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Understanding biodiversity-ecosystem service relationships in urban areas: a comprehensive 1 

literature review 2 

 3 

1. Introduction  4 

Urbanisation is increasing, with more than half the global human population now living in 5 

urban areas (United Nations 2015). This conversion of land-cover to urban land-use results in the loss 6 

of key habitats (Knapp et al. 2017; Seto et al. 2012). A major transdisciplinary research task, 7 

therefore, is to understand how urban expansion may be planned to minimise the loss of biodiversity 8 

and maintain urban ecosystem service (UES) delivery (Haase et al. 2014; Luederitz et al. 2015).  9 

 Positive relationships between biodiversity and UES are widely implied within both the 10 

scientific and policy literatures, along with the tacit suggestion that the enhancement of urban green 11 

infrastructure will automatically improve both biodiversity and UES (Kabisch et al. 2016; Ziter 2016). 12 

However, it is unclear how much published empirical evidence exists to support these assumptions 13 

(Gómez-Baggethun et al. 2013; Kowarik 2011; Ziter 2016) by ascertaining cause and effect, rather 14 

than relying on correlative inferences (Shipley 2000). Without such as evidence-base in place, it calls 15 

into question whether the implementation of concepts such as Green Infrastructure (GI; European 16 

Commission’s Directorate-General Environment 2012) and Nature-Based Solutions (NBS; European 17 

Commission 2015) in urban areas will promote biodiversity and UES delivery as expected.  18 

 Positive biodiversity-ecosystem services (BES) relationships have been found in studies in 19 

non-urban contexts and controlled experiments. This research has established that both taxonomic 20 

and functional aspects of biodiversity underpin ecosystem functioning and service delivery in 21 

grasslands (e.g. Isbell et al. 2011; Lange et al. 2015; Wright et al. 2017), forests (Verheyen et al. 22 

2016), created wetlands (Means et al. 2016) and mesocosms (Bilá et al. 2014). Additionally, habitat 23 

structure and area, as proxies for biodiversity, have been shown to be crucial for the delivery of 24 

ecosystem services such as fishing, pollination, water purification and pest regulation in non-urban 25 

contexts (Harrison et al. 2014). Urban BES relationships may be modified compared to those in non-26 
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urban contexts due to three characteristic factors (Aronson et al. 2016). First, urban ecosystems 27 

frequently experience altered abiotic and biotic conditions, including higher temperatures and drier 28 

soils (Kuttler 2008), elevated levels of artificial light (Russ et al. 2015) and greater habitat 29 

fragmentation within a matrix of sealed surface (Alberti 2015). Second, the functional composition of 30 

species assemblages may have shifted due to modified abiotic and biotic conditions (e.g. Kowarik 31 

2011; Williams et al. 2009), leading to the dominance of seed-producing, short-lived and non-native 32 

plants species (Concepcion et al. 2015; Knapp et al. 2008; Williams et al. 2015). Third, human 33 

decisions and socio-economic circumstances act as further selection and facilitation filters for both 34 

biodiversity and community structure in emerging ecosystems (e.g. gardens, brownfield sites), giving 35 

rise to novel species assemblages (Colding et al. 2006; Kowarik 2011; Swan et al. 2011). Urban areas 36 

are therefore unique, challenging our traditional understanding of how species assemblages may 37 

influence ecosystem functioning, stability and ecosystem service delivery (Alberti 2015; Kowarik 38 

2011).  39 

 A recent review of urban BES relationships examined 77 studies (Ziter 2016). It showed that 40 

the majority of papers focused on just a single service, that biodiversity was measured mostly at the 41 

taxonomic level (e.g. species richness, species diversity), and that BES relationships were generally 42 

described in a non-correlative manner that lacked a numeric metric of biodiversity (Ziter 2016). Due 43 

to this lack of nuanced evidence, several crucial questions regarding the mechanisms underpinning 44 

urban BES relationships remain unanswered. For example, syntheses of empirical studies conducted 45 

in non-urban systems have highlighted that the distribution of species’ trait values in a community 46 

more often determine ecosystem functioning than taxonomic diversity (Díaz & Cabido 2001; McGill 47 

et al. 2006). This has led to the development of trait-based approaches to identify biotic control over 48 

