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������ � 48 

Free Nitrous Acid (FNA) exerts a broad range of antimicrobial effects on bacteria 49 

although susceptibility varies considerably amongst microorganisms. Among nitrifiers found 50 

in activated sludge of wastewater treatment processes (WWTP), nitrite oxidising bacteria 51 

(NOB) are more susceptible to FNA compared to ammonia oxidising bacteria (AOB). This 52 

selective inhibition of NOB over AOB in WWTP bypasses nitrate production and improves 53 

the efficiency and costs of the nitrogen removal process in both the activated sludge and 54 

anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms 55 

governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we 56 

investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB 57 

and NOB using an integrated metagenomics and label free quantitative sequential windowed 58 

acquisition of all theoretical fragment ion mass spectra (SWATH'MS) metaproteomic 59 

approach. The ����
�
�
��� genus of AOB on exposure to FNA maintains internal 60 

homeostasis by upregulating a number of known oxidative stress enzymes such as pteridine 61 

reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on 62 

exposure to FNA suggesting the detoxification of nitrite to nitric oxide. Interestingly proteins 63 

involved in stress response mechanisms such as DNA and protein repair enzymes, phage 64 

prevention proteins as well as iron transport proteins were upregulated on exposure to FNA.  65 

Interestingly enzymes involved in energy generation were upregulated on exposure to FNA	�66 

The total proteins specifically derived from the NOB genus ����
��*��� was low and as such 67 

did not allow for the elucidation of the response mechanism to FNA exposure.  These 68 

findings give us an understanding of the adaptive mechanisms of tolerance within the AOB 69 

����
�
�
����to the biocidal agent FNA. 70 

 71 

 72 
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 74 

Studies on bacteria have shown that the protonated form of nitrite i.e. HNO2 also 75 

known as free nitrous acid (FNA), is a strong biocide [1]. Additionally, FNA was seen to 76 

have broad bacteriocidal and biocidal effects on an array of microorganisms, which have led 77 

to its use in a range of applications for wastewater treatment processes (WWTP). This 78 

includes the control of microbial induced sewer corrosion; the enhanced biodegradability of 79 

microbes in activated sludge to achieving reduced N2O production in the activated sludge 80 

process [2'8]. It has been hypothesised that once inside the cell, FNA dissociates to form 81 

various reactive nitrogen species (RNS) and reactive oxygen species (ROS) speculated to 82 

enhance the toxicity of FNA, but the chemistry of this reaction is not well characterised [9]. 83 

These reactive species can cause direct oxidative damage to cellular proteins, cell membrane 84 

and cell wall components as well as nucleic acids. It is hypothesised that FNA can act as a 85 

protonophore by collapsing the proton membrane potential and thereby inhibiting ATP 86 

production [10]. Further application of FNA for control of microbial growth and activity 87 

would benefit from improved understanding of how it causes toxicity to various 88 

microorganisms. 89 

 90 

 Transcriptomic based investigations have been conducted on /����
�
����91 

�������
�� (PAO1) and �����8
$����
� $�������� (Hildenborough) to determine the toxic 92 

mechanisms of FNA.�At 0.1 mg/L FNA'N caused inhibition of cellular respiration that led to 93 

PAO1 re'routing its carbon metabolic pathway from the tricarboxylic acid (TCA) cycle to the 94 

pyruvate fermentation pathway. Inhibition of protein synthesis and inactivation of ribosome 95 

components was also evident [5]. Studies on PAO1 showed that FNA at 5.0 mg/L FNA'N 96 

caused cell death [11]. For the bacterium �	�$�������, FNA caused increased expression of 97 
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genes coding for oxidative stress enzymes indicating that FNA caused oxidative stress as well 98 

as decreased anaerobic respiration and a shut down of protein synthesis[4]. 99 

 100 

In wastewater treatment processes (WWTP), the removal of nitrogen is carried out via 101 

the use of the activated sludge process. This is achieved by the actions of nitrifying and 102 

denitrifying bacteria in a multi'step process. Ammonium is converted to nitrite, by the 103 

ammonia'oxidising bacteria (AOB), and then converted to nitrate by the nitrite'oxidising 104 

bacteria (NOB). Denitrifying bacteria consequently reduces nitrite and nitrate to nitrogen gas 105 

[12'14]. The most commonly found nitrifying bacteria in activated sludge belong to the 106 

����
�
�
���� genus� for the AOB and the ����
��*��� and ����
�0����genera for the NOB 107 

[15]. Interestingly, studies on activated sludge systems show that NOB species are more 108 

sensitive to FNA than AOB [10, 16, 17]. FNA concentrations of greater than 1.5 mg/L FNA'109 

N are found to selectively inhibit the NOB population [16]. In a recent study the growth of 110 

