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Abstract

The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad 

discussion on the current state and future directions of the generation and use of peptide tandem 

mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are 

multiple challenges in the field that must be addressed to further increase the adoption of spectral 

libraries and related techniques. The primary bottlenecks are the paucity of high quality and 

comprehensive libraries and the general difficulty of adopting spectral library searching into 

existing workflows. There are several existing spectral library formats, but none capture a 

satisfactory level of metadata; therefore a logical next improvement is to design a more advanced, 

Proteomics Standards Initiative-approved spectral library format that can encode all of the desired 

metadata. The group discussed a series of metadata requirements organized into three designations 

of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be 

organized at four different levels of granularity: at the collection (library) level, at the individual 

entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. 

Strategies for encoding mass modifications in a consistent manner and the requirement for 

encoding high-quality and commonly-seen but as-yet-unidentified spectra were discussed. The 

group also discussed related topics, including strategies for comparing two spectra, techniques for 

generating representative spectra for a library, approaches for selection of optimal signature ions 

for targeted workflows, and issues surrounding the merging of two or more libraries into one. We 

present here a review of this field and the challenges that the community must address in order to 

accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.

Graphical Abstract
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Introduction

Mass spectrometry (MS)-based proteomics has enabled the high-throughput identification of 

proteins present in biological samples and the measurement of their abundances, post-

translational modifications, sequence and splice variants, and interaction partners. Although 

sample preparation techniques and instrumental setups remain complex and vary greatly, an 

increasing number of laboratories are applying MS techniques to better understand health 

and disease and to address basic biological questions. In typical MS-based proteomics 

experiments, proteins are extracted from samples and enzyme-digested into peptides, which 

are separated by chromatography and ionized. The mass spectrometer produces digital 

signatures of these ions at the precursor and fragment ion level. Modern instruments can 

record the signatures of hundreds of thousands of peptidoforms per experiment.

The translation of these signatures into the desired information about their respective 

peptides and proteins is crucial for further interpretation. There are many software packages 

that have been developed over the past 25 years to perform the computational analyses 

needed to perform this task1. For data dependent acquisition (DDA) workflows, where 

instruments automatically select which ions to analyze based on simple rules, the most 

common analysis technique is sequence database searching2. This involves matching 

observed fragmentation mass spectra to simple simulations of spectra corresponding to 

peptides that may be present in the sample and selecting the best match for further 

validation. Once sufficiently confident identifications are made, those peptide-spectrum 

matches (PSMs) can be stored in a library of previously identified spectra (a spectral 

library), which could be used for subsequent analyses of other data.

Spectral library searching, as opposed to sequence searching via in silico predicted 

fragmentation spectra, typically has greater sensitivity for peptide ions included in the 

library3. Spectral library-based analyses would, therefore, seem like the method of choice 

for analysis of new datasets, but relatively few DDA datasets are analyzed in this way. A 

major reason for this is the widespread concern that current libraries are incomplete. Peptide 

ions for which no corresponding spectrum exists in the reference library will not be 
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identified, and thus some potentially important peptides may be missed. Data independent 

acquisition (DIA) workflows4,5 have recently undergone rapid growth due to faster and 

higher mass accuracy instrumentation, affording acquisition methods such as SONAR6, 

SWATH-MS7, and MSX8. In these techniques, highly multiplexed fragmentation spectra are 

acquired according to predefined data acquisition patterns, independent of observations 

within the run, and the analyses of these data have spurred new interest in spectral libraries. 

Although library-free methods are emerging9–12, the most commonly used analysis 

techniques for LC-MS DIA data rely on spectral libraries to analyze extracted ion 

chromatograms to test for the presence of and quantify the abundance of peptide ions in the 

reference library13–18. Other targeted workflows, such as selected or parallel reaction 

monitoring (SRM/PRM), increasingly rely on large-scale spectral libraries to determine 

which proteotypic19,20 peptides and fragment ions to monitor21.

With billions of fragment ion spectra acquired by the research community to date, we argue 

that it should be possible to leverage these big data for the processing of all new data 

acquired. However, the current state of spectral libraries, the software that generates them, 

and software that can use them lag far behind the availability of data. Data from public 

repositories, such as PeptideAtlas22–24, PRIDE25,26, MassIVE, GPMdb27, ProteomicsDB28 

and tools are available29–32; the major hindrances are familiarizing researchers with software 

tools, rendering them user-friendly, and promoting the use of spectral-based methods to 

become the norm rather than the exception.

