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Abstract 20 

With global changes such as climate change and urbanization, land cover is prone to changing rapidly 21 
in cities around the globe. Urban management and planning is challenged with development pressure 22 
to house increasing numbers of people. Most up-to date continuous land use and land cover change 23 
data are needed to make informed decisions on where to develop new residential areas while ensuring 24 
sufficient open and green spaces for a sustainable urban development. Optical remote sensing data 25 
provide important information to detect changes in heterogeneous urban landscapes over long time 26 
periods in contrast to conventional approaches such as cadastral and construction data. 27 

However, data from individual sensors may fail to provide useful images in the required temporal 28 
density, which is particularly the case in mid-latitudes due to relatively abundant cloud coverage. 29 
Furthermore, the data of a single sensor may be unavailable for an extended period of time or to the 30 
public at no cost. In this paper, we present an integrated, standardized approach that aims at combining 31 
remote sensing data in a high resolution that are provided by different sensors, are publicly available 32 
for a long-term period of more than ten years (2005-2017) and provide a high temporal resolution if 33 
combined. This multi-sensor and multi-temporal approach detects urban land cover changes within 34 
the highly dynamic city of Leipzig, Germany as a case. Landsat, Sentinel and RapidEye data are 35 
combined in a robust and normalized procedure to offset the variation and disturbances of different 36 
sensor characteristics. To apply the approach for detecting land cover changes, the Normalized 37 
Difference Vegetation Index (NDVI) is calculated and transferred into a classified NDVI (Classified 38 
Vegetation Cover – CVC). Small scale vegetation development in heterogeneous complex areas of a 39 
European compact city are highlighted. Results of this procedure show successfully that the presented 40 
approach is applicable with divers sensors’ combinations for a longer time period and thus, provides 41 
an option for urban planning to update their land use and land cover information timely and on a small 42 
scale when using publicly available no cost data.   43 
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1 Introduction 47 

Global changes such as climate change and urbanization are driving land use and land cover changes 48 
in cities on a global scale. Consequently, processes related to climate change are responsible for the 49 
establishment of alien plant species, the degradation of species habitats and biodiversity change, 50 
causing increased heat and drought impacts and water scarcity with related effects on vegetation 51 
(Carter, 2011). In addition, the increase in the number of people in urban areas all around the world is 52 
threatening ecosystems as urbanization is accompanied by massive soil sealing, the densification of 53 
built-up areas and the related loss and degradation of urban green spaces (Kabisch et al. 2017).  54 

Faced with the pressure of accommodating an increasing number of people while at the same time 55 
maintaining urban green spaces (Feltynowski et al., 2017; Frantzeskaki and Kabisch, 2016), urban 56 
planning requires detailed land use and land cover information with a high temporal and spatial 57 
resolution. The provision of continuous urban Land Use and Land Cover (LULC) change information is, 58 
however, exacerbated by insufficient labor, limited time and expertise in local planning departments 59 
(Kabisch 2015). The use of optical Remote Sensing (RS) data might be one option to provide continuous 60 
information on LULC with high temporal and spatial resolution. In particular, RS data enable a detailed 61 
monitoring of LULC information to assess and quantify land development processes from the local to 62 
the global scale (Wulder and Coops, 2014) and from short-term (Frazier et al., 2018) to long-term 63 
(Tayyebi et al., 2018).  64 

RS data relevant for detecting LULC in urban areas are provided by different sensor systems. Landsat or 65 
Sentinel 2 sensors cover large areas with high spatial and temporal resolution. So far, a number of new 66 
and updated data policies allow a free access to download data from sensor archives (Wulder and 67 
Coops, 2014). They include RS data from sensors like Landsat (Wulder et al., 2008), Sentinel (Drusch et 68 
al., 2012) Spot satellite, the IRS-1C, IRS-1D-, or data from Resourcesat-1-Missions, Resourcesat-2 and 69 
Cartosat-1 missions. Future satellite missions such as the hyperspectral imager mission EnMAP 70 
(Environmental Mapping and Analysis Programme (Guanter et al., 2015)) also intend to follow an Open 71 
Data policy soon. 72 

In the context of urban areas, noteworthy are the Landsat archives that were opened in 2008 and 73 
provide detailed remote-sensing imagery with a high spatial resolution of 30 meters from the early 74 
1980s (Wulder et al., 2012). The long-term record of Landsat observations and the opening of the data 75 
archives without the need to pay for them has led to a number of interdisciplinary studies on change 76 
detection of the Earth’s surface, e.g. in biodiversity change (Pereira and Cooper, 2006), forest cover 77 
changes (Banskota et al., 2014), forest disturbances (Müller et al., 2016), coastline erosion (Fan et al., 78 
2018), the expansion of urban areas (Schetke et al., 2016; Seto and Fragkias, 2005; Small, 2006) or even 79 
public health (Dadvand et al., 2012; Gascon et al., 2016). 80 

With the opening of the archives, and the immense number of images now available, (semi) automated 81 
algorithms aiming at high spatial-temporal density have been developed recently (Healey et al., 2018; 82 
Vázquez-Jiménez et al., 2018). Together, the multitude of available images, as opposed to relying on 83 
single cloud-free images, and the newly developed algorithms and available data technologies allow 84 
for the creation of seamless imagery suitable for spatial and temporal change LULC detection (Hansen 85 
and Loveland, 2012). This opportunity has already been used to assess changes in forest areas to detect 86 
forest disturbance (Kennedy et al., 2010; Zhu et al., 2012). However, comparatively less has been 87 
undertaken to develop automated and transferable methods for merging images from different sensor 88 
types over time to understand LULC in heterogeneous systems of urban areas.  89 

To detect impacts from urbanization on urban LULC change, i.e. densification processes, loss of urban 90 
green and open spaces and others, so far RS data from one sensor and single time periods have been 91 
used to calculate indicators of land use change. One of the most common indicator used is the 92 
Normalized Difference Vegetation Index (NDVI, Pettorelli et al. 2005). The NDVI is used to detect 93 
vegetation cover or greenness and conversely to detect soil sealing based on multispectral RS data 94 
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(Pettorelli et al., 2005). It is calculated from spectral reflectance measurements in the visible red band 95 
(RED) in combination with near-infrared regions (NIR) and is derivable with the equation NDVI = (NIR-96 
RED)/ (NIR+RED) (Myneni et al., 1995; Running, 1990). The NDVI provides normalized values in a range 97 
from {−1 to 1}. The NDVI has gained widespread importance for monitoring, quantification and 98 
valuation of plant processes, and thus, the spectral bands used for NDVI derivation are integrated into 99 
most optical remote sensors. The NDVI shows how relations to Photosynthetically Active Radiation 100 
(PAR) and can be used to calculate the net exchange of CO2 for ecosystems (Alcaraz et al., 2006; Morgan 101 
et al., 2016; Wang et al., 2012). It can also be used to assess differences between canopy structures 102 
and phenological characteristics (Kim, 2010; Steven et al., 2003; Yin et al., 2012). There has also been 103 
significant effort to cross-calibrate different sensors to develop time series on larger scales (Deutscher 104 
Wetterdienst - DWD, 2017; Marshall et al., 2016) but continued vegetation index registrations available 105 
on global databases are to coarse for urban structure investigations.  106 