NOB was selectively inhibited whereas the AOB population remained high when the sludge 111 

was treated with FNA at 1.8 mg/L FNA'N [15]. Fortuitously, this phenomenon could benefit 112 

nitrogen removal in WWTP as the suppression of NOB results in ‘partial nitritation’ where 113 

nitrite is formed instead of nitrate in both conventional nitrogen removal using activated 114 

sludge system and the anaerobic ammonium oxidation (Anammox) [15]. This can lead to 115 

high economic and operational benefits for WWTP due to the decreased oxygen demand for 116 

nitrification, less organic carbon required for denitrification and potentially reduced N2O 117 

emissions [6]. 118 

 119 

Despite the range of applications of FNA in WWTP, there is limited understanding of 120 

the increased tolerance of AOB over NOB to the biocide. NOB, in general have two 121 

additional pathways to remove toxic nitrite build up compared to AOB (Figure S1). AOB and 122 
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NOB both have the nitrite detoxifying gene nitrite reductase (���%? that converts nitrite to 123 

nitric oxide (NO) [18]. The nitrite reductase (���)�? and nitrite oxidoreductase (�
��B)? 124 

genes, present exclusively in NOB convert nitrite to ammonia and nitrate respectively thereby 125 

detoxifying toxic nitrite. The limited numbers of detoxifying pathways in AOB is contrary to 126 

its observed tolerance. To date there is no clear understanding of the underlying mechanisms 127 

that govern this tolerance to FNA.  128 

 129 

Studies investigating the global responses of AOB to various stress conditions are 130 

sparse and have been limited to responses to iron stress, toxic zinc exposure, oxidative stress 131 

induced by hydrogen peroxide and starvation [19'22]. In this study we reveal the reasons for 132 

FNA tolerance in AOB compared to NOB using a combined metagenomic and a quantitative 133 

sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH'MS) 134 

metaproteomic approach. SWATH'MS is a label free proteomics approach that allows for the 135 

unbiased, reproducible quantification of essentially any protein of interest without the use of 136 

expensive labelling approaches [23]. Additionally SWATH'MS requires low amounts of 137 

proteins (1 @g) for analysis along with a 5 @g aliquot of pooled samples for the creation of a  138 

spectral library using information dependent acquisition (IDA) [23]. Of the reports on 139 

microbial metaproteomics, to our knowledge this study describes the first use SWATH'MS 140 

on an environmental microbiome sample.  141 

 142 

'�
���(�"�)�
��$
�(�*#$�
 143 

2.1. Reactor set up, side stream treatments and sampling:  144 

 An 11 L sequencing batch reactor (SBR) originally seeded with activated sludge from 145 

a domestic wastewater treatment plant in Brisbane, Australia was operated in a temperature 146 

controlled room (22±1 °C) supplied with an ammonium based synthetic feed sans organic 147 
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carbon for the selection of nitrifying bacteria. The synthetic wastewater composition per liter 148 

was: 0.2949 g of NH4HCO3 (57 mg NH4
+
'N), 0.33 g NaHCO3, 0.184 g of NaCl, 0.072 g of 149 

NaH2PO4·H2O, 0.035 g MgSO4·7H2O, 0.029 g KCl and 0.3 mL of a trace element stock 150 

solution prepared as previously described [24]. The reactor was operated with four cycles 151 

daily (6 hours each), which consisted of a 90 min aerobic feed period wherein 5L of synthetic 152 

wastewater was pumped into the reactor, a 210 min aerobic mixing period, a 50 min settling 153 

stage and a 10 min decanting period. No sludge was wasted during the study. During aeration 154 

periods, a dissolved oxygen (DO) concentration of 2.5'3.0 mg/L and a pH of 7.5 were 155 

maintained in the reactor using programmed logic controllers. The hydraulic retention time 156 

(HRT) of the reactor was 13.2 hours. At different SBR operational stages, a side stream 157 

treatment of FNA was applied to the sludge that was removed and then returned to the reactor 158 

(Figure 1(A)). In Stage 1 of the SBR operation, there was no FNA side stream treatment. In 159 

Stage 2, 2750 ml (25%) of the mixed liquor was withdrawn every day (second daily cycle) 160 

from the main SBR at the end of the aerobic stage (before settling) and the sludge was 161 

thickened to 130 ml. The sludge was then treated for 24 hours with an initial concentration of 162 

3.64 mg/L FNA'N (Stage 2) while maintaining a pH of 6.0 in a side stream FNA treatment 163 

reactor using a programmed logic controller. Following FNA treatment, the sludge was then 164 

returned to the main SBR. At the end of the second daily cycle, the amount of treated 165 

wastewater decanted was altered so that the 13.2 h HRT was maintained. Similarly, in Stage 166 

3 the same sludge treatment was carried out every day with a changed side stream FNA 167 

treatment of 1.82 mg/L FNA'N. The nitrogen species of the side stream reactor were 168 

measured at 0 and 24 hours following treatment.  169 

  170 

For the metagenomic investigation, samples of mixed liquor were collected at the end 171 

of each stage of operation from the main reactor.  The samples once collected were 172 
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centrifuged at 14,000 x g for 2 mins (4 °C) and the supernatants removed. The remaining 173 

pellets were snap frozen in liquid nitrogen ('196 °C) to eliminate enzymatic activity and then 174 

stored at '80 °C until DNA extractions were performed. For the metaproteomic studies, 175 

samples were collected at the end of Stage 3, from where the thickened sludge (130 ml) was 176 

equally distributed to an FNA treatment reactor at 1.82 mg/L FNA'N and a control reactor 177 

without FNA treatment i.e. 0 mg/L FNA'N. Triplicate samples for metaproteomics were 178 

taken from both side stream reactors at the treatment times of 0 min, 20 min, 2 hours, 12 179 

hours and 24 hours for 3 consecutive days. Following centrifugation, supernatant was 180 

removed and pellets were snap frozen in liquid nitrogen and stored at '80 °C until protein 181 

extraction was carried out.  182 

 183 

2.2. Analytical methods and DNA extraction: 184 

 The ammonium, nitrite and nitrate concentrations in the SBR effluent were measured 185 

2'4 times every week using a Lachat QuikChem8000 Flow Injection Analyzer (Lachat 186 