ecosystem service delivery within (de Bello et al. 2010; Díaz et al. 2007; Lavorel 2013) and across 49 

trophic levels (Lavorel 2013; Moretti et al. 2013), as well as synergies and trade-offs among 50 

ecosystem services (Lavorel & Grigulis 2012). However, it is still not clear which functional 51 

biodiversity metric chiefly drives ecosystem processes and service delivery (Dias et al. 2013). Two 52 
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hypotheses have been proposed (Ricotta & Moretti 2011): (1) mass ratio hypothesis (Grime 1998); 53 

and, (2) niche complementarity hypothesis (Tilman et al. 1996). The first states that the traits (or 54 

functional identity) of the species dominating an ecosystem predominantly control ecosystem 55 

functioning. The second suggests that the degree to which trait values differ between species in a 56 

community (functional diversity) relates to non-additive community effects and niche 57 

complementarity (i.e. more diverse plant communities should use resources more completely and be 58 

more productive). Evidence on the relative importance of these mechanisms is lacking for urban 59 

areas.  60 

Here we examine new aspects of urban BES relationships, addressing: (1) which biodiversity 61 

metrics (i.e. taxonomic or functional) are positively, negatively or not related to UES; (1a) how 62 

functional identity (mass ratio hypothesis; Grime 1998) compares to functional diversity (niche 63 

complementarity hypothesis; Tilman et al. 1996; Trenbath 1974) in UES delivery; (1b) which species 64 

traits relate to UES; (1c) whether taxonomic biodiversity metrics (i.e. single species, species 65 

composition, or species diversity) underpin UES; and, (2) whether BES relationships in urban 66 

ecosystems have been empirically tested (e.g. by applying an experimental setting or testing 67 

assumptions statistically) or are simply assumed.  68 

 69 

 70 
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Fig. 1. Conceptual overview of our review, which sought to find empirical evidence of relationships 71 

(positive, negative, unimodal, non-significant) between different biodiversity (e.g. measures of 72 

diversity, abundance, dominance or identity of habitats, species or traits) and urban ecosystem 73 

service metrics (for the broad categories of cultural, provisioning and regulating services). 74 

 75 

To address these questions, we conducted a comprehensive literature review on the 76 

relationship between specific biodiversity and UES metrics (Fig. 1). We build on Ziter (2016), which 77 

reviewed 77 articles, by conducting a wider search for publications examining urban BES 78 

relationships and synthesising across the 317 relevant papers we identified. Second, we discuss in 79 

detail the ecology behind BES relationships, as this was a clear research gap identified by Ziter (2016). 80 

We focus on the role of traits and functional diversity, influence of non-native species and 81 

application of empirical research. Furthermore, we investigate the context-dependency (i.e. reliance 82 

on factors such as biome, climate or management) of BES relationships (Balvanera et al. 2014; Mace 83 

et al. 2012). 84 

2. Methods  85 

The peer-reviewed journal literature was searched systematically using ISI Web of Science 86 

(WoS) (Fig. 2). The keywords to be used in our review related to UES were determined after a pilot 87 
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search conducted in WoS, using the following broad terms: biodiversity AND ‘ecosystem service’ AND 88 

(urban OR city OR cities) AND (important OR importance OR relevant) (the latter being used to 89 

specifically find papers that suggested the relevance of a single ecosystem service). This generated 31 90 

papers, from which we collected 107 UES keywords (Appendix S1) to be used in the main WoS 91 

search. We then determined 34 keywords for biodiversity, among them the most widely used terms 92 

of taxonomic and functional diversity from selected papers such as Wilson (1992), Magurran (2004) 93 

and Magurran and Mc Gill (2010) (Appendix S1). Eight keywords were included for urban areas 94 

(Appendix S1) and, after another pilot search, ‘ecol*’ and ‘ecos’ were also included to limit the 95 

material to ecological and ecosystem studies, and exclude psychological articles on human traits. Our 96 

final search string thus consisted of four blocks of terms, with at least one keyword needed for each 97 

block. To keep the amount of literature manageable and to focus on the asserted positive 98 

relationships between biodiversity and desired services, we did not include keywords on ecosystem 99 

disservices (Lyytimäki & Sipilä 2009). 100 

 101 
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 102 

Fig. 2. Overview of the search strategy used to identify relevant papers for our comprehensive 103 

literature review. 104 

 105 

We conducted the main WoS search in May 2017, restricting it to publications written in 106 