With Landsat however, vegetation reflectance values of different sensors turned out to be highly 107 
correlated (Brown et al., 2008; Zhang and Roy, 2016) even if sensor specific differences were nonlinear 108 
(Myneni et al., 1995). Thus, the NDVI derived from different sensor information might be used to detect 109 
small scale densification processes or changes in green space cover even in urban areas. Still, the range 110 
of values is different when highly diverse urban land use structures with a high complexity of green 111 
vegetation with non-green streets, buildings or bare soil are considered (Gascon et al., 2016).  112 

Detecting LULC information in urban areas comes up with a number of challenges: 113 

• The spatial resolution of sensor based images need to be high enough to differentiate between 114 
different structures of urban land use and urban land cover. 115 

• The sensor design should allow meaningful indices such as the NDVI to be calculated. Given the 116 
complexity and multidimensionality in urban areas, however, the NDVI may underestimate 117 
greenness in urban green spaces (Wellmann et al., 2018). 118 

• Urban regions are highly dynamic areas. Complex urban structures can change over time and 119 
within a small period and certainly change over a number of years (Wellmann et al. 2018). 120 

• Satellite programs such as Landsat, Spot or IRS have been providing images for more than 25 121 
years now (RapidEye for 10 years), which may be used to detect the status and changes in 122 
structures over time. However, it remains uncertain to which extent the different optical RS data 123 
are suitable by comparison for recording heterogeneous, complex and small-scale urban areas. 124 

To address these challenges, in this paper, we present an approach that applies algorithms to normalize 125 
and detect change in urban greenness using NDVI and multi-sensor remote sensing data to show how 126 
green space is developing in quantity and quality over space and time in a highly dynamic city. In 127 
particular, we aim at: 128 

(i) providing a comparative assessment of the data availability, usability and robustness of optical 129 
remote sensing data – Landsat 5-8, Sentinel 2 and RapidEye data; 130 

(ii) measuring the mean "greenness" of city districts by means of the NDVI for an entire annual 131 
vegetation period and to compare the change in greenness over more than ten years by using 132 
public accessible data of medium resolution (at least 30 m); and 133 

(iii) presenting the application of an organized automated and less cost-intensive and less time-134 
consuming data processing chain through remote sensing that is applicable to urban areas, 135 
covering a compact investigation period with as many images as possible, which may also be 136 
transferable on the global scale. 137 

 138 
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2. Study area 139 

We use the city of Leipzig, Germany as a case (Figure 1). Leipzig is located in the Free State of Saxony 140 
in the floodplains of the rivers Weiße Elster, Pleiße and Parthe. Leipzig covers an area of 297 km² and 141 
has a population number of 590,337 (2017), resulting in a population density of 1,988 inhabitants per 142 
square kilometer. Leipzig is a compact central European city with a comparatively homogenous 143 
architectural structure, such as “Wilhelminian-period” block estates, large prefabricated housing 144 
estates, single and detached homes and semi-detached houses.  145 

The city is interesting for us as a case to explore LULC change through RS data because it experienced 146 
post-socialist urban structural change after 1989 and has been undergoing a wide urban restructuring 147 
process since the year 2000. The population decreased from 530,000 in 1989 to 437,000 in 1998. 148 
Population losses led to empty residential properties, ending in house demolitions that produced new 149 
spatial patterns such as brownfield sites, demolition corridors and ‘housing islands’. However, 150 
population numbers have been exponentially increasing since the year 2000 and the population 151 
prognosis suggests an increase in the population up to a total population number of around 700,000 152 
by 2032 (City of Leipzig, 2016). Based on the increasing population numbers and updated population 153 
prognosis, the creation of a new urban development concept of the city of Leipzig (SEKo Leipzig 2020) 154 
started in 2007 with reference to recommendations of the Free State of Saxony from 2005 (City of 155 
Leipzig, 2009). A main aim here has been the maintenance and development of new green and open 156 
spaces. Nevertheless, continuing population increases have been resulting in densification processes 157 
and new residential development processes currently taking place in the form of building new 158 
properties on nearly every available spot in attractive city areas. These processes lead to loss of green 159 
but also to the creation of new green spaces through the demolition measures or the re-design of 160 
former brownfield sites into newly developed parks. Monitoring green space and new residential 161 
developments with RS data can help urban planning updating their development concepts and land 162 
cover change maps to make most up to date and informed decisions to where to implement and 163 
introduce their sustainable development strategies. To further increase sustainable urban 164 
development, currently, the city of Leipzig is planning a new Masterplan 2030 for new green space 165 
implementation strategies. The current LULC data for the city is based on information from 2011. 166 
Continuously updated LULC information is therefore of importance for the city. 167 

 a) b) 

 

Figure 1: a) Case study city of Leipzig with central inner-city districts (blue line), location of Leipzig in 168 
Germany and population development. b) Rapid Eye image of Leipzig in RGB with central inner-city 169 
districts (orange line). 170 

 171 

3. Methodical approach 172 
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To detect green space development over a longer time-period of at least one decade, we followed a 173 
structured approach that is shown in detail in Figure 2. Single steps of the approach are explained in 174 
sub-chapters below.  175 

 

Figure 2: Information flow diagram of the methodological approach.   176 

 177 

3.1 Remotely Sensed Data Acquisition 178 

We intended to cover all public available data for the time period 2005 to 2017 (Table 1) from divers 179 
sensor types. The period 2005-2017 was chosen because we intended to analyse LULC for at least one 180 
recent decade. Further, the new urban development concept for the city of Leipzig started to get 181 
developed around that time.  182 

Available satellite images were downloaded from the United States Geological Survey (USGS) Landsat 183 
archive (Earth Explorer) and the European Space Agency (ESA) Sentinel archive (Copernicus scihub). 184 
The commercial data from the Planet Labs company (order for RapidEye images, Planet, Planet.org) 185 
were obtained from a UFZ contract (Tereno Contract nr. 462/703). Image data were provided by the 186 
Landsat 5 TM sensor (2005 - 2011), Landsat 7 ETM (2005 - 2017), Landsat 8 OLI (2015 – 2017), Sentinel 187 
2 (2015 – 2017) and RapidEye (2010 - 2015) (see Table 1).  188 

