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Highlights 18 

 This paper introduces a novel approach to thus-far mostly neglected urban front and 19 

backyard green space in cities. 20 

 We calculated subpixel vegetation fractions from RapidEye remote-sensing data for 21 

the entire city with a spectral unmixing technique. 22 

 We applied a novel ‘house-attached front and backyard green derivation algorithm’ to 23 

the city of Leipzig with accuracy of 96%. 24 

 Key findings include that the total amount of front and backyard green space is almost 25 

2000 ha or 40% of the amount of public green. 26 

 In 15 out of the 63 total districts, we found more house-attached front and backyard 27 

than public green space.  28 

  29 

mailto:dagmar.haase@geo.hu-berlin.de
https://doi.org/10.1016/j.landurbplan.2018.10.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Abstract 31 

This paper introduces a novel approach to green space availability in cities that includes the 32 

thus-far mostly neglected urban front and back yard green space around residential buildings 33 

on privately owned ground. To quantify the full spatial scope of urban green space, we 34 

calculated subpixel vegetation fractions from RapidEye remote-sensing data for the entire city 35 

with a spectral unmixing technique that enabled us to model the extent of urban vegetation with 36 

a high degree of confidence (MAE 7%, R² 0.92). We then applied a novel ‘urban front and back 37 

yard green space derivation algorithm’, namely, a masking of the fractional vegetation data 38 

using GIS vector data of land cover, in order to delineate the front and backyard greenspace of 39 

residential houses in a city with an accuracy of 96%. Combining these two approaches, we can 40 

calculate the area of urban front and back yard green space for the entire city (including different 41 

residential structure types) and compare this data to the area of public (parks, urban forests) and 42 

semi-public (allotment gardens) green spaces that have been used for prevailing per capita green 43 

space availability analyses. The new method is exemplified at the city of Leipzig, Germany, 44 

which provides different residential structures concerning house types and the surrounding 45 

green that are characteristic of many European cities. Key findings include that the total amount 46 

of urban front and back yard green space is almost 2000 ha, which is ~40% of the amount of 47 

public green space (4768 ha). In 15 out of the 63 total districts, there is more private house than 48 

public green space, which highlights the importance of these urban front and back yard green 49 

space for the analysis of urban livelihoods and a tool for detailed ecosystem services-oriented 50 

urban planning. 51 

Keywords 52 
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1 Introduction 55 

 56 

Until now, the literature on green space availability in cities has mainly referred to public 57 

(parks, forests; Voigt et al., 2014) and different types of gardens when either mapping (Dennis 58 

et al., 2018) or calculating accessibility and availability (Comber et al., 2008; Fuller & Gaston, 59 

2009; Kabisch & Haase, 2012; Kabisch et al., 2014; Kabisch et al., 2016; Larondelle & Haase, 60 

2017). Urban front and back yard green space is the only major type of urban green space that 61 



has rarely been analysed in its full and differentiated quantitative scope, even more sporadically 62 

on a citywide level (for a promising approach see Dennis et al., 2018). Residential green space 63 

refers to the vegetation that surrounds residential buildings, directly attached to it in form of 64 

flower beds, lawns with or without trees in the front and backyard, or between houses in the 65 

case of a block location. Residential green space is also related to different forms of property 66 

rights and ownership constellations in the city and, therefore, this type of green space can hardly 67 

be derived from official land-use data. This is the research gap that we intend to fill with this 68 

study.  69 

In general, urban green spaces can be subdivided into three groups of ownership: firstly, public 70 

green space including parks, cemeteries and urban forests; secondly, semi-public allotment 71 

garden areas and sport facilities, and thirdly, private-house and backyard green with limited 72 

(physical or jurisdictional) access for the tenants (Fischer et al., 2016). We define urban front 73 

and back yard green space as that which directly surrounds the residential houses, including 74 

front and backyard green space and what is most probably private and not public.  75 

Numerous qualitative studies have shown the importance of house and backyard green space 76 

on public health (Bosch and Sang, 2017), happiness, life satisfaction and for urban biodiversity 77 

(Taylor and Taylor Lovell, 2014; Strohbach et al., 2009). There are areas in a city in which the 78 

major allotment of green space can be found around privately owned houses and backyards. 79 