English and indexed in one of the WoS Core Collections (Science Citation Index; Social Sciences 107 

Citation Index). The search string was applied to title, keywords and abstracts of all papers. 108 

Publications prior to 1990 did not analyse UES (Haase et al. 2014). 109 

The search yielded 1337 potentially relevant papers. We eliminated those that were outside of 110 

our focus (e.g. non-urban, not addressing biodiversity) by screening the titles and abstracts. As we 111 
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were looking for primary research reporting BES relationships, we also excluded literature reviews at 112 

this stage. This procedure narrowed the relevant material down to 317 articles (Appendix S2) 113 

potentially suitable for data extraction (Tab. 1) at full-text review.  114 

 115 

Tab. 1: Data extracted on biodiversity-ecosystem service relationships in urban areas from the 317 116 

publications, which were examined at full text after a systematic search of ISI Web of Science.  117 

 Predictor Parameters 
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The biodiversity-metrics used  See Tab. 2 

The UES metrics used  See Tab. 3  

Evidence of BES relationships  (i) empirically tested; (ii) only assumed (i.e., 
only mentioned or suggested) 

Basis of the BES relationship  (i) purely conceptual (e.g., based on theories 
and concepts only); (ii) tested based on 
correlative analyses (e.g., simple or multiple 
regressions); (iii) tested based on cause-effect 
models (e.g., structural equation models or 
mechanistic models) 

Statistical significance of BES 
relationship  

(i) significant (positive, negative); (ii) unclear; 
(iii) non-significant 
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-r
e
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Research design  (i) controlled/manipulative experiment; (ii) 
observation experiment  

Type of biodiversity metric 
delivering UES  

(i) taxonomic; (ii) functional 

Taxonomic biodiversity metrics 
delivering UES 

(i) single species; (ii) species diversity; (iii) 
species composition; (iv) others 

Origin of the species delivering 
UES  

(i) native; (ii) non-native; (iii) 
unknown/undefined 

Type of non-native species  (i) invasive; (ii) non-invasive; (iii) 
unknown/undefined 

Functional biodiversity metrics 
delivering UES  

(i) functional identity; (ii) functional diversity; 
(iii) others 

Functional traits delivering UES, 
if mentioned  

Any trait mentioned  

 118 

 We categorised all extracted biodiversity metrics into one of nine classes (Tab. 2), which 119 

were either direct or indirect measures of biodiversity. The latter were included as proxies, which are 120 

often used for biodiversity, rather than measures of biodiversity sensu strictu. Extracted ecosystem 121 

services were classified according to TEEB (The Economics of Ecosystems and Biodiversity; TEEB 122 

2010) and Haase et al. (2014) (Tab. 3). In accordance with Gómez-Baggethun et al. (2013), yet 123 
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contrary to TEEB (2010) and Haase et al. (2014), we did not consider services such as habitat 124 

provision for nursery species or maintenance of genetic diversity, to avoid the circularity associated 125 

with biodiversity supporting or providing biodiversity. 126 

 From the data extracted, we derived information on the evidence, basis, direction and 127 

statistical significance of BES relationships (see Tab. 1). The numbers of studies reporting different 128 

categories of BES relationship were examined using descriptive statistics in R (R Core Team 2014). A 129 

formal meta-analysis could not be conducted because of the lack of suitable quantitative data. 130 

 131 

3. Results  132 

The 317 publications mentioned biodiversity and UES metrics a total of 944 times, as many 133 

papers explored multiple measures. In 441 (47%) of these 944 mentions, a BES relationship was 134 

asserted (Appendix S5), but not empirically tested. Only 228 mentions (24%) involved the BES 135 

relationships being tested empirically (e.g. by applying an experimental setting or testing 136 

assumptions statistically). Among these, 119 (52%) demonstrated a positive BES relationship and 25 137 

(11%) a negative relationship, one was unimodal. A further 63 (28%) of all tested BES relationships 138 

were not found to be statistically significant, and for 20 (9%) the text was unclear and could not be 139 

deciphered reliably.  140 

 82 (41%) of the 228 tested BES relationships used taxonomic diversity as a biodiversity 141 

metric, rather than presence of green (16%), species abundance or biomass (16%), functional identity 142 