Landsat and Sentinel data are accessible via open access data archives and image acquisition will 189 
continue in coming decades. RapidEye is a commercial program and images must be ordered but the 190 
system design allows a very high repetition rate (daily off nadir and 5.5 days in nadir position) of a 191 
certain place. Cloudless images can be selected by order and compared with the freely available data 192 
that show interruptions by clouds in most cases. We limited the image acquisition to the vegetation 193 
period (April to October) to assess fully developed vegetation. 194 
Finally, 97 remote sensing scenes from five different sensors were used (see Supplementary Material 195 
A for a full list of images). The highest number of images was provided for 2011 and then available for 196 
the month of August (Figure 3a and 3b).  197 

  198 
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Table 1. Remote sensing data used for NDVI calculation by data source (DOI of images in supplement). 199 
Year Remote Sensing Missions Name Time period No of usable images 
2005 Landsat 51, 72 May – October* 8 takes 
2006 Landsat 5, 7 June - September 6 takes 
2007 Landsat 5, 7 May - July 3 takes 
2008 Landsat 7 June - October 3 takes 
2009 Landsat 5,7, RapidEye5 April – September 11 takes 
2010 Landsat 5,7, RapidEye April - October 10 takes 
2011 Landsat 5, 7, RapidEye April - September 14 takes 
2012 Landsat 7, RapidEye May - September 5 takes 
2013 Landsat 7, 83 June – August 4 takes 
2014 Landsat 7, 8 April - September 8 takes 
2015 Landsat 7, 8, Sentinel 24 April - October 9 takes 
2016 Landsat 7, 8 Sentinel 2 May - September 12 takes 
2017 Landsat 7, 8 Sentinel 2 May - October 4 takes 

1Landsat 5, NASA & USGS; Launch date: 1982; revisit time for Europe: 16 day, Type of sensor: - Multi-spectral push broom imager & TIR 200 
multi band thermal infrared radiometer/ spectral information: 7 spectral bands (VNIR)-30m, 1 spectral bands (TIR)- 120m; 2Landsat 7, NASA 201 
& USGS; Launch date: 1999; revisit time for Europe: 16 day. Type of sensor: - Multi-spectral push broom imager & TIR multi band thermal 202 
infrared radiometer/ spectral information: 7 spectral bands (VNIR)-30m, 1 spectral bands (TIR)- 60m, 1 panchromatic band (PAN)-15m; 203 
Landsat 8, NASA & USGS; Launch date: 2013; revisit time for Europe: 13 day, Type of sensor: - OLI- Imaging multiband spectrometer & TIR 204 
multi band thermal infrared radiometer/ spectral information:1 panchromatic band (PAN)-15m, 9 spectral bands (VNIR)-30m, 2 spectral 205 
bands (TIR)- 100m; 4 Sentinel-2A/B; two-satellite configuration/ ESA; Launch date: 2015/2016; revisit time for Europe: 5 day, Multi-spectral 206 
imaging spectrometer; spectral information: 12 spectral bands; visible and VNIR) – 10m; (VNIR, SWIR) – 20m, (high radiometric resolution, 207 
visible - )-60m; 5 RapidEye; PlanetLabs; Launch date: 2008; revisit time for Europe: Daily (off nadir), 5.5 days (at nadir)Type of sensor: Multi-208 
spectral push broom imager /spectral information: 5 spectral bands-5(6.5)m. *for more information, see Supplementary Material A. 209 
 210 

a) b) 

  

Figure 3. a) Distribution of all remote sensing data 2005-2017, different colors depict the months of 211 
the accepted remote sensing data. b) Distribution of all remote sensing data over different months, 212 
different colors depict different years. 213 

3.2 Preprocessing 214 

Most of the provided image scenes were projected to zone 33 (EPSG 32633). In all other cases, the 215 
subsets were reprojected from EPSG 32632 to EPSG 32633 using the Lanczos algorithm for pixel value 216 
interpolation implemented in Quantum GIS version 2.18 (Lanczos, 1950). All image data values (Landsat 217 
5, Landsat 7, Landsat 8, Sentinel 2, RapidEye) were transferred to reflectance according to the providers 218 
instructions. Calibration parameters were taken from the image metadata provided by USGS, ESA or 219 
Planet Labs (ESA, 2015; NASA, 2017, 2015; PLANET, 2017) respectively. After calibration and 220 
reprojection Sentinel and RapidEye image data were resampled to 30m pixel size and co-registered to 221 
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Landsat scenes of the same vegetation period using Quantum GIS 2.18. We aimed at integrating all 222 
available and usable images for a whole vegetation period for each year regardless of the type of sensor. 223 
 224 
3.3 Masking 225 

A number of remotely sensed image data for Central Europe shows clouds but in many cases they cover 226 
only small parts of the image. Before calculating the vegetation index, clouds and the shadows of clouds 227 
were removed from the image data and set to “NoData”. Landsat data were preselected for a cloud 228 
cover of less than 40%. The USGS specification was verified manually as clouds may be very unequally 229 
distributed over the whole image. As for USGS data, this verification step was the only one done 230 
visually. Landsat image data are provided with a QA-band (Quality Assessment (QA) band) that meets 231 
all of our needs to cover clouds and image gaps (stripes) caused by the shutter defect of Landsat 7 232 
(NASA 2017). To mask total cloud cover in Landsat data "high confidence cirrus", "high confidence 233 
cloud", "high confidence "shadow" and "secured clouds" were extracted from the binary coded QA 234 
band (USGS QA-Tools 2017). The QA-channel simultaneously has different masks in binary code (USGS 235 
QA-Tools 2017). A transfer of the code into defined masks is implemented in the ILMS image tool 236 
(ILMSimage, Kralisch et al. 2012), which is used in our approach.  237 
Sentinel 2 scenes were selected using a maximum cloud cover of 20%. This differs from the Landsat 238 
criteria where a cloud cover of less than 40% was assessed to be sufficient. We decided to accept only 239 
Sentinel 2 scenes with a maximum cloud cover of 20% because the cloud cover mask provided by the 240 
ESA image product (gml-polygons) proved to be insufficient for our needs. For RapidEye data the use 241 
of a cloud mask was not required. In our approach, we used as many image acquisition dates as possible 242 
with the mentioned restrictions to cloud cover. Our strategy calls for a careful and well-developed cloud 243 
mask in particular, when aiming at high temporal data density.  244 

All of the selected and used images in this study were cut by a 3 km buffer around Leipzig’s 245 
administrative city border to cover the city area of Leipzig. The city area of Leipzig includes a 246 
considerable amount of agricultural areas and large areas of what used to be open-cast mining areas 247 
that have been turned into waterbodies within the last decades. We excluded both, waterbodies and 248 
agricultural areas from further investigation, because the "greenness" of waterbodies cannot be 249 
quantified by a vegetation index and agricultural land is mostly highly managed with vegetation 250 
changes occurring immediately in the vegetation period of interest. Both of these types of LULC were 251 
excluded using the land cover classification codes 5000 and 3000 from the European Urban Atlas land 252 
cover map provided by the European Environment Agency (European Commission, 2011). 253 