Even though only a limited share of urban dwellers, namely the residents of the respective 80 

houses, have direct access to these areas, they are important for climate regulation, air cooling, 81 

local recreation, and human well-being to list a few important ecosystem services. With regard 82 

to an increasing number of elderly and aged residents in our European cities, local recreational 83 

amenities have gained in importance in enabling healthier lifestyles among older people 84 

(Brookfield et al., 2015).   85 

Regardless of its importance for the city, the literature widely overlooks front and back yard 86 

green space front and back yard green as an important form of urban vegetation (Coolen and 87 

Meesters, 2012), mainly due to limited data availability and data access (Breuste et al., 2016). 88 

To overcome this lack of assessment of urban front and back yard green space, we provide a 89 

straightforward blueprint for how to generate such a dataset using remote sensing imagery and 90 

a limited number of vector layers.  91 

With the use of remote sensing data, we achieve a spatially continuous analysis and open up 92 

the potential for long-term trend analysis. In order to quantify the amount of green space, we 93 

use a subpixel mapping approach with Random Forest Regression, a relatively new approach 94 



that is regularly applied to different fields in generating classifications of urban land cover. 95 

Random Forest Regression is widely used across disciplines and, as in the case for multispectral 96 

remote sensing data, is effective in handling multidimensional data with a high degree of 97 

collinearity. This is achieved in training the model with a multitude of decision trees. The entire 98 

methodology used in this study will soon be available in the open-source EnMapBos QGis 99 

Plugin (van der Linden, 2015) – an in-house development that facilitates techniques of analysis 100 

based on advanced remote sensing.  101 

With this research paper we therefore introduce a GIS- and regression-tree-based scheme for 102 

the creation of a city-wide urban front and back yard green space delineation in the form of a 103 

spatial data set. In addition, we perform an analysis of this urban front and back yard green 104 

space type that includes a quantitative comparison with public and semi-public green spaces in 105 

order to search for complementarities and synergies. 106 

 107 

2 Study Area 108 

 109 

Leipzig is a fast growing,  compact city (580,000 inhabitants) located in the eastern part of 110 

Germany and featuring a wide variety of building types and a wide variety of public, private 111 

and semi-public (with opening times) green spaces across its 63 districts. The provision with 112 

green space in the city is below mid-European and also German average. While the distribution 113 

of public and semi-public green spaces has already been analysed in previous studies (e.g. 114 

Haase and Nuissl, 2010; Haase and Gläser, 2009), front and back yard green space is, as in the 115 

case of all other cities, beyond the scope of the current research. The largest body of public 116 

green space in Leipzig – the Weiße-Elster-Pleiße floodplains – is arranged along a north south 117 

gradient to the west of the city centre (Haase & Gläser, 2009). Semi-public allotment gardens 118 

are relatively equally distributed across the city, particularly within the wetlands of the 119 

floodplains and along major roads and railways. The major residential types in the city are 120 

Wilhelminian-period perimeter development blocks, alignment blocks built in the 1950s and 121 

1960s, prefabricated high-rise buildings from the socialist period (dating back to the 1970ies 122 

and 1980ies of the 20th century), late 19th and early 20th century villa districts, perimeter block 123 

estates of the 1950s and 19 60s, single-house colonies in the peripheral districts and, after 1990, 124 

townhouses built to fill vacant lots in the inner city (Haase and Nuissl, 2010). Between these 125 

major urban built structures, privately owned residential green space is distributed very 126 

unevenly. Its share ranges from almost zero to considerable green coverage around the houses, 127 



with larger absolute amounts of front and back yard green space in the townhouse and villa 128 

areas in comparison to the denser inner-city Wilhelminian perimeter-block quarters. 129 

 130 

3 Data & Methods  131 

 132 

With the exception of sealed surfaces, urban front and back yard green space – including the 133 

front and backyard green space of residential houses that are predominantly on private 134 

individual property or that of private housing companies – are all green spaces as defined above. 135 

We thereby calculate the fractional amount of vegetation of each of the pixels situated in the 136 

privately owned areas around the houses in order to calculate the actual amount of green space. 137 

