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Abstract

Reactive nitrogen (N) and phosphorus (P) inputs to surface waters modify aquatic environments and
affect public health and recreation. Until now, source control is the dominating measure of
eutrophication management, and biological regulation of nutrients is largely neglected, although
aquatic microbial organisms have huge potential to process nutrients. The stoichiometric ratio of
organic carbon (OC) to N to P atoms should modulate heterotrophic pathways of aquatic nutrient
processing, as high OC availability favours aquatic microbial processing. Such microbial processing
removes N by denitrification and captures N and P as organically-complexed, less eutrophying forms.
With a global data synthesis, we show that the atomic ratios of bioavailable dissolved OC to either N
or P in rivers with urban and agricultural land use are often distant from a ‘microbial optimum’. This
OC-deficiency relative to high availabilities of N and P likely overwhelms within-river heterotrophic
processing and we propose that the capability of streams and rivers to retain N and P may be
improved by active stoichiometric rebalancing. This rebalancing should be done by reconnecting
appropriate OC sources such as wetlands and riparian forests, many of which have become
disconnected from rivers concurrent to the progress of agriculture and urbanization. However, key
knowledge gaps leave questions in the safe implementation of this approach in management:
Mechanistic research is required to (i) evaluate system responses to catchment inputs of dissolved

OC forms and amounts relative to internal-cycling controls of dissolved OC from aquatic production
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and particulate OC from aquatic and terrestrial sources and (ii) evaluate risk factors in anoxia-
mediated P desorption with elevated OC scenarios. Still, we find this to be an approach with high
potential for river management and we recommend to evaluate this stoichiometric approach for

alleviating eutrophication, improving water quality and aquatic ecosystem health.
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1.1. Introduction

Nutrient pollution is a primary cause of degraded water quality (Rockstrom et al., 2009; Dodds et al.,
2009; Strockal et al., 2016). This pollution of fresh and coastal waters has large societal costs, from
2.2 Billion Dollars in the US (Dodds et al. 2009) to 5-8 Billion Euros for nine OECD countries (OECD,
2012), whilst the level water pollution associated with rapid agricultural and urban development in
China is alarming (Cui et al., 2014; Strokal et al., 2016). Across Europe, many of the 107,000
freshwater monitoring sites continuously fail to achieve regulatory targets for good ecological
condition (EU, 2009). Pollution source control is usually used to improve the situation (Conley et al.,
2009), but its success is hampered by many site-specific, contributory factors associated with
transport time-lags, and ecological responses (Withers et al., 2014). This varying, often unknown,
sensitivity of aquatic ecosystems to pollution source control reveals a lack of data and knowledge on
integrative functional measures of river ecosystem health (Pinto and Maheshwari, 2011), and limits

our ability to set restorative targets for ecological functions in river management.

The microbial nitrogen (N) removal and release as N, gas into the atmosphere (denitrification) and
assimilation and incorporation of N and phosphorus (P) into organic matter are key river ecosystem
services, which can regulate nutrients through biological ‘self-cleansing’ (von Schiller et al., 2017).
The potential for microbial processes is becoming realised; in rivers, huge substrate surface areas,
hyporheic exchanges (Boano et al., 2014) and biofilm structures (Battin et al., 2016), impart large
potential for microbes to modify river solutes. In fact, significant inorganic N and P recycling and
cumulative uptake through headwater streams to downstream river reaches has been shown for
many streams (Mulholland, 2004; Ensign and Doyle, 2006; Rode et al. 2016). Significant biological
uptake has also been shown for organic C in running waters, especially in the form of dissolved
organic carbon (DOC) (Mineau et al., 2016). The burial and outgassing of C makes running waters
essential components to consider in the global C cycle (e.g. Cole et al., 2007, Regnier et al., 2013,

Marx et al., 2017).
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Alongside studies of single element cycling rates in rivers a body of literature considers the ratios
(termed stoichiometry) of key macronutrients (N and P) relative to organic carbon (OC) at landscape
scales, how this relates to ecosystem processes and requirements at cellular level and how ratios
may modify nutrient uptake in streams and rivers (Sinsabaugh et al. 2009; Dodds et al., 2004; Xu et
al., 2015; Wymore et al. 2016). For streams and rivers with nutrient pollution, the deficiency in OC to
counter N and P inputs needs to be considered, since the relative availability of substrate may
control uptake of N and P into basal and higher trophic levels (Li et al., 2014; Tanetzap et al., 2014).
For example, C:N in relation to organisms’ requirements, highlights thresholds where growth
limitation switches from one element to another (Frost et al, 2006). For example at low C:N ratios
(molar C:N 1 to 5), OC-deficiency limits N sequestration, increasing downstream nitrate delivery (Xu
et al., 2015; Taylor and Townsend, 2010), whereas above the C:N ratio range of most bacteria (C:N >
3 - 20), only minor effects of changes in the C:N ratio on nitrate delivery are likely. Such
stoichiometric control has been shown to act on stream biogeochemistry. For example, simple, labile
DOC compunds have been shown to affect the processing of N (Johnson et al., 2012) and P (Oviedo-

Vargas et al., 2013).