At the 2017 Dagstuhl Seminar on Computational Proteomics (Seminar 17421), hosted 

October 16–20 at Schloss Dagstuhl in Wadern, Germany, a group of participating 

researchers (hereafter referred to as “the group”) discussed the current state and future 

directions of spectral libraries in the field of proteomics. A follow-up meeting at the 2018 

Proteomics Standards Initiative33,34 (PSI) Spring Workshop in Heidelberg, Germany (April 

18–20) provided an opportunity for further discussion and resulted in a draft of metadata 

that should be encodable in an eventual PSI spectral library format. In this article, the major 

topics of discussion and some resulting conclusions are presented, with a special focus on 

what actions can be taken in the near term to advance the field. The benefits and 

requirements for a new PSI standard spectral library format are discussed, along with the 

issues surrounding the development of single-source and community-source spectral 

libraries and the state of major applications of libraries. The article concludes with a 

summary of the future opportunities that were discussed by the group.

A New PSI Format

There are several formats for spectral libraries used in proteomics applications. The oldest 

and most widely used is the simple, text-based MSP format from the National Institute of 

Standards and Technology (NIST). Highly similar to this is the SpectraST35 splib format, 

which is essentially a binary indexed version of MSP. SpectraST also writes a companion 

sptxt format, which is the same as MSP. The Global Proteome Machine27 (GPM) releases 

libraries in its hlf format for use with its X! Hunter tool36. The bibliospec tool37 began with 

the original text-based blib format and later moved to a SQLite-based implementation in the 

blib2 format. The Center for Computational Mass Spectrometry (CCMS) suite of spectral 
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library searching tools18,38,39 and the MassIVE-KB spectral libraries use an extended 

version of the MGF format originally proposed by MatrixScience. Each of these formats 

continues to be used, but there is a widespread opinion that none provide the richness of 

metadata that ought to be available in modern spectral libraries.

To address this, the Human Proteome Organization40 (HUPO) PSI33,34,41 has been gathering 

participants interested in designing a next-generation standard spectral library format. 

Funding from the National Institutes of Health has recently been obtained for this 

development, and initial efforts have begun, with ongoing work accessible in the PSI 

SpectralLibraryformat GitHub repository (https://github.com/HUPO-PSI/

SpectralLibraryFormat). The success of PSI-developed formats largely depends on the 

breadth of participation in the definition of requirements and design of the format, and the 

groups gathered at Dagstuhl and Heidelberg offered a great opportunity to gather broad input 

about the requirements for a community-approved format. Further interactions on GitHub 

following the meetings allowed additional external inputs. Additional input from the 

community is welcome via the issue tracker at the above URL.

Note that there is sometimes a distinction drawn between a spectral library and a spectral 

archive, such that the spectral archive can contain spectra that could not be identified42. Here 

this distinction is not made and the term “spectral libraries” refers to collections of mass 

spectra, identified or unidentified, that have been assembled to serve as a reference data after 

the original data processing.

The greatest identified need for a new format is the introduction of more metadata that can 

adequately describe the data within the spectral library and the library itself. These metadata 

can be broadly organized into four levels. Collection-level metadata describe attributes of the 

library as a whole, such as information about the creation or last update, source of the 

library, and global false discovery rate (FDR) of the library. Entry-level metadata describe 

attributes of each spectrum entry in the library, such as its charge, fragmentation type, origin, 

inferred peptide identification (when known) and retention time. Peak-level metadata 

describe attributes of each fragmentation ion peak, including its inferred charge, intensity, 

and fraction of replicates containing the peak. Peak interpretation-level metadata describes 

attributes of each fragmentation ion peak interpretation (of which there may be multiple per 

peak), including the probable molecule yielding the peak, the isotope state, and the delta 

(m/z) between the observed peak and the proposed interpretation. A list of proposed 

metadata elements at these four levels as drafted by this group and follow-on discussions is 

provided in the Supplementary Material, which will serve as a design input for the new 

format. This list does not represent the final specification.

There are several pieces of metadata considered here for the community format that merit 

further discussion, in part because they are not addressed well in previous formats, or they 

involve design choices that are not unanimously embraced. Perhaps foremost is the 

mechanism for specifying residue modifications, of which there are four broad classes: mass 

delta, chemical formula, English name, and controlled vocabulary term. The mass delta (e.g. 

