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Tensor Field Visualization using Fiber Surfaces of Invariant Space

Felix Raith, Christian Blecha, Thomas Nagel, Francesco Parisio, Olaf Kolditz,
Fabian Günther, Markus Stommel, and Gerik Scheuermann

Abstract— Scientific visualization developed successful methods for scalar and vector fields. For tensor fields, however, effective,
interactive visualizations are still missing despite progress over the last decades. We present a general approach for the generation of
separating surfaces in symmetric, second-order, three-dimensional tensor fields. These surfaces are defined as fiber surfaces of the
invariant space, i.e. as pre-images of surfaces in the range of a complete set of invariants. This approach leads to a generalization of
the fiber surface algorithm by Klacansky et al. [16] to three dimensions in the range. This is due to the fact that the invariant space is
three-dimensional for symmetric second-order tensors over a spatial domain. We present an algorithm for surface construction for
simplicial grids in the domain and simplicial surfaces in the invariant space. We demonstrate our approach by applying it to stress fields
from component design in mechanical engineering.

Index Terms—visualization, tensor field, invariants, fiber surface, interaction

1 INTRODUCTION

Symmetric second-order tensor fields are used in different disciplines
like structural mechanics, fluid mechanics, geometry, or neuroscience
describing important variables like stress, strain, deformation, metric,
or diffusion. But their visualization is substantially less developed than
the visual representation of scalar and vector fields. In practice, tensors
are often reduced to scalar or vector fields prior to visualization. For
showing the complete tensor, glyphs visualizing the value at isolated
positions, and tensor lines following some eigenvector field are the
most often used methods [17]. There is also a variety of methods
derived from tensor lines like Hyperstreamlines [4], HyperLIC [34],
tensor fabrics [7, 13], and tensor topology [5, 11] that are sometimes
used. However, the intuitive, interactive analysis of three-dimensional
symmetric tensor fields like a typical stress field in structural mechanics
remains a challenge. Typically, the engineer is looking for an overview
of the whole field first that highlights extremal tensor values. The
failure of a constructed component or some natural structure is of
highest interest in typical cases. Since all failure criteria are invariant
functions, the engineer will concentrate on invariants before looking at
directional aspects. This stands in strong contrast to all visualization
methods derived from tensor lines which are essentially independent of
the invariants (except for equal eigenvalues showing up as degenerate
points). Consequently, this paper proposes an efficient method to
provide an overview and interactive analysis of invariants of symmetric
second-order tensor fields over three-dimensional domains, like the
stress or strain fields of components in mechanical engineering.

The underlying idea is the three-dimensional nature of the invari-
ant space. For a symmetric second-order tensor field over a three-
dimensional domain, the space of the invariants is three-dimensional.
This can be derived from the three real eigenvalues or the three invari-
ants of the characteristic polynomial. Therefore, the mapping from the
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tensor field domain to the invariant space is a mapping from 3-space
to 3-space, allowing for a direct visualization of the invariant space.
Furthermore, it is possible to select a volume in the invariant space and
show the pre-image in the domain, i.e. the parts of the object under
study where the tensor field has invariants in the selected volume. It is
also possible to compute the bounding surface of this pre-image which
leads to the notion of a fiber surface of the invariant space. The method
in this paper is therefore a generalization of the fiber surface approach
from Klacansky et al. [16] to the case of a three-dimensional range. We
show that this approach allows an exact, marching tetrahedron style
algorithm under modest assumptions:

• A simplicial mesh in the three-dimensional domain

• Symmetric second-order tensors given at vertices

• Piecewise linear interpolation of tensor invariants

• Selection of volume in invariant space by simplicial mesh.

Of course, generalizations are possible at the cost of exactness and
computational complexity. Also, we do not claim that the presented
algorithm is the final word on efficiency, but rather provide a proof of
concept that allows for nearly interactive visual analysis of stress fields
from component design in mechanical engineering.

2 RELATED WORK

While there is a lot of work on visualizing diffusion tensor images, we
do not refer to this material here, as it is only relevant if it can be applied
to indefinite tensors and does not have a strong relation to neuroscience.
It should be noted, however, that our work might be applied in this
context in the future. The survey of Kratz et al. [17] splits the current
state of the art of tensor visualization beyond the positive definite case
into three groups: the local, the continuous and the multi-view tensor
visualization. Local methods mostly use glyphs, but the problem of
design, placement and rendering comes along with them. Although
glyphs are the only known method to represent all properties of a tensor,
they should not be too complex. A popular method avoiding ambigui-
ties depending on viewing directions are superquadrics by Kindlmann
et al. [14]. An important limitation of local methods is the missing
reflection of the continuity of the tensor field. Continuous methods
always pick a part of the tensor information for visualization. Most
continuous methods are built upon the tensor line idea from Dickin-
son [6], i.e. a streamline following one of the eigenvectors. Popular
techniques are Hyperstreamlines of Delmarcelle and Hesselink [4],
tensor topology [5, 11] and texture based approaches like HyperLIC of
Zheng et al. [34], or fabrics [7, 13]. However, these approaches nearly
ignore the invariant part as mentioned before. Finally, multi-view vi-
sualizations link the well-known visualizations with new ones to ease
the interpretation and development of new visualization techniques as



well as the representation of at least one more property of a tensor.
Multi-view visualization is not a recent idea in general as it is already
used in texture mapping [28, 29], fluid simulation on surfaces [31], and
additional topics but it is new in regard to the visualization of tensor
fields. Our approach is a multi-view, in fact two-view, approach, but it
computes explicit geometry in the domain providing non-local informa-
tion, so it has properties of continuous methods as well. As it focuses
exclusively on the invariants, it is complementary to most continuous
techniques.