 254 
3.4 Normalized difference vegetation index, RS exclusion 255 

The NDVI was used as a basis of all further calculations. The vegetation period may start and end at 256 
slightly different dates. We used the NDVI values to get information about fully developed vegetation. 257 
The NDVI was calculated by using calibrated standard Top Of Atmosphere (TOA) reflectance values 258 
according to the provider instructions (conversion equation is given in Supplementary Material D). We 259 
intended to include all available scenes from April to October. Images taken at the first and the last 260 
month were excluded from the final analysis if the vegetation was not fully developed or after the fall 261 
of leaves had started. To remove outliers, the selection images with the mean of 5% smaller NDVI values 262 
than the remaining minimum of that year were excluded. This criterion was applied in 6 out of 103 263 
cases (see Supplementary Material A). 264 

 265 
3.5 Classified Vegetation Cover 266 

Classifying the NDVI values was used as a step to assign a biological “meaning” and to get a normalized 267 
NDVI product to the values that describe the reflectance and fluorescence of vegetation. The procedure 268 
follows a standard classification process where reference areas are defined and linked to values that 269 
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describe qualities. In this case, only two reference areas were necessary: one for completely sealed 270 
areas with no vegetation and the other for those areas completely covered by vegetation. All other 271 
qualities are degrees between these two extremes. We did not use standard ground truth training areas 272 
to get minimum and maximum values for plant cover but instead used a value frequency histogram of 273 
the NDVI for this purpose. In the case of Leipzig, standard reference areas for completely sealed areas 274 
and areas with full vegetation cover would have been easily detectable, but with this frequency 275 
histogram method, the approach is transferable to other cities. 276 

For the Classified vegetation cover (CVC) NDVI values were given a value between zero (no vegetation 277 
cover) and one (dense vegetation cover). The training areas for classification were derived from the 278 
actual image data. For this purpose, for every image a value-frequency histogram with 4096 steps was 279 
calculated and converted into the summary histogram. The values for 1% and for 99% of the summary 280 
histogram were used as typical extreme NDVI values for "no vegetation cover" (equal 0) and "dense 281 
vegetation cover" (equal 1). All NDVI values between these extreme values were transformed in a linear 282 
fashion range from {0 to 1}. To evaluate the accuracy of the histogram derived masks, the results for 283 
2012 were compared with the Urban Atlas LULC and used for the accuracy test. The mask for "no 284 
vegetation cover" is spread between "Continuous Urban", "Industrial & Commercial" and "Traffic", 285 
whereas the mask for "closed vegetation cover" is comprised of "Green Urban", "Sports & Leisure" and 286 
"Forest" (Supplementary Material B and C). Which means that a “dense vegetation cover” mask is 287 
situated completely within Urban Atlas classes of continuous vegetation cover and the “no vegetation 288 
cover” mask is completely covered by Urban Atlas classes with highest urban density. Obviously the 289 
approach shows high accuracy when comparing with the Urban Atlas classes.  290 

 291 
3.6. Yearly Mean Principal Component Analysis (PCA) 292 

NDVI values are often summarized for integration over one vegetation period. To compare different 293 
vegetation periods, however, a calculation method is needed that is less sensitive to occasional extreme 294 
values. Thus, we used the first principal component to receive a compromise between sum and 295 
extreme values. For each year of the investigation period the first principal component for all single 296 
takes of one year was calculated and transferred into a yearly NDVI and a Classified Vegetation Cover 297 
(CVC) according to the procedure of single takes. The results were taken as summarized values over the 298 
year. The result is referred to as “Yearly mean”. 299 
 300 
3.7. District means 301 

To compare different administrative districts of Leipzig and follow their development over time, the 302 
CVC values were summarized arithmetically on the district level for Leipzig (Leipzig comprises 63 303 
districts) – also called “District means”. District mean values show the development of the vegetation 304 
of single districts within one vegetation period (Fig. 4a, b) and over different years (Fig. 5a, b). 305 

3.8. Pixel based analysis (2005-2017) 306 

A pixel based first principal component and regression of all yearly means data was calculated for 307 
different years and time periods (2005-2011 and 2012-2017) to show intensity and direction of regional 308 
green space and residential developments without the value low pass summarizing necessary caused 309 
by the city districts. The regression results of the yearly means emphasis local changes, primarily new 310 
buildings (small red dots) and larger areas with newly grown up plants. 311 

3.9. Single year dynamic 312 

For each year the seasonal changes of NDVI and CVC were calculated on the basis of city district means. 313 
Based on this results a few images were excluded from further investigation because the vegetation 314 
metabolism seemed to be reduced in April and/or October (cf. 3.4). 315 
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3.10. Uncertainty Analysis 316 

To check for value differences in CVC caused by the use of different sensors we aimed at comparing 317 
images taken at consecutive days by different sensors as an uncertainty analysis. A total of 14 image 318 
pairs with daily differences were observed. The daily differences were calculated on the basis of CVC 319 
values for 63 city districts in the same way as single year dynamics. The pairs are compared in terms of 320 
global differences caused by different sensor properties and local differences caused by changes of 321 
vegetation metabolism. 322 

 323 

4. Results  324 

The aim of this study was to present a remote-sensing based multi-sensor and multi-temporal 325 
approach to detect urban land cover change. In particular, the approach aimed at integrating and 326 
combining highly resoluted, publicly available remote sensing data from different sensors for a long-327 
term seamless period of more than one decade (2005-2017). To detect land cover change, a normalized 328 
urban greenness algorithm based on the NDVI was used to show changes in the “greenness” of Leipzig’s 329 
districts.  330 

4.1 Value changes and the role of CVC 331 

In terms of temporal image coverage, we found 3-10 scenes during one vegetation period per year with 332 
sparse or no cloud covers when we merged different sensor types. The combination of different sensor 333 
types provided more images and thus more reliable results. This approach of image combination 334 
allowed data to be used that showed incomplete coverage caused by clouds or sensor defects.  335 

The NDVI dynamic is illustrated in Figure 4a for seven central inner-city districts for the year 2005. The 336 
seven districts were chosen as example districts for Leipzig. These districts represent central inner-337 
districts that cover a range of different urban structures – including districts with a high rate of 338 
imperviousness (e.g. city center, sealing rate of up to 85%) and less-impervious districts that are located 339 
within Leipzig’s floodplain area (Center-North sealing rate up to 35%). By comparison, Figure 4b shows 340 
the NDVI values transformed by the classification process to a value range between zero and one (CVC). 341 
The comparison illustrates the ability of the classification process to reduce differences due to seasonal 342 
changes and different sensor properties. The overview values (yearly CVC) of these seven central 343 
districts of Leipzig show comparatively small changes over a one-year period and appear rather evenly 344 
distributed.  345 