(12%) and species composition (7%) (Tab. 2). Half of the 228 tested BES relationships examined 143 

regulating services (50%) and 38% cultural services (Tab. 3). When looking at the UES categories 144 

suggested by Haase et al. (2014), metrics of recreation, health and wellbeing were assessed most 145 

often, followed by erosion prevention or maintenance of soil fertility, pollination, aesthetic 146 

appreciation or inspiration, local climate regulation or air quality regulation, and carbon 147 

sequestration or storage (Tab. 3). Almost half (55 out of 135%) of all possible BES relationships had 148 
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only been tested empirically once (Tab. 4); 27 BES combinations have not been tested yet. For those 149 

tested several times, results often showed contrasting patterns, with specific BES relationships found 150 

to be positive in one study, but negative or not statistically significant in others (Tab. 4; Fig. 3). The 151 

most well-tested BES relationships (≥ 10 times) were taxonomic diversity and metrics of recreation, 152 

health and wellbeing, taxonomic diversity and pollination, taxonomic diversity and aesthetic 153 

appreciation/inspiration, presence of green and metrics of recreation, health and wellbeing, as well 154 

as functional identity and metrics of local climate/air quality regulation (Tab. 4; Fig. 3). 155 

Of the 228 tested BES relationships, 222 (97%) were tested by applying a statistical method. 156 

However, just six BES relationships (2.6%) were tested using cause-effect models such as structural 157 

equation modelling (Appendix S3). Thirty % of the 228 tested BES relationships were tested in an 158 

experimental setting with controlled variables (Appendix S3). 159 
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 160 

 161 

Fig. 3. Number of  biodiversity-ecosystem service relationships between biodiversity (left) and urban 162 

ecosystem services (right) metrics that have been tested empirically. The width of the lines 163 

represents the proportion of tested BES relationships for a specific combination of a biodiversity and 164 

an ecosystem service metric. Colours represent the direction of single BES relationships (positive, 165 

negative, non-significant) with unclear and unimodal relationships omitted for clarity. The figure was 166 

created using SankeyMATIC (http://sankeymatic.com/). 167 

 168 
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Tab. 2: Biodiversity metrics used in the 317 publications included in our review, plus the number and percentage of empirically tested urban biodiversity-169 

ecosystem service (BES) relationships. The number of studies is smaller than the number of tested BES relationships because papers frequently examined more 170 

than one biodiversity metric. ‘Type of indicator’ states whether a biodiversity metric is a direct or indirect (proxy) measure of biodiversity.   171 

Biodiversity-metrics Definition Type of 
indicator 

Number of 
studies 

Number of tested BES 
relationships 

Percentage (%) 

Taxonomic diversity Any metric of biotic diversity, richness or dissimilarity for any 
level of organisation (from species to order, and broad 
taxonomic groups to morpho-species and –types). This included 
species and taxonomic richness, family density and richness, 
Simpson, Shannon, evenness, Sorensen, Morisita-Horn, flower 
and crop diversity and number of broad taxonomic groups (e.g. 
birds, plants, insects). 

direct 35 93 40.8 

Biodiversity sensu 
lato (i.e. term 
‘biodiversity’ was 
used but not further 
resolved) 

Biotic diversity without any further specification. unclear 2 4 1.8 

Functional diversity Any metric of functional diversity of any level of organisation. 
This included functional richness, functional evenness, 
functional divergence and Rao’s quadratic entropy. 

direct 3 5 2.2 

Functional identity Metrics indicating dominant functional features within 
communities or species groups. This included community 
(weighted) mean of trait values (CWM), and abundance or 
biomass of functional groups (e.g. trophic guilds, vegetation 
layers). 

direct 11 28 12.3 

Habitat diversity Any metric of habitat and landscape diversity, richness and 
dissimilarity. This included diversity of habitats, land-use and 
land-cover types or habitat heterogeneity, vegetation structural 
richness and green space diversity. 

direct 5 6 2.6 

Species composition Metrics quantifying the composition or structure of species 
communities or other levels of organisation. This included 
proportion of rare and threatened fauna, proportion of native 

direct 10 15 96.6 
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versus non-native species, proportion of vegetation types or 
strata. 

