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Abstract: In the present work, we analyzed the concentration patterns of 20 Polycyclic Aromatic 18 

Hydrocarbons (PAHs) in 25 surface sediments and 11 sediment cores from the northern part of Taihu 19 

Lake, China. Three of the cores were dated based on 137Cs activity for the deposition age of the 20 

sediment. The spatial distributions of the PAH concentrations show that the inflow rivers into Zhushan 21 

Bay and Meiliang Bay were the main pathway for PAHs and sediment input to the northern part of the 22 

lake. This results in substantially higher PAH concentrations (up to 5000 ng/g) and sedimentation rates 23 

(higher than the average of 3 – 4 mm/a) in the area close to the river outlets. In addition, results also 24 

show that PAH concentrations in the sediments considerably increased from the early 1960s, but the 25 

decreasing concentrations in the upper layers of the sediment could be attributed to the introduction of 26 

measures on environmental improvement from ca. 2000. There were both anthropogenic and biogenic 27 

origins of perylene in the lake sediments, which were distinguished based on spatial distribution 28 

patterns and also the concentration proportions of perylene to the sum of the 20 PAHs. In the cores 29 

collected close to river outlets, the concentration proportions of perylene typically range from 0.02 to 30 

0.18 and there are significant positive linear correlations between the concentration of perylene and 31 

three anthropogenic PAHs (Benzo[a]pyrene, Benzo[e]pyrene, Pyrene), suggesting that perylene was 32 

dominated by anthropogenic input. However, the cores collected further away from the river outlets 33 

show the concentration proportions between 0.13 and 0.96, and present significant negative 34 

correlations or no correlations between perylene and the three PAHs, suggesting that perylene was 35 

mainly formed by biogenic activities. Furthermore, the different perylene sources accompanied with 36 

the location distributions imply that anthropogenic activities could inhibit its biogenic formation. 37 

Keywords 38 

Taihu Lake in China; Lake sediment; PAH distribution; Perylene source  39 

Capsule 40 

This study provides an insight of anthropogenic impacts on PAH deposition in the sediment of Taihu 41 

Lake and also clearly distinguishes biogenic and anthropogenic origins of perylene in the sediment. 42 

  43 
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1. Introduction  44 

Taihu Lake, located in the Yangtze River Delta plain, is a large and shallow freshwater lake with an 45 

area of 2338 km2. The lake plays an important role for flood control in the region and also for tourism, 46 

shipping, aquaculture, and as a raw source for drinking water supply in the neighboring cities of 47 

Shanghai, Suzhou, Wuxi and Huzhou (Qin et al., 2007) (Fig. 1a). However, decades of rapid 48 

development of industrialization and urbanization in this area caused serious pollution in the lake 49 

ecosystems, especially the northern part of the lake (Wang et al., 2003; Wilhelm et al., 2011; Jiang et 50 

al., 2012; Xu et al., 2014; Tao et al., 2018). This is due to the discharge of large amounts of industrial 51 

effluents and improperly treated municipal sewage into the lake, the diffuse pollution from agriculture 52 

and aquaculture, or the wet and dry atmospheric deposition of dissolved and particulate matter from 53 

traffic and biomass burning. In 2007, e.g., excessive nutrient input into the lake caused a massive 54 

cyanobacterial bloom with the formation of volatile sulfide compounds, resulting in a serious drinking 55 

water crisis in Wuxi City (Zhang et al., 2010).  56 

Lake ecosystems are particularly sensitive to anthropogenic impacts as they can act as repositories for 57 

contaminants in the aquatic environment. Especially hydrophobic persistent organic pollutants (POPs) 58 

can easily bind to organic matter and then deposit in sediments. After deposition, such contaminants 59 

are less susceptible to microbial degradation due to their strong sorption and ageing, which reduces 60 

contaminant bioavailability (Erickson et al., 1993; Hatzinger and Alexander 1995). Lake sediments 61 

therefore may contain continuous archives of such inputs with an annual to decadal resolution. With 62 

this, the analyses of lake sediments that may have accumulated over decades or centuries can provide 63 

insights into background conditions, and into historical, present and potentially future anthropogenic 64 

impacts (Hollert et al., 2018). 65 

Polycyclic Aromatic Hydrocarbons (PAHs) are such a group of POPs and ubiquitously distributed in 66 

ecosystems. They have been emitted since prehistoric time through e.g. wild fires (Vila-Escalé et al., 67 