We exclude bare soil since, in the moment of analysis, it is not vegetated. However, this can 138 

rapidly change and is therefore often incorporated in green space definitions. Our analysis only 139 

incorporates ground-based front and back yard green space as defined above, rooftop green 140 

space as well as wall green remains excluded in order to keep the delineation algorithm simple 141 

and to minimize miss-classifications. 142 

From our dataset we can derive multiple indicators, comparable in different (spatial) reference 143 

units (e.g. land-use type, urban districts, per capita etc.) and between entire cities. Thereby, both 144 

the total area values (m2) and the relative values (%) can be obtained. To derive sub-pixel 145 

fractions of vegetation, we used a Random Forest Regression combined with ensemble learning 146 

and synthetically mixed training data, an approach successfully applied to map urban land cover 147 

(Okujeni et al. 2013, Okujeni et al. 2017, Rosentreter et al. 2017). The underlying assumption 148 

of this method is that spectral reflection changes with land-cover composition. Pure spectra of 149 

trees show different spectral characteristics than pure spectra of soils or impervious surfaces 150 

such as streets or pavements. Due to the high degree of heterogeneity in the urban environment 151 

however, most pixels do not contain pure spectral information but are rather a mixture between 152 

different land-cover classes. The spectral signature depends on the environmental heterogeneity 153 

resulting in different fractional abundance of each land-cover class in different pixels.  154 

The relationship between the covered area and the signal change can be described by a linear 155 

function (Keshava & Mustard, 2002). Important in regard to the high degree of urban 156 

heterogeneity is that the training data needs to cover as many as possible combinations of 157 

different land cover compositions and spectral signals to train the model. In this study we 158 

overcome this challenge by generating training data that features pure spectral information in 159 

order to calculate synthetic mixtures between the spectra of pure land-cover classes. This 160 



approach simplifies the training data collection greatly because only pure spectra need to be 161 

sampled.  162 

 163 

3.1 Data 164 

Our quantitative assessment of house and backyard green space makes use of the capability of 165 

RapidEye satellite data sensor, which acquires data in five spectral bands (R,G,B, red-edge & 166 

near infra-red) with a ground resolution of 6.5meters resampled to 5 m. For our study, we 167 

acquired two cloud-free RapidEye images of Leipzig and its surroundings from the year 2012 168 

(14.05.2012) and corrected for atmospheric influences with ATCOR (Richter, 2011). For the 169 

validation of our regression model we compiled a validation dataset based on very high-170 

resolution (VHR) satellite imagery from Google Earth. The dataset encompasses 141 validation 171 

sites and spatially explicit mapping of vegetated areas, thus enabling us to calculate the fraction 172 

of green space in each of the polygons. For the purpose of deriving the exact location of three 173 

regarded forms of urban green space, a set of spatial vector data is used (Table 1). Most 174 

prominently in this regard are the biotope map and ATKIS (Amtliche Topographisch-175 

Kartographische Informationssystem Deutschland) land-use database, which allow the 176 

detection of a variety of urban infrastructure. 177 

  178 



Table 1. Vector datasets used in this study with date, source and a detailed description 179 

Datasets Masked out areas Date Source 

City border Rural surrounding 2014 Free State of 

Saxony 

Biotope map Public green and blue infrastructure 2014 Free State of 

Saxony 

Semi-public green infrastructure 2014 Free State of 

Saxony 

Agricultural areas 2014 Free State of 

Saxony 

Railway corridors 2012 Free State of 

Saxony 

Industrial and commercial sites 2014 Free State of 

Saxony 

Roads Road surfaces 2014 City of Leipzig 

ATKIS Building footprints 2014 Free State of 

Saxony 

Public trees Canopies of public trees 2012 City of Leipzig 

and UFZ 

 180 
 181 

3.2 Methods 182 

 183 
3.2.1 Estimation of subpixel vegetation fractions 184 

For the estimation of subpixel vegetation fractions, we used spectral unmixing with Random 185 

Forest Regression trained with synthetic mixtures of pure land cover signals. Vegetation 186 

fractions are derived from a RapidEye scene. The Random Forest Regression models are 187 

embedded in an ensemble learning system to reduce the calculation time and to improve the 188 

subsequent generalization of the unmixing results (Figure 1; Breiman, 1996). Resulting maps 189 

are validated with a reference dataset created by visual interpretation of high-resolution imagery 190 

as described above (see section 3.1). 191 



 192 

Figure 1. Flowchart of the applied subpixel vegetation modelling approach using spectral unmixing 193 
with a RapidEye imagery library. 194 