Only very few articles studied the visualization of symmetric tensor
fields by looking at the invariant space. The two approaches closest
to our work have been published recently by Palacios et al. [24] and
Zobel and Scheuermann [35]. Both approaches define specific surfaces
in the domain by properties of the invariants or the invariant mapping
in the sense of a feature surface. Palacios et al. [24] define the surface
of traceless tensors and the surface of tensors with mode zero (tensor
mode will be defined in the next section). They also report that isosur-
faces of tensor invariants like tensor mode, tensor isotropy, and tensor
magnitude are helpful in engineering contexts. This was a source of in-
spiration for us. Zobel and Scheuermann [35] define so-called extreme
points of the tensor field as points where the gradient of the invariant
map has lower rank. This leads to extremal lines in two-dimensional
domains and extremal surfaces in three-dimensional domains. In these
earlier works, surfaces in the physical domain are defined based on
mathematical properties in the invariant space. In contrast, we propose
a general interactive mechanism to define surfaces in invariant space
and visualize the pre-images of these surfaces in the physical domain.
Thus, we allow for an interactive exploration of tensor fields based on
invariants.

As we construct separating surfaces with explicit geometry from
grid-based data by iterating over all cells, our approach is a March-
ing Cubes [21] style approach, compare also the marching tetrahedra
variant [1]. Basically, if our defining surface in the invariant space is
normal to one coordinate axis, we compute an isosurface of an invariant
as suggested by Palacios et al. [24]. Indeed, we are convinced that our
approach can also profit from the many improvements and acceleration
techniques of marching cubes like Livnat’s work [20].

As mentioned in abstract and introduction, our algorithm is a gener-
alization of the work by Klacansky et al. [16] which builds upon the
idea of fiber surfaces from Carr et al. [2]. In their case, the isovalue is
an element of a two-dimensional co-domain which leads to the usage of
polylines in the range for the definition of fiber surfaces in the domain.
Basicly, we have a three-dimensional co-domain, the invariant space
of the tensor field, which leads to using triangulated surfaces in the
co-domain defining fiber surfaces in the domain of the tensor field.
They use octree-based subdivision of the domain and pre-calculated
lookup tables of all possible triangle characterizations in the spirit of
marching cubes. We do not use this in our current implementation,
but these ideas should lead to faster implementations in our case, too.
But we follow the idea of a fast exact algorithm based on elementary
geometric operations as suggested by Klacansky et al. [16] for their
case.

Mechanical engineers are the main target users of our technique,
even if neuroscientists or geometric designers may also profit. In
mechanical engineering, the use of isosurfaces of tensor invariants is
a daily business, as a look at the post-processing capabilities of wide-
spread finite element software like Abaqus [32] shows. Zobel et al. [36]
also comment about the necessity to visualize tensor gradients under
certain conditions, going beyond the second-order case. A very nice
application showing the power of advanced tensor visualization in
mechanical engineering was given by Kratz et al. [18]. They improved
the strength of a mechanical component, especially a brake lever, by
visualizing tensor lines to support the design of rib structures. This led
to a stiffer design with the same amount of material which could also
be used to reduce material consumption under given loading. We hope
for similar results by using our approach in the future.

3 TENSOR FIELDS AND INVARIANT SPACE

3.1 Symmetric second-order tensor fields
We consider a symmetric, second-order tensor field over a three-
dimensional domain. Typical examples would be stress or strain fields
in structural mechanics, the rate of deformation tensor in fluid dynam-
ics, the metric tensor in geometry, or the diffusion tensor in diffusion
tensor imaging (DTI) in neuroscience.

The set of all second-order tensors R3⊗R3 is nine-dimensional. For
a fixed Cartesian coordinate system e1,e2,e3, it has the orthonormal
basis

Ai j := ei⊗ e j, i, j = 1,2,3. (1)

Similarly, the set of all symmetric tensors Sym(R3 ⊗ R3) is six-
dimensional and has the orthonormal basis

B11 = e1⊗ e1 (2)

B12 = (e1⊗ e2 + e2⊗ e1)/
√

2 (3)

B13 = (e1⊗ e3 + e3⊗ e1)/
√

2 (4)

B22 = e2⊗ e2 (5)

B23 = (e2⊗ e3 + e3⊗ e2)/
√

2 (6)

B33 = e3⊗ e3 (7)

see e.g. Kindlmann et al. [15]. A symmetric tensor T ∈ Sym(R3⊗R3)
can be written in this basis as

T = ∑
j≤i

Ti jBi j. (8)

From now on, all tensors will be symmetric, second-order and three-
dimensional. We will need some classical operations on tensors. The
inner product of two tensors is written as

A : B := ∑
i j

Ai jBi j. (9)

The norm of a tensor is defined by

|T | :=
√

T : T . (10)

Trace and determinant are given by

tr(T ) = T11 +T22 +T33 (11)
det(T ) = T11T22T33 +T12T23T13 +T13T12T23 (12)

−T 2
13T22−T 2

23T11−T 2
12T33

We will also look at the deviator of T defined as

dev(T ) := T − 1
3

tr(T )I (13)

where I = B11 +B22 +B33 is the identity tensor.
A symmetric, second-order tensor field over a three-dimensional

domain D⊂ R3 is a map

T : D → Sym(R3⊗R3) (14)
x 7→ T(x)

3.2 Invariant Space and its Coordinate Systems
We are interested in the invariants of a symmetric second-order tensor
T . An invariant of a symmetric tensor T is a scalar function

β : Sym(R3⊗R3)→ R (15)

that is invariant to the operations of rotations of R3, i.e. to operations
of the special orthogonal group SO(3) which means

β (T ) = β (RT RT ) ∀R ∈ SO(3). (16)



The space I of all invariants of a three-dimensional, symmetric, second-
order tensor is three-dimensional [30]. Therefore, for any symmetric
second-order tensor field T over a domain D⊂ R3, we have a map

TI : D → I (17)
x 7→ TI(x)

We may select a basis β 1,β 2,β 3 of I and study the mapping of coeffi-
cients

TI : R3 ⊃ D → R3 (18)

(x1,x2,x3) 7→
3

∑
i=1

βi(x)β i

with x = ∑
3
i=1 xiei. This is a map between three-dimensional spaces

and will be used for visualization purposes.
Obviously, the choice of the basis is a key question for visualization

and interpretation. Literature mentions several basis sets of practical
relevance. Three basis sets can be derived from the characteristic
equation

0 = det(T −λ I) = λ
3− I1(T )λ 2 + I2(T )λ + I3(T ) (19)

Its coefficients are one popular basis set and are given by

I1(T ) := tr(T ) (20)

I2(T ) := tr(T )2− tr(T 2) (21)

= T11T22 +T11T33 +T22T33−T 2
12−T 2

13−T 2
23

I3(T ) := det(T ). (22)

Engineers like to study a somewhat different basis which makes explicit
use of the deviator:

I1(T ) = tr(T ) (23)

J2(T ) :=
1
2

dev(T ) : dev(T ) (24)

J3(T ) := I3(dev(T )) = det(dev(T )) (25)

A third important set is given by the roots of the characteristic
equation, i.e. the eigenvalues of T which are always real numbers in our
case of symmetric tensors. We denote them by λ1(T ),λ2(T ),λ3(T ).

