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ABSTRACT 24 

Stable isotope analysis (δ13C and δ15N from liver and muscle) was used to assess trophic 25 

relationships between Atlantic bluefin tuna (ABFT) (Thunnus thynnus) and striped dolphin (SC) 26 

(Stenella coeruleoalbla) in the Strait of Gibraltar (SoG). δ15N values from ABFT muscle and 27 

liver tissues were significantly different from those of dolphin samples, but no for δ13C values. 28 

Diet estimation by MixSIAR models from muscle and liver revealed that ABFT fed mainly on 29 

squids (Todaropsis eblanae and Illex coindetii). The shrimp Pasiphae sp. Was estimated to be 30 

the most important prey-species in the die of SC. Trophic positions estimated from muscle and 31 

liver isotopic data suggested that ABFT occupy a higher trophic level than SC. Estimations of 32 

isotopic niche, as measured by the standard ellipse area, indicated that ABFT show a broader 33 

trophic niche than SC; furthermore, SEAc did not show trophic overlap between both predators. 34 

The results of this study suggest that resource partitioning occurs between ABFT and SC in the 35 

SoG ecosystem. 36 

 37 

Keywords: Trophic ecology, Isotope mixing models, Scombridae, Delphinidae 38 
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1. Introduction 47 

 The Strait of Gibraltar (SoG) is a pasageway for many migrating species moving from the 48 

Atlantic Ocean to the Mediterranean Sea and backwards (Sabatés and Recasens, 2002; Aranda et 49 

al., 2013; Abid et al., 2015; Abascal et al. 2016). Moreover, the SoG is a region frequented by 50 

large pelagic fishes, such as tunas and billfishes, and cetaceans (Hernández-García, 1995; de 51 

Stephanis et al. 2008; Rojo-Nieto et al., 2011; Abid et al., 2017; Sorell et al. 2017; Giménez et 52 

al., 2018). This region is characterized by water-mixing processes that cause upwelling events 53 

and enhanced primary production (Echevarría et al., 2002), which supports a wide variety of 54 

species.  55 

 Earlier studies, based on stomach content analysis (SCA) or field observations, have 56 

suggested that tunas and dolphins might establish competitive, mutualism or commensalism 57 

relationships (Scott and Cattanach, 1998; Das et al., 2000; Clua and Grosvalet, 2001). For 58 

example, Scott and Cattanach (1998) reported that tuna-dolphin associations reduce the risk of 59 

predation from large sharks, whereas Clua and Grosvlaet (2001) observed that near Azores 60 

Islands large Atlantic bluefin tuna (ABFT, Thunnus thynnus) gain advantages when feeding with 61 

common dolphins (Dephinus delphis). In addition, several authors have reported that trophic 62 

resource partitioning becomes a strategy commonly used by tuna and dolphin inhabiting the 63 

same area (Perrin et al 1973; Hassani et al., 1997). SCA and field observations give detailed data 64 

on diet composition, feeding overlap, and consumption rate (Das et al., 2000; Chipps and 65 

Garvey, 2006); however, they record trophic information at a relatively brief timescale (Estrada 66 

et al., 2005; Logan et al., 2011). For this reason, stable isotope analysis (SIA) has become a 67 

useful complement to traditional methods (i.e. field observations or stomach content analysis) as 68 

it allows for long-term integrated measures of diets assimilated over time (Bearhop et al., 2004). 69 
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The carbon stable isotope ratios (δ13C) provide information about dietary sources (Fry, 2006), 70 

whereas nitrogen stable isotope ratios (δ15N) are used as indicators of the consumer’s trophic 71 

position (Post, 2002). δ13C and δ15N can provide trophic information over weeks or months, 72 

depending on the tissue turnover rate (Gannes et al., 1998). Relatively slow turnover tissues such 73 

as muscle (Hesslein et al., 1993; MacAvoy et al., 2001) integrate information on trophic behavior 74 

at time scales of months, whereas liver, which shows a faster turnover rate (Guelinckx et al., 75 

2007; Suzuki et al., 2005), may give information at a shorter time scale (weeks). Moreover, the 76 

isotopic composition of predator tissues and their most common prey allow estimation of dietary 77 

compositions by applying mixing models (Parnell et al., 2010). Stable isotopes are also used to 78 

estimate isotopic niche widths (Bearhop et al., 2004; Newsome et al., 2007; Syväranta et al., 79 