 195 

3.2.1.1 Training data generation 196 
 197 
We collected pure spectra of different urban land-covers present in the remote sensing data 198 

using Google Earth imagery. They were either belonging to the vegetation class or the non-199 

vegetation class. With the help of the higher-resolution imagery from Google Earth, larger areas 200 

of homogenous land cover could be identified more accurately. Then, the spectral signal was 201 

obtained from the RapidEye imagery. We captured the original spectral variability in the scene 202 



by including as many different land-surface materials as possible – e.g. different rooftops, 203 

ground layers and tree, shrub and grass species. Overall, our library of pure spectra contains 39 204 

spectra of the vegetation class and 62 spectra of the non-vegetation class.  205 

 206 
 207 
Figure 2. The concept of synthetic spectral mixing shown in four iterative steps. Firstly, a mixing 208 
complexity needs to be determined; secondly, pure spectra are drawn and thirdly, their respective 209 
share of their contribution is determined. Thereof synthetic mixtures are finally calculated.  210 
 211 
The library of pure spectra was used to calculate the synthetic mixtures, i.e. the number of 212 

training data sets that were later used to train the Random Forest Regression. In order to 213 

generate a single synthetic mixture, several parameters and components need to be set including 214 

the mixing complexity, the actual spectra contributing to the mixture and the respective 215 



fractions of the contributing spectra. Subsequent parameterization was carried out in a 216 

randomized and automatic manner. The entire process consists of four steps (see Figure 2): 217 

a. First, the mixing complexity was determined. It specified how many different spectra 218 

were contributing to the synthetic mixture (Figure 2, part 1). We considered binary, 219 

ternary and quaternary complexities that varied randomly per mixture.  220 

b. In a second step, the actual spectra contributing to the mixture were randomly drawn 221 

(Figure 2, part 2). For binary complexities, two pure spectra were used and for ternary 222 

and quaternary complexities, three and four pure spectra were used. We allowed for 223 

intra and interclass mixtures. 224 

c. After the pure spectra were determined, the fractions that each spectrum contributed 225 

needed to be specified (Figure 2, part 3). The fractions defined the extent to which each 226 

spectrum contributed to the mixture. We therefore used a randomized method under the 227 

condition that all fractions sum up to 100%.  228 

d. Finally, the synthetic mixing could be applied (Figure 2, part 4). In our analysis, we 229 

calculated that there were 1000 spectral mixtures for each model in the ensemble 230 

learning (see section 3.2.1.2).  231 

 232 

3.2.1.2 Random forest regression ensemble 233 
 234 
Random Forest Regression is a classification procedure based on the process of ensemble 235 

learning. In this study, the Random Forest Regression was itself embedded in an ensemble 236 

learning system (Breiman, 1996). An ensemble learning approach consists of a specified 237 

number of Random Forest Regression models that are trained with a subset of the training data. 238 

Each of the resulting models is then applied separately to the RapidEye image. The resulting 239 

fraction-maps of the different model runs are subsequently combined by averaging. The 240 

approach of using training sample subsets for the development of models is called bootstrap-241 

aggregation (bootstrapping, bagging) and was first introduced by Breiman (1996). In our 242 

approach, we trained 20 Random Forest Regression models with sample subsets consisting of 243 

1000 random synthetic mixtures (see section 3.2.1.1).  244 

 245 
 3.2.1.3 Validation 246 

We validated the final subpixel vegetation fraction map with reference to the aforementioned 247 

dataset (section 3.2.1.2). As a performance measure, we used the Mean Absolute Error (MAE) 248 

    249 



      (1) 250 

 251 

with yi being the fraction of the reference polygons, xi the average estimated fraction inside the 252 

reference polygons, and n the number of reference polygons. The model fit was assessed by the 253 

coefficient of determination R². 254 

 255 

 3.2.2 Calculation of the extent of parks and forests, gardens and front and back yard green 256 

Since the full extent of urban front and back yard green space is unknown, we iteratively 257 

masked out every urban structure that did not represent urban-front and back yard green space 258 

from our vegetation fraction map. Public and semi-public blue and green infrastructure, 259 

agricultural areas, railway corridors, and industrial and commercial sites were masked out using 260 

a biotope map. Thereof, and according to the mean statistics of the vector data we have for the 261 