2007) and volcanos (Kozak et al., 2017). They are also indicators for anthropogenic activities resulting 68 

from incomplete combustion of fossil fuels and biomass (Zhang et al., 2008; Shen et al., 2012; Wu et 69 

al., 2017) and from various industrial processes (Yang et al., 2002), substantially raising PAH 70 
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abundance in the environment. Some of the PAHs such as benzo[a]pyrene, dibenzo[a,h]anthracene, 71 

benzo[a]anthracene are classified as mutagenic and carcinogenic and are listed as priority pollutants by 72 

US EPA (EPA US, 1993; Boffetta et al., 1997; Kim et al., 2013). Consequently, once these PAHs 73 

accumulate in the environment and biomagnify in food chains, they ultimately pose considerable 74 

threats to human and ecosystem health (Geffard et al., 2003). A specific PAH, perylene, can also be 75 

formed biogenically in sediments after deposition, e.g. probably from diatom (Louda and Baker, 76 

1984), fungi (Suzuki et al., 2010), crinoids (Wolkensein et al., 2006), plants (Marynowski et al., 2013; 77 

Grice et al., 2009) or microbial transformations (Silliman et al., 2000). Therefore, its occurrence in 78 

sediments may indicate anthropogenic PAH input and also biogenic formation. 79 

A certain amount of studies on PAHs in the sediment of Taihu Lake has been conducted (Qu et al., 80 

2002; Peng et al., 2005; Qiao et al., 2006; Lei et al., 2014; Tang et al., 2015; Lei et al., 2016), which 81 

conclude that main PAH input are from the densely populated and industrialized region in the north of 82 

the lake. However, the historical PAH inputs and transport patterns in the lake are still not well known. 83 

In addition, perylene sources and formation have not yet been studied in Taihu Lake. In the present 84 

work, we analyzed 25 surface sediment samples and 11 sediment cores from the northern part of Taihu 85 

Lake for a more detailed investigation of PAH contents and patterns in this region of the lake. PAH 86 

concentrations in the surface sediments were used to delineate current PAH input into the lake, and 87 

PAH concentrations in the cores to record the temporal changes of PAH input. Specific attention is 88 

paid to the concentrations of perylene in relation to the other PAHs to potentially distinguish the 89 

anthropogenic sources and biogenic formations of perylene in the environment. 90 

2. Materials and methods 91 

With a mean depth of 1.9 m and a maximum depth of 2.6 m, Taihu Lake is a characterized by a rather 92 

flat lake bed. There are around 120 inflows and outflows around the lake, with the inflows mostly 93 

located in the northern and western part and the outflows in the eastern and southern part of the lake 94 

(Qin, 2008). Some are occasionally reversing in flow direction, depending on the lake water level. The 95 

shallowness of the lake and the hydraulic conditions result in complex flow patterns, and the spatial 96 

and temporal current patterns in the lake are not fully understood (Qin et al., 2007).  97 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
These complex flow conditions have an influence on the spatial distribution and deposition rates of 98 

sediment in the lake. Sediment thickness varies between 0.5 and 2 m in most parts of the lake with the 99 

greater in the northern and western parts and lesser sediment thickness in the central parts, reflecting 100 

the prevailing wind and resulting water circulation patterns (Luo et al., 2004). In the upper layers, 101 

sediment textures are dominated by clayey silt and clay (Jin et al., 2006; Qin et al., 2004). It is, 102 

however, likely that during strong winds or floods sediment scouring and resuspension can alter the 103 

sediment stratigraphy (Qin et al., 2004), complicating the interpretation of dating results and 104 

contaminant profiles.     105 

2.1 Sample collection 106 

During five sampling campaigns (May 2015, November 2015, June 2016, February 2017, September 107 

2017) a total of 25 grab surface sediment samples and 11 sediment cores ranging between 12 cm and 108 

40 cm in length, were collected from the northern part of Taihu Lake, covering Gonghu Bay, Meiliang 109 

