂t
ψ dV +

K

µ

∫

Ω

∇p · ∇ψ dV +

∫

Ω

w3
ε

12µ
∇εΓp · ∇εΓψ|∇v| dV

=

∫

Ω

v2qrsψ dV −
∫

∂NΩ

qnψ dV +

∫

Ω

qεfsψ|∇vε| dV −
∫

Ω

ψ
∂~u

∂t
· ∇v dV. (31)

4. Numerical implementation

We implemented our model consisting of the variational principle for crack evolution (26) coupled
with fluid flow (31) using colocated bi-linear (for two dimensional models) and tri-linear (for three
dimensional models) finite elements for ~u, p, and v. For the sake of simplicity, our implementation is
limited to structured grids. The linear algebra, constrained minimization and non-linear solvers are
provided by PETSc [6, 7]. The basis of our algorithm is an extension of the alternate minimizations
originally introduced in [14]. At each time step, we alternate between solving for v for fixed ~u and
p and solving for ~u and p satisfying static equilibrium and coupled flow equation (31), for fixed
v. The former problem reduces to a box-constrained quadratic minimization problem, which can
easily be reformulated as a variational inequality. Convergence for this step is measured by the
difference between v values of consecutive fracture evolution steps. For the later, we extend the
stress-split approach of [55] to account for the modified fluid flow problem. In this loop, the error
is defined as the difference between consecutive values of a volume averaged pressure. A tolerance
value of 1× 10−4 is used to stop both solution steps.

4.1. Modified stress split

Substituting (8) into (31) and introducing the volumetric stress σvol := 1
3 trσ = κ∇ · ~u−αp, the

first term in (31) becomes

∫

Ω

v2 ∂ζ

∂t
ψ dV =

∫

Ω

v2 ∂

∂t

(
α∇ · ~u+

1

M
p

)
ψ dV

=

∫

Ω

v2

(
1

M
+
α2

κ

)
∂p

∂t
ψ dV +

∫

Ω

v2α

κ

∂σvol

∂t
ψ dV. (32)

10
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Following the stress-split proposed in [55], the mean stress is evaluated with the previous iteration
step’s value (σvol = σkvol) while the pressure with the current iteration (p = pk+1). Thus substituting
(32) into (31) then yields

∫

Ω

v2

(
1

M
+
α2

κ

)
∂pk+1

∂t
ψ dV +

K

µ

∫

Ω

∇pk+1 · ∇ψ dV +

∫

Ω

(wkε )3

12µ
∇εΓpk+1 · ∇εΓψ|∇v| dV

=

∫

Ω

qrsψ dV −
∫

∂NΩ

qnψ dV +

∫

Ω

qεfsψ|∇vε| dV −
∫

Ω

ψ
∂~uk

∂t
· ∇v dV −

∫

Ω

v2α

κ

∂σkvol

∂t
ψ dV, (33)

where superscript k represents the iteration step. Because of the regularized variable, (33) still
imposes an ill-conditioned system for v = 0. Here we propose a modification similar to the stress-
splitting in [41, 55] to improve the stability by using the Biot’s compressibility (1/M) as a stabilizing
term in the following form:

∫

Ω

(
1

M
+ v2α

2

κ

)
∂pk+1

∂t
ψ dV +

K

µ

∫

Ω

∇pk+1 · ∇ψ dV +

∫

Ω

(wkε )3

12µ
∇εΓpk+1 · ∇εΓψ|∇v| dV

=

∫

Ω

qrsψ dV −
∫

∂NΩ

qnψ dV +

∫

Ω

qεfsψ|∇vε| dV −
∫

Ω

ψ
∂~uk

∂t
· ∇v dV

−
∫

Ω

v2α

κ

∂σkvol

∂t
ψ dV +

∫

Ω

1

M

(
1− v2

) ∂pk
∂t

ψ dV. (34)

In solving (26) and (34), the equations are scaled to convert the system to a more numerical benign
form (see Appendix for details about non-dimensionalization).

