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ABSTRACT  

The combination of stable isotope probing (SIP), NanoSIMS imaging and microbe 11 

identification via fluorescence in situ hybridization (FISH) is often used to link identity to 12 

function at the cellular level in microbial communities. Many opportunities remain for 13 

nanoSIP to identify metabolic interactions and nutrient fluxes within syntrophic associations 14 

and obligate symbioses where exchanges can be extremely rapid. However, additional data, 15 

such as genomic potential, gene expression or other imaging modalities are often critical to 16 

deciphering the mechanisms underlying specific interactions, and researchers must keep 17 

sample preparation artefacts in mind. Here we focus on recent applications of nanoSIP, 18 

particularly where used to track exchanges of isotopically labelled molecules between 19 

organisms. We highlight metabolic interactions within syntrophic consortia, carbon/nitrogen 20 

fluxes between phototrophs and their heterotrophic partners, and symbiont-host nutrient 21 

sharing.  22 

Introduction 23 

Understanding the functional roles and interactions of individual microorganisms within 24 

complex communities is a major goal of environmental microbiology.  Significant strides 25 

have been made to identify the in situ function of individual microbes [1-8]. Yet interactions 26 

among cells in environmental communities remain difficult to disentangle. Many factors 27 

obscure microbe-microbe interactions, including functional redundancy, transient 28 

metabolites, proteins with unknown function, and disconnects between genomic potential 29 

and actual function. Researchers are increasingly overcoming these challenges with multi-30 

prong approaches—"community system biology"—where next generation sequencing 31 

methods ('-omics') are used in combination with direct process measurements (e.g. stable 32 

isotope probing 'SIP') to map functions, energy flows, and biotic relationships in previously 33 

intractable complex communities.  34 

Here, we review recent studies of microbial interactions where high-resolution imaging 35 

secondary ion mass spectrometry (SIMS) was combined with stable isotope probing 36 

(‘nanoSIP’ [9]) to allow tracing of stable isotope assimilation into specific microbial cells. 37 

SIMS is a type of imaging mass spectrometry where a primary ion beam is used to generate 38 

secondary ions from the surface of a solid sample. The Cameca NanoSIMS enables 39 

'nanoSIP' because of its particularly high spatial resolution (50 nm), high sensitivity, and high 40 

mass specificity [9,10]. NanoSIP usually requires targeted microbes to be phylogenetically 41 

identified, therefore we also emphasize the in situ hybridization methods (e.g., FISH, CARD-42 

FISH, SIMS-ISH, EL-FISH, HISH) which help link identity to isotopic enrichment [11-14]. 43 

Many studies have shown these in situ hybridization methods are crucial to characterizing 44 
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microbial activity in the context of spatial relationships [6,15] that range from microbe-host 45 

and microbe-microbe interactions, to cell-cell nutrient or metabolite exchanges, and 46 

interactions between cells and their organic/inorganic matrix. 47 

NanoSIP in microbial ecology  48 

In the past decade, microbial ecology has benefitted greatly from the use of stable isotope 49 

tracing (SIP) techniques (DNA-SIP, RNA-SIP, Protein-SIP, PLFA-SIP, metabolite-SIP) to link 50 

identity and function within interacting microbial populations, via detection of specifically 51 

labeled cellular components [16-19]. In these approaches, isotope enrichment of specific 52 

DNA sequences, proteins or lipids extracted from bulk samples is measured, yet it is not 53 

possible to resolve the contributions of individual cells or cell compartments to a particular 54 

process [20]. Many critical questions in microbe-microbe and host-microbe interactions 55 

require micro-scale spatial information that is lost during bulk sample processing. This is 56 

where the NanoSIP approach plays an important role, as the high resolution of NanoSIMS 57 

elemental and isotopic images can document cellular metabolism and transfers between 58 

individual, closely associated cells. For many researchers, direct measurements of how 59 

microbial partners function, and cell-specific rates of metabolic activities are necessary to 60 

link symbiont activity, host ecological processes and ecosystem-level biogeochemistry. As 61 

access to NanoSIMS instruments becomes more and more available, particularly via user 62 

facilities in the USA and Europe, researchers will increasingly be able to balance the 63 

availability, cost, and appropriateness of the NanoSIP approach to their individual scientific 64 

questions. 65 

The nanoSIP combination has been broadly used in cell biology [10,21-27], microbiology 66 