“+15.99”) is perhaps the simplest mechanism, but suffers from potential precision or 

rounding problems that may lead to ambiguity. A chemical formula is precise and specific 
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but will not be easily interpreted to the corresponding molecule by many human readers, and 

different molecules (e.g. glycans) may have the same formula but be distinct in structure. An 

English name is typically easily recognized by human readers, but can be context specific 

and the many synonyms and abbreviations in use make software recognition awkward (e.g., 

“Ox”, “MetOx”, “oxidation”, “L-methionine sulfoxide”). Finally, the use of controlled 

vocabulary (CV) terms is usually specific, but accession numbers are not easily recognized 

by human readers, and implementation of controlled vocabularies in software is often 

cumbersome, especially with multiple CVs to choose from (e.g., Unimod, PSI-MOD, 

PTMList). In the end, a design choice will be made to support one or more of these options 

to the dismay of some in the community.

Current spectral libraries were designed with the notion that each entry would have an 

associated peptide identification. However, there is good reason to store unidentified spectra 

as well. There are many spectra that are repeatedly observed in independent experiments but 

remain unidentified43,44, often because the component mass modifications or sequences are 

not considered in the search space. Several new searching algorithms, including 

MSFragger45, support open mass tolerance searches that are able to associate a partial match 

between a spectrum and a peptide, while leaving part of the identification as an unknown 

and unspecified mass delta; the new format should also support such matches that are partly 

identified, but also include an unidentified component. A curated list of commonly observed 

spectra that are unidentified but known to be often misidentified, leading to erroneous 

conclusions, would be an especially valuable addition to analysis pipelines. Some library 

formats support the addition of unidentified spectra, but often as a repurposing of a slot 

where many software packages already expect to find a parsable peptide sequence. Explicit 

support for unidentified spectra should be a key feature for the new PSI format. Furthermore, 

the format should be flexible enough to accommodate predicted spectra46–48 and 

interconverted spectra49, suitably annotated and differentiable as such, since there is likely to 

be rapid progress in the field of spectrum prediction and interconversion in the coming 

years.

It is also important to capture retention times in spectral libraries, as these are often used in 

downstream analyses. It is easy to capture retention times as acquired, but more useful to 

report calibrated retention times, along with the associated provenance information and 

metadata indicating which retention time standard was used and how the calibration was 

performed.

One reason that the PSI has not yet developed a standard spectral library format is that there 

is dissent about how the library should be encoded. Most PSI formats are XML-based or tab-

separated-value-based, whereas the existing spectral library formats are a mix of plain text 

and binary formats. Plain text formats are promoted as being universally readable and easy 

for humans to examine manually and potentially correct when software runs into trouble, but 

they are inefficient in terms of disk space and computational resources. Custom binary 

formats are typically the opposite: far more efficient, but hard to restore and fix in case of 

corrupted or inconsistent data or when suitable supporting software is not easily within reach 

or no longer available. Broadly supported binary storage systems such as HDF5 or SQLite 

provide attractive alternatives to some, but are seen as barriers by others in terms of added 
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software complexity or lack of sufficient support in a programming language of choice. In 

some ways, this conundrum is still being played out with the mzML format50, where every 

year sees a new publication purveying a format that is better than mzML in demonstrated 

ways51–53, while downplaying the trade-offs that others will find intolerable. In the end, the 

best strategy may be to develop a standard archival format where universal readability and 

carefully defined metadata are the primary design considerations, letting those in the 

community who demand efficiency transform the primary archival format into a more 

efficient version locally to suit their needs.

A further important consideration for the development of a library format is the mandatory 

inclusion of quality metrics at each level. The quality of a library is a crucial parameter that 

should be considered by all downstream use of that library, as false identifications in the 

library will potentially lead to false identifications downstream. Therefore, the new format 

will require a computed posterior error probability or q-value for each spectrum entry, as 

well the overall estimated FDR for the library as a whole. This will enable tempering 

probabilities of correctness for downstream identifications with the probabilities in the 

library. In addition, it may also be necessary to extend the library by including spectra of 

decoy matches identified in the process of constructing the library, as these may be 

necessary to properly model false discovery rates in the search process.