4.2. Computation of the fracture aperture

Reasoning as in Section 3.2 for (24), for almost every point x ∈ Γ, and almost every unit vector
~ν, we have that

w(x) := J~u(x) · nΓK '
∫

Ωx,ν
~u · ∇v dx,

where Ωx,ν denotes the one dimensional section of Ω through x in the direction ~ν.
For each cell e, if maxe v ≥ 1−δε, we set wε(e) = 0. We then integrate ~u ·∇v through the centre

of e along the streamline of ∇v over the segment lε(e) by taking a discretized step 4lε(e) where v
is decreasing if moving toward the fracture and is increasing if moving away from it. Therefore, the
line integration is performed twice at every cell in both descending (s = −1) and ascending (s = 1)
directions of v by setting the search direction, s, accordingly. If the search crosses a fractured
cell (~nΓ,j+1 · ~nΓ,j < 0) then the search direction is flipped to the ascending direction (s = 1). If
the search leaves the transition zone (v ≥ 1 − δε) or enters a transition zone by another fracture
(~nΓ,j+1 ·~nΓ,i < 0), then the integration is stopped (see Figure 2). Detailed procedures are described
in Algorithm 1.

Figure 3 shows the computed aperture of a crack in an impermeable medium subject to a
constant pressure for decreasing discretization size. An excellent match with the exact solution
of [71] is obtained.

Figure 4 shows the same computation for a slant crack. We notice that whereas along the
fracture sides, the aperture computed using our algorithm is invariant by rigid motion, it is not

11
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Algorithm 1 Fracture aperture opening computation at the element ei
1: Let vi = v(ei) and xi be the centroid of element ei
2: Set j = i, ~nΓ,i = ∇vi/|∇vi|, and s = 1
3: repeat
4: Let xj+1 := xj + s4lε~nΓ,j .
5: Find the element to which xi+1 belongs to and let ~nΓ,i+1 := ∇vi+1/|∇vi+1|
6: if ~nΓ,j+1 = 0 then
7: ~nΓ,j+1 = ~nΓ,j

8: else if ~nΓ,j+1 · ~nΓ,j < 0 then
9: ~nΓ,i = −~nΓ,i

10: s := −s
11: w := w +4lε(~uj · ∇vj + ~uj+1 · ∇vj+1)/2
12: j := j + 1
13: until vj+1 ≥ 1− δε or ~nΓ,j+1 · ~nΓ,i < 0
14: Set j = i, ~nΓ,i = −∇vi/|∇vi| and s = −1
15: repeat 4–12
16: until vj+1 ≥ 1− δε or ~nΓ,j+1 · ~nΓ,i < 0

the case near the crack tip (see how the aperture density does not vanish near the crack tip in
Figure 4-(right)).

This effect is easily understood by looking at the variations of ∇v along one dimensional sections
as in Figure 5. Away from the crack tip, the line average of ∇v along one-dimensional sections
vanishes as ε → 0, which is consistent with the construction of the near optimal phase-field in
Γ–convergence recovery sequence as a funtion of the distance to the crack. Near crack tips, this is
evidently not the case.

We propose to mitigate this effect by introducing a small tolerance δ′ε and constructing the tip
indicator function

Iε(e) :=

{
1 if

∣∣∣
∫
lε(e)
∇v| dx

∣∣∣ ≤ δ′ε
0 otherwise,

(35)

which vanishes near the crack tips while taking the value 1 away from them and can be computed
together with wε, at a very small cost. Our regularized aperture function is then simply given by
w̃ε(e) := Iε(e)wε(e). Note that when using the AT1 model for which the transition zone of the
phase-field v is finite and equal to 2ε, δ′ε can be made arbitrarily close to 0, or in practice of the
order of the machine precision. Figure 6 shows the indicator function Iε and modified regularized
aperture w̃ε for the crack pattern of Figure 4-(right). We observe that the modified aperture density
properly vanishes near the crack tips.