To assess whether the uptake and release of these elements in a given stream is limited by
elemental stoichiometry for a large number streams worldwide, the described stoichiometric
constraints of microbial uptake need to be combined with data on OC, N and P concentrations in
streams and rivers. With this, it could be assessed whether there is potential for improving water
quality in streams by altering C:N:P atomic ratios. We conceptualise the relationship between
macronutrient stoichiometry and nutrient uptake as an ‘elastic’ capability for biota to sequester
nutrients (and provide ‘self-cleansing’ of waters) until excessive loadings overwhelm internal
processing (Fig. 1). Our conceptual illustration also refers to important interactions of altered river
physical condition and biogeochemical status (Kupilas et al., 2017) that accompany nutrient
stoichiometry changes. These may further reduce the ability of aquatic biota to process and retain

nutrients (Fig. 1).
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We explore existing literature to test the hypothesis that, globally, stoichiometric ratios of dissolved
OC, N, P for catchment nutrient sources (soils, runoff and effluents) and receiving river waters
deviate from those of biota and near-natural catchments to become ‘swamped’ by inputs of
available N, P relative to OC, as agriculture and urbanisation intensifies. Furthermore, we consider
not only total or inorganic forms, but a variable portion of inorganic and organically-complexed
bioavailable forms to get a more realistic C:N:P stoichiometry in terms of biologically available
molecular moieties. We focus on the dissolved fractions of OC, N and P due to a scarcity of OC, N
and P concentrations and bioavailability data for the particulate fractions. However, we investigate
the potential impact of leaving particulate matter out of our stoichiometric analysis in the
discussion. Finally, we use the existing literature to evaluate whether bringing C:N, and C:P ratios
towards the proposed microbial optimum could sufficiently stimulate an internal ‘self-cleansing’
regulation of N and P, goverened by relative organic C availability to microbes and identify key
knowledge gaps requiring to be addressed before using this approach in river management. When

we refer to ratios of C:N and C:P (or C:N:P) this concerns organic C forms only.

2. Materials and Methods

We used existing literature to assess stoichiometric boundaries, within which microbial ‘self-
cleansing’ can regulate river N and P. Firstly a database of OC, N and P forms, concentrations and
ratios was assembled from global catchment nutrient sources and rivers, categorised by climate and
land use (Supplementary Table S1). A second quantitative review assembled global evidence for the
bioavailability of dissolved organic C, N and P (DOC, DON, DOP) (Supplementary Table S2). The
methods for deriving these are summarised below and given in full in the Supplementary Materials

(as Supplementary Methods).

2.1. Catchment nutrient data sources
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Data from literature, available databases and primary data from the authors were gathered from
soil, water and biological studies for OC, N, P compositions enabling C:N and C:P molar ratios for
terrestrial and urban sources, biota and freshwater dissolved constituents. For aquatic solutes these
were included where OC, N and P concentrations included basic nutrient speciation was reported to
enable separation of inorganic and organic dissolved N and P for subsequent bioavailability scaling
procedures (e.g. Berggren et al., 2015). Biota were included on the basis of total elemental ratios of
their tissue. Data were compiled into Supplementary Table S1, where references are given. We
focussed on studies reporting concentrations of dissolved OC, N and P forms in streams and rivers,
since data on river particulate (or sediment composition) OC, N and P and their bioavailability were
severely restricted. However, limited data from a few studies that have reported simultaneously
particulate OC, N and P are briefly examined for comparison with dissolved nutrients

(Supplementary Table S3 and Figure S3).

Dissolved OC, N, P mean concentrations were determined over multiple time point data for nine
English River sites between 1997-2009, for thirty Welsh rivers 2013-14 and for sixty-five Scottish
rivers in 2014. Additional sites satisfying data requirements were taken from literature: thirteen sites
of the River Dee (NE Scotland; Stutter et al. 2007), twenty-eight sites from studies in Sweden and
Finland (Stepanauskas et al. 2002; Berggren et al. 2007; Autio et al. 2016) and twenty-three from
Peru and Brazil (Bott and Newbold, 2013; Giicker et al.,, 2016). To check data compatibility, we

compared analytical methods for freshwater dissolved constituents (Supplementary methods).

For soil runoff water from subsurface drains at seventeen and eleven arable and intensive grassland
fields soil water extracts (1:100 w/v) of one pasture and one riparian forest soils and effluents from
two small wastewater treatment works, unpublished data from Scotland were used. Further data for
OC, N and P sources came from published data in ten lowland wetlands (fens and marshes) in North

America and Europe (Fellman et al. 2008; Wiegner and Seitzinger, 2004; Graeber et al. 2012).
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Sites were categorised by major categories of climate zone and by dominant (ie >50%) land cover.

World climate zones were those of the Koeppen-Geiger system (http://koeppen-geiger.vu-

wien.ac.at/present.htm) classified by latitude and longitude. Land cover was on a catchment area

basis using literature data and stated classifications or GIS data for authors’ primary studies. Land
cover category rules comprised: (i) agricultural catchments were classified on the basis of >50% crop
+ intensive grassland land cover, (ii) since urbanisation affects water chemistry disproportionately
urban catchments were classified at >20% urban area, (iii) due to a large spread of data in moorland
and forest land cover categories it became evident there was a need to split pristine from
agriculturally-influenced moorland and forested catchments and for this a pragmatic value of >10%
agriculture in the catchment for agriculturally-influenced catchments (crop + intensive grassland)
was used. We gathered a total of 171 data points for river data, with 120, 28 and 33 data points
from warm temperate (WT), snow (Sn) and equatorial (Eq) climate zones. For the different
categories, we gathered the following sample sizes: agriculture (58WT > 11Eq > 3 Sn), forest <10%
agriculture (15Sn > 7Eq > 5WT), forest >10% agriculture (5WT), moorland and mire <10% agriculture
(25WT > 4Sn), moorland and mire >10% agriculture (19WT > 6Sn) and urbanized (8WT > 5Eq). The
number of samples for sources comprised: agricultural soils (n = 3), agricultural source waters (13),
moorland soils (3), moorland source waters (5), forest source waters (1), lowland fens (10) and

effluents (9). These were compared to aquatic (10) and terrestrial biota (5).