Challenges for the creation of libraries

Once a common spectral library format has been established, there will be challenges 

associated with the creation of libraries to ensure adoption by the community. Indeed, it is 

important that these challenges should be considered as use cases during the development of 

the format. One consideration is that the choice of which peaks to retain in library entries is 

often dictated by the anticipated end use of the library. For example, libraries designed for 

use by targeted proteomics or DIA methods may contain peaks only within restricted m/z 

(and/or ion mobility) ranges and only a handful of the most intense yet discriminating peaks, 

whereas all intense peaks are typically kept for DDA and other applications. Exclusion of 

reporter ions from isobaric labeling techniques may be advantageous for some applications, 

but not others. Among the group it was generally felt that the process of filtering libraries for 

a specific application was undesirable; rather, such filtering should occur at runtime by the 

analysis software. Yet, the practice may remain common because the precise rules of 

filtering can be easily controlled by the end user during library transformation, while altering 

the analysis software may be far more difficult or impossible. Encoding these processing 

choices in the library metadata is important and must be supported.

Another important consideration is the issue of spectrum variability by instrument. 

Fragmentation spectra produced by resonant excitation, such as in ion traps, tend to be fairly 

similar, but for beam-type collisional fragmentation spectra, the variability as a function of 

collision energy is far more pronounced. While the new spectral library format should easily 

support differentiation by collision energy, the absolute scales of collision energy numbers 

varies among instrument manufacturers, or even between instruments from the same vendor. 

For some applications, the ramping of collision energy from one value to another during 

acquisition is performed. Even on a single instrument, natural drift in calibration can lead to 
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some differences in the spectra collected at different times54. Adequate metadata fields 

should be present to capture all cases accurately.

Although spectral libraries can contain multiple spectra from a single peptide ion, most 

library creation tools will retain only a single representative spectrum for each peptide ion in 

the final library. There are broadly two categories of approaches to arrive at a single 

representative spectrum in spectral libraries, the best replicate and the consensus spectrum. 

In the best replicate approach, the spectrum that is deemed highest quality is retained in the 

library, although the decision of which is best varies among tools; it might be the spectrum 

that looks most like the other replicates, the highest SNR (signal-to-noise ratio) spectrum, 

the spectrum with the highest ratio of explained to unexplained peaks, or some combination 

of those. The best replicate may be encoded as is or after some noise filtering based on 

comparison with other replicates. A consensus spectrum approach generally compares the 

top N replicates to each other, discards outliers, and then only retains peaks that appear in 

most of the replicates, discarding those that only appear in a few as noise or contamination. 

Input replicates are generally weighted by an estimate of SNR to compute the final 

intensities. Such consensus strategies typically filter out nearly all noise. It has been reported 

that consensus spectra perform better than best replicates55, but incremental addition of new 

replicates to a consensus library is problematic if the individual spectra are not easily 

accessible, whereas a new replicate can either be counted as another inferior replicate or 

supplant the previous best replicate, provided that the metric for best replicate does not 

require comparison with the other inferior replicates. Clearly the new format must 

accommodate all of these approaches since a single best approach has not yet emerged. The 

metadata must encode the choice(s) behind the representative spectrum appropriately.

The ability to merge multiple libraries is an important use case to consider and support. 

Many current methods for building and merging libraries rely on starting from scratch with 

each iteration that adds additional data, but as libraries grow substantially in size, this will 

become far less efficient and eventually infeasible. Therefore, design decisions that enable 

one library to be subsumed into another will be important. It should be possible to maintain 

minimum quality thresholds, compute a new overall global FDR at all levels (e.g., spectrum, 

precursor, peptide and protein), and retain complete pedigree information of the spectra 

(e.g., provenance from raw data) that remain present in the merged library.

An important new initiative of the PSI that will enable tracking of spectra that comprise a 

spectral library is the Universal Spectrum Identifier (USI) concept. The design of the USI is 

not yet complete and implemented, but aims to provide a unique multipart key for every 

spectrum ever submitted to ProteomeXchange and potentially beyond. This would enable 

best replicate spectra and even consensus spectra to be traceable to their origins from within 

the format. More information on the development of the USI concept is provided in a recent 

summary of PSI activities34 and at http://www.psidev.info/usi. The USI differs from the 

SPLASH identifier56 (http://splash.fiehnlab.ucdavis.edu/) used by metabolomics reference 

databases in that is it designed to identify all original experimental spectra via a multipart 

key rather than an algorithmically generated hash.
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Single source and community libraries

Most spectral libraries so far are so-called “single-source” libraries, where a single group 

processes large numbers of mass spectra made available to them through their own analysis 

pipeline to produce a library for spectral library searching. A list of major sites providing 

such libraries is presented in Table 1. These libraries have the advantage that quality filtering 

is usually uniformly applied and reasonably well understood, either by direct encoding of 

quality metrics or by reputation. However, the comprehensiveness of these libraries is 

limited by the data provided to the creator. Most libraries cover a few biological species only 

and encompass only a subset of commonly used analytical platforms and methodologies.