5. Numerical Results

5.1. Verification: KGD Hydraulic Fracture Propagation in the Near K-regime:

The developed numerical model is verified by solving the plane-strain fluid-driven fracture prop-
agation problem, under the near K-regime defined in [25, 38]. This regime is characterized by the
constant injection of a low viscosity fluid with no leak-off from the fracture. Of course, as the
name suggests, this fracturing regime is different from the K-region, and its deviation from the

12
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Γ

Γ

Figure 2: Computation of wε. The grayed area is such that v ≥ 1− δε, so that wε = 0. The blue cell is the current
cell, the line lε(e) is the dashed black line and wε(e) =

∫
lε(e) ~u · ∇v dx. The green cells are components used for the

line integral.

K-region solution is dependent on a dimensionless fluid viscosity, M. The semi-analytical solution
in [30] corrects for this deviation from the K-vertex, by providing good approximations for the time
evolution of the fracture opening displacement, fracture length and fluid pressure as functions of
M,

M =
µ′Q
E′

(
E′

K ′

)4

(36)

where E′ = E
1−ν2 , µ′ = 12µ, and K ′ =

√
32GacE′

π .

The computational domain is a square of size 200 m × 200 m with an initial fracture of length
l0 = 3 m, inclined at 45◦ and centered in the domain as shown in Figure 4-left. Fluid is injected
into the center of the fracture at a constant rate of Q = 5× 10−4m2 s−1. The initial and boundary
conditions are p = 0 and ~u = 0. Table 1 show the values of reservoir, fluid and model parameters
used for in this computation. All the properties are assumed homogeneous and isotropic where
applicable.

First, we investigated the mesh sensitivity of the numerical model by running computations at
three different mesh resolutions. The ratio of mesh resolution to phase field characteristic length
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Figure 3: Fracture width profile computed for a pressurized line crack in an impermeable medium. The plot labeled
Sneddon is the analytical solution of the fracture width taken from [71]. (left): phase-field representation of the
crack. (right): pressure profile along the crack compared to the exact solution for multiple mesh resolutions.

Figure 4: Pressurized slant crack in an impermeable medium. (left): Phase-field description of the crack. (center):
Computed regularized aperture. (right): Computed regularized aperture in the computational domain subject to a
rigid body translation.

scale was kept constant for all the computations (i.e. ε
h = 4). The results are shown in Figure 7,

where the dashed lines are the analytical solution for M ≈ 0.0. The linear component of the
analytical solution is the actual pressure path prior to propagation for the given initial fracture
length, while the curve is the critical pressure for all fracture lengths. As evident in the figure, our
numerical solution approaches the analytical solution as the mesh resolution increases. A tolerance
value of 1× 10−4 was used for both the inner and outer loops of the algorithm. Although we
imposed a combined maximum iteration of 101 for the inner and outer loops at each time step, the
solution converged in about 20 iterations prior to fracture propagation and in over 60 iterations
during fracture propagation time steps.

Using the mesh resolution of h = 0.25 m, we compare computations forM≈ 0.0 andM≈ 0.041.
In order to replicate the near K-regime, very low reservoir permeability (k = 2.83× 10−16 m2) is
used in the simulation. Figure 8 compares the numerical results for injection fluid pressure, fracture
half length and fracture mouth width for both cases ofM≈ 0.0 andM = 0.041, with the analytical
solution of [30]. As we prescribe an initial fracture, mismatch is observed in the early time until the
initial crack is filled with fluid. Considering the various assumptions that have been made in the
development of the regularized flow model and in the fracture width computation, the pressure and
the width show fairly good comparisons between our numerical results and the analytical solutions
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Figure 5: Computation of the average of normal displacement across the fracture through one-dimensional section.
Far from the crack tip, the one-sided averages of ∇v are a good approximation of ~nΓ, whereas near crack tips or
kink, they are not.

while the computed length does not match as good as the others. The reason for this is that while
the pressure and the width are explicitly computed, the length is extracted from the surface energy
term which is influenced by the profile of the phase-field variable and is overestimated due to the
profile around the tip [73, 74]. One observes that M = 0.041 results in a higher injection pressure
and fracture mouth aperture and shorter fracture length than those obtained for M≈ 0.