 346 

a) NDVI district means in 2005                                     b) CVC district means in 2005 

 
Figure 4 (left) showed the NDVI and (right) the CVC for seven central city districts of Leipzig showing 347 
district means of individual days in 2005.  348 
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4.2. Small scale local changes in NDVI – the advantages of high resolution 349 

In order to assess small scale local changes in greenness over time, a pixel-based analysis of all annual 350 
CVC values from 2005-2017 was carried out. The first principal component of yearly means was used 351 
as "mean" for the whole investigation period (Figure 5a). Figure 5b shows the development of the 352 
annual mean values for the seven inner city districts over time from 2005 to 2017. The increase or 353 
decrease in green space over the observation period is marginal and changes are only in the single-354 
digit percentage range.  355 

By means of the applied method using RS data, normalized changes can be derived on a small-scale. 356 
Figures 5c and 5d show maps of the total city of Leipzig illustrating the rates of change in overground 357 
development activities (and thus sealing) and green space development for two periods 2005-2011 358 
and 2012-2017. Local changes in NDVI values are illustrated. A decrease in NDVI values is indicated in 359 
red, e.g. when new buildings are constructed. New vegetation elements developed over time are 360 
shown in green. A decrease in NDVI values is observable for smaller inner city areas but also for larger 361 
areas particularly in the northern part of the city near the city border. These areas are development 362 
sites of industrial and transport companies (northeast) and also include new development areas for 363 
the Leipzig-Halle airport (Cargo Airport, northwest, Figure 5c). An increase in green spaces can be 364 
observed for a number of smaller sites throughout the city area. One example is the re-development 365 
of a former railway brownfield site – the “Bayerischer Bahnhof” south of the city centre (Figure 5d). A 366 
sequence of changes in greenness for the total study are and whole period is visualized as a video 367 
supplement in Supplementary Material E. The video sequence impressively shows the dynamic 368 
development of heterogeneous urban structures in Leipzig. 369 

 370 
  371 
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 372 
a) CVC summarized yearly mean (2005-2017) b) Classified Vegetation Cover (CVC) – Leipzig central 

inner-city districs 

  

c) Change of CVC (2005-2011) d) Change of CVC (2012-2017) 

  

Figure 5 (a) indicates the CVC of Leipzig, first principal component of yearly means (whole investigation 373 
period, 2005 - 2017) for the total city of Leipzig, (b) for selected inner city districts and change values 374 
as regression for CVC values for two periods in time (c) 2005-2011 and (d) 2012-2017.  375 

 376 
4.3. Uncertainty analysis of remote sensing data 377 

Generally, satellite sensors use different spectral band widths, which may translate into different NDVI 378 
values. In particular, the sensors used here (Landsat 5, 7 and 8, Sentinel 2, RapidEye) differ in their 379 
spatial, spectral, directional and temporal resolution with different bandwidths for the red and near 380 
infrared bands (Figure 6). We expected that the different bandwiths of the satellite sensors were 381 
supposed to lead to at least slightly different CVC values. To control for potential differences in NDVI 382 
values based on the use of different sensors, Figure 7 shows the CVC values from images taken on 383 
consecutive days by different sensors. We found 14 days where one image take was followed by 384 
another take on the next day by a different sensor. These acquisition pairs show scattered CVC value 385 
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differences of up to 5% between the city districts and much smaller mean differences for the whole 386 
city. Box-plots in Figure 7 indicate the mean difference for the entire city. The error bars were calculated 387 
as variance of the value differences between the 63 city districts with a double standard deviation. We 388 
expected to find differences of the same magnitude for single districts and the whole city. However, we 389 
found in almost all cases much larger variability of the value differences between single districts than 390 
for the whole city. Only the latter can be caused mainly by different sensors but appears to be marginal 391 
with less than 5% difference. In particular, the CVC differences found between the sensors Landsat 5 392 
and Landsat 7 were not as great as those between Landsat 7 and Landsat 8 as reported by Roy et al. 393 
(2016) for spectral values. In terms of value accuracy based on the use of different sensors, we can 394 
conclude that the sensor differences cannot explain most of the observed CVC differences within one 395 
day. 396 

As explained in the methods section, the calculation of NDVI and CVC mean values for single city 397 
districts ignored cloud covered areas, agricultural land and waterbodies and value gaps were not 398 
interpolated because most of the results are statistical in nature. Occasionally, this process masked out 399 
parts of some districts causing some uncertainty to the values. However, the uncertainty analysis 400 
discussed above resulted in values of less than 5% difference for the CVC values of consecutive days 401 
and proofed that sensor characteristics only play a minor role.  402 

 403 

 404 
Figure 6: The bandwidths for the red and the near-infrared band of the different sensors used in this 405 
study. 406 
 407 
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 408 

Figure 7: Difference of classified vegetation cover (CVC) for image pairs taken by different sensors on 409 
consecutive days. Grey box-plots show the mean difference for the entire city. Error bars are calculated 410 
as double standard deviation of the differences between 63 city districts. The table illustrates image 411 
pairs of different remote sensing sensors. Note: L5 – Landsat 5, L7 – Landsat 7, L8 – Landsat 8, RE – 412 
RapidEye, S2 – Sentinel 2. 413 

 414 

5. Discussion 415 

By using multi-sensor remote sensing time series to assess urban greenness, we showed that classified 416 
NDVI values (CVC) derived from Landsat, Sentinel 2 and RapidEye sensors are comparable in their 417 
respective values over time. Although images are provided with different sensor characteristics, they 418 
can be used in an integrative way with high temporal image density to identify changes in land cover 419 
over time. This is of particular importance in highly dynamic urban areas. The city of Leipzig has been 420 
a fast growing and developing city in the last decade with many new residential development, 421 
brownfield revitalizations, and industrial locations. Urban development strategies were developed in 422 
the last years and used to realize new residential construction but also the maintenance and new 423 
development of urban green spaces. As the city grows further in population numbers in unexpected 424 
rates, existing development strategies might be outdated and new plans are under development (e.g. 425 
the new Masterplan Green 2030). Our multi-sensor, multi-temporal approach might be a useful tool 426 
here to monitor long term (over many years) or even short term (over one vegetation period) urban 427 
land cover changes at a smaller scale. In particular, the maps of the change values may be used as 428 
planning instruments that help identifying in which areas of the city urban development has occurred 429 
in the form of soil sealing (a sharp decline in NDVI) and where open spaces may have emerged through 430 
demolishing of old houses or industry areas to become usable for green development projects. In 431 
particular, the multi-sensor approach and the resulting maps of the total city can be helpful instruments 432 
to assess and visualize where green and open spaces are under pressure or where additional green 433 
space is needed when aiming at an accessible and connected system of green ways for the sustainable 434 
city.  435 