2.2. Nutrient bioavailability studies

Metadata from 47 literature studies were used to explore evidence of the bioavailability of
organically-complexed macronutrients. Studies with information on bioavailable DOC, DON and/or
DOP (termed BDOC, BDON, BDOP) were recorded together with method and site metadata (for
example land use, catchment size, location). Data covered aquatic ecosystems and catchment
nutrient sources (soil and wetland waters, leaf litter, urban runoff and effluents), which allowed

exploration of land cover as a grouping factor. We thoroughly reviewed the bioavailability data and
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metadata described in the supplementary methods and presented in Supplementary Table 2. The
data comprise 131 rows of our database, each row summarising 1-113 sites depending on whether
these were separated within studies and to maximise the division of results across land cover

categories.

Initially we tried to generate models to predict BDOC, BDON and BDOP as a function of the % of each
of the land cover data in the reported catchments. This was attempted using REML mixed-model
approaches within Genstat (v.8.1) building progressive factors of the study covariates of
experimental method (e.g. temperature, duration and nature of inocula as variables) and landscape
covariates (catchment size, land use proportions) and study and climate zone as random effects. This
was desired to model the bioavailability of the OC, N and P from the wider catchment source and
water quality datasets. However, none of these models were successful and instead the scaling of
BDOC, BDON, BDOP for the catchment sources was done by land cover categories (as opposed to as
a continuous variable of % catchment land cover). For this the groupings of dominant land cover
shown in Supplementary Data Table 2 were used and weighted means and variance calculated using
spatial sample number weightings. This metadata analysis facilitated incorporation of reactive forms
of dissolved OC, N and P into our stoichiometric plots, but was limited to the good evidence for
BDOC, but comparatively poorer evidence for BDON and BDOP, when using studies of microbial
uptake associated with dark-only assays. Few studies reported simultaneous measurements of
multiple dissolved macronutrients and none reported all three. Evaluation of the literature

confirmed extremely limited reporting of the bioavailability of particulate OC, N, P in rivers.

3. Calculations

We calculated the available solute resource C:P vs C:N stoichiometry of river and catchment source
waters across the globally distributed dataset. To include the realistic roles of these wider nutrient
forms, we incorporated scaling factors for the bioavailability of complexed nutrient forms drawn

from the reviewed microbial bioavailability studies (see for example the concept outlined first by
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Berggren et al., 2015). The two stages of extensive quantitative metadata reviews were required for
this synthesis. Firstly the global database of OC, N and P forms, concentrations and ratios
(Supplementary Table S1) was used as the basis for plots with total stoichiometric ratios.
Subsequently, the BDOC, BDON, BDOP data from the second quantitative review (Supplementary
Table S2) were summarised according to source and river water categories. However, where data
were limited (particularly for BDOP and BDON), estimated values were drawn using literature
knowledge derived from the review process. Here, we chose a bioavailability scaling factor of 20%
for DON for peaty soil water and leaf litter leachate, 30% for agricultural and forest soil water and
40% for urban rivers and sewage effluent. For DOP, we chose scaling factors of 15% for lowland
wetland waters, 30% for forest and peat soil waters and peatland rivers and 50% for sewage. The
measured and estimated bioavailability scaling factors were applied to the database of
concentrations of chemical forms of OC, N, P such that inorganic reactive N (nitrate, ammonium) and
P (orthophosphate) were considered 100% bioavailable and dissolved organicically-complexed forms
were scaled according to source type or river categories. The sum of the inorganic reactive N
concentrations + BDON concentrations, the sum of the inorganic reactive P concentration + BDOP
concentration was then used together with the BDOC concentration to derive bioavailable

stoichiometric ratios on a molar basis.

Within our microbial ‘self-cleansing’ concept (Fig. 1), we incorporate evidence of stoichiometric
flexibility, whereby microbial populations regulate their elemental compositions relative to greater
ranges in external freshwater resource environments. To assess the potential bacterial
stoichiometric flexibility, we defined zones of stoichiometric balance or imbalance between bacteria
and their food and energy sources. Recent work has shown a zone of flexibility for C:P for different
strains of freshwater bacteria (Godwin and Cotner, 2015). For this Godwin & Cotner (2015) grew
bacteria on substrates at C:P of 10° to 10° and C:N fixed at 3.0. They then reported the resulting
celullar C:P and C:N for multiple species that we use to define our ideal stoichiometric zone (zone A,

Table 1). Although the C:N range they report results from manipulation of C:P at fixed C:N in the
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growth media the C:N response of these manipulated bacteria matched other reported ranges (Xu et
al., 2015). We interpret this zone of flexibility to represent a microbial ‘comfort zone’ (Zone A; Table
1), whereby ecosystem available resource ratios are optimal for microbial assimilation. We further
defined an N-enriched zone (Zone B) and a zone where N and P are enriched relative to OC (Zone C).
We consider these zones as representing river waters and catchment sources that have a strong
stoichiometric imbalance presently. Finally, we defined a zone which represents OC-rich resources
with N and P-deficiency (Zone D) that we see could provide opportunities for rebalancing
stoichiometry by restoration of habitats of these contributing sources. Zone D represents OC-rich
resources with N and P-deficiency could provide opportunities for rebalancing stoichiometry by

restoration of habitats of these contributing sources.