5.2. Effect of Reservoir Permeability on Fracture Propagation in the Near K-regime:

In the previous section, we verified the model by simulating hydraulic fracture propagation
characterized by very low fluid viscosity and reservoir permeability. Here we investigate the effect of
increasing reservoir permeability on hydraulic fracture propagation in the same regime. Specifically,
we compare numerical results for fluid pressure, fracture geometry and propagation direction with
the analytical results for the K−regime. The computational domain is the same as in Figure 4-left
but with k = 2.8× 10−15 m2, 5.7× 10−15 m2, 1.1× 10−14 m2, 1.7× 10−14 m2 and 2.3× 10−14 m2

respectively, and other parameters are the same as in Table 1.
Figure 9 compares the numerical injection pressure, change in fracture half length, fracture

mouth aperture and fracture volume with those of the toughness dominated regime derived from
Sneddon’s analytical solution [13]. One observes that the critical pressures are not significantly
affected by reservoir permeability for the low fluid viscosity. However, increasing reservoir per-
meability delays the onset of fracture propagation due to increasing fluid loss to the surrounding
reservoir. Correspondingly, the fracture propagation rate is slower as reservoir permeability in-
creases. In addition, the large fluid loss experienced in higher permeability computations leads to
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Figure 6: Crack tip indicator function Iε and (left): modified regularized aperture w̃ε for the crack pattern of 4
(right).

Table 1: Reservoir properties for verification of coupled hydraulic fracture model

Parameter Value

x 200 m
∆t 0.283 s
E 17 GPa
ν 0.2
Gc 100 Pa m
φ 0.2
α 1
Ks 10 GPa
Kf 0.625 GPa
µ 4× 10−4 Pa s
Qfs 5× 10−4 m2 s−1
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Figure 7: Injection fluid pressure as a function of time, for different mesh resolutions

smaller fracture mouth opening displacement and fracture volumes respectively. For all the quanti-
ties plotted, the deviation of the numerical results from the analytical solutions (M = 0) increases
as reservoir permeability increases. This is so since the fracture propagation regime changes from
storage dominated to leak-off dominated.

In another set of numerical computations, we study the effect of directional variation in reservoir
permeability on fracture propagation directions. Anisotropy in reservoir permeability is created
by keeping kz constant at 2.8× 10−15 m2 and varying kx. The numerical results for fracture
propagation are shown in Figure 10, for kx = 5.7× 10−13 m2, 2.3× 10−13 m2, 1.1× 10−13 m2 and
5.7× 10−14 m2 respectively. As propagation initiates, the fracture kinks for anisotropic permeability
ratio (kx/kz) greater than 10. The change in propagation direction occurs as the fracture seeks the
direction that offers the least resistance to fluid flow, which in this case is the horizontal direction
(kx > kz). The kinking angle also increases with increasing kx/kz.

5.3. Well Shut-in After Fracture Propagation

In a minifrac test performed in the petroleum industry, after the initial fractures are created
and extended, the injection well will be shut-in. During the shutin period, fluid pressure decline
occurs because the fluid flows back into the well or leaks-off into the adjoining reservoir. To mimic
the minifrac test, we perform numerical experiments by shutting-in the well after a period of fluid
injection and fracture propagation. The fluid pressure and fracture geometry changes are analyzed
before and after the well shut-in. The reservoir model and initial fracture geometry are the same
as in Subsec. 5.2. Fluid viscosity is µ = 1× 10−4Pa s while other parameters are the same as in
Table 1. Three different reservoir permeabilities of k = 4× 10−15, 2× 10−15, and 1× 10−15m2 are
considered. Fluid is injected into the fracture at a constant rate of Qfs = 5× 10−2ms−1 for 42 s,
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Figure 8: KGD injection fluid pressure for toughness dominated propagation regime
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Figure 9: Plots of fracturing injection pressure, change in fracture length, fracture mouth aperture and fracture
volume for different reservoir permeabilities