For two more basis sets, we may use the R-invariants by Ennis and
Kindlman [8]

R1(T ) = |T | (26)

R2(T ) =

√
3
2
|dev(T )|
|T |

(27)

R3(T ) = mode(dev(T )) = 3
√

6det
(

dev(T )
|dev(T )|

)
(28)

and the K-invariants from Criscioni et al. [3]

K1(T ) := tr(T ) = I1(T ) (29)

K2(T ) := |dev(T )|= 4
√

J2(T ) (30)

K3(T ) := mode(dev(T )) = 3
√

6
J3(T )

J2(T )
3
2

(31)

Ennis and Kindlmann [8] show that the Ii, λi, Ri and Ki are orthonormal
bases (which was proven for the Ki by Crisconi et al. [3] before).
Furthermore, the Ii and λi can be seen as Cartesian coordinates for the
invariant space, while the Ki can be interpreted as cylindrical coordinate
system, and the Ri as spherical coordinate system.

4 STRESS TENSOR INVARIANT SPACE

4.1 Stress Tensor Invariants
While symmetric second-order tensors over three-dimensional domains
appear in many different application domains, e.g. diffusion tensor
imaging in neuroscience, rate of deformation tensor in fluid mechanics,
or metric tensors in differential geometry and geometric design, we fo-
cus here on structural mechanics as application domain. The presented
technique can be applied in these other domains without changes, but
to be a bit more explicit in the results section, we picked this domain as
example. Also, there are several tensor fields in structural mechanics
that are symmetric, second-order and three-dimensional, especially
most stress and strain tensors. But, we concentrate here on the popular
Cauchy stress tensor to demonstrate and evaluate the concept and leave
the application to other fields for future work.

The Cauchy stress tensor σ(x) describes the local stress t(x,n) ∈R3

at position x∈D as force per unit area on any plane with normal n∈R3

by
t(x,n) = σ(x)n (32)

where t(x,n),x and n are given in Eulerian coordinates. This version
of the stress tensor is usually computed and studied in finite element
simulations. There are other stress tensors around. For a description
of them and the relations among them, consult a typical engineering
reference like Holzapfel’s textbook [12].

Let us start with some well-known interpretations of stress tensor
invariants in mechanical terms. The trace of the stress tensor

I1(σ) = K1(σ) = tr(σ) (33)

is closely related to the mean stress

p(σ) :=
1
3

tr(σ) =
1
3

I1(σ) =
1
3

K1(σ) =
λ1(σ)+λ2(σ)+λ3(σ)

3
(34)

which describes hydrostatic stress. If the deviator is zero, e.g. J2(σ)=
J3(σ) = 0 resp. K2(σ) = K3(σ) = 0, it holds

σ = p(σ)I (35)

with identity tensor I which means that we have equal stress (usually
tension for positive sign and compression for negative sign) on all
planes at this point. For an (elastic) fluid that cannot sustain any shear
stress, p is called pressure, an important variable in fluid mechanics.

If the hydrostatic stress is ignored or not relevant for the question at
hand, the deviator of the stress dev(σ) is studied. A fixed multiple of
its norm

σv :=

√
3
2
|dev(σ)|=

√
3
2

K2(σ) =
√

24J2(σ) (36)

is called von Mises stress [22] and is a popular yield criterion for
important materials like steel (and many other metals) or some uni-
form plastics. It measures the strength of shear stress by looking at
the squared sum of the differences of all eigenvalues. The underlying
assumption is that the considered material starts plastic deformation
under shear stress above a certain limit. This scalar limit can be mea-
sured for a material in an uniaxial test while it is applied in complicated
triaxial stress states. If yielding depends on the isostatic pressure
I1(σ) = K1(σ) as well, or at the relation between all eigenvalues, i.e.
it depends also on K3(σ), I3(σ),J3(σ), more complicated yield func-
tions are used which are described shortly in the next section.

In general, the eigenvalues describe the normal stresses in the eigen-
system of the stress tensor, i.e. local Cartesian coordinates where all
shear stresses vanish. The smallest (minor) eigenvalue

λmin(σ) = min(λ1(σ),λ2(σ),λ3(σ)) (37)

defines the maximal normal compression, and the largest (major) eigen-
value

λmax(σ) = max(λ1(σ),λ2(σ),λ3(σ)) (38)

describes the maximal possible tension.



Fig. 1. Exemplary visualization of the eigenvalue-system of a bending
beam with an additional von Mises surface. The cube is used to analyze
the invariants which induce malfunction.

4.2 Yield Surfaces
In one typical structural mechanics application, there is a geometric
design of a component together with loading conditions on some part of
the boundary. The engineer has to check if the current design withstands
the defined loading conditions. Before doing any physical tests, there
will be a finite element simulation to check whether the component
fails, i.e. where and under how much load it breaks.

For most materials, there is a prediction model for the stress states
that will create plastic deformation instead of elastic deformation. Quite
often, this stress is considered the limit to failure. This limit is given
in these models as yield surface. Yield surfaces are usually described
as implicit function of invariants of the stress tensor, i.e. there is a
function

f : I → R (39)
σI 7→ f (σI)

such that the yield surface is given by

f (σI) = c (40)

for some material-dependent constant c ∈ R. In the simple case of a
purely elastic simulation, the engineer is interested in all points with
stresses outside the yield surfaces as the component will fail there (see
Figure 1). He may also be interested in positions where the stress
gets close to the surface as the model may still predict stability but the
physical test may already show failure. We will discuss more practical
questions in the results section.