2013), which are measures of dietary diversity. 80 

 Trophic relationships between tunas and dolphins have been studied in the Pacific Ocean 81 

(Perrin et al. 1973; Scott and Cattanach, 1998; Scott et al. 2012), Atlantic Ocean (Hassani et al., 82 

1997; Das et al., 2000; Clua and Grosvalet, 2001; Pusineri et al., 2008) and Indian Ocean 83 

(Ballance and Pitman, 1998; Anderson and Shaan, 1999), but similar investigations have not 84 

been undertaken in the Mediterranean Sea. The present study was conducted to investigate the 85 

feeding habits, trophic positions and trophic relationships of ABFT and SC residing in the SoG 86 

using SIA coupled to Bayesian isotope mixing models.  87 

 88 

2. Material and methods 89 

2.1 Sampling 90 

 ABFT (n=30), ranging between 127 and 212 cm in straight fork length (SFL), were 91 

caught by baitboat from the SoG (Fig. 1) in 2012 and 2013 (Supplementary Material, Table S1). 92 
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The curved fork length (CFL) was recorded on board fishing vessels to the nearest cm 93 

(Supplementary Material, Table S1), the straight fork length (SFL) being estimated from the 94 

equation SFL = 2.9457 + 0.9442 × CFL (Rodríguez-Marín et al., 2015). SC (n=7) stranded in 95 

the Spanish coast of the SoG were necropsied soon after they were found dead (time range from 96 

two to 48 h) in 2012 and 2013 (Supplementary Material, Table S2). Tissue samples were only 97 

collected from dolphins in “very fresh” or “fresh” conditions (1-2 on a 0-5 scale, 0 when alive). 98 

The total length of the dolphins ranged between 121 and 220 cm (Supplementary Material, Table 99 

S2).  100 

 101 

2.2 Stable isotope analysis 102 

 Small pieces of muscle and liver (~ 5 g) were collected from all the sampled animals and 103 

stored at -20°C until analysis.  Because stomach content data of both predators was not available, 104 

the list of prey chosen for SIA was based on the identification of prey in ABFT and dolphin 105 

stomachs collected in the area (Varela et al., 2013; Sorell et al., 2017; Giménez et al., 2017, 106 

2018). It consisted of 5 fish species (Trachurus trachurus, Micromesistius poutassou, Sardina 107 

pilchardus and Myctophum punctatum), 2 squids (Illex coindetii and Todaropsis eblanae) and 2 108 

crustaceans (Sergia robusta and Pasiphae sp.). Prey species were collected by trawling in the 109 

SoG area during a research cruise carried out in March, 2013, and stored at −20 °C until use. 110 

Muscle and liver samples of the focal species, as well as whole prey were thawed and 111 

rinsed with distilled water to remove blood and other impurities. Following freeze-drying, the 112 

samples were ground, and aliquots of ∼1 mg were placed into tin capsules for 15N analysis. 113 

Before 13C analysis, lipids were extracted from the samples with chloroform:methanol (2:1 v/v) 114 

as described by Varela et al. (2012, 2013). The relative abundances of 13C and 15N were 115 
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measured by a continuous gas flow system using a Thermo Finnigan Elementary Analyzer Flash 116 

EA1112 coupled to a Finnigan MAT Delta Plus mass spectrometer. All carbon and nitrogen 117 

isotope data are reported in δ notation according to the following equation: �X = 	 [(R������/118 

��� !" #"	) − 1] × 1000, where X is 13C or 15N and R is the ratio 13C/12C or 15N/14N (Peterson 119 

and Fry, 1987). Standard materials are Vienna Pee Dee belemnite for carbon and atmospheric N2 120 

for nitrogen and expressed as parts per thousand (‰) relative to standards (Peterson and Fry, 121 

1987). Precision of either C or N isotopic determinations was ±0.15‰. 122 

 123 

2.3 Data analysis 124 

 Differences in δ13C and δ15N values between species and tissues were analyzed by 125 

Student’s t-test.  When normality or homoscedasticity assumptions were violated, Mann-126 

Whitney U-test nonparametric test was used. A significance level of α = 0.05 was considered for 127 

all statistical tests. Statistical analyses were performed using Statgraphics Centurion v16.2.04. 128 