Abundance/biomass Metrics quantifying the number, abundance, biomass or density 
of any biotic element and level of organisation. This included 
abundance or biomass of species, species or vegetation density, 
plant, species or canopy cover, proportion plant cover, number 
of trees or individuals, species’ commonness, Berger-Parker 
index and presence of plants. 

direct 20 36 15.8 

Presence of green Presence of any vegetated habitat, such as urban green spaces, 
protected areas or agricultural land. This included metrics of 
habitat quality or habitat potential for biodiversity conservation, 
and metrics of the geometry and connectivity of vegetated 
areas. 

indirect 13 36 15.8 

Other Not classifiable according to the other categories (e.g. one index 
combining the percentage of vegetation cover and structure 
with number of plant genera) 

direct/ 
indirect 

4 5 2.2 

Total   68 228 100 

  172 



13 
 

Tab. 3: Ecosystem service categories and metrics used in the 317 publications included in our review, plus the number and percentage of empirically tested 173 

urban biodiversity-ecosystem service (BES) relationships. The number of studies is smaller than the number of tested BES relationships because papers 174 

frequently examined more than one biodiversity metric. 175 

Main TEEB-
ecosystem 
service 
categoriesa 

Broad ecosystem service 
categoriesb 

Ecosystem service metrics included in categories Number of 
underlying 
studies 

Number of tested 
BES relationships 

Percentage of 
tested BES 
relationships 
(%) 

Cultural Aesthetic 
appreciation/inspiration 

Aesthetic; education potential; green space amenity; opportunity to 
learn; perception of biodiversity 

10 23 10.1 

 Spiritual experience/sense of 
place 

Connection to nature; cultural identity; sensation; sense of place; 
spiritual 

2 8 3.5 

 Recreation/health/wellbeing Recreation; human health; mental health; physical health; wellbeing 21 43 18.9 

 Other cultural service (not 
included in Haase et al. 2014 
categories) 

Cultural; gardening: living standard; social equality; social value 9 13 5.7 

Provisioning Fresh water Drinking water; groundwater recharge; groundwater yield; water 
quality improvement; water supply 

4 6 2.6 

Food Agricultural production; food production 6 10 4.4 

Raw materials Biomass; fibre; forest product; natural resources; net ecosystem 
production; raw materials 

2 2 0.9 

Medicinal resources Medicinal 0 0 0.0 

Regulating Local climate/air quality 
regulation 

Air ammonia regulation; air filtering; air quality regulation; climate 
regulation; cooling; gas regulation; microclimate regulation; 
mitigation nitrous oxide emissions; NH4-N uptake; ozone removal; 
temperature regulation; reduction of electrical energy used by green 
walls 

12 22 9.6 

Carbon sequestration/storage Carbon balance; carbon sequestration; carbon storage; 
CO2assimilation 

9 16 7.0 

Moderation extreme events Extreme event mitigation; flood control/regulation; hydrological 
regulation; runoff mitigation; stormwater retention/run-off/capture; 
water filtration capacity; water flow regulation; water 
regulation/run-off 

6 7 3.1 
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Waste water treatment Biofiltration; groundwater quality improvement; waste water 
treatment 

0 0 0.0 

Erosion 
prevention/maintenance of 
soil fertility 

Ammonification; consumption of littered food waste/food removal; 
decomposition; geochemical pathways; erosion control; 
mineralization; nitrification; nitrogen deposition; nitrogen 
sequestration; N-mineralisation; nutrient cycling; nutrient storage; 
soil aeration; soil chemistry; soil CO2 respiration rate; soil 
conservation; soil fertility; soil formation; soil infiltration capacity; 
soil surface stability 

15 31 13.6 

Pollination Pollination; pollinator abundance, pollinator conservation 8 26 11.4 

Biological (pest) control Disease/pest regulation; pest control 2 5 2.2 

Other regulating service (not 
fitting the Haase et al. 
categories) 

Disturbance regulation; fencing; noise reduction; seed dispersal; 
seed set; ecosystem self-maintenance; waste treatment; water 
management; windbreak 

4 8 3.5 

Multiple Multiple Ecosystem multifunctionality; monetary ESS-values of various land 
uses; cultural response to various ESS; various ESS 