The explicit formulae for the yield function are given in some basis
of the invariant space (and can be expressed in the other bases by trans-
formation, of course). We note a few popular cases. The von Mises
yield surface is given by √

3
2

K2(σ) = σv (41)

where σv is called von Mises stress. If visualized using the principal
stresses as coordinates, it forms an infinite cylinder along the mean
stress axis, i.e. λ1(σ)+ λ2(σ)+ λ3(σ) (see Figure 1). For a short
explanation, see the previous section, some engineering book, or the
original paper by von Mises [22].

The Tresca yield surface is given by

σT = λmax(σ)−λmin(σ) (42)
= max(|λ1(σ)−λ2(σ)|, |λ2(σ)−λ3(σ)|, |λ3(σ)−λ1(σ)|)

which means that there is a limit for the maximal shear stress. If
visualized using the principal stresses as coordinates, it forms an infinite
six-sided prism along the mean stress axis.

The Drucker-Prager yield surface combines hydrostatic stress and
shear stress limits into

βK1(σ)+K2(σ) = σt (43)

with the weight β between the two stress invariants and the scalar
limit σt . It can be seen as a generalization of the von Mises criterion
allowing for hydrostatic stress dependency. This model is often used
for materials like concrete or rock with the assumption that there is a
shear stress limit as in the von Mises models above, but it depends on
the normal stress (typically tension). In the principle stress coordinate
system, it looks like a cone with axis along the mean stress.

The Mohr-Coulomb yield surface adds a hydrostatic pressure de-
pendency to the Tresca model leading to the formula

max(|λ1(σ)−λ2(σ)|+K(λ1(σ)+λ2(σ)), (44)
|λ2(σ)−λ3(σ)|+K(λ2(σ)+λ3(σ)),

|λ3(σ)−λ1(σ)|+K(λ3(σ)+λ1(σ))) = σMC

where K = m−1
m+1 with m = σc

σt
, the maximal tensile stress σt , and the

maximal compressive stress σc in the uniaxial test. It is also used for
concrete and rock, like Drucker-Prager. In principle stress coordinates,
the Mohr-Coulomb yield surface looks like a conical prism. There
are many more yield surface models, including all types of quadratic
surfaces (Burzyski-Yagn model) generalizing the examples above.

Of course, all these laws are approximate, so engineers will keep
margins to be on safe side. Sometimes the chosen law may not be
perfect, so a look at the whole stress state instead of the invariant helps.
For purely elastic simulation, the model will compute stress states
outside the yield surface, thus indicating failure. For elasto-plastic
simulations, the stress will never be outside the yield surface, but stay
there while plastic deformation takes place.

There are also indications for materials like metal that local failure
does not only depend on stress state but also on the gradient. Basically,
it is assumed that a high stress does not yield failure if there is also a
high gradient indicating substantially lower stress in close surrounding.
Again, engineers are interested in observing the gradient together with
stress in such cases [36].

5 OVERVIEW

The idea of the paper is to develop an algorithm that extends the ap-
proach of Klacansky et al. [16] so that the three-dimensional invariant
space of symmetric second-order tensors can be used as range instead
of a two-dimensional one. The reason is the difficult interpretation of
invariant spaces which can be eased by interactive visualization and
direct linkage to the physical domain. Moreover, our method offers
new approaches for the analysis of invariants and their relationships
in real world applications. In order to generalize the work of Klacan-
sky et al. [16], it is not sufficient to adapt the algorithm itself. The
interaction in the range has to be redesigned as well, to deal with the
characteristics of the three-dimensional space. This will be discussed
in section 7. The invariant space hampers the generalization because
it is in the nature of typical data that the geometric primitives (e.g.
tetrahedra) interleave and infuse each other heavily which increases
the challenge for effective representation of the data. The interaction
will be handled by selection of regions of interest with geometrical
primitives which are assumed to be closed and convex. The algorithm
itself assumes a triangulated surface of the geometrical primitives as
input, referred to as interactor.

As mentioned before, we assume that our tensor field is given over a
tetrahedral grid in three-dimensional space with Cartesian coordinates
and tensor values given at the vertices. Each vertex is mapped onto a
vertex in the invariant space by the invariant map TI, see equation 18.
Due to the non-linear formulae of the invariants, a correct interpolation
over the tetrahedra would lead to high computational load and an
exact algorithm would be very difficult. Therefore, we assume a linear
interpolation of the invariants over each tetrahedron, even if this is
mathematically incorrect. Consequently, the invariant map pushes the
structure of the grid in the domain to the co-domain. In other words,



the image in invariant space is a tetrahedral mesh too, and all neighbor
relations of vertices are kept. However, there is heavy self-intersection
of the mesh because of the same invariants which appear several times
in the tensor field. Unlike the domain, the co-domain is displayed in
Cartesian or in cylindrical coordinates depending on the selected basis,
see section 3.2.

6 FIBER SURFACE COMPUTATION

6.1 Basic Approach
As mentioned in the previous section, our assumption of linear interpo-
lation of the invariants maps each tetrahedron of the grid in the physical
domain to a tetrahedron in invariant space. In invariant space, we as-
sume that the selection of the volume of interest is done by an interactor
which is given as triangulated surface. We define our fiber surface in
invariant space as the intersection of the interactor with all tetrahedra.
Therefore, we basically intersect each tetrahedron in invariant space
with each triangle of the interactor. This leads to a large number of
triangle-tetrahedron intersection computations.

To intersect a triangle with a tetrahedron, we compute the plane of
the triangle and check if the vertices of the tetrahedron lie on different
sides of the plane. If not, there cannot be an intersection. Otherwise,
we compute the four faces of the tetrahedron and carry out simple
triangle-triangle intersections using methods from literature [9, 23, 33].
The intersecting lines of the triangle-face pairs are calculated and its
vertices are added to a list of all intersecting points. In addition, we
check for the vertices of the triangle from the interactor if they are
inside the tetrahedron. If they are inside, they are also added to the list.
We order all intersection points into a polygon as they must lie in the
plane of the interactor triangle and create triangles. In an additional
step, we identify intersection points from different tetrahedra on the
same interactor face. In this way, we get a triangulated surface in the
invariant space.