We showed that using different sensors with different sensor characteristics enhances the number of 436 
usable images from singe events to small time series of at least a couple of usable images within one 437 
vegetation period. Another particular advantage here is the increase in the number of detectable 438 
properties or (spectral) traits of vegetation which is in turn important for assessments of soil conditions, 439 
vegetation health or anthropogenic LULC (Lausch et al. 2016). The advantage of sensor combinations 440 
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to monitor LULC change - in particular when using Sentinel and Landsat images – has been used 441 
recently in some studies for other global regions mainly in developing countries (e.g. Goldblatt et al., 442 
2018; Chowdhury et al., 2018; Zhou et al., 2017) and for other purposes (Labib and Harris, 2018 for 443 
urban green space monitoring; Lausch et al., 2016 for monitoring and assessing forest health). 444 
Goldblatt et al. (2018) emphasized the advantages of using publicly available multi-sensor data to 445 
monitor spatial extent of urbanization over time particularly in developing countries for promotion of 446 
sustainable urban development. Still, a combined use of multi-sensor images for long term continuous 447 
monitoring of urban land cover development with automatized processes is just at the beginning in 448 
today’s era of big data.  449 

Our study underlines the importance of carefully designed standardization approaches when using 450 
sensors with different sensor characteristics (Malenovský et al., 2007). Challenges in dealing with 451 
different spatial and spectral resolutions from different sensors and in applying  rescaling methods to 452 
compare results were identified in a number of studies  (Lausch et al., 2013; Atkinson, 1993; Goodin 453 
and Henebry, 2002; Xie and Weng, 2016).  454 

In our study more than 100 images in the period from 2005-2017 could be used for analysis. Higher 455 
repetition rates might be easy to achieve if lower ground resolution is accepted e.g. by the use of 456 
MODIS data. However, the 30m ground resolution from Landsat allow to detect small-scale changes in 457 
highly heterogeneous and complex structures of urban areas (El Garouani et al., 2017; Goldblatt et al., 458 
2018).  Impervious spots scattered as in the dimension of building blocks, shopping centers or larger 459 
roads might be detected in a couple of pixels, thus recording typical structural changes in Leipzig and 460 
similarly structured cities. A tenfold higher resolution such as with MODIS’ 250m resolution would only 461 
reveal large changes in built-up structures in urban LULC but no fine scaled changes in residential 462 
development (Mertes et al., 2015). In fact, the temporal density of images from sensors used in our 463 
approach presented here grew high enough to tolerate smaller time-gaps caused by clouds or image 464 
disturbances. This in turn increases the time sequence of usable images for all sensors.  465 

In conclusion, our automated process chain with rule-based interrogation of images and subsequent 466 
normalization and calibration procedures is able to record small scale dynamics in urban (vegetation) 467 
development seamlessly over a time period of more than 10 years. The approach is applicable even 468 
when image acquisition is restricted to publicly available data with higher spatial resolution. This 469 
underscores the multiplicity of usability options of open remote sensing archives for monitoring and 470 
assessing urban land cover development to generate informed urban planning strategies. This will 471 
become ever more important in times of ongoing urbanization which will produce complex, 472 
fragmented patterns at the urban and peri-urban scale (Chowdhury et al., 2018).  473 

 474 
6. Conclusion 475 

In this paper, we presented an automated approach of assessing spatio-temporal land cover changes 476 
in urban regions with multi-sensor and multi-temporal remote sensing data. We showed, that this 477 
approach allows vegetation density and vegetation changes to be detected both spatially and 478 
temporally for highly diverse urban structures. Different sensors such as Landsat, Sentinal-2, RapidEye 479 
as well as other existing and future sensors can be used simultaneously to allow for a much denser 480 
resolution in time if the vegetation cover is determined by a classification process of indicators such as 481 
the NDVI. This is of particular importance as the medium resolution time series of a single year is a 482 
challenge for central Europe. Both, Landsat and Sentinel-2 satellites deliver valuable data to detect 483 
urban greenness state and development over seamless periods of more than 10 years. The clear 484 
advantage is the availability of respective time series images that are provided free of charge for 485 
scientific use. We showed that the approach is a robust procedure to offset the variation and 486 
disturbances of different sensor characteristics. Reference areas for completely sealed areas and areas 487 
with complete plant cover is delineated by a simple value-frequency histogram. In contrast to standard 488 
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procedures with manually defined reference ranges, the presented automated method may be 489 
transferred to any cities on a global scale.  490 

As the necessary classification process is designed self-adjusting to avoid ground truths, a time and cost 491 
saving tool is available that can help city planning institutions to update their LULC data for monitoring 492 
urban development strategies over time. Planning departments in cities depend on updated 493 
information on land use resources to plan and make most qualified decisions and policies about where 494 
to develop residential spaces, residential infrastructure and also where to keep, maintain and newly 495 
develop urban green spaces for improving health and the well-being of city residents. As urban areas 496 
are increasing in number and density with changes in built-up, impervious areas (Elmqvist et al. 2013), 497 
the ability to monitor these changes is of upmost importance and will become more critical in the 498 
future. Our approach may be used in for these purposes or even in an economic application, e.g. for 499 
the construction industry, logistics or insurance. As the approach is generic in nature, it enables quasi 500 
real-time integration of other real-time data to optimize and predict complex relationships and 501 
processes in heterogeneous urban systems. 502 

As we move into the future, the ability to blend data from different satellite systems reduces the risk 503 
of data gaps and improves the quality and frequency of observations. This may encourage other 504 
national or international satellite missions to rethink their data policies and open their archives for 505 
public use. The open access policies of Landsat and Sentinel-2 in combination with the automated 506 
algorithm methods presented here may be applied as a consistent and normalized approach across 507 
city, regions and country borders to compare larger samples of urban areas around the globe. This may 508 
be used internationally for science, policy, and reporting needs, e.g. as part of the targets assessment 509 
of the fulfillment of the Sustainable Development Goals. 510 

 511 
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Supplementary Material 720 

 A: Complete list of data sources and acquired image scenes: 721 

DATA SOURCES: 722 

 BKG: Administrative borders: <vg250_3112.utm32s.shape.ebenen> by  723 
<https://www.bkg.bund.de/> 724 
 ESA: Sentinel-2 Archive: Copernicus Scihub: <https://scihub.copernicus.eu/dhus/#/home> 725 
 ILMSimage: <http://intecral.uni-jena.de/webimx-1.0.0/> 726 
 Quantum-GIS: <http://www.qgis.org> 727 
 Sentinel-2 Metadata: S2A_OPER_MTD_SAFL1C_PDMC_(Product Name) 728 
 Rapid Eye Metadata: (Layer Name)_Metadata.xml <https://www.planet.com/docs/> 729 
 Urban Atlas <https://www.eea.europa.eu/data-and-maps/data/urban-atlas> 730 
 USGS: Landsat-Archiv, Level 1 Produkt: <http://earthexplorer.usgs.gov/> 731 