[2,28-30] and phytoecology [31-34] (Fig. 1). NanoSIP is particularly valuable for microbial 67 

ecology because it provides spatially resolved information about uptake and transfer of 68 

isotopically-labelled compounds in environmental samples where the component taxa 69 

cannot be cultured individually. Moreover, by imaging the intracellular localization of stable 70 

isotope-labelled molecules, nanoSIP can provide direct evidence of cellular metabolism, 71 

distribution of labelled molecules and even quantitative tracking of molecules as they are 72 

assimilated into cell biomass or exchanged with other cells [20,21,35]. The most commonly 73 

used metabolic tracers in labelling experiments are 13C and 15N [9,35]; additional studies 74 

have used 34S and 2H [6,36].  75 

 76 

Phylogenetic labelling for nanoSIP 77 
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In nanoSIP studies, cells or subcellular structures (ribosomes or proteins) of target 78 

organisms are labelled with oligonucleotide probes or antibodies to provide phylogenetic 79 

identification. This procedure takes place immediately after a SIP experiment and typically 80 

includes chemical fixation and hybridization steps prior to NanoSIMS analysis [9,35]. Label 81 

detection can be done by either (a) sequential imaging by fluorescence microscopy followed 82 

by NanoSIMS (FISH-NanoSIMS) e.g. [7,8] or (b) direct label imaging during NanoSIMS 83 

analysis (EL-FISH-NanoSIMS, HISH-SIMS) [5,11,12]. In FISH-NanoSIMS applications, the 84 

cells are commonly labelled with fluorescent dyes using conventional FISH or CARD-FISH 85 

protocols. When target cells are hindered by particles or embedded in an organic matrix or 86 

exoploymeric substances (EPS), marking with a laser microdissection microscope or using a 87 

coordinate system can ensure that the same fields of interest are imaged by fluorescence 88 

microscopy and NanoSIMS. Alternatively, an orthogonal type of microscopy (e.g. scanning 89 

electron microscopy (SEM), atomic force microscopy (AFM), or helium ion microscopy) can 90 

be used to check the morphological appearance of fluorescently labelled target cells prior to 91 

NanoSIMS analysis. For direct label imaging, a rare element such as a halogen (attached to 92 

oligonucleotide probes or tyramides) or metal (gold-labelled oligonucleotide probes or 93 

antibodies) is introduced into the target cells, these elements are then concurrently mapped 94 

during the NanoSIMS analysis (Fig. 2) [5,11-13].  95 

 96 

Using nanoSIP to measure nutrient transfers and microbial interactions 97 

Microbe-host interactions 98 

The nanoSIP approach is increasingly used to provide insight on interactions between 99 

microorganisms or fungi and their animal or plant hosts. Work in this area includes some of 100 

the earliest nanoSIP studies, including a seminal study on shipworms, where N-fixing 101 

symbionts were readily identified based on their 15N2 assimilation [1]. More recently, 102 

symbionts in reef building corals have been examined [37-39], in studies focused on 103 

demonstrating and characterizing predicted functions, such as symbiont C fixation. NanoSIP 104 

was also recently used to investigate C fixation by microbial symbionts in gutless Olavius 105 

algarvensis worms living in seagrass sediments. It confirmed predictions from prior 106 

metaproteomic studies, demonstrating the worm symbionts could fix CO derived from 107 

seagrass rhizome decomposition [40].  108 

As systems become more complex, the need for additional metadata and experimental 109 

treatments increases. For example, in a study where lower termites were fed 13C-cellulose, 110 

NanoSIMS images revealed 13C incorporation by gut protists and their symbiotic bacteria 111 
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[41], but without additional data, the nature of this symbiosis could not be determined. In a 112 

more recent study, Tai and coworkers combined genomics and nanoSIP to show that 113 

Bacteroidales ectosymbionts fix nitrogen and supply it to their cellulose-degrading protist 114 

host within the hindgut of a wood-eating cockroach [42]. Berry and coworkers [6] took the 115 

investigation of gut microbes a step further, using isotopically labelled protein incubations 116 

(threonine), FISH, NanoSIMS imaging, community sequencing, and sterile mouse 117 

experiments to identify specific microbes that forage for host proteins in the mouse gut. This 118 

study was the first to couple single cell, isotope, and meta-'omics approaches in vivo in a 119 

mammalian system, and is an exemplar for future studies of interactions between 120 

uncultivated taxa in human and environmental microbiome research. 121 

In plants, there are also many opportunities to study plant-microbe interactions using 122 