After these intersection computations, we need to map the resulting
triangulated surface back to physical space. Since we assume a linear
mapping of invariants, the inverse mapping is also linear and we can use
barycentric coordinates inside each tetrahedron to map the intersection
back to physical space. The resulting triangulated surface is the fiber
surface.

In addition, a post-process ensures that the set of triangles is split
into (connected) contours which allows a simple visual analysis of
connected components in the object space. A half-edge data structure is
used to realign the normals of the triangles of the separate structures to
identify the interior and exterior of a surface clearly. Furthermore, we
index the triangles of the fiber surface by the interactor triangles. This
allows for a visualization of the part of the fiber surface associated with
a specific interactor triangle, e.g. by simple color coding. Algorithm 1
describes the general fiber surface extraction algorithm.

6.2 Special Cases
As usual with computational geometry algorithms, special cases need
special attention. A first problem arises from numerical errors in com-
puting the intersection points. This may lead to slightly different
coordinates for the same point when computing it multiple times. This
happens especially if the tetrahedra are very small so that even small
round-off errors have a significant effect on the results (see Figure 2).
Therefore, a numerically correct calculation of the intersection points
must be used to avoid problems with connectivity or even visible holes
in the resulting surface. A second challenge is provided by exactly
planar tetrahedra. In these cases, there is no bijection between invariant
space and physical domain. These tetrahedra are not considered by our
algorithm at all because the intersections of the adjacent tetrahedra of
the interleaving faces create the necessary geometry. We just connect
the triangles correctly to get the right topology for our fiber surface.

6.3 Acceleration
Considering Figure 2, it is noticeable that the mapped tetrahedra vary
substantially in size and shape in the co-domain which hampers a
partition for fast extraction of fiber surfaces. Nevertheless, we need to

Fig. 2. An example of a tensor field visualized as wireframe in invariant
space with an intersecting interactor (red). The computed intersections
of one triangle of the interactor with the tetrahedra are emphasized.

Fig. 3. Two-dimensional sketch of an interactor (red circle) and a tetrahe-
dron (black triangle) which overlap and where none of the vertices of the
tetrahedron lies inside the interactor.

reduce the number of triangle-tetrahedron intersection tests to enable
an interactive exploration of datasets. This is done in two steps:

1. Bounding spheres of the interactor and each tetrahedron are cre-
ated and checked for intersection. If no intersection is found, the
algorithm skips the current tetrahedron for any further calcula-
tions. The method for the computation of the bounding sphere of
a tetrahedron is illustrated in Algorithm 2.

2. A signed distance field similar to marching cubes is applied to
the remaining tetrahedra. Only if the vertices of a tetrahedron lie
in different half spaces created by the plane through the current
triangle, the current tetrahedron must be observed in the fiber
surface extraction process.

The partition of all interactors into their triangles facilitates a later
parallelization and introduces the ability to look at the different fiber
surfaces which were extracted. The second reduction cannot be applied
to the entire interactor because it is a closed body and the tetrahedron
can infuse it without a vertex inside the tetrahedron (see Figure 3). For
the sphere intersection test, the center M of the interactor is calculated
using the arithmetic mean of all points of the triangulation of the
interactor. After this, the radius R of the interactor is calculated using
the center M and the farthest point. Next the bounding spheres of all
tetrahedra are created by computing their centers mi and radii ri. The
calculation of the sphere around a tetrahedron depends on the type of
the tetrahedron. If the sphere through all four vertices has a center inside
the tetrahedron, we use this sphere. If the center is outside, we look at
the largest triangular face. We take the center of the circumference of
this triangle and use its radius as radius of the sphere. The fourth vertex
is inside this sphere in this case, so we get a smaller sphere than using
the sphere through all vertices.

In addition, all tetrahedra whose radius equals zero are removed
because they consist of only one point. For the remaining tetrahedra,
we check the spheres for intersection. An intersection of a tetrahedron
and a triangle is only possible if the distance between the centers mi
and M of their bounding spheres is smaller than the added radii ri +R.



Algorithm 1 Calculation of a Fiber Surface
Require: Grid OSG in Object Space, Possible Intersecting Tetrahedra

PITet, list of triangles Tri from interactor
for all triangles tri ∈ Tri do

2: for all tetrahedra tet ∈ PITet do
set case in = f alse, out = f alse

4: for all vertices vi ∈ tet do
compute position of vertex vi relative to plane E across

tri
6: if vi < 0 then set in = true

else set out = true
8: end if

end for
10: if in = true and out = true then

add tet to CoTet . List of Constrained Tetrahedron
12: end if

end for
14: for all tetrahedra tet ∈CoTet do

for all faces f ∈ tet do
16: compute intersecting points IP from f with tri

add IP to IsectPointsTet
18: end for

for all points P ∈ tri do
20: if P inside tet then . Test with linear combination

add P to IsectPointsTet
22: end if

end for
24: for all points P ∈ IsectPointsTet do

projection P→ P′ in OSG
26: add P′ to IsectPointsTet ′

end for
28: triangulation of the intersectionPlane . Created of

IsectPointsTet ′
set the normals of the triangulationPlane

30: end for
end for

7 INTERACTIVE VISUAL ANALYSIS

We aim at interactive visual analysis of a symmetric, second-order,
three-dimensional tensor field by selecting surfaces in invariant space
which define fiber surfaces in the domain. For this purpose, we present
the user two linked views, one for the physical three-dimensional
domain, and one for the invariant space. While there are several obvious
choices for showing context in the physical domain, like boundary grid
and global coordinate system, the presentation of the invariant space is
less straightforward.