However, it has been shown that new big data approaches could be leveraged to build far 

more comprehensive community-sourced libraries57. In theory, the application of 

crowdsourcing efforts throughout the community could lead to a grand library, or set of 

libraries, that encompass all identifications achieved by the community as a whole thus far. 

This is in contrast to the previously-described single-source libraries that are generated by a 

single group, even when the source data are collected from many labs. A core feature of 

such a community library infrastructure would be how to handle conflicting PSMs from 

different groups. Such a community library has the potential to transform the field of 

proteomics, enabling far more sensitive, specific, and comprehensive analyses of all datasets. 

Yet, in practice, creating such a comprehensive community library will be very challenging 

to achieve.

One approach towards a comprehensive library would involve setting up a web resource for 

submitted identified spectra (or commonly seen but as yet unidentified spectra). All 

submissions will be processed and integrated into a growing community library that can be 

downloaded and used by everyone. Spectra produced by the same peptide ion by different 

instrument classes and at different collision energies54 would need to be stored separately 

and only aggregated when sufficiently similar. Spectra for contaminant PTMs, contaminant 

peptides (e.g. from a different species than claimed), and different derivatizations (e.g. 

isobaric labeling) would all need to be tracked appropriately. Spectral library search engines 

would likely only use a subset of the spectra from the community library as appropriate for 

the dataset being analyzed.

However, one of the greatest challenges will be maintaining a high degree of quality in the 

community library. Requiring only the highest quality submissions may dissuade 

participation. Labeling contributions as either gold, silver, or bronze based on the 

completeness of metadata, quality of each spectrum (e.g. as measured by SNR) and the 

quality of each PSM (e.g. as measured by fraction of explainable intensity and number of 

peaks) is one approach to allow greater inclusiveness. No clear consensus on the precise 

definitions of gold, silver, and bronze emerged, but in general it was felt that all spectra 

should have full provenance to the dataset, MS run, and original scan number. A gold 

spectrum should have or be a corroborating spectrum from a synthetic peptide, have 

corroborating spectra from a different dataset, and have corroborating spectra from the same 

peptide sequence but a different ion (peptidoform or charge). Spectra that achieve at least 

one of these things would be silver, and spectra that achieve none would be bronze. 
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Additional numerical metrics as described above should also apply, but further work is 

required to set sensible thresholds for the three levels.

Complete automation would likely be required to ensure sustainability. Developing such a 

community library successfully would be a challenging undertaking. A pioneering example 

in the field of metabolomics is GNPS57. Single-source libraries have also been very 

successful in metabolomics and other small molecule analysis; some (such as the 

NIST/EPA/NIH mass spectral library) started many decades ago and are still actively 

maintained58. Success of library searching in metabolomics can be attributed to the fact that 

until recently, there has been no alternative to spectral library searching for metabolite 

identification59 due to inherent differences between protein and small molecule 

identification approaches. The number of characterized analytes and the number of 

biomolecules in reference libraries relevant for metabolomics is, however, usually orders of 

magnitude smaller than in proteomics; the large number of spectra in, for example, the 

NIST/EPA/NIH library is mostly due to derivatives60. In contrast to proteomics, reference 

substances are required to establish small molecule mass spectral libraries with confident 

identifications, thus generating reference spectra to put into a spectral library is far more 

difficult and time consuming than in proteomics, as reference substances can be very 

expensive or impossible to obtain. Due to the inherent differences in applications, past 

success in metabolomics does not ensure success for proteomics.

There was doubt amongst some participants at the Dagstuhl discussion that such a 

community library would become widely used. Anecdotes were related of large numbers of 

researchers preferring to develop their own libraries based on their own samples and 

instruments, even when an even more comprehensive library fully suitable to their system of 

study was available. Using a very large library introduces substantial challenges for proper 

FDR control, and testing many hypotheses that are not relevant for the current sample 

reduces sensitivity. It remains an unresolved issue under active research in the field whether 

sample-specific libraries should be preferred to comprehensive libraries, especially as it 

pertains to DIA analysis.