Instrument, Milwaukee, Wisconsin, USA). Microbial DNA was extracted from sludge 187 

samples for metagenomics using the PowerSoil® DNA isolation Kit (MO BIO Laboratories) 188 

as per the manufacturer’s instructions. Metagenomic DNA was sequenced using the Illumina 189 

NextSeq 500 platform using the Nextera library protocol (Illumina) at the Australian Centre 190 

for Ecogenomics, University of Queensland.  191 

 192 

2.3. Metagenomic assembly and analyses: 193 

 Raw DNA sequences were added to the Metagenomics Rapid Annotation (MG'194 

RAST) server (v4) for rapid annotation and the determination of microbial community 195 

composition at the three different stages of the reactor operation. The sequence datasets for 196 

the stages 1, 2 and 3 were loaded into MG'RAST with identifications of mgm4688234.3, 197 
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mgm4688240.3 and mgm4688237.3 respectively [25]. The raw Illumina sequence reads were 198 

also processed using two different bioinformatic pipelines to create a robust and tailored 199 

metagenome database. Briefly, in the first pipeline (Pipeline 1), adaptors of the forward and 200 

reverse reads were clipped and quality trimmed with trimmomatic using a minimum quality 201 

score of 3 for leading and trailing bases, along with a minimum average quality score for 4 bp 202 

as 15 limiting the minimum required length to 50bp [26]. Additionally microbial community 203 

analysis was carried out using the GraftM tool wherein reads were parsed through GraftM to 204 

identify those containing 16S reads using the May, 2015 Greengenes database 97% OTUs 205 

(operational taxonomic units) as a reference with default parameters [27]. The quality 206 

controlled reads were then merged with BBmerge [28]. The quality controlled paired reads 207 

were assembled using CLC Genomics Cell assembler v8.0. The assembled contigs were then 208 

binned using GroopM and Metabat [29, 30]. In the second bioinformatic pipeline (Pipeline 2) 209 

the raw reads were processed using an automated pipeline called IMP (Integrated Meta'omic 210 

Pipeline) that involved iterative co'assembly and mapping [31]. The metagenome bins were 211 

generated through this pipeline using a VizBin'based workflow [32, 33]. The quality of the 212 

bins generated from both these bioinformatic pipelines were then estimated using CheckM. 213 

Taxonomies of the bins were inferred using the genome taxonomy database (GTDB) [34]. 214 

Nitrifying population genome bins with greater than 75% completeness and contamination 215 

less than 10 % were annotated using Prokka and concatenated to create a custom tailored 216 

database for metaproteomics [35, 36].  217 

 218 

2.4. Protein extraction and digestion:   219 

Protein extraction was carried out on all triplicate samples collected from the side 220 

stream treatment reactor under 1.82 mg/L FNA'N and a 0 mg/L FNA'N as a control. A 10ml 221 

protein extraction buffer was prepared using 10 ml of B'PER Bacterial Protein Extraction 222 
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Reagent mix (Thermo Fisher Scientific), 7.7 mg of dithiothereitol and 1 tablet of Complete 223 

mini EDTA'free Protease Inhibitor Cocktail (Roche). 1 ml of this buffer was added to each 224 

thawed sludge pellet (Section 2.1) for extraction and left at room temperature for 30 minutes 225 

with periodic vortexing to solubilise the protein. The cell debris was removed after 226 

centrifugation at 15,000 g for 15 mins following which the protein supernatant was incubated 227 

overnight with 10% Trichloroacetic acid (TCA) at 4 °C. The protein was recovered by 228 

centrifugation at 18,000 g for 15 mins following which the pellets were washed twice with 229 

cold acetone and subsequently dried at room temperature. Once dried the pellets were re'230 

suspended in 100 @l of buffer containing 2 M thiourea, 7 M urea and 100 mM ammonium 231 

bicarbonate. Protein quantification was carried out through the 2'D Quant Kit (GE 232 

Healthcare). Subsequently, reduction of proteins was carried out with 5 mM dithiothereitol 233 

for 30 mins at 56 °C. Alkylation of the protein was carried out by incubation in the dark for 234 

30 mins at room temperature with 25 mM iodoacetamide (Sigma'Aldrich). Additional 50 235 

mM dithiothereitol was added to quench the alkylation reaction once the incubation was 236 

complete. Samples were diluted with 50 mM ammonium bicarbonate to reduce the urea 237 

concentration to 2 M. Digestion with 1:50 trypsin:protein ratio was performed at 37 °C for 4 238 

hours. Following that a second digestion was performed with a 1:25 trypsin:protein ratio at 239 

37 °C overnight [37]. Peptides were further concentrated and purified using the C'18 240 

ZipTip® Pipette Tips (Merck Millipore) using 5% acetonitrile/0.1% trifluoroacetic acid for 241 

washing and then elution with 80% acetonitrile/0.1% trifluoroacetic acid. The samples were 242 

dried using a Speed'Vac to remove acetonitrile and peptides were re'suspended in 0.1% 243 

formic acid into vials used for mass spectrometry (Agilent Technologies) [38]. 244 

 245 

2.5. Metaproteomic analysis: 246 
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 Following purification, 1 @g of digested protein was used for SWATH acquisitions 247 

and 5 @g aliquots of pooled samples were used to create a spectral library using information 248 

dependent acquisition (IDA) mode. Peptides were directly analysed on a LC'ESI'MS/MS 249 

with a Prominence nanoLC system (Shimadzu) and a Triple'ToF 5600 instrument (ABSciex) 250 

equipped with a Nanospray III interface as previously described [39]. Mass spectrometry 251 