7.1 Coordinate System

For projecting to invariant space, we need to define coordinates in
invariant space. In section 3.2, we presented five different coordinate
systems. Even if we do not consider the Ri-System (a spherical coor-
dinate system) for our mechanical applications, we have at least three
Cartesian and one cylindrical system with clear semantics as explained
in section 4. In principle, we leave the decision up to the user who may
decide to look at their data in different coordinate systems. However,
there is one issue about the I- and I,J-systems that requires care: scal-
ing. From the definitions, it can be seen easily that trace is a linear,
second invariant a quadratic, and determinant a cubic quantity in terms
of tensor entries. Therefore, there will be most likely substantial differ-
ences in value for these coordinates. One solution is to take roots or
powers to bring them into a similar range. another would be the scaling
by the user. Overall, we discourage the use of these two coordinate
systems because of this scaling issue. A short look at the K-basis shows
that K2 is basically the square root of J2 which indicates that units fit
well to K1. Furthermore, K3 is a ratio between well scaled J3 and J2,
known to be in the interval [−1,1]. If one interprets K3 as an angle by
arcsin(K3) in a cylindrical system, there is no scaling issue with the

Algorithm 2 Sphere Intersection Test
Require: grid ISG in invariant space, list of triangles Tri of the inter-

actor
1: compute midpoint M from interactor
2: compute radius R from interactor
3: for all tetrahedra teti ∈ ISG do
4: compute midpoint mi from tetrahedron teti
5: compute radius ri from tetrahedron teti
6: compute midpoint distance di = norm(m1−M)
7: remove teti with ri = 0 . Compute possible intersection from

teti and the interactor
8: if di < (ri +R) then
9: add teti to PITet . List of possible intersecting tetrahedra

10: end if
11: end for

K-invariants. Also, there is also no scaling issue with the eigenvalues,
i.e. λ -invariants.

As additional context, we offer the user to present one of the four
yield surfaces described in section 4.2 with adjustable parameters to al-
low for additional context besides the coordinate system (see Figure 1).
Of course, if a different yield surface fits the used material model better,
we can easily add this surface as well to the system.

7.2 Invariant Space Image
After setting up the coordinate system, we need to show the image of
the invariant map in our invariant space view. As mentioned before, we
assume that the tensor values are given at the vertices of a tetrahedral
mesh in the domain. We compute the invariant coordinates according
to the chosen basis at the vertices. If two neighboring vertices have
the same invariants or the Euclidean distance between them is smaller
than a predefined ε , the two vertices are moved to the same position in
invariant space. The edge between them is still stored to keep the grid
topology. This procedure helps the triangle-tetrahedron intersection
algorithm of the previous section to compute a valid inverse mapping.
Nevertheless, we can still have planar or almost planar tetrahedra in
invariant space which create numerical errors in the inverse mapping.

To map the tetrahedra, we assume the linear interpolation of invari-
ants inside each tetrahedron despite mathematical errors, so that each
tetrahedron in the domain maps to a tetrahedron in invariant space. This
leaves us with the question how to show all those tetrahedra or more
generally, the image of the invariant map. We have used four different
possibilities in our tests:

Point Representation Our simplest visual representation in the
invariant space is to show all vertex images as points resp. small
spheres, see Figure 4A.

Wireframe Representation While the mesh topology is kept in
invariant space, there is usually heavy overlapping of the tetrahedra in
the invariant space. This is due to the fact that the same invariant set
is reached at several positions in the data. Nevertheless, we frequently
use a wireframe representation of the mesh in the invariant space. This
puts visual emphasis on extreme values and outliers which are typically
of interest for further inspection. It also gives some clue where many
tetrahedra overlap, but without any indication of number or density, see
Figure 4B.

Surface Representation We have also experimented with ren-
dering all faces of the tetrahedra as transparent triangles. This allows
for some indication of density (see Figure 4C), even if this is mathe-
matically incorrect because the density inside the tetrahedra and the
distance between front and back face are ignored.

Direct Volume Rendering of Density In principle, it is possible
to compute an exact density distribution in the invariant space based on
the mapped tetrahedra. This density can be visualized by direct volume
rendering. However, due to the massively overlapping tetrahedra, it
is a real challenge to implement an algorithm for this that allows for
interactive rendering. Therefore, we leave this task for future work and



Fig. 4. Different representations of the mesh of tetrahedra in the three-
dimensional invariant space: point representation of the vertices (A),
wireframe representation (B), surface representation (C), and represen-
tation with direct volume rendering of the density (D).

use a rather coarse approximation. As there are fast volume rendering
algorithms for voxel grids, we simply define such a grid with a size
close to the maximum texture memory of the graphics card. In a pre-
processing step, we compute the density for each voxel. For this, we
iterate over all tetrahedra, compute the voxels intersected by the mapped
tetrahedron in invariant space, and add up the corresponding density.
This leads to a sampling of the correct density over the voxel grid. We
use a standard raycasting algorithm implemented using shaders on the
graphics card to render this density interactively. As transfer function,
we use simply a constant blue value and linearly increasing opacity.
For a white background, this results in a good indication of the density
distribution of the image in invariant space. However, extreme values
are invisible in the volume rendering due to low density. Here, visual
attention is directed towards the areas of high density in the invariant
space. More precisely, the image corresponds to the density projected
along the current viewing direction, but after some interactive rotations,
the viewer gets an idea of the density distribution, see Figure 4D.

The engineers liked the wireframe representation best, as it indicates
extremal values and gives some indication of the neighboring values
around those. Sometimes, they also asked for the simple point represen-
tation. The other two options were less interesting to them, but this may
be due to the fact that they are more difficult to understand or interpret.
Further research will be necessary to find the best solution.

7.3 Interaction
The user needs to position a triangular surface in the invariant space
to define the fiber surface. As this should be possible in an interactive
fashion, we decided to use a small set of predefined “interactors”. These
interactors are closed graphical primitives with triangulated surfaces
that can be scaled, rotated, and moved in invariant space. By right
mouse click, the current position is communicated to the fiber surface
algorithm which calculates the fiber surface shown in the domain.
Currently, we support the following interactor geometries: tetrahedra,
cubes (see Figure 5, 6, 7), spheres (see Figure 9), regular cylinders,
pyramids, and prisms. It is possible to use several interactors at the
same time, each of them creating a fiber surface. They are selected
via left mouse click. However, we kept the number of interactors and
number of triangles per interactor small to get close to interactivity for
medium sized models, so we have not tested many interactors or very
complicated designs. Of course, there are many more possibilities to
define the interaction. We expect more research about this in the future,
especially together with faster implementations of the fiber surface
algorithm.