Bay and Zhushan Bay. The surface sediment samples were stored in polyethylene bags. The cores 110 

were taken using a gravity corer with a core loss preventer (uwitec, Austria), and they were 111 

subsequently sliced into 2 cm segments (147 in total) and stored in aluminum screw top jars. Before 112 

further analyses, the samples were stored at –20 °C, except during the air shipping from China to 113 

Germany.  114 

 115 

Fig. 1 a Overview of the area surrounding Taihu Lake; b Sampling sites for surface sediments and sediment 116 

cores. Exact coordinates of the samples and the sampling time are listed in S Tab. 1. The rivers and canals 117 

around the sampling area are generally only inflows into the lake. The Wangyu River connecting Taihu Lake and 118 

the Yangtze River, however, can act as an outflow in the rainy season.  119 
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2.2 Sample preparation and PAH analysis 120 

All sediment samples were silty-clayey and therefore whole samples were freeze-dried and milled in a 121 

vibratory disc mill. Between 7 and 12 g of each sample was then extracted with 35 ml of acetone for 122 

30 min using Accelerated Solvent Extraction (Dionex ASE 300) in static conditions (100 °C and 10 123 

MPa). After extraction, 100 µL of an internal standard was spiked to each sample extract. Extracts 124 

were then cleaned using a glass column filled with glass wool, 2 g silica gel, 2 g Al2O3 and 0.5 g 125 

Na2SO4 to remove the residual water and interfering compounds. After clean-up, the column was 126 

eluted with 15 mL of n-hexane, followed by 5 mL of a 9:1 (v/v) mixture of n-hexane and 127 

dichloromethane, and 20 mL of a 4:1 (v/v) mixture of n-hexane and dichloromethane. The eluate was 128 

concentrated to around 2 mL using an automatic evaporation-dryer with nitrogen. Then 1 µL of the 129 

concentrated eluate was injected into a GC-MS (Agilent 7890A/5975C) in pulsed splitless mode and 130 

detected in the SIM mode of the MS. 131 

For quantification, PAH standards (PAH-mix 14, PAH-mix 45 and deuterated PAH-mix 31) were 132 

obtained from Dr. Ehrenstorfer Augsburg, Germany. The standards were diluted together in 133 

cyclohexane to four different concentrations for external calibration and response factors calculation. 134 

The internal standard (dilution of deuterated PAH-mix 31) with 5 deuterated PAHs was then used to 135 

quantify the analytes. All solvents and cleanup chemicals were purchased from Carl Roth GmbH + 136 

Co.KG, Germany. 137 

Including 16 EPA PAHs, a total of 20 PAHs were analyzed (2-ring: naphthalene, 2-methyl-138 

naphthalene, 1-methyl-naphthalene; 3-ring: acenaphthylene, acenaphthene, fluorene, phenanthrene, 139 

anthracene; 4-ring: fluoranthene, pyrene, benzo[a]anthracene, chrysene; 5-ring: benzo[b]fluoranthene, 140 

benzo[k]fluoranthene, benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), perylene; 6-ring: 141 

dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-cd]pyrene). 142 

2.3 Quality control 143 

For testing the reliability of this method, a certified soil from a gas works site (European Reference 144 

Material ERM-CC013a) was purchased from the Federal Institute for Materials Research and Testing 145 

BAM (Berlin, Germany). The reported uncertainties for the concentrations of the different PAHs in 146 
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the certified soil were between 5% and 20%. The certified soil was extracted and measured identically 147 

to the field samples. Average recovery rates (9 replicates) in our tests were typically between 95% and 148 

130%, indicating good recoveries.   149 

The quantification limit for the GC-MS analysis was between 10 and 25 pg of injected mass, 150 

depending on the PAH. This limit corresponds to 3 – 7 ng/g of individual PAHs in the soil samples, 151 

depending on the amount of soil extracted and the volume of the eluates concentrated. 152 

2.4 Dating methods 153 

Three of the cores, located in the northern part of Meiliang Bay (ML35), southern part of Meiliang 154 