Figure 10: Effect of reservoir permeability anisotropy on fracture propagation patterns. The top and bottom rows
show snap shots of the fractures and pressure distributions in the computational domains. Plots from left to the
right columns are for kx = 5.66× 10−15 m2, 2.26× 10−15 m2, 1.13× 10−15 m2 and 0.57× 10−15 m2 respectively
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Figure 11: Change in fracture length and fracture mouth aperture during well shut-in operation for different reservoir
permeabilities. The well is shut-in after 42s. (top-left) Injection rate as a function of time. (top-right) Injection
pressure as a function of time. (bottom-left) Change in fracture half length. (bottom-right) Fracture mouth aperture.

after which the well is shut-in. The numerical results for fluid injection with well shut-in are shown
in Figure 11 while results without well shut-in are those in Figure 9. The pressure responses are such
that after fluid injection stops at 42 s, pressure decline increases as fluid leaks-off into the reservoir.
The rate of this decline is directly proportional to the reservoir permeability. Similarly, fracture
mouth aperture decreases with declining fluid pressure. The fracture length remains constants
after well shut-in, since fluid pressure falls below the critical value necessary for continued fracture
propagation. Figure 12 shows the evolution of fluid pressure in the reservoir at different times for
k = 4× 10−15m2. The fracture length increases until t = 42 s and remains constant thereafter.
Fluid leak-off into the reservoir is highlighted by the decreasing pressure inside the fracture and
increasing fluid diffusion into the reservoir as time progresses beyond the well shut-in time.

5.4. Hydraulic Fracture Propagation in Layered Reservoirs:

Three dimensional computations are carried out to highlight the role of varying mechanical
properties of reservoir layers on hydraulic fracture height growth. Figure 13 shows the computa-
tional geometry with the initial penny-shaped fracture in the middle of the domain. The reservoir is
a cube of size 50 m × 50 m × 50 m while the initial fracture has a radius of 5 m. Inviscid fracturing
fluid (µ = 4× 10−7 Pa s) is injected into the center of the fracture. The reservoir is divided into
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Figure 12: Snap shots of pressure distribution in the reservoir with k = 4× 10−15m2 at times t = 144, 175, 1416,
and 2826s.The well is shut-in after 42s

Table 2: Reservoir properties for fracture propagation in a three layered, three dimensional reservoir

Parameter Value

x 50 m
∆t 0.14 s
E 17 GPa
ν 0.2
Gc 100 Pa m
k 2.83× 10−13 m2

φ 0.2
α 1
Ks 2 GPa
Kf 0.125 GPa
µ 4× 10−7 Pa s
Qfs 5× 10−2 m2 s−1

three vertical layers with interfaces at 17 m and 25 m respectively. This means that the fracture is
located in the middle layer and is perpendicular to the interfaces. We assume that both top and
bottom layers are similar, with the same values for reservoir properties as highlighted by the color
contrast in Figure 13. Layering in the reservoir is created by varying the values of either E, Gc or
k between the layers while the other properties are the same for all the layers. The base reservoir
properties for all the layers are as in Table 2. Our numerical results for fracture propagation in the
reservoir with uniform properties (base values) in all layers are shown in Figure 13 and obviously,
the penny shape is unchanged throughout the propagation of the fracture.

Results for fractures propagation in reservoir with varying Gc between the layers are shown in
Figure 14. Higher fracture toughness of the external layers favors hydraulic fracture growth within
the middle layer. Under these conditions, the fracture extends more in length than in height. In
fact, for very high

Gc,ext

Gc,mid
ratio, the fracture is completely confined in the middle layer as seen in

Figure 14c. As a result, the height is constant, approximately equal to the thickness of the middle
layer. On the other hand, a reduction in

Gc,ext

Gc,mid
favors fracture growth into the top and bottom

layer, with a geometry that is longer in the vertical direction than in the horizontal direction.
Figure 15 shows the propagated hydraulic fracture geometries in the layered reservoir for different

Young’s modulus. Higher Young’s modulus in the surrounding layers impedes fracture growth out
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Figure 13: Penny shaped fracture in a three dimensional reservoir with 3 layers. Fracture shape is taken as the
contour at v = 0.1. The layers are identified by different colors. Top and bottom layers have the same properties,
hence the same color representation

Figure 14: Propagated hydraulic fracture in a three layers reservoir with different fracture toughness. (left to right):
Gc,ext

Gc,mid
= 0.7, 0.9, 1.2, and 10.