4, Results

4.1. Total resource stoichiometry of catchment dissolved nutrient sources and river waters

For C:Ny.. ratios of the sources (Fig. 2a), the order followed forest source waters (40.3) > lowland
fen pore waters (21.7£4.1) > moorland soils (15.6+0.5) > agricultural soils (12.7+0.9) > moorland
source waters (11.31£1.3) > agricultural source waters (3.611.3) > effluents (0.6+0.1). These can be
compared to aquatic (16.4+3.2) and terrestrial biota (32.4+11.0). For C:P.. ratios the order differed
with forest source waters (1343) > lowland fen pore waters (1275+521) > moorland source waters
(785+181) > moorland soils (775+152) > agricultural source waters (167+41) > agricultural soils
(147431) > effluents (18+3). These can be compared to aquatic (372+108) and terrestrial biota
(891+553). Agricultural and moorland soils, agricultural and moorland source waters and aquatic
biota plot within or close to the microbial ‘comfort-zone’ (zone A, Table 1). Conversely, forest source
waters, fen waters and terrestrial biota show OC enrichment relative to N, P (positioning in zone D)

and effluents plot at an extreme low C:Niy and C:Py, ratios (zone C).

10
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Total resource ratios for C:N. of river waters followed the order forested (36.9+4.9 1SE) >
moorland (20.9+3.4) > moorland with >10% agriculture (15.5+2.1) > forest with >10% agriculture
(7.3+2.0) > urbanized (5.4+1.7) > agricultural (4.9+0.7) (Fig. 2b). The same order was found for C:P
with forested (2123+364) > moorland (1234+205) > moorland with >10% agriculture (1041+133) >
forest with >10% agriculture (567+192) > urbanized (343+49) > agricultural (267£32). These were
related to our four conceptual eutrophication zones (Table 1). None of the stoichiometric ratios for
total resources plot in the N- and N, P- enriched eutrophication zones B or C (Fig. 2a). In snow
climates C dominance was increased relative to N or P. Conversely warm temperate sites plot
towards N, P enriched total ratios, but for agriculture warm temperate sites enrich N relative to OC

but equatorial sites enrich P relative to C (Fig. 2a).

4.2 Bioavailability of DOC, DON and DOP

The bioavailability of DOC (Fig. 3 and 4) may be summarised as being high in sewage effluents
(44.849.8% 1SE) > agricultural source water (34.9+0.9%) > lowland fens (30.7£4.0%), moderate
bioavailability in forest soil water (22.4+3.4%) > agricultural rivers (18.5+4.2%) > urban runoff
(streams and drains; 17.1£2.3%) > leaf litter extract (14.3+6.5) and limited bioavailability in forested
rivers (9.5%1.4) > moorland rivers (4.0£0.4%) > moorland source waters (2.4+1.3%). For BDON data
were more limited but were available showed that forested rivers (33.1+£1.0%) > urban runoff
(28.8+1.9%) > lowland fens (24.9+0.4%) > agricultural rivers (21.5+0.5%) > moorland rivers
(20.8+4.5%). FOR BDOP this became limited only to agricultural rivers (66.0+11.0) > forested rivers
(33.1+1.0%). The numbers of samples and raw data can be seen in Supplementary Table S2. These
values and the those estimated for missing values of BDON and BDOP (Fig. 3) were used to scale the

bioavailable resource stoichiometry.

4.3. Bioavailable resource stoichiometry of catchment nutrient sources and river waters

11
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Bioavailable catchment nutrient sources (Fig. 2c) where characterized by higher N, P enrichment
relative to bioavailable organic C for (effluents = C:N,; 0.3+0.1; C:P,..; 10+2; moorland source
waters = C:N,,; 0.4+0.1; C:P,..; 2317) relative to the total C:N and C:P ratios (Fig. 2b). However, they
still occupied zone C. Agricultural and moorland soils, agricultural source waters, aquatic and
terrestrial biota plotted within the microbial ‘comfort-zone’ (respectively, C:N,,; 11.740.3, 6.8%4.3,
2.441.3, 8.8+1.2 and 10.1+1.8 and C:P,,; 50+24, 205493, 74+17, 82429 and 70+12). Only forest
source waters (C:Nuai 27.4; C:P.ai 381) and lowland fen source waters (C:Nu.i 18.324.8; C:P.yai
780+357) plotted in zone D, indicative of enrichment in bioavailable OC relative to N and P and a

potential to rebalance stoichiometry of river waters in zone B.

For river water bioavailable resources (Fig. 2d) C:N.,..; followed the order forested (9.0+1.4 1SE) >
moorland (1.7£0.4) > urbanized (1.5+0.4) > agricultural (1.2£0.2) > moorland with >10% agriculture
(1.0£0.2) > forest with >10% agriculture (0.9+0.3). For C:P,.; the order differed with forested
(258+44) > moorland (85+14) > urbanized (79+13) > forest with >10% agriculture (70+24) > moorland
with >10% agriculture (68%9) > agricultural (54t6). The pristine and agriculturally-impacted
moorland, agriculturally-impacted forest, agricultural and urbanized rivers plotted closely in a zone
depleted in bioavailable OC relative to P and particularly to N (zone B). Only pristine forest sites
plotted within the microbial ‘comfort-zone’. Pristine moorland and agricultural sites in the snow
climate plotted into the microbial zone. Conversely, pristine forests in warm temperate climate were
relatively enriched in N, P compared to global forests and plotted outside of the microbial zone in
equatorial systems. Agriculture in equatorial, tropical climate was characterized by lowered C:P,..;

but increased C:N,yai.

Only isolated available resource compositions plotted outside of the zones (see full data depicted in
Supplementary Fig. S1), being enriched in P but at microbially-favourable C:N; namely two equatorial

forested rivers, temporate arable soils and aquatic macrophytes.