As shown in Figure 1 a yield surface could improve the exploration.
Assuming that the yield surface defines the maximal stress for the
specific application, all tetrahedra in the invariant space which lie

Fig. 5. Usage of a great cuboid interactor in the invariant space of a
bending beam (right) and visualization of the extracted fiber surfaces
inside the corresponding grid in the object space (left).

beyond the surface are an indicator for a collapse. An interactor could
be used to select these tetrahedra to show the regions in the physical
domain where the collapse could occur.

Inverse Fiber Surface Algorithm A very nice property of our
algorithmic setup is that we can also calculate the forward mapping
from the domain to the invariant space without a new algorithm or
changes to the fiber surface algorithm. Our user interface allows using
the interactors also in the physical domain defining a triangulated sur-
face there. Now, the fiber surface algorithm computes the intersection
of these triangles with the tetrahedra of the grid in the domain. Then, it
maps the intersection, consisting of a few triangles per tetrahedron, to
invariant space using the (forward) invariant map. The resulting trian-
gular surface informs the user about the sub-set of invariant space that
is reached by the selected part of the domain. The triangular surface in
invariant space may be self-intersecting, but it serves its purpose well
as can be seen in the results section.

8 RESULTS

We demonstrate our method and its potential by applying it to three
typical examples from mechanical engineering. The first case is a
classical bending beam (cantilever). The cantilever is a well-known
mechanical problem and therefore easily understood by engineers, so
we use it to explain basic functionality. The second example looks at
two loading simulations of a composite-metal hybrid component. In
these simulations, the influence of composite defects on the strength of
the component is investigated. Finally, the third example consists of a
three-dimensional single-edge notched beam in a three-point bending
configuration. The demonstrations were run on a standard workstation
with an Intel Xeon E5-2630 v3 with 2.40 GHz, 32 GB Ram and a Nvidia
GeForce GTX 980. Implemented is the algorithm inside our framework
with C++.

8.1 Bending Beam
At first, we use a familiar engineering application, the cantilever, to
show our approach in a familiar engineering application. The test
dataset is a cantilever and has been generated as well simulated with
Abaqus/Standard CAE [32]. The beam’s dimensions are 30× 30×
100 mm and it is completely fixed on one side (encastré) while on the
loose side a force is introduced over the entire cross-section surface.
The load is 1000 N in negative y-direction. The beam material is
metal with a Youngs modulus of 210 GPa and the Poissons ratio of 0.3.
The cantilever is meshed with three-dimensional quadratic tetrahedral
continuum elements (C3D20) with a size of 5 mm.

In Figure 5 the beam is shown as the blue wireframe in the domain
view on the left side. On the right side, the invariant space view is given
where the three principal stresses are used as Cartesian coordinates.
Here, the major principal stress is mapped at the x-axis, the medium
principal stress at the y-axis and minor principal stress at the z-axis.

First, the symmetric load distribution in the bending beam can be
seen in the obviously symmetric structure of the invariant space. The



structure is not easily interpreted but using the interactor, specific areas
of interest either in invariant space or object space can be examined in
more detail. For instance, this allows the definition of regions where
significant high values or extreme differences of stress occur. In Fig-
ure 5, a cubic interactor (transparent red) is chosen with dimensions
of 20×20×20 MPa. The cube cuts the invariant space with two sides
which are visualized as fiber surfaces. The corresponding fiber surfaces
are rendered in the beam in the domain view on the left side. The upper
surface shows a specific tensile stress while the second surface is a
specific compression load in the lower part of the beam. This image
is expected because of the applied bending force at the opposite end
of the beam. Equally, the neutral phase of the bending beam could be
pictured lying parallel in the middle of the beam. We could also show
the maximum tensile stress in the upper region or the high compression
in the lower region next to the fixed cross-section surface.

The extraction of the fiber surfaces of this small dataset (4320 tetrahe-
dra) with an interactor of 12 triangles takes up to 1.0 second beginning
with the translation of the interactor and ending with the rendering
of the fiber surface. In this case the interactor is too great so that the
algorithm 2 would not remove any tetrahedron.

8.2 Fiber reinforced metal component
A more interesting example represents a fiber reinforced plastic part.
Due to the more complex material of multiple components (metal,
fibers and matrix) the material behavior is more difficult to describe
and to understand. Here, the well-known von Mises stress (σv, see
section 4) is not a feasible yield criterion due to the anisotropic material
parameters.

Our simulation uses a multi-continuum material model by
Abaqus [32] and Helius [10] where the polymer matrix and the fibers
are separately considered which is shown in Figure 6. The model rep-
resents a metal-composite connection part with metal inset (three arm
structure). Because of the symmetry towards the y-z-plane, only half
of the part is simulated. Therefore, symmetry boundary conditions
are applied to the left side while the right and top side are fixed and
a tensile load of 3000 N is applied at the bottom of the inset in nega-
tive y-direction. Due to the boundary conditions, the part geometry,
and the material behavior, the invariant space is much more complex
as it can be seen on the right of Figure 6. Again, we decided to use
the principle stresses as coordinates after testing other options. The
linked view interface provides two options to analyze the simulation
results. On the one hand, significant peaks in the invariant space can be
selected with the interactor and the corresponding regions in the object
space are highlighted. Hence, the engineer can evaluate how critical the
superposition of different invariants resp. stresses effect special regions
in the part. On the other hand, the interactor can be placed in a region
in the part and the corresponding invariant space will be highlighted.
This can be useful to compare simulations with similar part geometries
but alternating fiber orientations or defects.

The interactor encloses a significant area with high invariant density
showing a combination of high values in the first and second principal
stress, as can be seen in Figure 6. The corresponding region in the object
space is a half round region above the metal insert where damages due
to peeling normal forces in the part can be typically observed. This
clearly indicates that the invariant space has to be investigated more
to define critical areas and gain a better understanding for engineering
applications like this one. The algorithm introduced in this article
provides the base to do so in the future.

We have also used the inverse fiber surface algorithm (forward map-
ping) of section 7.3 in this example, as shown in Figure 7. Here, two
simulations with the same model geometry are compared. The simula-
tions differ because one contains an initial defect within the selected
range of the interactor. It can be seen that the enclosed invariant space
regions are slightly different. Due to the fact that the invariant space
in this region does not differ significantly, it can be deduced that the
effect of the inserted defect is not critical to the investigated composite
part under static tensile load.