city, we defined buffers around roads (16m) and public trees (r = 5m) and clipped these from 262 

our imagery. Public trees were excluded, because in this paragraph the creation of the private 263 

front and back yard green layer is explained. Finally, buildings whose location was derived 264 

from the ATKIS dataset were masked out. The remainder of the satellite image is  front and 265 

backyard green space.  266 

For the delineation of public green space, the land-use classes of forests, parks, graveyards and 267 

grasslands, that are located in the forest or show early signs of shrub/tree encroachment as 268 

indicators of not entirely pure agricultural usage, were extracted from the biotope map. As semi-269 

public green space, we defined allotment gardens and sport facilities as in the biotope map. By 270 

masking the remote sensing data iteratively using these datasets, we were able to determine the 271 

amount of total house-attached front and back yard green, allotment and community gardens, 272 

as well as public parks and forests at city level. Thereof, we calculated nine relative indicators: 273 

front and back yard green, gardens, parks and forests respectively per urban district, per capita 274 

and per land-use type (cf. Figure 3 in the Results section). 275 

We validated the urban front and back yard green space dataset by randomly distributing 50 276 

sampling points across the regarded dataset. Through visual interpretation, we were able to 277 

validate that 96% of the sampling points were correctly classified as urban front and back yard 278 

green space. The visual interpretation was carried out by a visiting of the randomly selected 279 

sites and an assessment of the authors whether the site belongs to most probably private house-280 

attached or to public green. Of great help were fences and other visible delineations which 281 



indicate private properties or that a green lot belongs to a house. Since the other datasets are 282 

directly derived from a single, well-established GIS source, there is no need for validation. 283 

 284 

4 Results 285 

 286 

4.1 Subpixel vegetation fractions 287 

The final vegetation map portrays the fractions of vegetation for the entire city with a high 288 

degree of certainty and allows us to distinguish between house-attached, public and semi-public 289 

green space. The map shows a clustering of public green space along a north–south gradient to 290 

the west of the city centre, which is a large remnant of alluvial forest situated on the floodplains. 291 

Allotment and community gardens are distributed relatively equally across Leipzig’s districts 292 

with a lower abundance in the central districts. Urban front and back yard green space can be 293 

found in all of the districts and is especially abundant in the outer districts where residential 294 

quarters were constructed after 1990. 295 

 296 



 297 
Figure 3. The extent of front and back yard green space, allotment and community gardens and urban 298 
parks and forests as important green space types in the city of Leipzig 299 
 300 
 301 

An R² of 0.92 and an MAE of 7.4 % highlight a very robust overall model fit (figure 4). This is 302 

reinforced by the fact that the model data closely follows the diagonal, representing a 303 

hypothetical perfect fit. It can be derived from the formula that we are overestimating vegetation 304 

fractions in pixels featuring sparse vegetation as well as underestimating the amount of 305 

vegetation in areas of dense plant cover.  306 



 307 

Figure 4. Validation plot showing the R², the mean absolute error (MAE) and the model formula of a 308 
fitted linear least squares regression between reference fraction and estimated fraction. 309 

 310 

4.2 Extent of the different urban green space types 311 

 312 

Analysing the new dataset of urban -front and back yard green space, we find a clear trade-off 313 

between public, semi-public and most probably private green spaces (Figure 5). Districts with 314 

high shares of public park and forest green space, namely the Leipzig floodplain forest or large 315 

parks, exhibit a lower share of house green space and vice versa. While the former group 316 

consists mostly of peripheral districts, including former village cores, are included, the latter 317 

group is mainly comprised of inner-city districts. Therefore, we can conclude that inner-city 318 

districts offer considerable availability of house green space compared to more peripheral 319 

districts which, surprisingly, have less backyard green space. Central parts of the so-called 320 

“Inner East” (centre-located reddish patches in Figure 5B), an under-privileged area with a high 321 

share of migrants and low-income families with many children, report both a comparatively 322 

low supply of house-attached and public green space, meaning that we also find clear 323 

inequalities in green space availability in the city and, indicating ‘injustice’ in terms of access 324 

to green space in Leipzig (Low, 2013; Kabisch et al., 2016; cf. again Figure 5).  325 