5. Discussion

12
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Considering dissolved OC, N and P, we found many river waters and catchment sources that have a
strong stoichiometric imbalance for bacteria presently (Table 1, Fig. 2). Increasing agriculture and
urbanization manifests in an increasing imbalance in global freshwater macronutrient resources, as
bioavailable N and P from fertilisers, sewage and urban runoff dominate over OC inputs (Zones A to
B, or C; Fig. 2c,d). Due to that, river water and soil runoff data from agricultural and urbanized
catchments plot in the zones of depleted OC relative to bioavailable N and P in all climate regions
(Zones B and C). Concentrations of N and P are then likely exacerbated by declining microbial growth
rates due to a lack of OC and river metabolisms become insufficient to cope with increasing N and P
loadings. This development may eventually reach critical thresholds such as altered microbial

communities (Zeglin, 2008).

The inclusion of nutrient bioavailability (ie Fig. 2c,d vs Fig. 2a,b) shifts stoichiometries towards lower
ratios, stretches the range of C:N and particularly shifts snow climate and temperate moorland-
dominated rivers to lower available ratios, than when total resource ratios are considered. The latter
arises from the low C availability of humic substances that dominate OC forms in peatland rivers.
Available C:N and C:P ratios varied across four orders of magnitude (Fig. 2b). At the lowest available
C:N and C:P are the highly N- and P-enriched temperate agricultural rivers and the sewage source
waters. Temperate moorlands and temperate and equatorial urban-influenced rivers have moderate
available C:N and C:P. Soil and runoff source waters from forest and moorland systems, together
with fens and marshes, have the highest available C:N and C:P, matching that of boreal and some
temperate forests, where anthropogenic influences are small. However the exact position of the
microbial optimum can be subject to further work and is likely related to physical constraints (see
Fig. 1). The main importance is the concept behind this point and to use it as an anchor for
restoration targets and to show potential ecosystem imbalances. Further work is needed to find and

validate the ideal C:N:P zone for microbial nutrient uptake and retention.
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Our consideration of the wider body of literature on dissolved OC, N, P cannot fully factor in the role
of particulate nutrient processing in metabolic ‘hot-spots’ such as biofilm surfaces and the river bed.
Biofilms represent the close coupling of heterotrophic with autotrophic systems such that the
former may become independent of catchment C inputs (Graeber et al. 2018), although the bacterial
utilisation of nutrients demands a dissolved state so dissolved stoichiometry remains closest to
bacterial requirements. Downwelling waters will introduce dissolved and particulate OC, N, P into
hyporheic zones where both DOC and POC will be influential to microbial metabolism. These are
seldom separated in the literature, however, Thomas et al. (2005) indicate that ultra-fine particle

POC + DOC was more bioavailable than fine particle (52-1000 um) OC.

A limited number of studies were found where particulate C, N and P were simultaneously
determined and data in Supplementary Table S3, plotted in Figure S3 (Li et al. 2005; Stutter et al.
2007; Frost et al. 2009), provides a preliminary look particulate stoichiometry using the same
graphical format and catchment classifications as the main paper (Fig. 2). River seston showed
decreasing C:N and C:P as agriculture and urbanisation increased but remain within the microbial
optimal zone when total resources are considered, similarly to total dissolved resources from the
wider dataset. However, limited data exist to scale particulate resources for bioavailability. Generally
OC availability may be limited as with dissolved resources; the percentage of river sediment OC
respired in 24 hour microplate batch tests (Stutter et al. 2017) was 0.7 to 3.8% across a strong
pollution gradient of 16 sites (no relationships with land cover). In contrast, Frost et al. (2009) and
Lambert et al. (2017) suggest that catchment disturbance increases the availability of N and P
associated with river particulates. Hence, stoichiometric ratios of bioavailable particulate C, N and P
would likely tend towards being OC-limited relative to the microbial optimum, similar to what we
have shown for dissolved nutrients. In the absence of wider datasets we propose that particulates
comprise a strong signal of within-river nutrient (re)cycling, where both catchment inputs and

recycled nutrients appear to shift available resource stoichiometry towards increasing relative OC
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bioavailability compared to N and P. There remains substantial need for further simultaneous data

on OC, N and P to confirm our assumed impact of river particulates on the rebalancing concept.

The loss and disconnection of wetlands, floodplains and riparian forest features has occurred
simultaneously with agricultural intensification and urbanization across the globe (Gardner et al.,
2015; Moreno-Mateos et al., 2012), hence disturbance of OC delivery has accompanied
anthropogenic N, P enrichment in many catchments (Stanley et al. 2012). This consequence of land-
use change is rarely considered in freshwater eutrophication (Kupilas et al., 2017), and is entirely
absent from most regulatory efforts to address problems when they arise. Losing natural
bioavailable C sources has amplified the impact of increased N and P loadings to freshwaters. The
literature strongly suggests that adding OC to increase the low C:N and C:P ratios of the streams in
zone B and C (Fig. 2) should stimulate longer-term microbial N and P sequestration (Dodds et al.,
2004; Sinsabaugh et al. 2009; Taylor and Townsend, 2010; Stanley et al., 2012; Xu et al., 2015;
Robbins et al., 2017; Wymore et al., 2016). Such a rebalancing of the stoichiometry could be reached
by reconnecting resources rich in OC (Zone D; Fig. 2d) and may be considered especially in
catchments where attempts to reduce N and P inputs have failed. Based on dissolved OC, N and P,
the reconnection to catchment OC sources (e.g. riparian forest and wetland areas) (Stanley et al.,
2012; Tanentzap et al., 2014) would be the ideal way to rebalance the stoichiometry. We find
limited separation amongst the literature between the roles of DOC vs POC in fuelling river microbial
metabolism and hence whether additional OC loading into rivers should most usefully comprise
particulate or dissolved forms. Beneficial OC inputs (ie increasing available OC relative to N, P) from
buried catchment-derived POC should remain small compared with catchment DOC inputs. Sources
such as lowland wetlands have an optimum composition of moderately bioavailable DOC, low N and
P, with the potential to promote in-stream microbial nutrient uptake (Hansen et al., 2016) (Fig. 4).
Such wetlands may structurally provide good dissolved OC sources, but also particulate organic

matter repositories in floodplain deposition zones (Kupilas et al., 2017), necessary for long-term