 A Bayesian mixing model in R (v3.4.3) (MixSIAR, Stock and Semmens, 2016) was 129 

applied to estimate the contribution of different prey to diet. This model estimates the 130 

contribution of n sources (prey) to a mixture (predator), and also incorporates the uncertainty in 131 

the isotopic signatures of consumers, sources and isotopic discrimination factors (Parnell et al. 132 

2010). Isotopic discrimination factors previously estimated for ABFT and dolphins were used to 133 

perform this analysis (∆)*C�+	�,�+�� = 	2.0, ∆)-N�+	�,�+�� = 	3.0, ∆)*C0123	�,�+�� =	−0.16 ±134 

0.64, ∆)-N0123	�,�+�� = 	1.64	 ± 0.20, ∆)*C0123	�67�8 = 	0.42	 ± 0.34, ∆)-N0123	�67�8 =135 

	0.68	 ± 0.42) (Fernández et al., 2011; Varela et al., 2011, 2013). As there is no available data on 136 

the ∆)-N and ∆)*C for SC liver tissue, they were estimated using the package SIDER for R 137 

(v3.4.3). SIDER uses a phylogenetic regression model based on a compiled dataset to impute 138 
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(estimate) an isotopic discrimination factors of a consumer (Healy et al., 2017). Prior to running 139 

the mixing models, the goodness-of-fit of the data to the model was evaluated using simulated 140 

mixing polygons (Smith et al., 2013) 141 

 The trophic position (TP) of both predators, ABFT and SC, was calculated from muscle 142 

and liver isotopic data according to the equation proposed by Post (2002): TP = λ +143 

(�)-N�8�=�>?8 − �)-N��+)/∆
)-N, where λ is the trophic position of the organism used as the 144 

secondary consumer, �)-N�8�=�>?8 and �)-N��+ are the δ15N of the predator and secondary 145 

consumer, and ∆)-N is the isotopic discrimination factor for each predator and tissue, taken from 146 

earlier studies (Fernández et al., 2011; Varela et al., 2011, 2013). As for MixSIAR, the ∆)-N for 147 

SC liver tissue was estimated with SIDER (Healy et al., 2017). The spotted laternfish 148 

Myctophum puctatum, an important dietary component of ABFT and dolphins in the SoG area, 149 

was used as the secondary consumer, applying values of λ = 3.07 (Corrales et al., 2015) and δ15N 150 

= 8.28 (Sorell et al., 2017). 151 

 The isotopic niche width and trophic overlap of both species were estimated by Bayesian 152 

standard ellipse corrected areas (SEAc) adjusted for small sample size (SEAc) using the SIBER 153 

package using the SIBER package (Jackson et al., 2011) of SIAR (Parnell et al., 2010). Unlike 154 

other methods for estimating these trophic parameters (e.g. convex hull; Layman et al., 2007), 155 

SEAc estimations are less susceptible to outliers (Jackson et al., 2011; Syväranta et al., 2013).  156 

 157 

3. Results 158 

 Mean isotopic values (±SD) of ABFT and SC tissues are shown in Table 1 and Fig. 2. 159 

δ
15N values from ABFT muscle and liver tissues were significantly different from those of 160 

dolphin samples (t-test, p < 0.01), whereas no differences were found in δ13C values (t-test or U-161 
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test, p > 0.05). Significant isotopic differences were also detected between tissues in the two 162 

predators (t-test or U-test, p > 0.05), except for SC δ13C values (U-test, p = 0.247).  163 

 Isotopic values of prey and predators are plotted in Fig. 2. While ABFT muscle and SC 164 

liver δ15N values are highest, the ABFT liver and SC muscle isotope values are intermediate 165 

among prey sources. It is worth to note that the two ommastrephid cephalopods (i.e. I. coindetii 166 

and T. eblanae) were grouped into a single prey category. 167 

 SIDER estimated values of ∆)-N = 3.48 ± 1.57 and ∆)*C = 1.39 ± 1.97 for SC liver 168 

tissue. Otherwise, MixSIAR results from ABFT muscle and liver data estimated that the squids 169 