Application of spectral libraries

Spectral library searching on its own is a powerful technique, demonstrated to be more 

sensitive and more specific than sequence searching35, but only for peptide ions present in 

the reference library. In order to identify those ions that are not in the reference library, it 

seems logical to couple spectral library searching with sequence database searching, where 

the former assigns those peptide ions that have been previously identified, and the latter 

identifies peptide species that are not in the library merging the results of the two approaches 

into a single output for the user. This has been possible for many years in the Trans-

Proteomic Pipeline61,62 (TPP) with iProphet63, but still is not commonly performed. Such a 

workflow has been recently implemented in Mascot Server, which may well increase the 

adoption of the approach.

The target-decoy approach for estimating the number of false positives at any selected 

threshold is commonly applied for sequence database searching, either by including the 
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decoy sequences in the searched sequence database or by generating the decoys on-the-fly. 

There are several approaches to generating decoys, including reversing each protein 

sequence, generating random sequences based on the relative frequencies of amino acids in 

the database, reversing tryptic peptide sequences (i.e. holding the positions of lysine and 

arginine residues fixed and reversing between them), and scrambling the order of amino 

acids between lysines and arginines. Investigations into the best approach show comparable 

effectiveness64. An easy metric to assess the usefulness of decoys is to compute the balance 

between targets and decoys for zero probability identifications; the idea is that the relative 

ratio of targets to decoys amongst the known incorrect results should be equal to the ratio of 

targets to decoys in the reference database. The target-decoy approach can also be applied to 

spectral libraries and spectral library searching, and several ways have been used to produce 

decoys, for example by adding a fixed value to the precursor and/or fragment m/z, randomly 

assigning new m/z values to the peaks, and scrambling the letters of the peptide (except for a 

terminal cleavage residue) while moving the identifiable peaks around to match the 

scrambled sequence. A comparison of these approaches was performed by Lam et al.65. The 

results indicate that none of the proposed approaches truly achieve equal probability for 

target and decoy matches in cases of a zero-probability match. This is likely because these 

approaches do not produce decoy precursor/spectra that are similar enough to real spectra. 

The approach of scrambling the peptide sequence and moving the known peaks outperforms 

the other approaches, however is still somewhat biased and consistently more so than the 

target-decoy approaches used in sequence database searching. This may in part be due the 

fact that unannotated peaks are not moved and thus contribute to an incomplete prediction of 

what the scrambled peptide would be. Similarly, this technique becomes unavailable when 

libraries contain unassigned spectra since there is no sequence to scramble. Although this 

bias can be estimated and accounted for in the model to determine FDR, more work in this 

domain is needed.

Another topic of discussion was the mechanism by which two spectra are compared, 

typically a library spectrum and a new experimental spectrum. There are two major aspects 

to this issue, the algorithm used to compare the intensities and m/z values, and how to 

handle peaks without a match. Several broadly similar algorithms are available for 

comparison of spectra, most commonly a dot product, a dot product of the Nth root of 

intensities to reduce the influence of a few intense peaks, a cosine score, and the normalized 

spectral contrast angle approach66,67. Other approaches have also used probabilistic models 

of variation in peak intensities39 or proposed machine learning models combining multiple 

features into a single score38. However, perhaps a greater influence is exactly which peaks 

are aligned and go into the score. Exclusion of unfragmented precursor peaks, reporter ion 

peaks, and other non-informative peaks seems logical, but approaches where the absence of 

a library peak in the acquired data is not penalized could lead to false positives with 

seemingly high scores if only a few peaks are shared. Some approaches include a training 

step to calculate characteristic parameter values for each peak39,68. Indeed, when calculating 

similarity scores between new experimental spectra and reference spectra from synthetic 

peptides, it is important that all informative peaks are included, even when a peak has no 

counterpart. In making the decision of which peaks to use, it is important to consider the 

intent of the comparison38: is spectrum A equivalent to spectrum B? Is spectrum A the 
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primary constituent in spectrum B with minor additional contamination? Is spectrum A one 

of many constituents in spectrum B?