The prefabricated socialist housing estates in the west of Leipzig, predominantly in the 326 

settlement of Grünau, show the highest supply of urban house green space by far, and thus, 327 

housing quality has potentially been underestimated if only analysed with previously existing 328 



public green space datasets (west-located reddish patches in Figure 5B). Houses in such 329 

prefabricated estates are often surrounded by larger lawns around the single blocks that are 330 

richly equipped with flower beds and some bushes or short trees. This type of green space is 331 

different from that in the old built-up perimeter blocks as the lawns are publicly accessible and, 332 

in most of the cases, not fenced in. However, the flower beds are under the care of the local 333 

residents of the blocks and thus this ‘lawn-green’ is dedicated to those families living in the 334 

large housing estates. Small signs also provide information as to which housing company the 335 

block and the lawns around belong to. 336 

 337 

 338 

Figure 5. Ternary plot showing the relative amount of each type of green space in relation to the total 339 
amount (front and back yard green, gardens and parks and forests) for Leipzig’s 63 districts (A), 340 
whose locations are shown in (B). 341 

 342 

Overall, in terms of absolute area (Table 2), public green spaces in the form of forest or parks 343 

make up almost half of Leipzig’s total green space. However, in terms of vegetated area, front 344 

and back yard green spaces cover an area of almost 2000 hectares compared to 4800 hectares 345 

of public green space. Due to the higher share of lawn vegetation, the vegetation density of 346 

urban front and back yard green spaces in Leipzig is lower compared to parks, forests and 347 

gardens (Table 2).  348 

 349 

Table 2. Spatial extent of the three regarded green space types, their mean vegetation density and their 350 
share in the total city area 351 



Green Space 

Type 

Absolute 

area (ha) 

Vegetated 

area (ha) 

Vegetation 

density (%) 

Share of the 

absolute total 

area in the 

city (%) 

Share of the 

vegetated 

total area in 

the city (%) 

Front and back 

yard green 

space 

3518 1990 56 12 7 

Allotment and 

community 

gardens 

2166 1364 62 7 5 

Parks and 

forests 

5662 4768 84 19 16 

 352 

 353 

In terms of the per capita supply, we find that all densely populated districts in Leipzig suffer 354 

from a significant undersupply of house-attached as well as parks, forests and gardens. Only a 355 

small number of districts (7) benefit from above-average house-attached and publicly accessible 356 

green space, while only 8 districts with dense population (according to Leipzig census data) 357 

contain above-mean front and back yard green space. For the garden-type green space, the 358 

picture is less segregated, with more people benefitting either from private or allotment garden 359 

green space; the number of people suffering from a double undersupply is lower compared to 360 

the chart showing the population number per public green space (Figure 6). 361 

 362 



 363 

Figure 6. Share of parks and forests, gardens, and front and back yard  green space relative to district 364 
area (A&B) and in m² per capita (C&D), for each of the 63 districts of Leipzig and per land-use type 365 
(LUT) (E&F) with indication for the mean value of the x- and y-axis, respectively. 366 



We only find a small number of districts benefitting from both semi-public green space and 367 

front and back yard green space, as the supply with allotments is more limited than that with 368 

public parks and urban forests. Districts with high share of allotments are found along the 369 

floodplains in Leipzig, from south to north, and thus cover inner-city and peripheral locations 370 

(Figures 5 and 6). Interestingly, here we find almost all settings of residential areas that Leipzig 371 

has: privileged inner-city, poorer inner-city, prefabricated socialist inner-city and peripheral 372 

single/detached house areas (Figure 6). 373 

In terms of per capita supply, the majority of the districts suffer from below average front and 374 

backyard green  and park- and forest-type green space. There are only three districts with 375 

exceptionally high amounts of public and front and back yard green space.  376 



 377 

Figure 7. Overview of the most prominent urban land-use types in Leipzig, consisting of the fraction 378 
map, a very high-resolution (VHR) Google Earth satellite image and a characteristic image from the 379 
sites. 380 

Concerning the urban residential structure types, the dense old built-up multi-storey perimeter 381 

block and tenement fabric shows in the city centre and the inner-city residential ring exhibit the 382 

highest undersupply with all types of green space: front and back yard green, gardens as well 383 

as parks and forests, although it is the most wanted in Leipzig at the moment. Exclusively the 384 



old residential cores including the city centre and the former village cores show both above 385 

average public and front and back yard green space. A hotspot with high supply of house-386 

attached front and back yard green space are clearly the single house areas and the terraced 387 

houses spread across the whole outer city area as well as the urban villa areas close to the 388 

floodplains and allocated more in the inner parts of the town (cf. again Figure 7). 389 