15



352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

incorporation of assimilated N and P into buried organic matter (Kandasamy and Nagendar Nath,

2016).

When adding catchment DOC to improve C:N:P stoichiometry, secondary effects must be kept in
mind such as changing water coloration and light regimes, any impacts on public water supply, as
well as transport and bioavailability of toxic substances (Stanley et al. 2012). The added OC must be
in an appropriate form and amount to guard against depleting water-column oxygen, or pollutant
swapping (e.g. incomplete denitrification). For example, bioavailable effluent OC would not be a
good option as its input is accompanied with a large associated available N and P loads. Furtermore,
we cannot turn rivers into bioreactors beyond their inherent rearation constraints, which would
damage their ecosystem health. Before such concepts can be developed into management
recommendations appropriate risk factors should be identified for biogeochemical interactions of
added bioavailable OC. One potential effect concerns P bound to redox-sensitive surfaces becoming
solubilised by anoxia associated with microbial OC processing. This is likely to be location-specific
and defined by risk factors such as P/Fe ratios, water velocity and sediment particle size. These
would need to be derived and further work should be done to evaluate conditions where this may
outweigh benefits of assimilatory P uptake on net water column P. However, generally stream
waters are oxygenated and downwelling waters maintain hyporheic oxic status. If anoxia dominated
in bed sediments then denitrification would be the main pathway for N removal whereas
Mullholland et al. (2008) found a median nitrate loss of 16% for 72 streams across different biomes.
Furthermore, if burial rates for seston particulate organic matter are driven by the presence of high
concentrations of water column nutrients and algal growth then stoichiometric rebalancing via
catchment DOC sources may reduce this pathway. Such processes should be subject to further

investigations to identify situation-specific factors.

Studies of DOC uptake often use simple DOC substances (sugars, acetate, glutamic acid) due to

difficulties in adding sufficiently large masses of recovered natural DOC to streams. There remains a
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lack of inclusion of OC composition and cycling research integrated with nutrient cycling studies
(Newcomer Johnson et al., 2016). Where it has been considered, OC is shown as a strong influence
on N cycling (Xu et al., 2015; Taylor and Townsend, 2010; Wymore et al., 2016). Study of river C:P
coupling is considerably less developed, but crucial to represent C:N:P. The hotspots - for example
the stream bed, water column or hyporheic zone - of DOC uptake remain largely unknown, as in-
stream compartmental uptake studies are scarce (Graeber et al. 2018). Furthermore, the importance
of the different stream compartments is debated for N uptake (e.g. Johnson et al. 2015) and largely
unknown for P uptake. Further works should link physico-chemical and biological aspects of linked
OC, N, P cycling in rivers and question the extent of in-river processing, the dominant controls, which
biotic communities are the main players and where (the river bed vs water column) and interactions
with autotrophs that may decouple a reliance on catchment OC sources. Potentially, new high

resolution in-situ monitoring can open up new evidence for in-river processes.

6. Conclusions

Globally, natural OC sources and their connectivity have been, and continue to be, degraded
concurrent to N and P delivery. These trajectories must be reversed, and, alongside source pollution
control, our approach to re-balance nutrient stoichiometry by restoring natural landscape OC-
sources would be a vital concept to achieve this. Hence, addressing global eutrophication requires
new concepts of river resilience involving key biotic players, integrated land management, linked

element cycles, alongside source controls.

Our stoichiometric approach for improving aquatic ecosystem health by rebalancing OC, N, P from
catchment inputs highlights the need to improve data, knowledge and practical management in
areas of coupled macronutrient processing. We were able to collate dissolved nutrient data that
showed globally that agricultural, urbanized and even forests and moorland with a minimal
agricultural influence (<10% area) had lower C:N and C:P ratios than reference sites. When

stoichiometric ratios of OC, N and P were considered in terms of bioavailable resources these
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differed from the proposed microbial optimum and other components of biota in catchments across
different global climate zones for all but pristine forests. The strongest stoichiometric imbalances
were associated with urban factors (e.g. effluents) and agricultural runoff, but also highlighted the
importance of bioavailability of DOC. Hence, humic waters were less able to contribute to
stoichiometric rebalancing than key source waters such as riparian wetlands and forests that had a
beneficial combination of DOC availability and low associated N, P load. Although supported here by
literature evidence rather than direct new experimental data there is a growing, but fragmented
body of literature that agrees with our concept of variable river resilience to N and P inputs and a
mechanistic microbial coupling to inputs of catchment-derived bioavailable OC. We hope that the
concepts we have united here will promote experimental evidence of the magnitude and controls on
in-river processing and how we may manage it for benefits. However, many important aspects
related to manipulations of river OC, N, P stoichiometry are still understudied and especially the lack
of information on particulate forms exemplifies this. Still, we feel that our approach generates a
strong incentive for the collection of data on all key macronutrients OC, N and P, including
particulate and dissolved forms, their bioavailability and key river compartments for their

processing.