Bay (ML36) and Zhushan Bay (ZS42) were dated using the thermonuclear by-product 137Cs that has a 155 

half-life of 30.17 years. Since a certain mass was required for the determination of 137Cs activities, 156 

some adjacent layers of core samples were combined and each dating sample ranges between 2 and 8 157 

cm in length and between 15.1 and 29.9 g in weight. 137Cs activity measurements were carried out with 158 

low-level gamma-spectroscopy based on the distinct 137Cs gamma emission energy of 661 keV, using 159 

a n-type coaxial Low-Energy HPGe detector (ORTEC) with an active volume of 39 cm3 and a 0.5 mm 160 

Be window. The detector efficiency and measuring geometry were calibrated with the certified 161 

reference material “IAEA-375 SOIL”. Each of the samples was measured at least 24 hours in 32 cm3 162 

cylindrical capsules. Spectra analysis was performed with the software GAMMA-W®. 163 

3. Results and discussion 164 

Riverine runoff and atmospheric deposition are the two main pathways responsible for PAHs and 165 

sediment input to a lake (Ferrey et al., 2018; Zakaria et al., 2002). Riverine runoff may potentially 166 

contribute more significant pollutant and particle loads, as rivers typically receive treated or untreated 167 

domestic wastewater, industrial effluents, and surface runoff (Wolf et al. 2013; Pal et al., 2010). These 168 

factors may lead to higher deposition rates and PAH concentrations in the sediment close to river 169 

inflows.  170 

3.1 Dating of the cores 171 
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The presence of anthropogenic 137Cs in the environment of the northern hemisphere can be traced both 172 

to the atmospheric testing of nuclear weapons in the late 1950s and early 1960s and to major accidents 173 

in nuclear power stations, i.e. the Chernobyl accident in 1986. The latter produced a less uniform and 174 

laterally more limited pattern since the fallout was associated with complex short-term weather 175 

patterns (in particular rain). Whereas (for this reason) no Chernobyl fallout is known for the southern 176 

hemisphere, the nuclear weapon testing fallout is traceable in both the north and the south, appearing 177 

in the south about two years later (Rowntree and Foster, 2012).  178 

Sediment deposition rates for the three locations were measured based on 137Cs activities in the cores 179 

taken from that locations. Fig. 2 shows that the 137Cs activities are rather low and only detectable in the 180 

upper around 20 cm of the three cores, which is comparable to the results reported by others (Xue and 181 

Yao, 2011; Liu et al., 2004). Although the detected 137Cs activities in the cores do not show any 182 

distinct peak related to any of the events, the deepest layer (at ca. 20 cm depth) at which 137Cs was 183 

detected can be consequently dated to around 1960. This would indicate that an average sedimentation 184 

rate at these three locations is around 3 – 4 mm/a, which is similar to the rates reported by Xue and 185 

Yao (2011) and Liu et al. (2009), and is also reasonably consistent with the chronological results of 186 

spheroidal carbonaceous particles (Cao et al., 2013; Liu et al., 2012). These three locations are some 187 

km away from the lakefront and also away from the inflows into the lake. The sedimentation rates 188 

therefore represent most likely the average rate in the northern part of the lake, but might not be 189 

representative for the areas close to the lakefront and river outlets due to more intense sediment input. 190 

 191 

Fig. 2 Distribution of 137Cs activities in the three dated cores 192 

3.2 PAH in the surface sediments and the cores 193 
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Fig. 3a shows the spatial distribution of the total PAH concentrations, without considering perylene, in 194 

the surface sediments. The concentrations range from around 150 ng/g to around 2300 ng/g. The 195 

higher concentrations (above 1000 ng/g) are found close to the inflow in Zhushan Bay (locations 8-23, 196 

4-41 and 3-18) and in the northwestern part of Meiliang Bay (location 8-24). The concentrations at the 197 

other locations are typically below 1000 ng/g. These distribution patterns, with the higher 198 

concentrations located close to the inflows, reveal that the inflow rivers are the major current pathways 199 

for PAH input. 200 

 201 

Fig. 3 Concentrations of the sum of the 19 PAHs (without perylene) (a) and of perylene (b) in the surface 202 

sediments  203 

Three sediment cores were also taken close to the inflows in Zhushan Bay (ZS23), and in the 204 

northwestern and northeastern part of Meiliang Bay (ML7, ML24) (Fig. 1b). In line with the results of 205 

the surface sediments, the three cores show the by far highest PAH concentrations (without perylene), 206 

reaching up to 5000 ng/g in core ML24 (Fig. 4). These three cores have a length of 40 cm (ZS23), 35 207 

cm (ML7) and 18 cm (ML24), respectively, and their concentrations remain high throughout the cores. 208 