3 8 3.5 

Total   68 228 100 

a Ecosystem service categories according to TEEB framework (TEEB 2010).  176 
b Ecosystem service categories according to Haase et al. (2014), but excluding habitat for species, biodiversity and maintenance of genetic diversity as we did not classify biodiversity as ecosystem 177 
service. 178 
 179 
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Tab. 4. Matrix illustrating the research effort that has been invested into empirically testing relationships between specific biodiversity and UES metrics. UES 180 

metrics were classified into categories according to TEEB and Haase et al. (2014). The number of BES relationships tested in the papers identified by the review 181 

are indicated within cells. Empty cells indicate that the BES relationship is yet to be empirically tested. 182 
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 183 

4. Discussion  184 

The results from our review show that the urban BES relationships tested to date involve 185 

primarily taxonomic biodiversity metrics rather than mean traits or functional diversity (Tab. 2 & 4; 186 

Fig. 3). Only eight studies tested both taxonomic (abundance/biomass, species composition or 187 

taxonomic diversity) and functional biodiversity metrics (functional diversity or mean trait values). 188 

Four of these demonstrated the same urban BES relationships for functional and taxonomic metrics 189 

(Briguiche & Zidane 2016; Capotorti et al. 2017; Lundholm et al. 2010; Schmitt-Harsh et al. 2013), 190 

while the remaining four found diverging trends (Pieper & Weigmann 2008; Theodorou et al. 2017; 191 

Timilsina et al. 2014; Vauramo et al. 2011). None of the studies tested mean traits and functional 192 

diversity simultaneously.  193 

4.1. Which functional biodiversity metrics underpin UES?  194 

 No specific trait was mentioned for 77% of the tested urban BES relationships. The 33 studies 195 

that investigated relationships among traits or their diversity and UES mainly focused on plants and, 196 

in particular, leaf traits (Appendix S4). This is noteworthy as plant leaf traits may simultaneously 197 

respond to urban environmental conditions (e.g. Knapp et al. 2008; Thompson & McCarthy 2008) and 198 

affect UES (e.g. Manes et al. 2012). However, the findings regarding how plant leaf traits are 199 

influenced by urbanisation are mixed (Williams et al. 2015) and the direction (positive, negative, 200 

none) of urban BES relationships may be specific to the service and species trait analysed (Pataki et 201 

al. 2013). For example, tree canopy architecture has been shown to affect water capture of urban 202 

green roofs (i.e. mitigation of extreme weather events, Lundholm et al. 2010), but leaf traits (e.g. 203 

specific leaf area, thickness) do not predict ecosystem service related traits (such as tree crown size 204 

and, thus, shading capacity) (Pataki et al. 2013). Less is known about animal traits (Lavorel 2013), and 205 

our review only found two studies that considered their impact on a service (isopod body mass and 206 

litter decomposition in one case, and flower visitor generality on pollination in the other) (Pieper & 207 
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Weigmann 2008; Theodorou et al. 2017); the decomposition paper showed no relationship, and the 208 

pollination paper recorded a negative relationship.  209 

 We believe that greater research attention should be given to those traits that are known to 210 

be both sensitive to urbanisation processes and important in ecosystem service delivery. Based on 211 

the ‘response-effect traits’ framework (Lavorel & Garnier 2002), only those traits that fulfil this 212 

double role within and across trophic levels (Lavorel et al. 2013) are crucial for maintaining 213 

ecosystem services. Thus far, this framework has only been applied successfully in semi-natural 214 

ecosystems (Moretti et al. 2013; Suding et al. 2008). We think that its application in urban 215 

ecosystems would be valuable, as it would improve our mechanistic understanding of urban BES 216 

relationships. Moreover, since urbanisation can cause species and functional homogenisation (Knop 217 

2016; Aronson et al. 2014; Hahs & McDonnell 2016), studies should investigate the range of reactions 218 

across different species contributing to the same urban ecosystem function (Elmqvist et al. 2003). A 219 

loss of response diversity may reduce the ability of urban ecosystems to adapt to future 220 

environmental change and, therefore, its long‐term functionality and resilience (Folke et al. 2004; 221 