(MS) data of pooled IDA samples was searched using ProteinPilot™ software (ABSciex, 252 

Forster City CA) against a custom tailored database containing the population genome bins of 253 

nitrifiers generated from both the metagenomic pipeline analysis (Table 1) and the genomes 254 

of known nitrifiers downloaded publically from Uniprot Swiss'Prot database (June 2016 255 

release).  The search settings included enzyme digestion set to trypsin, cysteine alkylation set 256 

to iodoacetamide, and global false discovery rate (FDR) set at 1%. The quantified proteome 257 

SWATH files were generated using the PeakView with 5 peptides per protein and 3 258 

transitions per peptide.   The MSstats package in R was used for statistical analysis of the 259 

spectral information and the p'value stringency was set to ≤0.05 across triplicate samples 260 

[40]. To determine the log2(FC) (log2 Fold change) of proteins we compared the 0 minutes 261 

time point to the other time points wherein samples were collected i.e. 20 minutes, 2 hours, 262 

12 hours and 24 hours at the two FNA concentrations using the ‘groupComparison’ function 263 

of MStats. The sequences, molecular functions and biological processes of the proteins were 264 

queried and verified against the curated UNIPROT and NCBI databases [41]. Additional 265 

statistical analysis was carried out at each sample time'point between the control and the 266 

FNA treated sample to verify the statistical significance of log2(FC) protein expression.  267 

 268 

+�
�(�%)��
��$
$"� %��"#�& 269 

3.1. Reactor performance: 270 
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 The SBR was operated for nitrification activity in three main stages. In Stage 1 there 271 

was no side stream treatment of the activated sludge and near complete conversion of 272 

ammonium to nitrate occurred (97.0±0.7 %; Figure 1A). This was due to the high activity of 273 

both AOB and NOB (Figure 1B). During Stage 2, when part of the sludge was treated at 3.64 274 

mg N/L FNA'N in the side stream treatment reactor, the levels of nitrate in the effluent 275 

decreased sharply (Figure 1B), indicating that the NOB population was severely inhibited. 276 

This coincided with high levels of nitrite in the effluent, manifested by the activity of AOB at 277 

the high FNA treatment. An increase in ammonium was detected in the effluent after day 55 278 

of operation, indicating there was some inhibition of AOB activity by the high FNA sludge 279 

treatment. At this point the side stream FNA treatment was terminated for a 10'day period to 280 

recover AOB activity. In Stage 3 a side stream treatment of FNA at 1.82 mg N/L was applied 281 

to the SBR sludge for 24 hours at a pH of 6.0. The measured nitrogen species, including VSS 282 

and other parameters including the activity of the AOB and NOB populations at the end of 283 

both stages 1 and 3 have been summarized in Table S1. Additionally nitrogen species 284 

measurements of the side stream FNA reactor at stage 3 is represented in Table S2 During 285 

this treatment ammonium in the mainstream SBR reactor was nearly completely converted to 286 

a mixture of nitrite (58.5±0.3% of the total effluent nitrogen) and nitrate (40.2±0.7% of the 287 

total effluent nitrogen) (Figure 1B). Thus, at this level of treatment AOB were active and 288 

there was some activity of NOB. The results of the SBR operation are in agreement with 289 

previous studies showing that AOB are less sensitive to FNA toxicity in comparison to NOB 290 

[6, 15]. Consequently, FNA could be used to effectively control the NOB and AOB 291 

population and thereby the levels of nitrogen species produced, which can practically be 292 

beneficial to achieve the more economically favorable partial nitritation compared to the 293 

conventional nitrification and denitrification of WWTP. This control could also allow for the 294 
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effluent to be directly used for the treatment of a low organic carbon stream operating for 295 

nitrogen removal in a two'stage anaerobic ammonia oxidation (ANAMOX) system [42].  296 

 297 

 (Position for Figure 1) 298 

 299 

3.2. Microbial community composition of the reactor: 300 

 As expected the synthetic wastewater feed containing ammonium and no organic 301 

carbon provided an amiable environment for the growth of autotrophic nitrifiers [43]. 302 

Microbial community composition generated from MG'RAST were extracted and 303 

represented as percentages (Figure 1C). Nitrifiers dominated the microbial community in the 304 

SBR, however, a variety of low abundance heterotrophic bacteria were also detected. Among 305 

the nitrifiers, the 3 genera of AOB in the reactor included ����
�
�
���, ����
�
�0���, 306 

����
�
*
**�� and 3 genera of NOB detected included ����
��*���, ����
�0��� and 307 

����
*
**�� (Table S2). The dominant AOB genus ����
�
�
���� represented 20.48%, 308 

11.92% and 21.94% of the microbial communities within the reactor operation Stages 1, 2 309 

and 3 respectively. It is worth noting the drop in the ����
�
�
����populations during Stage 310 

2, suggesting that the high FNA treatment caused killing of some of these more resilient 311 

nitrifiers. This is in agreement with the increase in ammonium detected in the effluent, at 312 

nearly 20 mg/L around day 55 of the SBR operation (Figure 1B). After the sludge FNA 313 

treatment was stopped, the activity of the AOB population recovered as can be seen on day 314 

71 of the SBR operation (Figure 1B). For NOB in the SBR, the dominant genus ����
��*��� 315 

constituted 1.56%, 2.95% and 3.18% of the microbial communities in Stages 1, 2 and 3 316 

respectively (Table S2). Additionally, relative abundance of the microorganisms in these 317 