By disregarding this holistic view of coupled macro-nutrients and the optimum resource
stoichiometries for heterotrophs, we would leave a powerful natural regulatory process unused, a
service that can help controlling nutrient leakage from agricultural and urban areas to the aquatic
environment. Our study recognises and promotes the new knowledge required to better understand
the applicability, including identifying risks of interactions with other biogeochemical processes such
as P desorption. The proposed approaches need to be tested at the catchment scale to confirm ways

to implement this in practice.
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Figure 1. Conceptual model of resilience to nitrogen and phosphorus source inputs provided by river
microbial nutrient processing mediated by organic carbon. In rivers, resilience to rising nutrient
inputs is provided by physical and biochemical factors, crucially by microbial assimilation and longer-
term incorporation in organic matter or higher food-webs. Here, an adequate supply of reactive
organic C regulates the microbial assimilation of high N and P source loadings. However, continuing
microbial functioning also benefits from increased water residence time and good physical condition
which define longer term nutrient incorporation into organic matter. For example, river
straightening and the loss of floodplain features and connectivity induces earlier nutrient saturation.
The simultaneous degradation of organic C sources and physical condition leads to severely
compromised processing and retention, so that even moderate N and P inputs can directly translate

to elevated river nutrient concentrations and loads.
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Figure 3. Summary of weighted means and variance for bioavailable proportions of dissolved organic
C, N and P taken from literature metadata evidence and used for scaling available resources. Mean
values are weighted by sample number (+1 weighted standard error, with stated n numbers
indicating total spatial sites; see Supplementary data Table 2) and developed for bioavailable DOC,
DON and DOP (BDOC, BDON and BDOP) using the literature evidence in Supplementary Table 2,
according to aquatic ecosystem and catchment source waters categories. Bars with hatched fill
indicate an absence of data for BDON and BDOP where best-estimate values have been applied (see

methods).
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Figure 4. A conceptual matrix of catchment OC, N, P sources based on quadrants of low vs high
available N, P load and low vs high DOC bioavailability (<20% and >20%, respectively) to
demonstrate more and less appropriate forms of carbon for rebalancing. Wetland water and leaf
litter provide optimum catchment OC inputs without additional N and P loading. Conversely
peatland soil runoff has recalcitrant OC despite being low in N and P, whereas effluent has high N

and P loading with concentrated available OC that may cause water column oxygen depletion.
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Table 1. The proposed four zones of freshwater eutrophication according to the degree of
stoichiometric imbalance in available C:P and C:N resources relative to a zone of microbial cellular
stoichiometry optimising nutrient sequestration. These descriptions of zones relate to the plotted

stoichiometric data presented in Figure 2. Ratios of C:N and C:P refer to organic C forms only.

Zone Available River nutrient conditions Microbial nutrient processing
resource ratios
A C:N 2-11 Carbon resources balance N and P Microbial flexibility zone. Nutrients
C:P 47-994 availability. Microbes adapt to utilise added are sequestered in microbial
what is available. biomass.
B C:N 0.01-11 Enrichment with available N, but P Microbes maintain ability over
C:P 47-994 deficient side of microbial flexible zone some spatial/temporal scales to
relative to available C. Biota such as sequester P inputs, whilst N inputs
algae respond to P additions. passed down-river
C C:N0.01-11 Outside of microbial flexible zone, P and Virtually all nutrient pollution
C:p 1-47 N become saturated and decoupled from  inputs appear as elevated
C cycling. concentrations and N, P loads
exported down-river.
D C:N 2-100 Abundant C-rich resources, relative to N Whilst microbial biomass is limited
C:P 994-10000, and P, e.g. wetland or leaf litter available  locally by lack of N, P, the beneficial
and carbon. C inputs drive microbial N and P
C:N 11-100 sequestration potential down-river.
C:P 47-10000
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Supplementary Methods
Catchment nutrient stoichiometry data

Data were taken from a variety of literature and authors’ primary data sources indicated in
Supplementary Table 1 and described briefly in main Methods section. The UK Centre for Ecology
and Hydrology led studies of lowland rivers in England (the Kennet, Lambourn and Pang tributaries
to the Thames; https://catalogue.ceh.ac.uk/documents/8e23a86b-6b54-4564-9789-23f4b4e045¢ea)
and the River Conwy system in Wales (https://catalogue.ceh.ac.uk/documents/23ca75d4-9995-
4dc3-aa89-51ab218cb352) where the raw data are available.

In Scotland, the James Hutton Institute sampled on four occasions (2014) major Scottish rivers at the
Harmonised Monitoring Scheme sites (locations in Ferrier et al. 2001). To assess data consistency we
evaluated analytical methods for the compiled freshwater nutrient speciation datasets. River
datasets are differentiated in Supplementary Table 1. Samples for Scottish and Welsh rivers were
filtered to 0.45 um and those for English rivers to 1.2 um. For Welsh rivers equivalent methods are
summarised at https://catalogue.ceh.ac.uk/documents/c53a1f93-f64c-4d84-82a7-44038a394c59
and for English rivers at https://catalogue.ceh.ac.uk/documents/8e23a86b-6b54-4564-9789-
23f4b4e045ea.

For rivers in Scotland dissolved organic carbon (DOC) was analysed following chemical (persulphate)
oxidation and detection of phenolphthalein colour (Skalar San++, the Netherlands), for Welsh and
English rivers as non-purgeable organic carbon following thermal oxidation and conductivity
detection using a Shimadzu TOCVSH (Japan) for Welsh rivers and Shimadzu TOCsinll, then latterly
Analytical Sciences Thermalox for English rivers.