T. eblanae and I. coindetii were the main contributors to the diet of ABFT, (Table 3). For SC, the 170 

shrimp Pasiphaea was estimated to be the most important diet component from muscle and liver 171 

isotopic data (Table 3). The mixing polygon simulation indicates that all consumers are located 172 

within the 95% mixing region (Fig. 3), therefore the proposed mixing model results are 173 

acceptable. 174 

 Estimations of ABFT and SC trophic positions (TP) derived from δ15N values of muscle 175 

and liver are shown in Table 1. For ABFT, the TP estimated from muscle data ranged from 3.49 176 

to 5.14 (4.44 ± 0.38), whereas the TP calculated from liver ranged from 2.84 to 5.90 (4.39 ± 177 

0.66). For SC, the TP estimations were less variable; thus, while the TP calculated from muscle 178 

data ranged from 3.37 to 3.71 (3.50 ± 0.14), the TP estimated from liver ranged from 3.55 to 179 

3.84 (3.76 ± 0.11). The statistical analysis suggested that the ABFT occupies a higher trophic 180 

position than the SC (Mann-Whitney U-test, p > 0.05).  181 

 Table 4 and Fig. 4 show isotopic niche width and overlap, as measured by the standard 182 

ellipse corrected for sample size (SEAc). The isotopic niche width was broader in ABFT than in 183 

SC. In both predators, the niche width estimated from liver isotopic data was slightly larger than 184 
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that estimated from muscle. No significant isotopic overlap between species or tissues was 185 

found. 186 

  187 

4. Discussion 188 

 Feeding ecology studies based on stomach contents of stranded animals have been 189 

questioned because they report inaccurate information of unhealthy and poorly fed specimens 190 

(Ross, 1984; Selzer et al., 1986). However, fasting conditions apparently do not affect marine 191 

mammals (Gómez-Campos et al. 2011, Payo-Payo et al., 2013). Nitrogen and carbon isotopic 192 

ranges observed in muscle and liver of both predators were broader than those reported in earlier 193 

studies carried out in the western Mediterranean Sea (Payo-Payo et al., 2013; Medina et al., 194 

2015), and narrower than those reported in the Alboran Sea. This suggests that these species 195 

have a more varied diet in the SoG. Otherwise, the lack of δ13C differences between predators 196 

may indicate that they fed on either similar prey (Matley et al., 2015), or different prey with 197 

similar δ13C values. 198 

 MixSIAR models from muscle and liver data estimated that the diet of ABFT was mainly 199 

composed of ommastrephid squids (T. eblanae and I. coindetii). These results are in agreement 200 

with those a previous study carried out on ABFT caught by trap in the SoG (Varela et al., 2013). 201 

The different results obtained from the two distinct tissues may be related to their different 202 

turnover rates, so that they would provide information at two distinct time scales (Varela et al., 203 

2014). Regarding SC, the decapod crustacean Pasiphaea sp. was estimated to be the most 204 

important prey source. Conversely, Gómez-Campos et al. (2011) estimated that hake (Merluccius 205 

merluccius) contributed to 60.3% of the diet of mature SC sampled in the western Mediterranean 206 

Sea. Nevertheless, in this analysis the authors did not included decapod shrimps, which have 207 
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been reported as common prey of SC in the Mediterranean Sea (Würtz and Marrale, 1993; Dede 208 

et al., 2015; Aznar et al., 2017). Although decapod crustaceans show lower caloric and nutrient 209 

content than fish and squid (Cartes et al., 2008), they may occur at high densities in shallow 210 

waters at night (Sardou et al., 1996; Vestheim and Kaartvedt, 2009), becoming an important food 211 

resource of upper-level predators. It is noteworthy that decapod crustaceans, however, were not 212 

found in gut contents of common and bottlenose dolphins (Tursiops truncatus) stranded in the 213 

SoG region (Giménez et al., 2017, 2018). 214 

 A significantly higher TP was estimated for ABFT (4.44-4.39) compared to SC (3.50-215 

3.76), suggesting that ABFT feed on preys located at higher trophic positions. These values can 216 

be compared to TP estimates in killer whales (Orcinus orca) ocurring in the SoG. Considering 217 

skin δ15N values of 12.66‰ for O. orca sampled in the area (Esteban et al., 2016), and a prey-218 

skin discrimination factor of 3.05‰ (Caut et al., 2011), we can conclude that this delphinid 219 

occupies a higher trophic postion than ABFT and SC (TP = 4.53; calculated using the equation 220 

of Post (2002)). Other studies, in fact, have shown that killer whales are capable of feeding on 221 

tuna and dolphin (Esteban et al., 2014; Bolaños-Jiménez et al., 2014; De Stephanis et al., 2015).  222 