NanoSIMS. For example, root-associated mycorrhizal fungi are particularly important in root 123 

nutrient acquisition and exchange [31,33,34,43], and in Nuccio et al. [31], NanoSIMS 124 

imaging was used to illustrate mycorrhizal fungal transport of nitrogen derived from decaying 125 

organic matter, and transfer to the host plant.  126 

Phototroph-Heterotroph Interactions  127 

Many recent NanoSIMS studies of microbial interactions have focused on partnerships 128 

between phototrophs and heterotrophs. This emphasis reflects a growing recognition of the 129 

varied roles heterotrophs play in supporting phototrophic productivity (e.g. in the rhizosphere 130 

[31,43], phycosphere [30,44], and possibly even the endosphere [45]).  But the nature of 131 

phototroph-heterotroph relationships can be complex (e.g. evolving from beneficial to 132 

opportunistic [46]) and recent work shows primary producers can also have complicated 133 

ecological roles, for example acting as organic consumers [47]. Combinations of nanoSIP 134 

and whole genome or ‘omics approaches become critical as researchers attempt to unravel 135 

these relationships.  136 

Many nanoSIP studies have explored interactions involving cyanobacteria [15,48-54]. In 137 

mats and biofilms, cyanobacteria produce an extensive organic extracellular matrix, 138 

providing the surrounding heterotrophic community with a rich source of nutrients. Using a 139 

combination of stable isotope tracing and proteomics, Stuart et al. demonstrated that mat 140 

phototrophs may assimilate their own EPS under a range of metabolic conditions [47,55]. 141 

Paired proteomics analyses point to multiple enzymes (involved in degradation of amino 142 

acids, proteins, nucleotides, and carbohydrates) that indicate the cyanobacteria use their 143 

own EPS as an energy/C source. In this study, nanoSIP results indicate that cyanobacteria 144 

can effectively compete with heterotrophic community members for organic matter in both 145 
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light and dark conditions, and that both nutrient requirements and community interactions 146 

contribute to cycling of extracellular organic matter.  147 

Other work in cyanobacteria mats has combined nanoSIP with metatranscriptomics, specific 148 

inhibitors, and CARD-FISH to illustrate carbon uptake patterns associated with different diel 149 

cycles and acetate consumers, and metabolite flows between cyanobacteria, Chloroflexi and 150 

sulfate reducers [48-50].  In these studies, while nanoSIP-FISH pointed to likely players and 151 

quantitatively important nutrient exchanges, the corresponding metatranscriptome and 152 

isolate genome data was critical to reconstruct the catabolic pathways involved (fermentation 153 

of glycogen by the dominant cyanobacteria and conversion of glycogen to 154 

polyhydroxyalkonates by Chloroflexi). Similarly, the combination of nanoSIP and genome 155 

sequencing was critical to understand the symbiotic relationship between an N-fixing 156 

unicellular cyanobacterium (whose genome has lost many common metabolic functions) and 157 

photosynthetic picoeukaryotic cells from the Haptophyta division [15]. In combination with a 158 

particularly gentle sample preparation approach (to preserve loosely partnered cells), 159 

isotope tracing with 15N2 and H13CO3 showed these cyanobacteria provide fixed N to their 160 

eukaryotic partners in exchange for fixed C. More recent studies of this symbiosis have 161 

revealed the additional importance of Fe availability to the N-fixing partner [53]. 162 

Single cell isotope tracing becomes slightly more complicated, but even more valuable, in 163 

studies of multitrophic interactions. For example, a substantial amount of algal cell organic 164 

matter can be transferred to surrounding bacteria following viral lysis [30].  Sheik et al used a 165 

combination of nanoSIP with amplicon sequencing to track bacterial community succession 166 

following lysis of 13C- and 15N-enriched algal cells, which provided both ecological context 167 

and helped guide CARD-FISH targeting. Other studies have used multiple isotope tracers 168 

simultaneously (e.g.  13C-inorganic carbon and 15N2 gas), to track assimilation within a food 169 

web. The colony-forming cyanobacterium Aphanizomenon, common in the Baltic Sea, 170 

actively fixes N2, but then releases nearly half as NH4
+, which is taken up by surrounding 171 

prokaryotic and eukaryotic plankton, diatoms and copepods, forming the basis of the Baltic 172 