Figure 15: Propagated hydraulic fracture in a three layers reservoir with different Young’s modulus. (left to right):
Eext
Emid

= 0.1, 0.2, 2, and 5.

of the middle layer while lower modulus in the surrounding layers encourages fracture growth out
of the middle layer.

Lastly, the effect of varying reservoir permeability in the layered reservoir on the fracture ge-
ometry is shown in Figure 16. For higher permeability in the middle layer, the fracture propagates
more in the vertical direction than in the horizontal direction. On the other hand, lower permeabil-
ity in the middle encourages fracture propagation in that layer with less extension in the vertical
direction. As a result, the fracture has a higher length compared to its height.
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Figure 16: Propagated hydraulic fracture in a three-layered reservoir with permeabilities. (left to right): kext

= 2.83× 10−15 m2 and kmid = 2.83× 10−17 m2, kext = 2.26× 10−15 m2 and kmid = 2.83× 10−17 m2, kext =
2.83× 10−15 m2 and kmid = 1.70× 10−15 m2, and kext = 2.83× 10−17 m2 and kmid = 2.83× 10−15 m2.

We observe non-symmetric propagation in the combination of reservoir properties that oth-
erwise would have favored uniform and equal propagation into the external layers, as in Fig-
ures 14a, 14b, 15a, 15b, 16c and 16d. In these figures, the fracture extends more into the bottom
layer than into the top layer. The evolution of these fractures is such that propagation is symmetric
prior to reaching the boundary interfaces. However, due to floating point errors, the bottom part
of the fracture reaches the lower interface before the top part reaches the top layer interface. Sub-
sequent fluid injection favors fracture growth into the bottom layer. Although this geometry could
have been reversed to favor growth into the top layer, the results indicate that it may be difficult
to control hydraulic fracture growth in conditions where fractures propagate into layers with lower
resistance to fluid flow and rock deformation and subtle differences such as rock property can trigger
asymmetric fracture growth at least in the toughness dominated region.

5.5. Propagation of Multiple Fractures:

One of the unique features of our developed model is the ease in simulating propagation of
multiple hydraulic fractures. Three cases containing, two, three and four initial fractures are con-
sidered to highlight this capability. In the first example, the two initial vertical fractures have half
lengths of l0 = 3 m and are both centrally located in a reservoir of size 200 m × 200 m. Four
different fracture spacings are considered (20 m, 30 m, 40 m, 50 m and 80 m) and for each spacing,
the reservoir permeability is also varied. For this problem, Ks = 2 GPa, Kf = 0.125 GPa and µ
=1× 10−5 Pa s while the other parameters are as in Table 1. Fluid is injected in the center of both
fractures at equal rates of Qfs = 5× 10−4 m2 s−1. The first row in Figure 17 is the phase-field
representation of the initial fractures at different fracture spacings. Subsequent rows in the same
figure are simulated results for increasing reservoir permeability. Stress shadow effect is evident in
all the computations as the fractures interact by propagating away from each other along curved
paths. With increasing fracture spacing, the curvature of propagation reduces. Comparing the
patterns from top to bottom for each column, one observes that decreasing reservoir permeability
reduces fracture curvature and complexity. The computed fluid pressures are shown in Figure 18.