 The trophic diversity estimated by the Bayesian standard ellipse corrected areas (SEAc) 223 

(Jackson et al., 2011) suggests that ABFT shows a more euryphagous diet in the SoG. The 224 

estimated trophic overlap between both predators was low, indicating that these species play 225 

different trophic roles in the SoG ecosystem. This finding is not unexpected, since tunas and 226 

dolphins inhabiting the same habitat tend to reduce their trophic competition by feeding on 227 

different preys or locations (Hassani et al., 1997; Das et al., 2000). In fact, a study based on 228 

sonic- and radio-tracking data reported that tunas and dolphins feed at different depths and times 229 

in the eastern Pacific Ocean (Scott et al, 2012). 230 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

11 
 

 Although the results reported in the present study suggest that stable isotope are suitable 231 

for assessing feeding habits, trophic positions and trophic relationships of ABFT and SC in the 232 

SoG, there are several caveats that should be accounted for. Firstly, the number of individuals of 233 

each potential prey species is fairly low, and thus the high intra-specific or temporal isotopic 234 

variability of these preys has not been considered. Secondly, the low number of muscle and liver 235 

samples analysed, especially for SC, did not allow us to study seasonal variations of the trophic 236 

relationships. Further studies, therefore, should be conducted to investigate seasonal shifts in the 237 

feeding behavior of these two predators.  238 

 239 

5. Conclusions  240 

To our knowledge, the present study provides the first information about the trophic relationship 241 

between ABFT and SC in the SoG. Our findings indicate that resource partitioning occurs 242 

between both predators, ABFT feeding on preys at higher trophic positions. Furthermore, 243 

estimates of the trophic level suggest that ABFT and SC in the SoG can be better classified as 244 

mesopredators rather than top predators.  245 

 246 
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Figure captions 455 

Fig. 1. Map of the study region showing the approximate location of samplings of stranded SC 456 

(●) and fishing zone of ABFT (dashed area). 457 

 458 

Fig. 2. Mean δ13C and δ15N values of prey, ABFT and SC. MP, Micromesistius poutassou; MyP, 459 

Myctophum punctatum; Psp, Pasiphae sp.; SP, Sardina pilchardus; SQ; Squids (Illex coindetii 460 

and Todaropsos eblanae); SR, Sergia robusta; TT; Trachurus trachurus.   461 

 462 

Fig. 3. Mixing model polygon results. Stable isotope mixing model polygons for a) ABFT 463 

muscle, b) ABFT liver, c) SC muscle and D) SC liver. ABFT and SC are represented with black 464 

dots and potential prey species with white dots. Colored region represents the 95% confidence 465 

interval.  466 

 467 

Fig. 4. δ13C and δ15N bi-plots for ABFT and SC tissues (circles, ABFT muscle; triangles, ABFT 468 

liver; pluses, SC muscle; crosses, SC liver). Ellipses represent the standard ellipse corrected area 469 

(SEAc) estimated for ABFT muscle (solid line), ABFT liver (dashed line), SC muscle (dotted 470 

line), and SC liver (twodashed line).  471 

 472 

 473 

 474 
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Table 1 1 

Isotopic values (δ15N and δ13C presented in ‰) and trophic position (mean ± SD) of ABFT and SC by 2 

tissue type. The right column shows p-values obtained from comparisons of means between species; p-3 

values resulting from comparisons between tissues are shown in rows beneath the compared data. t, 4 

Student’s t-test; U, Man-Whitney U-test.  5 

 ABFT STD p value 

δ
15

N (‰) 
Muscle 11.43 ± 0.63 10.59 ± 0.46 < 0.01 (t) 

Liver 10.08 ± 0.45 11.58 ± 0.40 < 0.01 (t) 

p value <0.001 (t) < 0.001 (t)  

δ
13

C (‰) 
Muscle -17.62 ± 0.27 -17.53 ± 0.47  0.548 (t) 

Liver -17.29 ± 0.48 -17.35 ± 0.64  0.848 (U) 

p value < 0.001 (U) 0.247 (U)  

TP 
Muscle 4.44 ± 0.38 3.50 ± 0.14 < 0.001 (U) 