Stages was determined by GraftM, and this showed similar results to those obtained through 318 

MG'RAST (Table S2(b)). The AOB family ����
�
�
����*��� represented 30.23 %, 8.33 % 319 
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and 35.26 % of Stage 1, 2 and 3 respectively. The NOB genus ����
��*��� represented 0.05 320 

%, 0.16 % and 0.06 % of the microbial community from Stage 1, 2 and 3 (Table S3). Despite 321 

relatively low proportions of the NOB community the NOB activity was high in Stage 1 as 322 

evidenced by the nitrate detected (Figure 1B).  323 

 324 

3.3. Nitirifier genomes detected in the reactor  325 

 The population genome bins of nitrifiers generated using the 2 bioinformatic pipelines 326 

with completeness cut'off of greater than 75% and a contamination less than 10 were 327 

obtained from the SBR. They included the NOB genus ����
��*��� and the AOB genus 328 

����
�
�
��� as represented in Table 1. The genera of the detected population genome bins 329 

are in agreement with the dominant nitrifiers detected from the MG'RAST analysis (Figure 330 

1C). A custom sequence database was generated using the annotated population genomes of 331 

nitrifiers obtained from the SBR together with annotated genomes of publically available 332 

����
��*��� and ����
�
�
��� species [44]. This custom database was used to maximise the 333 

detection of proteins for our metaproteomic analyses.  334 

 335 

(Position for Table 1) 336 

 337 

3.4. Metaproteomic responses of nitrifiers to FNA: 338 


 The SBR operation towards the end of Stage 2 i.e. 3.64 mg/L FNA'N was 339 

characterized by fluctuations in the nitrogen species (Figure 1B).  This suggests that the FNA 340 

concentration was high enough to even suppress growth of AOB. The metaproteomic 341 

investigation of nitrifiers was carried out at Stage 3 i.e. 1.82 mg/L FNA'N as the operation of 342 

the SBR reactor was stable as evidenced from the nitrogen species of the effluent (Figure 343 

1B). Metaproteomic investigation was also carried out on a control sample i.e. 0 mg/L FNA'344 
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N to compare the responses to nitrifiers without FNA treatment. Using the ProteinPilot™ 345 

software a total of 419 proteins were identified against the custom database at a global FDR 346 

of 1%. The SWATH files generated from the Peak View software were analysed using the R'347 

package MSstats. A total of 359 proteins met the p'value stringency of ≤ 0.05 across 348 

triplicates of which 344 originated from the ����
�
�
��� genera and 15 from the 349 

����
��*��� genera (Figure S2). The quantitative SWATH'MS analysis on the ����
�
�
��� 350 

genera showed changed expression of various proteins, which have been discussed below (for 351 

detailed description see Supplementary Table 1). The mass spectrometry data has been 352 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the 353 

accession no: PXD007514 [45]. Additionally statistical analysis summarising the change in 354 

protein expression between the control (0 mg/L FNA'N) and 1.82 mg/L FNA'N (p'value 355 

stringency of ≤ 0.05 across triplicates) at 20 minutes, 2 hours, 12 hours and 24 hours were 356 

also investigated. The results of this analysis have been represented in Supplementary table 2.  357 

 358 

3.4.1. Metaproteomic response  359 

3.4.1.1. ����
�
�
����genus 360 

 The change in the regulation and expression of proteins is likely due to the change in 361 

expression of the gene. As such changed protein expression levels reveal the responses of 362 

microorganism to a perturbed condition. In our study we compared the change in protein 363 

expression over time without FNA (control) treatment to the perturbed 1.82 mg/L FNA'N 364 

samples. The quantitative metaproteomic approach revealed the upregulation and 365 

downregulation of a number of cellular proteins by ����
�
�
��� in response to the 366 

antimicrobial action of FNA. Functionally a majority of these proteins have not been well 367 

studied in bacterial systems, however they are expected to fulfil similar roles within bacteria.  368 

 369 
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C<�����$�����������'����D��370 

� ����
�
�
��� like other aerobic bacteria, experiences oxidative and nitrosative stress 371 

from a variety of sources in its natural environment. The few oxidative stress studies on AOB 372 

have been limited to catalase and superoxide dismutase (SOD) [22, 46, 47]. A number of 373 

proteins involved in oxidative stress were upregulated after a period of exposure to FNA. 374 

These included pteridine reductase and S'adenosylmethionine synthase (Figure 2(A)). The 375 

oxidative stress enzyme cytochrome *551 peroxidase was however upregulated in both the 376 

control and perturbed condition� (Figure 2(A)). Statistical analysis between the control and 377 

perturbed condition at 24 hours showed that cytochrome *551 peroxidase (Ns76) was 378 

upregulated by 0.42 log2(FC) (Supplementary Table 2). An upregulation of these enzymes 379 

shows evidence that FNA induces oxidative damage on�����
�
�
���	�This stress reaction is 380 

thought to primarily occur due to the presence of reactive oxygen and nitrogen species 381 

(ROS/RNS) [48]. The enzyme pteridine reductase is widespread in proteobacteria, and has 382 

been well studied in the protozoan parasite 
��������� where it is known to reduce the 383 

susceptibility of the protozoan to ROS and RNS [49]. A log2(FC) of S'adenosylmethionine 384 

synthase from 0.54 to 1.44 at 12 hours and 24 hours respectively on exposure to 1.82 mg/L 385 

FNA'N was seen (Supplementary Table 1). S'adenosylmethionine synthase is an enzyme 386 

known to produce S'adenosylmethionine, an important methyl donor for methylation of 387 