For phosphorus speciation all followed the differentiation that dissolved unreactive P represented
dissolved organically-complexed P (DOP), as calculated from total dissolved P (TDP) minus dissolved
reactive P (DRP) by the molybdate colour reaction (approximating to orthophosphate inorganic P).
For rivers in Scotland TDP and DRP were determined by automated colorimetry, for TDP
incorporating heated chemical (acid persulphate) oxidation (Skalar San++). For English and Welsh
rivers TDP and DRP were determined similarly by automated colorimetry (Seal AQ2), the former
following heated chemical (persulphate) oxidation.

Nitrate-N and ammonium-N were determined colorimetrically, based on the reduction of NO; to NO,
and diazotisation reaction with sulphanilamide and using a modified Berthelot reaction for NH, using
the Skalar San++ for Scottish rivers and Seal AQ2 for Welsh and English rivers (although for English
rivers a change occurred in 2007 to ion chromatography for NOs-N.

Dissolved organic nitrogen (DON) was determined by difference of the sum of inorganic N species
from total dissolved N, the latter analysed following heated chemical oxidation for Scottish rivers
(Skalar San++) and thermal oxidation for Welsh rivers (Shimadzu TNM-1) and English rivers
(Analytical Sciences Thermalox).

Published method statements for the sources of the Scandinavian river data (Stepanauskas et al.
2002; Berggren et al. 2007; Autio et al. 2016) showed comparable methods with DOC and TDN
measured by thermal oxidation on Shimadzu instruments, inorganic N by standard methods, TDP
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and DRP by molybdate-reaction colorimetry respectively with and without chemical oxidation. Slight
differences in pre-treatment were the use of 0.2um filters and freeze-storing prior to analyses.

Development of a model for scaling bioavailability of nutrient resources

Literature metadata was used to explore documented evidence of the bioavailability of organically-
complexed macronutrient resources. Literature was searched on terms 'dissolved organic matter’,
'DOM', 'DOC', 'DON' 'DOP', 'decomposition', ‘'biodegradability’, and ‘bioavailable’ (and
abbreviations: BDOC (bioavailable DOC), BDON, BDOP) then exploring cited and citing references
from these. This resulted in forty-seven studies being evaluated from 1987 to 2016 (that half of
these were in the last five years suggests this is a recent research field). Inclusion was on the basis
that one of any, or combinations of BDOC, BDON and BDOP had to be recorded with method and
site metadata (for example land use, catchment size, location). An insufficient number had soil
metadata such as organic soil occurrence.

Data covered the latitudes 27-69°N and 3-46°S. Entries were compiled to single rows for either
grouped data where key metadata such as land cover was not fully recorded, or individual sites to
rows where full metadata was recorded; henceforth rows are termed database entries. Importantly,
data were split between studies utilising dark-only assays (corresponding to microbial uptake) and
(b) those reporting light and light:dark cycle assays (including algal uptake). The statistical
development was limited to dark-only assays but this excluded a body of work on N and P uptake by
algae that was more numerous than that reported for microbial uptake of organically-complexed N
and P. Bioavailable resources were recorded in one hundred and twenty-one, fifty-four and five
database entries of dark-only assays for %BDOC, %BDON and %BDOP, respectively. No studies
recorded bioavailability for all three nutrients simultaneously.

The total number of spatial sites (including multiple sites reported within studies and represented by
database entries) and the numbers of studies are given for water and land cover combinations in
Supplementary Data Table 2. Bioavailable nutrients in seawater were excluded since this was
deemed a different biogeochemical system. In terms of methods most studies derived BDOM by
concentration difference, with less by bacterial or algal growth calibration and for C by respiration.
Most studies used bacterial inoculum from coarsely filtered/unfiltered source waters, or sediment
slurries, although few had no added inoculum, just coarse pre-filtration. Incubation temperatures
(absolute range 3-25°C) were dominantly 20-25°C. One enzyme-labile DOP study used 37°C and four
studies varied incubation temperatures seasonally, or specific to sites. The database entries are
summarised in Supplementary Table 2.

Additional methods references not in main paper:

Ferrier RC, Edwards AC, Hirst D, Littlewood IG, Watts CD, Morris R. Water quality of Scottish rivers:

spatial and temporal trends. Sci. Total Environ. 2001; 265:327-42.
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Supplementary Figure S1. Full stoichiometric plots of individual database data points shown firstly

for total resources (panel a) then scaled to ‘available’ resources (panel b) according to land-cover

categories (colours) and comparing rivers (circles; according to three climatic zones) with other

catchment nutrient sources and biota. The four eutrophication zones (A — D) are explained in Table

1. Twenty-eight studies provided sample data over five land-cover/habitat categories (agricultural,

n=88; fen and marsh, n=10; forest, n=34; moorland and mire, n=62; urbanized, n=22), biota (algal,

bacterial and plant tissue, n=15) and according to three climate zones (boreal, n=33; warm

temperate, n=165; equatorial, n=23). Ratios of C:N and C:P refer to organic C forms only.
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763  Supplementary Figure S3. Comparison of total resource C:P vs C:N stoichiometry of seston

764  (suspended particulate matter) by catchment land cover catgeories as used in main paper data

765 figures. Data were not available to make comparative plots of bioavailable resources for seston.
766 These are compared to a single study of seston, bed sediment and, for dissoved resources in the
767  water column, total resource and available resource stoichiometry by land cover type. The data are
768 presented along with data sources in Supplementary Table S3. Ratios of C:N and C:P refer to organic
769 Cforms only.
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