This approach allows investigating regions of special interest in an
unusual and particular way. In general, the stress tensor invariant space

Fig. 6. Interaction with the invariant space of a fiber reinforced metal
component (right) and visualization of the extracted fiber surfaces in the
object space (left).

Fig. 7. Interaction with the object space of a fiber reinforced metal
component (left) and visualization of fiber surfaces of the selected area
with brought in defect (mid) and without brought in defect in the invariant
space (right).

provides great potential to visualize special phenomena in mechanical
engineering. E.g. it is conceivable that not just invariant sets like the
principal stresses or the other base sets from section 3.2 may be used,
but further values derived from the stress tensor and invariants can be
displayed. Therefore, adapting the invariant space to specific questions
in simulations depending on materials and part geometries offers great
development and application potential for the proposed algorithm.

The extraction of the fiber surfaces of this large dataset (about
2.5 million tetrahedra) with an interactor of 12 triangles took up to
3.0 seconds. The sphere intersection test acceleration removes almost
99 % of all the tetrahedra in the dataset. Depending on the position of
the interactor the set of possible tetrahedra is reduced to around 50000
in Figure 6 and to around 150000 in Figure 7.

8.3 Three-point bending of a single-edge notched beam
As last example, we present the application of our method to a solid
mechanics case consisting of a three-dimensional single-edge notched
beam in a three-point bending configuration. The finite element soft-
ware solves the discretized weak form of the partial differential equation

divσ = 0 (45)

subjected to suitable displacement and traction boundary conditions.
The constitutive model linking stresses to strains is a coupled plastic-
damage model with integral regularization, see Parisio et al. [25], for
which the strength envelope consists of a Drucker-Prager yield surface,
compare section 4.2 of the form

f p(σ̃) =
1
4

K2(σ̃)−βK1(σ̃)+ k = 0. (46)

In this case, σ̃ = σ/(1−d) is called the damage effective stress tensor,
i.e., the stress acting in the undamaged part of the material (for further



Fig. 8. Representation of a crack tip inside a notched beam (left). The
exterior of the fiber surface is red and the interior blue. Representation
of the eigenvector space (x shows the major, y the intermediate and z the
minor eigenvalue) on the right side.

Fig. 9. Selection of the extreme point inside the eigenvalue space of
Figure 8 (right) which corresponds to some small fiber surfaces (left)
which is an indication of a shortcoming inside the used dataset.

details, see [19, 26, 27]). As noted in section 3.2, the strength envelope
looks like a circular cone with its axis directed along the mean stress
in invariant space with principal effective stresses as coordinates. The
evolution of damage d is indicative of the progressive failure of the
material.

Figure 8 shows the state of stress in terms of principal components.
It can be seen that the vicinity of the crack is predominantly in a state of
tensile stress (mode I failure). The red surface indicates indeed the crack
envelope in the beam mesh, while it appears that the surface presents
some extreme points of very high compressive damage effective stress.
On a closer analysis, it was evidenced that the points are located just at
the crack tip and at the outer boundaries of the model (Figure 9). Here,
equilibrium imposes total stress to be null, while high values of damage
might bring the effective stress to a very high value. Furthermore, the
stresses are evaluated at Gauss points and later on extrapolated to obtain
nodal values for post-processing: this procedure inevitably produces
errors, and inaccuracies, which could also be a concurrent cause of this
outlier. Figure 9 evidences the fact that it is a single point (showing
up four times due to symmetries) with a very high stress value. In this
case, the visualization in invariant space highlighted a shortcoming
which could have hardly been noticed with conventional visualization
methods. It furthermore points to the fact that possible improvements
could be achieved by a higher mesh resolution.

The extraction of fiber surfaces of this dataset (about 16000 tetra-
hedra) with an interactor of 180 triangles took up to 5.0 seconds. The
interactor is in Figure 8 in the center from all tetrahedra so the algo-
rithm 2 removes nothing. Around 100 tetrahedra remain in Figure 9
after the algorithm.

9 CONCLUSION AND FUTURE WORK

In this article, we introduce the notion of a fiber surface of invariant
space for symmetric, second-order, three-dimensional tensor fields.

This allows for a (nearly) interactive study of such tensor fields. For this
purpose, we suggest an interface with two linked views, one showing
the physical domain of the field, and the other showing the image of the
invariant map in the invariant space. We discussed possible coordinate
choices for the invariant space in a mechanical engineering context,
as well as additional contexts like yield surfaces. We suggest the use
of so-called interactors, simple geometric primitives represented as
triangulated surfaces to select the range which is then pulled back to
the domain defining the fiber surfaces.

For the computation of the fiber surfaces, we assume a tetrahedral
grid in the domain with tensor values on the vertices. Furthermore, we
assume piecewise linear interpolation of invariants in invariant space.
This leads to an algorithm that basically intersects each interactor
triangle with each grid tetrahedron in invariant space, and maps the
result back to the domain. We demonstrate that even our proof of
concept implementation allows for nearly interactive extraction of the
fiber surfaces in realistic examples. Interestingly, the same algorithm
allows for forward mapping of a triangulated surface in the domain
to invariant space, so we obtain a linkage in both directions without
additional costs.

We presented three real applications from mechanical engineering
looking at the Cauchy stress tensor field. We showed that it helps to
find and understand extreme values, and allows for sanity tests of stress
values including interpolation errors. Especially, it allows separating
extreme values in one invariant by values in other invariants.

As indicated at various points throughout the paper, there is a lot
of potential for future work: There are several obvious possibilities
to speed up the algorithm, e.g. by using a lookup table like marching
tetrahedra, by additional tests to avoid unnecessary intersections, or
by parallelization. Furthermore, we would like to see research on
the best visual representation of the image in invariant space. This
may go hand in hand with a search for an interactive direct volume
rendering of density in invariant space. There is also a need for an
evaluation of interaction mechanisms to define the surfaces in invariant
space, e.g. to go beyond our interactors. It may also be worthwhile to
look at algorithms for other grid types, and at the errors by our linear
interpolation of invariants. Finally, there is definitely a need for more
applications, including work outside of mechanics.
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