Note that some of our numerical solutions are non-symmetric, which is consistent with the
stability analysis in [73, 74]. Loosely speaking symmetric crack patterns are critical points of the
fracture energy, but become more and more unstable when pre-existing cracks become closer. In
this case, a minimization-based model will naturally bifurcate towards one possibly non-symmetric
realization of a family of stable fracture patterns.
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Simulation results for the propagation of three and four initial fractures are also presented.
Initial fracture half-lengths are 10 m and 3 m for the three and four fracture cases respectively.
Both examples use a fracture spacing of 35 m and k = 2.83× 10−15 m2. Figure 19 highlights the
evolution of the fractures while Figure 20 shows the corresponding fluid pressure distribution in the
reservoir. For both examples, at early times, the external fractures grow faster than those in the
center of the configuration. As the outer fractures propagate, they exert compressive stresses on the
centrally located fractures. The compressive stresses oppose the growth of the internal fractures,
leading to fluid pressure build up in the compressed fractures, as can be seen in the two middle
columns of Figure 20. However, with continuous fluid injection, the fluid pressure in the middle
fractures builds up enough to eventually overcome the opposing compressive stress exerted on them.
Rapid fracture growth is experienced and the final patterns seen on the right column of Figure 19
is obtained.

6. Conclusions

In this paper, a unified fracture-porous medium flow model, which is regularized with a phase-
field variable, is derived and coupled with the variational phase-field fracture model for simulation
of hydraulic fracture propagation in poroelastic media. The fracture width and its cube are the
primary links between the fracture fluid flow and deformation, and our approaches to approximate
these explicit quantities are described in detail. The phase-field fracture representation technique,
which is the foundation of the variational model, reduces computational cost and places no con-
straints on the complexity of fracture behavior and interactions. In contrast to existing models
that utilize additional indicator function or level-set variables to distinguish the fracture and the
porous medium domains, our model is unified with a single phase-field variable which regularizes
both mechanical and flow equations without need for ad-hoc assumptions about extra parameters.

The numerical model was verified against the plane-strain (KGD) fracture near the toughness
dominated regime and then applied to study the effect of reservoir parameters and fluid properties
on fracturing fluid pressure, fracture geometries (length, height, width, radius) and fracture prop-
agation paths. In addition to showing the applicability of the method in highlighting the effect of
reservoir and fluid properties on KGD fracture propagation, other numerical examples also illus-
trate the ability of the method to simulate multiple fracture propagations and three dimensional
fracture height growth in layered reservoirs. Stress shadow effect was found to influence the inter-
action between multiple fractures during propagation and decrease with increasing spacing between
fractures (or with decreasing permeability of the reservoir). For penny-shaped fracture propagation
in reservoirs with varying properties between layers, numerical results demonstrate that the varia-
tional based energy minimization approach can indeed simulate the confinement or the breach of
fractures into layers with lower resistance to fluid flow and rock deformation.

7. Appendix

Solving (26) and (31) can pose some numerical instability when realistic properties are assigned.

By denoting scaled parameters with (̃·) and scaling factors with subscript o, following four input
parameters are scaled to numerical favourable values (e.g. 1.0):

E = EoẼ, Gc = GcoG̃c, x = xox̃, Q = QoQ̃. (37)
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Figure 17: Propagation of two pre-existing fractures with injection wells in the center of both fractures. The columns
are for an initial fracture spacing of 20, 30, 40, 50, and 80 m respectively. The rows are for k = 1.70× 10−14,
5.66× 10−15, 2.83× 10−15, and 1.41× 10−15 m2 respectively
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Figure 18: Computed fluid pressure for fractures in Figure 17. The columns are for an initial fracture spacing of 20, 30,
40, 50, and 80 m respectively. The rows are for k = 1.70× 10−14, 5.66× 10−15, 2.83× 10−15, and 1.41× 10−15 m2

respectively
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Figure 19: Evolution of propagation paths for three and four parallel fractures with fluid injection into the center of
each fracture. The top row are snapshots of the v-field for three fractures at 28.3, 570, 846, and 990 s. The bottom
row shows snapshots of the v-field for four fractures at 7.1, 282, 354, and 426 s.