 732 

 2005 733 
  USGS: LE07_L1TP_193024_20050625_20170115_01_T1 734 
  USGS: LT05_L1TP_194024_20050710_20161125_01_T1 735 
  USGS: LE07_L1TP_193024_20050711_20170115_01_T1 736 
  USGS: LT05_L1TP_194024_20050827_20161124_01_T1 737 
  USGS: LT05_L1TP_193024_20050905_20161124_01_T1 738 
  USGS: LT05_L1TP_193024_20051007_20161124_01_T1 739 
  USGS: LT05_L1TP_194024_20051014_20161124_01_T1 740 
  USGS: LE07_L1TP_193024_20051015_20170112_01_T1 741 
  (USGS: LT05_L1TP_194024_20051030_20161124_01_T1)* 742 
  (USGS: LE07_L1TP_193024_20051031_20170112_01_T1)* 743 
 2006 744 
  USGS: LT05_L1TP_194024_20060611_20161121_01_T1 745 
  USGS: LE07_L1TP_193024_20060612_20170108_01_T1 746 
  USGS: LT05_L1TP_193024_20060706_20161120_01_T1 747 
  USGS: LT05_L1TP_193024_20060722_20161120_01_T1 748 
  USGS: LT05_L1TP_194024_20060915_20161118_01_T1 749 
  USGS: LT05_L1TP_193024_20060924_20161118_01_T1 750 
 2007 751 
  (USGS: LE07_L1TP_193024_20070412_20170104_01_T1)* 752 
  (USGS: LE07_L1TP_193024_20070428_20170103_01_T1)* 753 
  USGS: LT05_L1TP_193024_20070506_20161115_01_T1 754 
  USGS: LT05_L1TP_193024_20070522_20161115_01_T1 755 
  USGS: LT05_L1TP_194024_20070716_20161112_01_T1 756 
 2008 757 
  LE07_L1TP_193024_20080601_20161229_01_T1 758 
  LE07_L1TP_193024_20080703_20161228_01_T1 759 
  LE07_L1TP_193024_20081023_20161224_01_T1 760 
 2009 761 
  (LE07_L1TP_193024_20090401_20161220_01_T1)* 762 
  LT05_L1TP_193024_20090425_20161026_01_T1 763 
  LT05_L1TP_194024_20090502_20161026_01_T1 764 
  LE07_L1TP_193024_20090503_20161220_01_T1 765 
  LE07_L1TP_193024_20090519_20161222_01_T1 766 
  Planet: 3362707_2009-05-24_RE3_3A_303700 767 
  Planet: 3362807_2009-05-24_RE3_3A_303769 768 
  LT05_L1TP_194024_20090806_20161022_01_T1 769 
  LT05_L1TP_193024_20090815_20161026_01_T1 770 
  Planet: 3362707_2009-08-19_RE5_3A_303700 771 
  Planet: 3362807_2009-08-19_RE5_3A_303769 772 
  LE07_L1TP_193024_20090823_20161220_01_T1 773 
  LT05_L1TP_193024_20090831_20161021_01_T1 774 
  LE07_L1TP_193024_20090908_20161219_01_T1 775 
 2010 776 
  (USGS: LT05_L1TP_194024_20100419_20161017_01_T1)* 777 
  USGS: LE07_L1TP_193024_20100420_20161215_01_T1 778 
  USGS: LT05_L1TP_194024_20100505_20161015_01_T1 779 
  Planet: 3362807_2010-06-05_RE4_3A_303769  780 