The other cores (ML6, ML35, ML36, ML43, ZS42) collected further away from the inflows in the two 209 

bays, however, show consistently low background concentrations (below around 150 ng/g) in the 210 

deeper parts and comparably high concentrations only in the upper 10 – 20 cm. These results suggest 211 

that the sedimentation rates in the area close to the inflows are substantially higher than the average 212 

rate of 3 – 4 mm/a in the other locations, and that the rivers connected to the northern part of these two 213 

bays are the main pathway for PAHs and sediment input into the lake. 214 
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These general findings are also reflected in the three cores (ML6, ML35 and ML36) located with 215 

increasing distances from the river outlets in Meiliang Bay (Fig. 1b). These cores present similar 216 

concentration profiles, with background concentrations in the deeper layers and higher concentrations 217 

in the upper layers (Fig. 4). The concentrations increase from a depth of 28 cm (ML6), 26 cm (ML35) 218 

and 22 cm (ML36), respectively, which indicate that the sedimentation rates in the three locations 219 

decrease with increasing distances from the river outlets. In addition, core ML36 has lower 220 

concentrations in the upper layers compared to the other two cores, in line with the greater distance 221 

from river inflows. The two cores located in the south of Zhushan Bay and Meiliang Bay (ZS42 and 222 

ML43) show even lower sedimentation rates and also lower PAH concentrations (350 – 450 ng/g) in 223 

their upper layers.  224 

  225 
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Fig. 4 Concentration profiles of the sum of the 19 PAHs (without perylene) in the cores (different x axis scale) 226 

Three cores (GH4, GH38 and GH11) were taken from Gonghu Bay (Fig. 1b). Taihu Lake is a crucial 227 

drinking water source in this region, especially Gonghu Bay provides water to 4 major water treatment 228 

works covering 80% of drinking water supply in Wuxi City (Qin et al. 2010; Tao et al., 2010). Gonghu 229 

Bay is connected to the Yangtze River through the Wangyu River. In order to alleviate algae blooms 230 

in Taihu Lake, a project (WTYT project) was started in 2002 to transfer water from the comparatively 231 

low nutrient status Yangtze River to Taihu Lake through the Wangyu River (Zhai et al., 2010). In 232 

addition, sediment dredging was conducted around ten years ago to remove contaminated sediments 233 

from the bay (Liu et al., 2010; Liu et al., 2016; Chen et al., 2018). These activities likely had an impact 234 

on the contamination patterns and thickness of the sediments. The three cores show significantly 235 

different concentration profiles that consequently might be influenced by the activities in this bay and 236 

may not represent the original stratification.  237 

In principal, the PAH concentration patterns together with the information on sedimentation rates can 238 

be used to reveal the historical input of PAHs into the sediments. Coal and oil are the major energy 239 

sources in China (Crompton and Wu, 2005; Wang and Feng, 2003), hence PAH abundance in the 240 

sediments is a crucial indicator of energy consumption and industrial and economic development. 241 

After the People's Republic of China was established in 1949, China started intensifying the 242 

development of industry and economy, particularly in coastal areas (Li, 2009; Fan, 1995), which was 243 

accompanied with a considerable increase in consumption of coal and oil (Liu, 2008; Jiang and Zhang, 244 

2005). Furthermore, the reform and opening-up Policy in China, implemented in 1978, was associated 245 

with rapidly growing urbanization and industrialization (Yeh et al., 2011; Chen et al., 2013). 246 

Therefore, combining the PAH concentration profiles and the dating results with an average 247 

sedimentation rate of 3 – 4 mm/a in the sediments away from inflows, the significant increases of the 248 