DNA, RNA, proteins and other macromolecules essential for normal gene regulation [50]. S'388 

adenosylmethionine is known for preventing oxidative stress and has also been implicated in 389 

functioning as a neuroprotective agent in mice [51]. Furthermore, S'adenosylmethionine has 390 

been associated with attenuating oxidative stress in ethanol'LPS'Induced fibrotic rat models 391 

[52]. Increased abundance of cytochrome *551 peroxidase was detected for several 392 

����
�
�
��� population bins in both the control and FNA exposed conditions (Figure 2(A)). 393 

Cytochrome *551 peroxidase has known antioxidant activity that catalyses the reduction of 394 
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toxic H2O2 [53]. Cytochrome * apart from being a part of the electron transport chain can also 395 

suppress ROS [54]. Previous studies have shown strong evidence in support of its protective 396 

function on deoxyribose against oxidative damage in vivo [55]. The antioxidant protein 397 

thioredoxin and its associated domain proteins were also upregulated on exposure to FNA 398 

[56]. Thioredoxin is a key protein involved in the oxidative stress response in plants [57]. 399 

Thioredoxin, in mammalian endothelial cells has also been known to be in involved in a 400 

regenerative machinery to regenerate proteins inactivated by oxidative stress [58]. 401 

Additionally, thioredoxin in ����0�
*
**��� 0����
���� were also found to resist oxidative 402 

stress conditions [59]. Dihydrolipoyl dehydrogenase enzyme is known to be an active nitric 403 

oxide scavenger by reducing ubiquinone to uniquinol, thus providing strong evidence for the 404 

action of RNS formed from FNA [60]. Peptide methionine sulfoxide reductase (msrA) is a 405 

repair enzyme that repairs protein inactivated by oxidation [61, 62]. The msrA derived from 406 

Ns85 was seen to be upregulated at 24 hours after exposure to 1.82 mg/L FNA'N. SOD is 407 

known to act as a strong antioxidant wherein it converts two molecules of superoxide to 408 

oxygen and hydrogen peroxide. Hydrogen peroxide is removed by catalase and peroxidase 409 

enzymes [63]. Whilst we did not detect the expression of catalase enzyme we did see a slight 410 

decrease in expression of the protein SOD (Ns76) over 24 hours after exposure to 1.82 mg/L 411 

FNA'N (Supplementary Table 1).  However, according to the ProteinPilot analysis this SOD 412 

had high spectral coverage (66%) suggesting this is a highly abundant protein in the cell. 413 

Studies by Wood������	�(2001) describes the SOD as constitutively expressed [22]. This slight 414 

change in expression we detected supports the suggestion that SOD is constitutively 415 

expressed and that the ����
�
�
��� has a high innate ability to deal with oxidative stress 416 

from SOD as well as from other proteins that are discussed here. Overall there is clear 417 

evidence showing that FNA mediates an oxidative stress response on ����
�
�
��� possibly 418 

through ROS and RNS [64]. 419 
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 420 

��'�������$
�$����������
���������
����������������*
�$����
�	��421 

 Denitrifying enzymes are thought to protect AOB from the negative effects of nitrite 422 

[65]. An increased expression level of the denitrifying enzyme nitrite reductase in 423 

����
�
�
����was detected during FNA treatment (Figure 2(B)). Nitrite reductase is known 424 

to reduce toxic nitrite to nitric oxide (NO), a free radical in a process known as nitrifier 425 

denitrification [66]. Interstingly nitrite reductase is thought to confer tolerance against nitrite 426 

as seen in a pure culture of ����
�
�
���� ���
0���� [67]. Oxygen sensitive�hydroxylamine 427 

reductase, which catalyses the reduction of hydroxylamine to ammonia and water was 428 

upregulated in both the control and perturbed conditions [68].  However, at 1.82 mg/L FNA'429 

N the protein was upregulated by 1.48 log2(FC) at 24 hours (Supplementary Table 2), 430 

signifying that perhaps the minor increase in the ammonia concentration in the FNA reactor 431 

could possibly be explained by the action of this enzyme (Table S2).  432 

 433 

 The key nitrifying and energy generation enzymes in AOB, ammonia monoxygenase 434 

(AMO) and hydroxylamine oxidoreductase (HAO) were detected in multiple ����
�
�
��� 435 

genomes of the SBR sludge (Figure 2(B)). The detected increased abundance of these 436 

proteins on exposure to FNA is of interest as the side stream FNA treatment reactor has 437 

limited availability of ammonia, high concentration of nitrite and low availability of 438 

dissolved oxygen (Table S2). The stress induced by FNA and the need to maintain internal 439 

homeostasis causes the ����
�
�
��� genera to use energy dependent mechanisms. This 440 

results in the upregulation of enzymes such as AMO and HAO, in anticipation of available 441 

ammonia for energy generation. This is in agreement with a previous study showing 442 

consistently high levels of AMO and HAO enzymes in ����
�
�
��� for long periods 443 

(months) even in the absence of ammonia [69]. A previous study showed that nitrite inhibited 444 
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the AMO enzyme activity but did not investigate the expression levels of this enzyme [70]. 445 

Of interest to note is the variation of protein expression of the same protein within different 446 