Figure 20: Reservoir fluid pressure during the evolution of propagation paths for three and four parallel fractures
with fluid injection into the center of each fracture. Top row is snapshot of the pressure distribution during evolution
of the three fractures at 28.3, 570, 846, and 990 s. Bottom row is the snapshot of the pressure distribution during
evolution of the four fractures at 7.1, 282, 354, and 426 s.
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Similarly other computed mechanical parameters are scaled as

~u = uo~̃u, p = pop̃, κ = κoκ̃, A = EoÃ, ~f = fo
~̃
f, ~τ = po~̃τ, (38)

and the fluid flow related paramters as

w = uow̃, M = EoM̃, µ = µoµ̃, K = koK̃, t = tot̃. (39)

In addition, the phase-field regularization parameter ε is represented as

ε = xoε̃ (40)

Substituting (37), (38), and (40) into (26) gives

Fε(~u, v; p) = Eox
N−2
o uo

∫

Ω̃

1
2Ã

(
v e(~̃u)− poxo

Eouo

αp̃

Nκ̃
I

)
·
(
v e(~̃u)− poxo

Eouo

αp̃

Nκ̃
I

)
dṼ

− pouoxN−1
o

∫

∂N Ω̃

~̃τ · ~̃u dS̃ − fouoxNo
∫

Ω̃

~̃
f · ~̃u dṼ + pouox

N−1
o

∫

Ω̃

p̃ ~̃u · ∇̃v dṼ

+
GcoG̃cx

N−1
o

4cn

∫

Ω̃

(
(1− v)n

ε̃
+ ε̃|∇̃v|2

)
dṼ . (41)

Dividing both sides by Eou
2
ox
N−2
o and setting

uo =

√
Gcoxo
Eo

, (42)

po =

√
GcoEo
xo

, (43)

lead to a more numerical favourable form:

Fε(~̃u, v; p̃) =

∫

Ω̃

1
2Ã

(
v e(~̃u)− αp̃

Nκ̃
I

)
·
(
v e(~̃u)− αp̃

Nκ̃
I

)
dṼ −

∫

∂N Ω̃

~̃τ · ~̃u dS̃ −
∫

Ω̃

~̃
f · ~̃u dṼ

+

∫

Ω̃

p̃ ~̃u · ∇̃v dṼ +
G̃c
4cn

∫

Ω̃

(
(1− v)n

ε̃
+ ε̃|∇̃v|2

)
dṼ , (44)

where Fε(~̃u, v; p̃) = 1
Eou2

ox
N−2
o
Fε(~u, v; p).

For (34), we can similarly set

to =

√
Gcox

N−1
o

EoQ2
o

, (45)

µo =
G2
cox

N−2
o

EoQo
, (46)

ko =
u3
o

xo
, (47)

mo = Eo, (48)
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and (34) becomes

∫

Ω̃

(
1

M̃
+ v2α

2

κ̃

)
∂p̃k+1

∂t̃
ψ dṼ +

K̃

µ̃

∫

Ω̃

∇̃p̃k+1 · ∇̃ψ dV +

∫

Ω

(w̃kε )3

12µ̃
∇̃εΓpk+1 · ∇̃εΓψ|∇̃v| dV

=

∫

Ω

q̃rsψ dṼ −
∫

∂N Ω̃

q̃nψ dṼ +

∫

Ω̃

q̃εfsψ|∇̃v| dṼ −
∫

Ω̃

ψ
∂~̃uk

∂t̃
· ∇̃v dṼ

−
∫

Ω̃

v2α

κ̃

∂ ˜σvol
k

∂t̃
ψ dṼ +

∫

Ω̃

1

M̃

(
1− v2

) ∂p̃k
∂t̃

ψ dṼ . (49)

In all the analyses, scaled equations (44) and (49) were solved and the resulting variables were scaled
back accordingly. We should note, however, that the dimensionless viscosity parameter introduced
in (36) can now be expressed with the dimensionless parameters as:

M =
µoQoEo
Gco

µ̃′Q̃

Ẽ′

(
Ẽ′

K̃ ′

)4

= xN−2
o

µ̃′Q̃

Ẽ′

(
Ẽ′

K̃ ′

)4

.

For the line fracture problem, N = 2, it becomes

M =
µ̃′Q̃

Ẽ′

(
Ẽ′

K̃ ′

)4

. (50)

Therefore, the dimensionless viscosity parameter is identical in the dimensionless space.
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