Liver 4.39 ± 0 .68 3.76 ± 0.11 < 0.05 (U) 

p value  0.756 (U) < 0.01 (U)  

 6 

 7 

Table 2  8 

Mean ± SD of δ15N and δ13C values (presented in ‰) of the prey species considered in the SIAR mixing-9 

models. n, number of individuals. 10 

Preys δ
15

N (‰) δ
13

C (‰) Weight (g) 

Todaropsis eblanae (n = 3) 10.39 ± 0.57 -17.31 ± 0.22 188.03±15.31 
Illex coindetii (n=2) 10.11 ± 0.70 -17.49 ± 0.29 190.30±10.03 
Trachurus trachurus (n = 3) 10.58 ± 0.54 -16.99 ± 1.92 135.59±12.26 
Micromesistius poutassou (n = 3) 10.38 ± 0.26 -17.99 ± 0.51 167.79±13.23 
Sardina pilchardus (n=3) 10.09 ± 0.77 -18.05 ± 0.87 42.61±8.78 
Myctophum punctatum (n = 3) 9.18 ± 0.66 -18.28 ± 0.48 3.51±0.78 
Sergia robusta (n = 3) 7.84 ± 0.61 -18.29 ± 1.00 1.05±0.30 
Pasiphaea sp. (n = 2) 6.17 ± 0.10 -20.18 ± 0.20 0.69±0.28 

 11 

 12 

 13 

 14 

 15 
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Table 3 16 

Dietary contribution of common prey sources based on MixSiar model for ABFT and SC liver and 17 

muscle tissues. Values are presented as mean proportion estimates with 5% and 97.5% confidence 18 

intervals. 19 

ABFT 

         Muscle   Liver 

Preys 5% 97.5% mean (%)   5% 97.5% mean (%) 

Squids (Illex coindetii and Todaropsis eblanae) 3.6 51.0 27.8 

 

11.8 55.8 31.4 

Trachurus trachurus 3.3 26.0 12.0 

 

4.5 35.6 16.6 

Micromesistius poutassou 4.5 45.5 19.3 

 

0.2 23.8 6.1 

Sardina pilchardus 3.2 35.3 14.9 

 

1.8 38.2 11.5 

Myctophum punctatum 1.7 39.3 12.5 

 

2.5 49.2 18.2 

Sergia robusta 0.8 24.1 9.8 

 

0.6 24.8 8.1 

Pasiphaea sp. 0.4 11.2 3.8   1.8 15.6 8.2 

        SC 

         Muscle   Liver 

Preys 5% 97.5% mean (%)   5% 97.5% mean (%) 

Squids (Illex coindetii and Todaropsis eblanae) 1.4 16.5 7.2 

 

1.4 32.6 11.0 

Trachurus trachurus 3.8 32.9 15.0 

 

1.4 22.5 8.3 

Micromesistius poutassou 1.3 27.1 10.0 

 

1.4 27.2 11.5 

Sardina pilchardus 0.8 31.9 10.1 

 

1.3 36.5 12.0 

Myctophum punctatum 1.8 46.8 15.2 

 

0.3 28.9 9.8 

Sergia robusta 1.2 31.33 11.2 

 

3.3 45.3 17.8 

Pasiphaea sp. 16.4 45.8 31.4    12.6 46.5 29.6 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
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Table 4. Trophic niche width and overlap of ABFT and SC, as estimated by SIBER (Stable 29 

Isotope Bayesian Ellipses in R) analysis of muscle and liver isotopic values. SEAc, corrected 30 

standard ellipse area. 31 

 32 

Group SEAc SEAc Overlap 

ABFT   

Muscle (I) 0.55 I vs II (< 0.01) 

I vs III (0.01) 

I vs IV (0.23) 

Liver(II) 0.67 II vs III (0.03) 

 II vs IV (< 0.01) 

SC   

Muscle (III) 0.48  III vs IV (< 0.01) 

Liver (IV) 0.53   

 33 
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Highlights 

Trophic relationships between bluefin tuna and striped dolphin were assessed by SIA 

SIAR mixing-models estimated that ABFT fed mainly on squid and horse mackerel 

Decapod shrimp was estimated to be the main dietary component for STD 

TP estimations suggested that ABFT occupy higher trophic levels than STD 

Resource partitioning occurs between ABFT and STD  

 
 