����
�
�
��� populations of the same genus (Figure 2(B)). A number of proteins involved in 447 

the energy generation pathways including ATP synthase subunits and cytochrome * oxidase 448 

subunits were seen to be upregulated on exposure to FNA (Figure 2(B)) [71]. The observed 449 

upregulation of these proteins in exposure to FNA strongly suggests that FNA initiates the 450 

generation of more ATP possibly used up in the energy dependent mechanisms of internal 451 

homeostasis. 452 

 453 

 454 

(Position for Figure 2) 455 

�456 

���B/�
�������0��� 457 

 FNA has also been postulated to directly act on protein and DNA through ROS and 458 

RNS intermediates [72]. As such FNA exposure would result in the upregulation of a number 459 

of enzymes involved in DNA and protein repair [64]. Among the DNA repair enzymes, 460 

single stranded DNA'binding protein was upregulated on exposure to FNA (Figure S3(A)). 461 

This protein is known to be involved in DNA mismatch, recombinational damage repair 462 

mechanisms as well as SOS response [73]. The histone like DNA'binding protein HU'beta 463 

protein that is known to prevent denaturation of DNA by wrapping itself around it was 464 

upregulated on exposure to 1.82 mg/L FNA'N [74]. In contrast, the DNA helicase RecQ, a 465 

DNA repair enzyme in both human and bacteria was however observed to be downregulated 466 

with and without FNA exposure [75].   467 

 468 
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 Expression of a number of proteins involved in protein repair mechanisms also 469 

changed on exposure to FNA. Protein'L'isoaspartate C'methyltransferase in humans is 470 

known to recognise damaged proteins and is involved in repairing them [76, 77]. Peptide 471 

methionine sulfoxide reductase (MsrA), an important repair enzyme for proteins that have 472 

been damaged on oxidation, again was upregulated, thus shedding evidence to the oxidative 473 

damage induced by FNA exposure [61, 62, 78]. The chaperone protein ClpB in bacteria is 474 

known to be part of the stress induced multi'chaperon system and it is known to help in the 475 

refolding of denatured stress'damaged protein [79]. This protein was however undetected in 476 

the control. Previous studies carried out on ����
�
�
�������
0��� showed that the response 477 

of the oxidation of chloroform increased the expression of ClpB, 6 to 10 fold in response to 478 

oxidation caused by chloroform [80]. The evidence of ClpB and MsrA being upregulated 479 

strongly supports the evidence that FNA causes oxidative damage to proteins. Other proteins 480 

found to be associated with protein repair include the 60 kDa and 10 kDa chaperonins. These 481 

chaperonins are essential for the folding of proteins in bacteria but little can be drawn from 482 

their expression in response to FNA [81].  483 

 484 

C���������������0
����D 485 

 Evidence from the metaproteomic analysis shows that FNA activated a number of 486 

other stress responses within the ����
�
�
��� genus as evidenced by the change in protein 487 

expression as shown in Figure S3(B). The protein “AAA domain/putative AbiEii toxin/Type 488 

IV TA system” is an altruistic cell death system that is activated by phage infection thereby 489 

limiting viral replication [82]. This suggests that FNA caused the activation of the temperate 490 

phage and that ����
�
�
��� suppresses the expression of this phage. Studies carried out in 491 

/����
�
���� �������
�� on being exposed to nitric oxide (NO), a free radical that could 492 

possibly be formed from FNA showed that NO exposure caused bacteriophage genes to be 493 
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upregulated [83]. The modulator of FtsH protease HflK is known to govern the 494 

lysogenization frequency of phage lamda in the bacteria �	�*
���[84].  In our study there was a 495 

slight decrease in the expression of this protein. The bleomycin resistance protein, known to 496 

repair DNA breakage and lesions was upregulated on exposure to FNA (Figure S3(B)) [85, 497 

86].  498 

 499 

 Biofilm formation in the ����
�
�
��� genus of AOB is not thoroughly understood 500 

but biofilm formation has been shown to be enhanced by the growth of other heterotrophic 501 

bacteria [87]. It is of interest to note that biofilm formation has been previously induced in 502 

����
�
�
����on exposure to higher concentrations of the RNS/ROS nitric oxide [88]. Beta'503 

lactamase hydrolase'like protein and alginate export proteins play an important role in the 504 

formation of biofilms [89, 90]. The protein alginate export is known to export alginate, a 505 

model extracellular polysaccharide (EPS) externally to aid in the formation of a protective 506 

biofilm. The expression of beta'lactamase hydrolase'like protein and alginate export protein 507 

increased after FNA exposure suggesting that ����
�
�
��� is inducing growth of biofilm to 508 

protect itself from the biocidal action of FNA (Figure S3(B)). Alginate export expression was 509 

seen to change positively after exposure to FNA. On the other hand 510 

phosphomannomutase/phosphoglucomutase, a protein associated with the production of 511 

alginate and lipopolysaccharide (LPS) biosynthesis, was severely downregulated on exposure 512 

to FNA [91] .  513 

 514 

 Of the detected proteases involved in proteolysis, the protease HtpX was the only one 515 

seen to be upregulated in the FNA treated sample. Protease HtpX, is a membrane bound 516 

metalloprotease that is known to be a stress'controlled protease possibly degrading damaged 517 
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oxidised proteins [64, 92]. This evidence lends further support to the fact that FNA causes 518 

oxidative damage to the proteins. 519 

 520 

 FNA exposure is seen to alter iron bioavailability within the cell through the RNS and 521 

ROS that are formed. A number of enzymes contain iron as a co'factor and as such plays a 522 

critical role in maintaining cellular homeostasis within the microorganisms [93]. Iron storage 523 

proteins, such as bacterioferritin derived from two different population genomes of 524 