Comparison of spectra generated from peptides in natural samples with spectra generated 

from synthetic peptides is a powerful technique for verifying that the spectrum 

identifications are correct, and is specifically called out in the HPP MS Data Interpretation 

Guidelines69. SRMAtlas, a large scale effort to develop reference spectra for a few peptides 

for each human protein has been completed21, and the ProteomeTools project that aims to 

generate synthetic peptide spectra for nearly all accessible human tryptic peptides is 

ongoing70. Efforts are underway71 to validate discovery of HPP missing proteins via the 

comparison with SRMAtlas spectra. This process could be automated such that comparison 

of newly proposed HPP missing protein detections could easily be checked against available 

synthetic peptide spectra.

Library Searching for DIA Applications

While initial interest in spectral libraries was driven by spectral library searching of DDA 

MS datasets, the recent expansion in interest has been driven by applications to DIA 

workflows. In these workflows, the precursor ion selection window is much wider; thus, the 

instrument co-fragments many different peptide ion species at once, thereby creating highly 

multiplexed fragmentation spectra. Although library-free approaches to analyzing such data 

continue to emerge11,63, the most common methods for analyzing DIA data involve 

extracting chromatograms for each spectral library fragment ion for a given peptide and 

determining based on their presence and co-elution whether a given peptide is in the sample. 

These approaches are asking a fundamentally different question to database searching; i.e. 

rather than trying to identify a spectrum, they are asking whether there is evidence for a 

peptide of interest being present in the sample. However, while the original libraries created 

from the DDA MS input datasets include all peaks from the peptide ion and have been 

shown to enable peptide identification from DIA data18, the derived libraries destined for 

use by DIA analysis are typically trimmed such that only the top N (where N is often 5, 6, or 

10) most informative peaks are retained. It should be easy to distinguish between the 

primary archival libraries and the derived, trimmed versions intended for special 

applications. Some in the group highlighted that while 6 peaks may be sufficient to 

distinguish most peptides from one another72, 6 peaks may not be enough to confidently 

distinguish among different post-translational modification (PTM) isomers based on the 

same peptide sequence. This highlights the need for better encoding of metadata in spectral 

libraries, since the current formats do not support a uniform mechanism for encoding 

whether a library has been trimmed to suit a specific application and how that has been done. 

Also, in the case of PTM isomers, certain peaks in the fragment ion spectrum are highly 

informative while others are shared between isomers. Current approaches in DIA analysis of 

peptidoforms include annotation of fragment ions based on their capability to act as “unique 

ion signature” for a specific peptidoform73,74. The proposed format will need to capture this 

information on the fragment ion level as well.

The customary workflow for library-based DIA analysis involves the development of the 

reference library source from DDA input data, where most fragmentation spectra are 
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relatively pure and FDR control is well understood. However, the emergence of library-free 

DIA analysis techniques with tools such as DIA-Umpire, which use co-elution profiles of 

precursor and fragment ions to create filtered, simplified MS/MS spectra for searching, 

enable the possibility of developing spectral libraries from DIA data directly. This has the 

potential advantage that the reference spectra are created on the same instrument under the 

same collision energy and selection window conditions as the eventual subsequent analysis. 

However, most of the Dagstuhl group had serious reservations about such approaches, 

primarily due to the substantial and insufficiently understood uncertainties in controlling 

false positives in highly multiplexed spectra when assaying with a limited number of peaks. 

With DIA data, there is a magnified danger of confusing a peptide ion with another peptide 

ion that has a similar sequence but with a different mass modification due to the large 

precursor selection windows employed in DIA data. Also, most approaches to spectral 

library generation attempt to create high quality libraries from pure compounds to reduce 

error rates in the library itself and further research is needed on how impurities and low-

quality entries in the spectral library affect DIA analysis.

Other complicating factors for DIA analysis include accounting for the use of trimmed 

spectral peak lists in the initial identification, as the reliability measure attached to the 

library spectrum should be changed. The use of relative fragment ion intensities, as well as 

retention and drift (collisional cross section) time are other challenges for reliability 

estimation. The normalized or indexed retention time of a peptide could be valuable 

information for improving the confidence of an identification. However, determining 

retention times for decoy spectra is challenging. Current tools address this issue by ensuring 

that the overall distribution of retention times is equal between targets and decoys and that 

peptides of equal AA composition are assigned the same retention time. Retention times for 

decoy spectra could be estimated with retention time prediction tools, but these are usually 

less accurate than empirically determined values, so it is not clear how reliability estimates 

can be calibrated when including retention time as a factor.