 390 
 391 

5 Discussion 392 

 393 

The mixed method of RapidEye imagery and GIS-data combined with random forest 394 

models appears to be an efficient, straightforward and ‘safe’ way to delineate different 395 

types of urban green spaces including planning-relevant public green spaces such as large 396 

parks and forests, partly fenced and opening-time restricted allotment gardens, but also, 397 

house-attached green space as a category which has not yet been quantified for a city such 398 

as Leipzig and, what is more, are so far neglected in a systematic and all-encompassing 399 

green space assessment by the city planners. The results are in excellent agreement with 400 

an estimate by Breuste (2016) that states that front and back yard green space has often 401 

been neglected in urban green space assessments “although private green can often 402 

constitute up to 10% of the total greenspace in a city (page 213)”. The spectral unmixing of 403 

these different types of green space also allows a city wide and district specific 404 

quantification and assessment of distribution over- and undersupplies with both public 405 

and – most probably – private front and back yard green, which is essential for a modern 406 

urban green planning in large cities (Buijs et al., 2016). In particular for ageing cities such 407 

as Leipzig, a good estimate and a spatial allocation of front and back yard green spaces 408 

provides a more complete picture for planners where people can relax from heat when 409 

discussing adaptation to hot days and tropical night temperatures, one of the major health 410 

concerns of the future (Schinasi et al., 2018). 411 

In addition, and of major interest for both urban planners and urban ecologists, green 412 

space type-specific analyses between different urban structural types, and using housing 413 

areas from different eras, becomes possible at a very detailed spatial level. The validation 414 

of the extent of private green space could be validated by randomly distributing 50 sampling 415 

points across the dataset. That the resulting 96% of the sampling points were correctly classified 416 

is an excellent result. Since the other datasets, namely of parks, forests and allotment garden 417 



colonies, are directly derived from a single well-established GIS data source, there is no need 418 

for validation (Haase and Nuissl, 2007). 419 

We are convinced that the method and the models we have developed and presented in 420 

this article can be of great help to (a) identify different types of urban green spaces and 421 

(b) quantify the amount of green space using spectral unmixing with trained random 422 

forest regression models. This method can also: (c) identify urban front and back yard 423 

green space for the first time, which is rarely to be found in any other urban green space 424 

classification created from remote-sensing data but that is of enormous importance for 425 

less mobile population groups in our cities (elderly, young children, disabled or 426 

chronically ill persons to list the most important affected groups; Brookfield et al., 2015). 427 

And, finally, this method can (d) bring the different types of public, semi-public and house 428 

green space existing in a large city at the level of the local districts in mutual size and 429 

availability relation which is key for a sustainable and just urban planning (Haase et al., 430 

2017; Kabisch et al., 2016). However, it is important to state that our novel method 431 

characterises the spatiality of the quantity of green space types and not the quality. 432 

Such a classification which we presented in the paper is not doable using the classical 433 

Biotope map as it mixes and partly aggregates green space types which we want to have 434 

separated. Moreover, the regional as well as the urban Biotope maps for many cities – 435 

among them Leipzig – are far too old for a present-day analysis and assessment. But, this 436 

novel approach is also of interest from a purely methodological perspective using remote 437 

sensing data for urban planning purposes. Even though we combined RapidEye with 438 

comparatively high-resolution satellite data, the calculation of vegetation fractions also 439 

allows for the integration of sensors with lower spatial resolution like Sentinel and 440 

Landsat. Fractions greatly enhance the accuracy of estimation in heterogeneous 441 

landscapes by calculating the amount of green in every pixel and thus delivering the actual 442 

extent of vegetation. Remote sensing indicators like the NDVI (Normalized Difference 443 

Vegetation Index; Tucker, 1979) have the potential to lead to valuable insights about 444 

urban greenspaces, however, they do not allow for exact spatial quantification because 445 

the state of the vegetation is assessed by the chlorophyll content, in the case of the NDVI. 446 

The entire procedure described in the methods section of this paper will be implemented 447 

in the upcoming QGIS Plugin of the EnMap box (van der Linden, 2015), an in-house 448 

development of the Geographical Institute of the Humboldt University of Berlin, 449 