PAH concentrations documented in cores ML6, ML35, ML36, ML43, and ZS42 would start from the 249 

early 1960s.  250 

However, the concentrations are rather stable or somehow decreased in the upper layers of the cores 251 

compared to the peak concentration in each of the cores. In contrast, energy consumptions in the 252 

catchment are still increasing after 2000. Therefore, the inconsistent PAH concentration distributions 253 
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with energy consumption could be accounted for by the fact that the Chinese government has enacted 254 

and enforced a series of laws and regulations regarding ecologically sustainable development and 255 

resources conservation since the 9th Five-Year Plan (1996 – 2000). From the 10th Five-Year Plan 256 

(2001 – 2005), in particular, multiple measures for environmental improvement were introduced 257 

(Schreifels et al., 2012; Chen and Xu, 2010; Zhou et al., 2010; Crompton and Wu, 2005). Especially, 258 

Taihu Lake is one of the prioritized regions for pollution control and treatment. 259 

3.3 Perylene in the surface sediments and the cores 260 

Perylene concentrations in the surface sediments are typically below 200 ng/g, except in the five 261 

locations 8-6, 8-7, 8-21, 3-17 and 3-21 with higher concentrations (200 – 300 ng/g) (Fig. 3b). 262 

Compared to the other PAHs (Fig. 3a), perylene concentrations are relatively high in most of the 263 

sampling locations and the higher concentrations are generally located in the area close to the central 264 

part of the lake. The spatial distribution of perylene concentrations is somewhat inverse to the 265 

distribution of the other PAHs, which is especially obvious in Zhushan Bay.  266 

As in the case of the surface sediments, perylene concentrations in the cores are generally below 200 267 

ng/g, except cores ML35, GH38 and ZS42 (Fig. 5). In some sections of cores ML35 and GH38, 268 

perylene concentrations reach over 1000 ng/g, accounting for up to 96% of the sum of the 20 PAH 269 

concentrations. Concentration patterns, however, in the three cores are different. In core ML35, the 270 

high concentrations occur in the deeper layers and the relatively low and stable ones (around 200 ng/g) 271 

in the upper layers, while in core GH38 perylene concentrations generally increase from the deeper to 272 

the upper layer of the core with the highest concentration at 8 cm. In addition, the concentrations in 273 

core ZS42 decrease linearly from the deeper layer (around 450 ng/g) to the upper one (around 150 274 

ng/g). Nevertheless, in the other cores, perylene concentrations are low and vary slightly, particularly 275 

in the upper 15 – 20 cm. 276 
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 277 

Fig. 5 Concentration profiles of perylene in the cores (below QL: below the quantification limit) 278 

Compared to the other PAHs, the concentration profiles of perylene are specific in each core, which 279 

might result from two potential sources, anthropogenic input together with the other PAHs and 280 

biogenic formation in the sediments after deposition. Three anthropogenic PAHs (BaP, BeP and 281 

pyrene) were selected as references to distinguish between these two sources (Venkatesan, 1988). The 282 

five cores (ZS23, ML24, ML7, GH11 and GH4) collected close to the river outlets show significant 283 

positive linear correlations between the concentration of perylene and the three PAHs (Fig. 6a), while 284 

the other six cores (ZS42, ML6, ML35, ML36, ML43 and GH38) collected far from the river outlets 285 

show significant negative correlations (Fig. 6b) or no correlations (cores ML36 and ML43 shown in S 286 

(supplementary material) Fig. 2). The significant positive linear correlations found close to the river 287 
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outlets might indicate that perylene was deposited at these locations together with the other PAHs 288 

originating from anthropogenic sources in the upstream areas. The detailed results and explanation of 289 

the correlation and regression calculations are presented in S Tab. 2 and its following text. 290 

 291 

Fig. 6 Concentration correlations between perylene and the three anthropogenic PAHs (BaP, BeP and pyrene) 292 

with (a) significant positive linear correlations and (b) significant negative correlations. Four points from core 293 