Hooper et al. 2005). For example, Manes et al. (2012) found that urban tree diversity (modelled by 222 

plant leaf type) affects the stability of urban air quality, with different tree functional groups showing 223 

complementary ozone uptake patterns, thus removing tropospheric ozone throughout the year. 224 

4.2 Which taxonomic biodiversity metrics underpin UES? 225 

 The results from our review show that in 99 (43%) out of the 228 tested BES relationships, 226 

certain taxonomic groups delivered UES, such as plants, birds, or insects. For instance, when 227 

comparing the importance of burying beetles versus scavenging vertebrates for the decomposition of 228 

carcasses in urban forests, Sugiura et al. (2013) found taxonomic diversity sustained decomposition 229 

in the face of forest loss. Plant species diversity was also reported to increase soil nitrogen retention 230 

capacity in the city of Lahti, Finland (Vauramo et al. 2011). Mixed evidence is provided by Lowenstein 231 

et al. (2014) in their study on pollination services in Chicago, USA. They showed that 37 bee species 232 

vary largely in pollinator performance, with only five performing exceptionally well. Support for the 233 
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importance of species identity for UES also comes from Youngsteadt et al. (2015), who demonstrated 234 

that species identity, rather than diversity, predicted the extent of refuse consumption by urban 235 

arthropods. The relevance of species identity for delivering a given service (Lavorel et al. 2015) can 236 

be explained by the keystone species concept, which centres on the fact that some species have a 237 

disproportionately large effect on their environment relative to their abundance (Paine 1995). 238 

However, services that depend on single species will have a low functional redundancy, as the loss of 239 

that particular species will cause further extinctions and the loss of other functions.  240 

 The role of non-native species in the delivery of ecosystem services may change in the future 241 

because of climate change (Riley et al. 2017). For instance, non-native species may be better adapted 242 

to future urban climates and thus more appropriate as street trees (Gillner et al. 2016). Nonetheless, 243 

some non-native species may be invasive, with the potential to spread beyond urban areas. Negative 244 

effects or ‘disservices’ (Lyytimäki & Sipilä 2009) of invasive trees, such as the suppression of native 245 

flora, might only become apparent decades after planting (Kowarik 1995). Case-by-case studies on 246 

the influence of non-native species on UES delivery are therefore needed (Kowarik 2011) to inform 247 

the ongoing debate (Sjörman et al 2016). 248 

 In our review, 94 of the publications that tested BES relationships considered both native and 249 

non-native species, but most of them did not tease apart the effects of two types of species on 250 

ecosystem services. From those that did, Swan et al. (2008) showed that leaf litter of Ailanthus 251 

altissima (Mill.) Swingle, an Asian tree species invasive in Europe and North America, decayed much 252 

faster than the leaf litter of native species. Szlavecz et al. (2006) stressed that non-native earthworms 253 

have the potential to alter soil nutrient dynamics, but the authors were unable to provide a 254 

comparison between native and non-native species because their community only contained invasive 255 

European earthworms. Leong et al. (2014) investigated plant-pollinator interactions along an urban-256 

rural gradient, finding that a higher diversity of non-native plants in urban areas decreased pollinator 257 

efficiency in the form of seed set. Overall, comparisons of UES delivery by native and non-native 258 

species are scarce. As urban areas are hotspots for non-native species occurrence (Kühn et al. 2004), 259 
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it is important for BES research to focus on both services and disservices of non-native species 260 

(Kowarik 2011). By doing so, evidence-based recommendations can be given for the design and 261 

management of urban green spaces. 262 

 As urban ecosystems are increasingly expected to deliver a range of services, another 263 

question that arises is how multifunctionality can be secured. The optimisation of biodiversity and 264 

ecosystem services has been considered for non-urban areas (e.g. Bugalho et al. 2016) but less is 265 

know for UES. Lundholm (2015) investigated a range of ecosystem services delivered by green roofs 266 

and showed that plant diversity enhanced multifunctionality. Furthermore, if single UES are 267 

dependent on single species, then maximising such UES may lead to reduced biodiversity. For 268 

example, modelling the increase of urban trees in an English city showed that short-rotation coppice 269 

comprising only two species (Eucalyptus gunnii Hook F. and Populus tremula L.) would outperform 270 

carbon sequestration by the current urban tree stock by a factor 12 (McHugh et al. 2015). However, 271 

the authors caution that while this approach would increase carbon sequestration, it would be 272 

unlikely to be acceptable from a biodiversity or aesthetic perspective (McHugh et al. 2015).  273 