Germany. This will open up the potential of this fraction-mapping procedure to the wider 450 

urban ecologists and environmental planning community who are aiming for more real-451 



world, evidence-based implementation and monitoring of green infrastructure at the city 452 

and urban landscape levels (Buijs et al., 2016). A potential coupling with three-453 

dimensional indicators, such as those recently introduced by Alavipanah et al. (2017), 454 

would lead to very valuable indicators, for example, in the ability to determine the volume 455 

of green space next to trees which is crucial to know for urban planners to determine the 456 

shade and air pollution fixation potential of the green they implement. 457 

Moreover, basing green space classification on remote sensing data has considerable 458 

potential for using long-term series of imagery and respective long-term change detection 459 

(e.g. ~40 years with Landsat images; Wulder et al., 2012). Remote sensing and the 460 

functional indicators that can be derived from it as spatio-temporal traits and trait 461 

variations (Wellmann et al., 2018; Lausch et al., 2016a, b) also permit a gradual distinction 462 

and assessment of urban green space functionality, which is key to more accurately 463 

monitoring and developing a better understanding of ecological (bio-geo-chemical) 464 

processes in the vegetation layer of cities. Traits can be also used for a more qualitative 465 

assessment (gains and losses) of taxonomic and structural biodiversity in cities (Lausch et 466 

al., 2015, 2016a).    467 

Uncertainties: As in every remote sensing study, our study is accompanied by certain 468 

margins of error. Transferability: Since our study is based on several GIS layers, the 469 

transferability of our study in a 1:1 scheme is only given if these data sources are present. 470 

Another limiting factor in terms of data availability might be the use of RapidEye remote 471 

sensing data since it is not normally provided free of charge; however, with the new Planet 472 

Labs academic data policy the download of RapidEye scenes got feasible. Trade-offs 473 

accompanied by the use of coarser satellite sensors, such as Landsat or Sentinel, and also 474 

benefits of finer sensors (Worldview) will be reviewed in upcoming studies in order to 475 

justify and enrich the results and statements achieved in this study. 476 

 477 

6 Conclusions 478 

 479 

In this study, we applied a novel ‘urban front and back yard green derivation algorithm,’ namely 480 

a masking of the fractional vegetation data using GIS vector data of land cover to delineate the 481 

front and backyard green space of residential houses in a city with an accuracy of 96%. 482 

Combining these two approaches, we can calculate the area of urban front and back yard green 483 



space for the entire city (including different types of residential structures) and compare this 484 

data to the area of public (parks, urban forests) and semi-public (allotment gardens) green 485 

spaces that have been used for the analysis of prevailing per capita green space availability. In 486 

combination with the remote sensing based spectral unmixing techniques, we are able to 487 

delineate house-attached, semi-public and public green spaces in a mid-density Central 488 

European city with a high degree of certainty (MAE 7%). For the city Leipzig – a case in point 489 

in terms of structural characteristics and growth-shrinkage dynamics in Europe – key findings 490 

include that the total amount of house green space is almost 2000 ha, which is ~40% of the 491 

amount of public green (4768ha) and about 10% of the total urban area. In a quarter of all 63 492 

total districts, front and back yard green space is the major source of green, a finding that 493 

highlights the importance of this structure for urban green space analysis of livelihood but also 494 

for urban planning and ecosystem service assessments.  495 

The delineation of property-attached green that is not part of green space classes in classical 496 

land-use maps is therefore of pronounced importance. Using the novel and more complete 497 

dataset of urban green space, we can add this data to that of public (parks, urban forests) and 498 

semi-public (allotment gardens) green spaces to create a more complete picture of green space 499 

(availability when compared to the population data) in cities and to classify ‘hot’ (well-500 

supplied) and ‘cold’ (undersupplied) spots. As this new green space class relates to private 501 

ground, it cannot be ‘simply’ part of the overall per capita green space availability equation 502 

(Kabisch et al., 2016) but is also important as complementary proxy in approaching a real 503 

assessment of green space availability for urban residents, almost all of whom have access to 504 

the urban front and back yard green space of the property they live in. In addition, agricultural 505 

land – be it used or unused – has, so far, not been included in the public green space data as it 506 

is not clear how this land will develop in the sample city of Leipzig.  507 
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