����
�
�
��� were both downregulated after exposure to FNA (Figure S3(B)) [94]. Iron 525 

transport proteins such as haemoglobin, haemoglobin'haptoglobin binding protein and the 526 

����
�
�
��� ABC iron transporter as well as the catecholate siderophore receptor Flu, were 527 

all upregulated after exposure to FNA as shown in Figure S3(B) [95'98]. The haemoglobin 528 

and haemoglobin'haptoglobin'binding protein which form part of a receptor required for 529 

heme uptake is upregulated on exposure to FNA [95]. Catecholate siderophore receptor Flu 530 

are known to transport siderophore which are low molecular weight ferric ion specific 531 

chelating agents used by microorganisms to scavenge iron from the environment [99]. 532 

Siderophore transport proteins were seen to be marginally upregulated on exposure to FNA 533 

as shown in Figure S3(B). As evidenced, iron transport across the membrane into the cell was 534 

facilitated signifying the change in iron levels internal of the ����
�
�
��� genera. A 535 

decrease in expression levels of Fe'S enzymes was detected post FNA treatment (Figure 536 

S3(B)). Thus it can be clearly seen that FNA disrupts the bioavailability of cellular iron 537 

within the ����
�
�
��� population.  538 

 539 

  The regulation of other proteins involved in key metabolic processes such as carbon 540 

dioxide fixation, respiration, TCA cycle, glycolysis, DNA replication, RNA transcription and 541 

protein translation were also studied and have been discussed in the Supplementary section 542 
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S6. An overview of the amino acid, fatty acid biosynthesis and breakdown and carbohydrate 543 

metabolism has also been discussed in the supplementary section S6.  544 

 545 

3.4.1.2. ����
��*���  546 

 This study also intended to look at the response of NOB particularly ����
��*��� 547 

genera to the FNA.  However, only 15 proteins were detected to have a log2(FC) within the 548 

����
��*���� genera (Figure S8). The low detection of ����
��*��� proteins by our 549 

metaproteomic approach very likely reflects the lower abundance of these microorganisms in 550 

the mixed culture community (Table S2 and S3). As such it was difficult to draw any 551 

conclusions of changes in the metabolic pathways from the limited proteins we detected. An 552 

enriched NOB culture from activated sludge would be beneficial in investigating the 553 

mechanism of NOB susceptibility to FNA.  554 

 555 

3.5. /��������*���
�E����������
�
�
������$����������0�
�������*���������556 

  The tolerance of the ����
�
�
��� can be attributed to an upregulation of oxidative 557 

stress enzymes, denitrification, DNA and protein repair mechanisms as well as other defence 558 

pathways such as the inhibition of phage formation. There was also evidence that FNA alters 559 

the cellular iron bioavailability within a cell leading to an upregulation of enzymes involved 560 

in iron transport across the membrane although the mechanism through which this occurs 561 

remains unclear. The ����
�
�
��� population shows an upregulation of the energy 562 

producing nitrification pathway enzymes i.e. AMO and HAO despite the low ammonia and 563 

dissolved oxygen in the FNA treatment reactor. We hypothesise that this upregulation is due 564 

to a need for internal energy generation in anticipation of available ammonia. Overall 565 

����
�
�
��� exerts a strong response to deal with oxidative stress caused by FNA. 566 

 567 
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(Position for Figure 3)  568 

 569 

 There was strong evidence to suggest that FNA caused oxidative stress on the 570 

����
�
�
��� population possibly through its ROS and RNS intermediates. We developed an 571 

overview to diagrammatically represent the effects of FNA and the responses of 572 

����
�
�
��� to the biocide (Figure 3). This study provides a fundamental understanding of 573 

the molecular mechanisms involved in the tolerance of ����
�
�
��� to FNA. The findings 574 

made here are relevant to applications that are based on the suppression of NOB over AOB.  575 

Use of FNA can allow for better utilisation of energy resources such in the activated sludge 576 

process and for the development of better lines of feed suited for the Anammox process. 577 

 578 
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Table 1: The population genome bins from metagenomic pipeline 1 and 2, of known nitrifiers 910 

generated from the reactor and the publically available genomes that were combined and 911 

added to the custom database for metaproteomic analyses.  912 
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 917 

Figure 1. (A) A schematic representation of the configuration of the SBR reactor and the side 918 

stream reactor wherein FNA treatment was carried out. (B) Levels of ammonium, nitrate and 919 

nitrite detected in the effluent of the SBR reactor at the 3 different operational stages (Stages 920 

1, 2, and 3) (C) The microbial community compositions of the SBR reactor during the 3 921 

operational stages showing the dominant ����
�
�
��� genus as derived from MG'RAST.  922 
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Figure 2: Heatmap showing the regulation of (A) Oxidative stress proteins and (B) enzymes 930 
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involved in the nitrogen metabolism and energy generation represented as log2(FC) across 931 

both the 0 and 1.82 mg/L FNA'N conditions. The names within the brackets indicate the 932 

population genomes from where the respective genes were derived as shown in Table 1. 933 

White sections within the heatmap represent data wherein triplicates did not meet the 934 

stringency levels of p'value p ≤ 0.05. Blue represent a negative log2(FC) and red represents a 935 

positive log2(FC).   936 
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Figure 3: An overview model of the responses of ����
�
�
��� on exposure to FNA. The red 945 

arrows and boxes ( ) represent metabolic pathways that are upregulated, the blue arrows 946 

and boxes ( ) represent metabolic pathways that are downregulated and the green boxes ( ) 947 

indicate the main mechanisms of biocide action of FNA within the ����
�
�
��� genus.  948 
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