 Finally, BES relationships need to be examined over long time periods. For instance, the 274 

positive effects of species richness on UES have been reported to increase over time on green roofs 275 

(Lundholm 2015). Likewise, the age of urban green spaces has been shown to be the most important 276 

factor when statistically explaining biodiversity in Swiss cities (Sattler et al. 2011).  277 

4.3 Which methods were used to analyse urban BES relationships? 278 

There is a lack of empirical research that uses statistical models (e.g. structural equation 279 

modelling) to test cause-effect relationships between biodiversity and UES. Similarly, there is a 280 

paucity of experimental studies with controlled variables, with only 37% of the 228 tested BES 281 

relationships were tested in this way. Manipulative experiments in urban ecosystems, in which 282 

biodiversity metrics could be modelled and tested, could generate knowledge addressing BES 283 

relationships, while improving our mechanistic understanding of community assembly rules, 284 

ecosystem functioning and functional resilience.  285 
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Biodiversity and cultural UES relationships may often be intangible and indirect, compared to 286 

those associated with provisioning and regulating services (Clark et al. 2014, Shanahan et al. 2016). 287 

An example of this is provided by Dallimer et al. (2012), who found no consistent relationship 288 

between psychological well-being and measured species richness, but a positive relationship 289 

between psychological well-being and perceived richness by greenspace visitors. This highlights the 290 

importance of understanding human perceptions of urban biodiversity, which is a research field 291 

where crucial knowledge gaps remain (Botzat et al. 2016). Carefully designed interdisciplinary studies 292 

that account for the wide range of both social and biophysical characteristics that may influence the 293 

delivery of cultural services is needed (Pett et al. 2016). By limiting the scope of our review to studies 294 

that tested urban BES relationships, we might have excluded papers that looked at the indirect 295 

effects of biodiversity that are much harder to quantify. Equally, our study was restricted to peer-296 

reviewed journal papers across all UES, not just cultural ones. This might mean that the data we have 297 

analysed are subject to bias because statistically significant relationships, negative or positive, are 298 

more likely to be published.  299 

5. Conclusions: ways forward in urban BES research 300 

While there is a growing body of evidence from controlled experiments in non-urban 301 

ecosystems demonstrating that biodiversity underpins ecosystem service delivery, comparatively 302 

little research on the topic has been conducted in urban areas. Our review has shown that where 303 

urban BES relationships have been tested, the studies are restricted principally to examination of a 304 

single pair of biodiversity and UES metrics that have been investigated just once. Our findings 305 

indicate that the majority of BES relationships are positive, but not every UES is supported by 306 

biodiversity and not all biodiversity metrics are related to UES delivery. Indeed, some urban BES 307 

relationships are negative. This serves to illustrate the complex mechanistic nature of BES 308 

relationships, which should not be oversimplified to the assumption that more biodiversity will result 309 

in greater UES delivery. Likewise, managing urban green spaces with the aim of improving UES 310 
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delivery will not automatically lead to increases in biodiversity, as often presumed by urban GI and 311 

NBS advocates.  312 

In order to optimise urban biodiversity and ecosystem services, we call for more quantitative 313 

empirical urban BES research to increase our mechanistic understanding of these relationships. This 314 

should include: (i) assessment of the importance of different biodiversity metrics for UES delivery; (ii) 315 

integration of trait-based approaches in social and ecological BES research, paying particular 316 

attention to traits that are known to be both sensitive to urbanisation processes and important in 317 

UES (‘response-effect traits’ framework; Lavorel & Garnier 2002; Lavorel et al. 2013); (iii) application 318 

of standardised trait measurement methodologies (Perez-Harguindeguy et al. 2013; Moretti et al. 319 

2017) to make different (e.g. urban versus non-urban) environmental contexts comparable; (iv) 320 

investigation of how urbanisation can impact upon functional redundancy, response diversity 321 

(Elmqvist et al. 2003) and UES delivery in the longer-term; and, (v) broadening the scope of urban 322 

BES research to encompass fauna, multi-trophic interactions and a wider spectrum of functional 323 

traits.  324 
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