Highly Similar Spectra

More broadly, the entire topic of highly similar spectra in a library generated good 

discussion amongst the group and is an area requiring additional research. Tools such as 

SpectraST35 include quality control routines that can, at the discretion of the user, prune 

library entries that have highly similar spectra (and precursor m/z) to another entry that is 

not simply a sibling peptidoform (e.g. a singly phosphorylated peptide with the 

phosphorylation at a different site). This can be applied under the assumption that either one 

of the two similar entries is misidentified, or, if they are both correct, the spectra are so 

similar that MS cannot effectively distinguish between the two with current technology. A 

better approach may be to develop more advanced tools that can assess the ambiguity75 and 

provide the user with probabilistic set of options (e.g., 99.9% confidence that a new 

spectrum is either peptide ion A or B, but distinguishing amongst those two is only 60%/

40%). Clearly, further work is required, and the capture of the metadata on which choices 

were made for construction of the library will be important.
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Gold Standard Test Dataset

A recurring theme of discussion was the need for a gold standard dataset and library that 

could be used in the uniform testing of various approaches and tools. None of the current set 

of existing reference datasets summarized at http://compms.org/resources/reference-data 

were deemed suitable for this purpose. The group decided that a good standard dataset 

would consist of one spectral library with ~10,000 entries and one mzML file with ~10,000 

spectra, in which ~5000 peptide ions (but not exact spectra) were in common. Each of the 

10,000 spectra in the two files should be derived from synthetic peptides (e.g. from 

ProteomeTools74 or SRMAtlas21), and, thus, the corresponding identities are known 

precisely. There should be a combination of high SNR spectra and low SNR spectra, where 

the low SNR spectra are derived from fragmentation near the fringes of an elution profile for 

which conclusive PSM evidence is available from a spectrum obtained near the peak of the 

same profile. A vetting process conducted by several groups to identify and discard errors in 

the spectrum identification list will be important to ensure a true gold standard. Efforts are 

underway to produce such a gold standard dataset.

Conclusion

Spectral libraries remain a substantially underutilized resource in proteomics, with the 

potential to vastly increase the efficiency of research. Other fields, such as metabolomics, 

have demonstrated the utility of spectral libraries; however, concepts from metabolomics 

will not always directly translate to proteomics. Future workflows will likely perform more 

than one stage of spectral library searching. The first stage will determine the most 

appropriate libraries to search and suitable parameters, a second stage would search against 

an extensive collection of the most suitable community libraries including identified and 

unidentified representative spectra derived from public datasets, and a final stage would 

perform sequence database searching of only the high quality spectra that remain unmatched 

after spectral library searching. This complex workflow should be designed to happen with 

minimal input from the user, and the results from all stages should be presented in a unified 

manner. Newly identified peptide species should be automatically added to local spectral 

libraries and optionally contributed to the community libraries, similarly to what is already 

enabled for metabolomics spectral libraries at GNPS57. Once such workflows become easier, 

faster, and more effective than current techniques, spectral libraries will be more widely 

adopted.

However, before that can happen, there are still a substantial number of challenges that must 

be overcome. Spectral library building, handling, and searching software must become more 

advanced. The cooperative development and interoperability of spectral library-using 

software requires a widely adopted community standard format, especially one that could 

encode extensive metadata about the library and its contents. The PSI is embarking on an 

effort to create this standard, and wide participation from the community will be a key 

contributing factor. All contributions are welcome via https://github.com/HUPO-PSI/

SpectralLibraryFormat.

Beyond the development of the standard format, there remain many open questions in need 

of addressing by research in the community as described above, including how to set up 
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community libraries, generate decoys, develop a gold reference standard, and how to 

compare spectra. By building a standard spectral library format, creating more advanced 

analysis software that capitalizes on the format, and addressing the remaining open research 

questions, a broad array of biomedical applications using all MS-based proteomics 

technologies will be enabled and accelerated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Major sites for download of peptide spectral libraries

NIST http://peptide.nist.gov/

MassIVE http://massive.ucsd.edu/ProteoSAFe/static/massive-kb-libraries.jsp

ProteomeTools http://www.proteometools.org/index.php?id=53

PRIDE Cluster https://www.ebi.ac.uk/pride/cluster/#/libraries

PeptideAtlas http://www.peptideatlas.org/speclib/

SWATHAtlas http://www.swathatlas.org/

SRMAtlas http://www.srmatlas.org/

GPMDB ftp://ftp.thegpm.org/projects/xhunter/libs/

BiblioSpec https://proteome.gs.washington.edu/software/bibliospec/v1.0/documentation/libs.html
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