https://www.bkg.bund.de/
https://scihub.copernicus.eu/dhus/#/home
http://www.qgis.org/
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
http://earthexplorer.usgs.gov/
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  Planet: 3362707_2010-06-05_RE4_3A_303700 781 
  USGS: LT05_L1TP_194024_20100708_20161014_01_T1 782 
  USGS: LE07_L1TP_193024_20100709_20161214_01_T1 783 
  Planet: 3362807_2010-07-21_RE2_3A_303769 784 
  Planet: 3362707_2010-07-21_RE2_3A_303700 785 
  Planet: 3362807_2010-08-21_RE4_3A_303769 786 
  Planet: 3362707_2010-08-21_RE4_3A_303700 787 
  USGS: LE07_L1TP_193024_20100911_20161212_01_T1 788 
  Planet: 3362807_2010-09-22_RE3_3A_303769 789 
  Planet: 3362707_2010-09-22_RE3_3A_303700 790 
  Planet: 3362807_2010-10-01_RE2_3A_303769 791 
  Planet: 3362707_2010-10-01_RE2_3A_303700 792 
 2011 793 
  USGS: LT05_L1TP_194024_20110422_20161209_01_T1 794 
  USGS: LE07_L1TP_193024_20110423_20161209_01_T1 795 
  USGS: LT05_L1TP_193024_20110501_20161009_01_T1 796 
  USGS: LT05_L1TP_194024_20110508_20161009_01_T1 797 
  USGS: LE07_L1TP_193024_20110509_20161209_01_T1 798 
  Planet: 3362807_2011-05-20_RE5_3A_303769 799 
  Planet: 3362707_2011-05-20_RE5_3A_303700 800 
  USGS: LT05_L1TP_193024_20110602_20161009_01_T1 801 
  Planet: 3362807_2011-06-03_RE4_3A_303769 802 
  Planet: 3362707_2011-06-03_RE4_3A_303700 803 
  Planet: 3362807_2011-06-27_RE5_3A_303769 804 
  Planet: 3362707_2011-06-27_RE5_3A_303700 805 
  Planet: 3362807_2011-08-20_RE1_3A_303769 806 
  Planet: 3362707_2011-08-20_RE1_3A_303700 807 
  Planet: 3362807_2011-08-24_RE1_3A_303769 808 
  Planet: 3362707_2011-08-24_RE1_3A_303700 809 
  Planet: 3362807_2011-09-11_RE4_3A_303769 810 
  Planet: 3362707_2011-09-11_RE4_3A_303700 811 
  USGS: LT05_L1TP_194024_20110929_20161006_01_T1 812 
  USGS: LE07_L1TP_193024_20110930_20161206_01_T1 813 
 2012 814 
  Planet: 3362807_2012-05-26_RE5_3A_303769 815 
  Planet: 3362707_2012-05-26_RE5_3A_303700 816 
  Planet: 3362807_2012-07-24_RE2_3A_303769 817 
  Planet: 3362707_2012-07-24_RE2_3A_303700 818 
  Planet: 3362807_2012-08-13_RE3_3A_303769 819 
  Planet: 3362707_2012-08-13_RE3_3A_303700 820 
  USGS: LE07_L1TP_193024_20120815_20161130_01_T1 821 
  USGS: LE07_L1TP_193024_20120916_20161129_01_T1 822 
 2013 823 
  LC08_L1TP_193024_20130506_20170504_01_T1 824 
  LE07_L1TP_193024_20130701_20161123_01_T1 825 
  LC08_L1TP_194024_20130716_20170503_01_T1 826 
  LE07_L1TP_193024_20130802_20161123_01_T1 827 
  LC08_L1TP_193024_20130810_20170503_01_T1 828 
 2014 829 
  LC08_L1TP_193024_20140423_20170423_01_T1 830 
  LE07_L1TP_193024_20140618_20161112_01_T1 831 
  LC08_L1TP_194024_20140703_20170421_01_T1 832 
  LE07_L1TP_193024_20140704_20161112_01_T1 833 
  LC08_L1TP_194024_20140719_20170421_01_T1 834 
  LE07_L1TP_193024_20140720_20161111_01_T1 835 
  LE07_L1TP_193024_20140821_20161111_01_T1 836 
  LE07_L1TP_193024_20140906_20161111_01_T1 837 
 2015 838 
  Planet: 3362807_2015-04-29_RE1_3A_300373 839 
  Planet: 3362707_2015-04-29_RE1_3A_300373 840 
  USGS: LC08_L1TP_193024_20150629_20170407_01_T1 841 
  ESA: S2A_OPER_PRD_MSIL1C_PDMC_20160809T050528_R022_V20150704T101337_20150704T101337 842 
  ESA: S2A_OPER_PRD_MSIL1C_PDMC_20160809T050920_R022_V20150704T101337_20150704T101337 843 
  USGS: LE07_L1TP_193024_20150707_20161025_01_T1 844 
  USGS: LE07_L1TP_193024_20150808_20161022_01_T1 845 
  USGS: LC08_L1TP_194024_20150823_20170405_01_T1 846 
  ESA: S2A_OPER_PRD_MSIL1C_PDMC_20161004T153237_R065_V20150826T102026_20150826T102022 847 
  ESA: S2A_OPER_PRD_MSIL1C_PDMC_20161004T153557_R065_V20150826T102026_20150826T102022 848 
  USGS: LC81930242015244LGN00 849 
  USGS: LC08_L1TP_193024_20151003_20170403_01_T1 850 
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  USGS: LE07_L1TP_193024_20151011_20161018_01_T1 851 
 2016 852 
  USGS: LC08_L1TP_194024_20160505_20170325_01_T1 853 
  USGS: LE07_L1TP_193024_20160522_20161010_01_T1 854 
  USGS: LC08_L1TP_194024_20160606_20170324_01_T1 855 
  USGS: LE07_L1TP_193024_20160607_20161010_01_T1 856 
  USGS: LE07_L1TP_193024_20160623_20161208_01_T1 857 
  USGS: LC08_L1TP_193024_20160818_20170322_01_T1 858 
  USGS: LC08_L1TP_194024_20160825_20170322_01_T1 859 
  USGS: LE07_L1TP_193024_20160826_20161007_01_T1 860 
  ESA: S2A_OPER_PRD_MSIL1C_PDMC_20160828T205819_R022_V20160827T101022_20160827T101025 861 
  ESA: S2A_OPER_PRD_MSIL1C_PDMC_20160828T210754_R022_V20160827T101022_20160827T101025 862 
  USGS: LC08_L1TP_194024_20160910_20170321_01_T1 863 
  USGS: LE07_L1TP_193024_20160911_20161007_01_T1 864 
  USGS: LE07_L1TP_193024_20160927_20161023_01_T1 865 
 2017 866 
  USGS: LC08_L1TP_193024_20170517_20170525_01_T1 867 
  USGS: LC08_L1TP_193024_20170602_20170602_01_RT 868 
  USGS: LE07_L1TP_193024_20170829_20170829_01_RT 869 
  ESA: S2A_MSIL1C_20171014T102021_N0205_R065_T33UUS_20171014T102235 870 
 871 
* acquired scene excluded due to low mean vegetation index 872 
 873 
 874 
 875 
B. Distribution of reference masks for totally sealed areas (red) and completely plant covered areas 876 
(green) selected as extreme values of the NDVI value histogram in 2016. 877 
 878 

 879 
 880 
 881 
 882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 
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C: Urban Atlas Classes of NDVI Reference Masks 890 
 891 

 892 
Supplementary Material C: Extreme NDVI value reference masks of Supplementary Material B 893 
classified with Urban Atlas classes (Urban Atlas, ESA). Green and sealed areas selected by a value-894 
frequency histogram are classified to the appropriate urban structures. Vector – raster inconsistencies 895 
summed up to less than 0.5%. 896 
 897 
 898 
D: Calibrating TOA reflectance 899 
 900 
Landsat image data were transferred to TOA reflectance according to NASA instructions and the 901 
provided metadata (MTL-files at Level 1 product) (NASA 2015, Section 5 “Conversion of DNs to 902 
Physical Units”, more details in NASA 2017, “8.1 Radiometric Calibration Overview”) 903 
 904 

pλ = (Mp * Qcal + Ap) / sin(Ѳ); 905 
 906 
Mp: given as multiplicative parameter for each layer by MTL-files 907 
Qcal: DN (Digital Numbers) of provided level 1 image data 908 
Ap: given as additive parameter for each layer by MTL-files 909 
sin(Ѳ): sun elevation angle provided by MTL-files 910 
pλ: TOA reflectance 911 
 912 
RapidEye image data were transferred to TOA reflectance according to providers instructions (Planet 913 
2017, “7.4 Radiometry and Radiometric Accuracy”) and the provided metadata (_metadata.xml): 914 
 915 
REF = DV*cRad * (π * Sun_Dist²) / (EAI * cos(Soz)); 916 
 917 
REF: TOA reflectance 918 
DV: provided Digital Values (image data) 919 
cRad: radiometric scale facor provided by metadata (const.) 920 
Sun_Dist: solar distance factor provided by metadata 921 
EAI: Exo-Athmospheric Irradiance provided for each band by metadata 922 
Soz: Soar Zenith provided by metadata 923 
Sentinel Level-1C data are provided in Top Of Atmosphere (TOA) reflectances (ESA 2015 “1.10 924 
Product Types”) using a constant scaling factor. All calibration can be done by the ESA SNAP tool. 925 
REF = DV*cScl; 926 
REF: TOA reflectance 927 
DV: provided digital values (image data) 928 
cScl: scale facor (const.) 929 
 930 
 931 
E: Video visualization of greenness change values as CVC 2005-2017) 932 
 933 
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 936 