GH4, one point from core ML7, one point from core ZS23 and two points from core ML6 (labelled with grey 294 

color) are outliers and are excluded from the correlation and regression calculations, the details about the outliers 295 

are explained in supplementary material (below S Tab. 1). 296 

Furthermore, lower perylene abundance relative to other PAHs suggests that perylene mainly 297 

originates from pyrolytic processes instead of diagenetic processes (Readman et al., 2002; Baumard et 298 

al., 1998). In this study, the concentration proportions of perylene to the sum of the 20 PAHs (S Fig. 1) 299 

are typically lower (0.02 to 0.18) in the five cores with significant positive linear correlations 300 

compared to the other six cores (0.13 to 0.96) with significant negative correlations or without 301 

correlations. This can be also supported by the perylene concentration distributions in the surface 302 

sediment (Fig. 3b) where the lower concentrations are generally located in the areas near the river 303 

outlets.  304 
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Consequently, these three aspects, the positive linear concentration correlations, the lower 305 

concentration proportions and the locations with short distance from inflows, together strongly imply 306 

that perylene in these five locations originated mainly from anthropogenic activities and were input by 307 

river runoff. In addition, the different slopes of the regressions (Fig. 6a) and the different perylene 308 

proportions (S Fig. 1) in the five cores might suggest that there were different anthropogenic PAH 309 

sources in the inflow rivers.  310 

However, in the other six locations ML6, ML35, ML36, ML43, GH38 and ZS42, perylene could be 311 

mainly formed in situ by biogenic activities without obvious spatial transportation and interaction. 312 

This is supported by the negative or no correlations between the PAH concentrations and also the 313 

higher perylene concentration proportions on one hand, and on the other hand by the specific perylene 314 

concentration profiles.  315 

Previous studies suggested that phytoplankton, particularly diatom, could be perylene precursors in 316 

deep aquatic sediments (Louda and Baker, 1984; Venkatesan and Kaplan1987; Soma et al., 1996). 317 

Massive nutrient inputs have resulted in the rapid proliferation of phytoplankton in Taihu Lake since 318 

the 1980s and the occurrence of phytoplankton bloom became more frequent and severe after ca. 2000 319 

(Dong et al., 2008; Duan et al., 2009; 2015). However, perylene concentrations fluctuate slightly or 320 

even decrease in the upper layers of the cores. This implies that the distribution of perylene is not 321 

consistent with the accumulation of phytoplankton, which agrees with Silliman’s report (1998) that 322 

there is poor correlation between the mass accumulation rates of perylene and biogenic silica (an 323 

indicator of diatom production) in Lake Ontario. 324 

The results also indicate that biogenic formation of perylene might be inhibited in the sediments where 325 

anthropogenic impacts are stronger, which is close to the river inflows and in the upper layer of the 326 

sediments. Nutrients, organic matter and pollution levels can influence the diversity of microbial 327 

communities and mineralization in sediments (Zeng et al., 2005; Haller et al., 2011; Xu et al., 2018) 328 

and therefore could also affect biogenic formation of perylene in sediments. 329 

4. Conclusions 330 
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Analyses of the spatial distribution of PAHs in the sediments in the northern part of Taihu Lake reveal 331 

that the main PAH input into the lake occurs through the inflowing rivers into Zhushan Bay and 332 

Meiliang Bay. This coincides with higher sediment deposition rates close to the river inflows. PAH 333 

concentrations in the sediments in Meiliang Bay are higher compared to the other two bays.  334 

The temporal analyses of the cores show that increasing PAH input into the lake started from the 335 

1960s due to rapid economic and industrial development. Over the years, PAH concentrations in the 336 

sediments increased by a factor of 10 or more compared to the background concentrations. However, 337 

the decreased or stable PAH concentrations in the upper layers of the sediments might show the effects 338 

of environmental measures implemented by the Chinese government from ca. 2000, although more 339 

data are needed to prove this.   340 

The spatial distributions of perylene concentrations in the sediments and its concentrations in relation 341 

to the other PAHs suggest that Perylene originates from the same sources as the other anthropogenic 342 

PAHs in the locations close to the river inflows. However, it may result from biogenic processes in the 343 

locations far away from inflows. Consequently, this could imply that the biogenic formation of 344 

perylene is inhibited by anthropogenic activities.  345 
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HIGHLIGHT 

 
• River inflows are the main pathway for PAHs and particles input in the northern part of 

Taihu Lake 

• Anthropogenic activities significantly influenced the PAH abundance in the lake sediment  

• Perylene originated from anthropogenic and biogenic activities in different sampling areas 

 
 

 

 

 