Sea food web [56]. 173 

Anaerobic Oxidation of Methane 174 

Over the past 15 years, FISH-SIMS and more recently FISH-NanoSIMS have been used to 175 

explore the physiology of anaerobic oxidation of methane (AOM) consortia in marine 176 

sediments, via cultivation-independent incubations with 13C-labelled methane and 15N-177 

ammonia, 15N-nitrate and 15N2 [4,57-61]. Syntrophic associations between methanotrophic 178 

archaea (anaerobic methanotrophs, ANME) and sulfate reducing bacteria (SRB), drive AOM 179 

in marine methane seep sediments. This system is where combined FISH and SIMS was 180 
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first applied [57], and continues to be an archetype for the approach [62]. Still, it is important 181 

to recognize that FISH-NanoSIMS alone could not resolve the nature of the syntrophic 182 

interaction between ANME and SRB, but was most powerful in combination with other 183 

microscopy techniques, physiology experiments and ‘omics investigations.  184 

The nature of the ANME-SRB syntrophy was initially elusive, with experimental evidence 185 

showing that hydrogen, methanol, formate or acetate did not served as electron donors for 186 

sulfate reduction [63]. FISH-SIMS helped reveal that ANME cells could assimilate methane-187 

derived carbon, showed higher N assimilation by ANME vs. SRB cells when 15N-ammonia 188 

was provided, and proved that ANME cells were able to fix N2 and transfer it to SRB 189 

[4,58,59]. A syntrophic model for AOM, through the transfer of partly-reduced sulfur 190 

compounds, was proposed based on FISH-immunolabelling-NanoSIMS results [64]. 191 

NanoSIMS analyses showed that ANME cells, identified by mapping of Au deposited by 192 

specific antibody labelling, accumulated high amounts of sulfur, correlated with the 193 

assimilation of methane-derived carbon. Identified as polysulfides by Raman 194 

microspectroscopy, these sulfur compounds are thought to act as diffusible electron shuttles 195 

between ANME and SRB cells [64].  196 

Recently, additional NanoSIMS analyses of AOM consortia showed that biosynthetic 197 

activities of single ANME and SRB cells are unrelated to the proximity of syntrophic partners 198 

[7]. Moreover, ANME cells maintained similar biosynthetic activities when sulfate was 199 

replaced with artificial electron acceptors [62], apparently due to direct interspecies electron 200 

transfer (DIET) from ANME to SRB cells. Firm evidence in support of DIET was provided via 201 

the discovery of multi-haem cytochromes genes in the genomes of ANME, the detection of 202 

cytochromes in the extracellular space of AOM consortia, and descriptions of nanowire-like 203 

structures in thermophilic AOM cultures [7,65]. 204 

Challenges and future directions  205 

While nanoSIP is now widely recognized as a powerful tool in microbial ecology, users must 206 

be aware of its limitations, some of which are inherent to the complexity of biological 207 

systems. Technical challenges, such as alterations of the elemental and isotopic 208 

composition of cells during hybridization protocols, are a concern for those interested in 209 

measuring truly quantitative metabolic fluxes. On the other hand, ‘biological’ or ‘metabolic’ 210 

challenges (e.g. complex microbial communities, intricate or rapid nutrient exchanges) may 211 

be overcome by multi-prong approaches that include ‘omics, complementary microscopy 212 

techniques and/or physiology experiments.  213 
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Cross Feeding 214 

Cross feeding occurs with the transfer of labelled metabolites from primary processors of a 215 

substrate to a second group of microorganisms, and can make interpretation of nanoSIP 216 

results ambiguous. The primary ways to control for this effect are 1) to use the shortest 217 

possible incubations, 2) quantify the relative level of incorporation of the label, and 3) use 218 

genomic data to constrain metabolic potential. Remarkably, in many environmental systems, 219 

using short incubations is sufficient to avoid cross feeding. For example, nitrogen fixers tend 220 

to become enriched well before other non-fixers in 15N2 experiments [e.g. [66,67]. However, 221 

we cannot take this outcome for granted for symbionts. At the extreme, terminally 222 

differentiated cells within a single organism may be the site of initial isotope uptake but are 223 

not the site of isotope assimilation into biomass, such as in the nitrogen-fixing heterocysts of 224 

Anabeana [67] or field populations of Aphanizomenon sp. [66]. NanoSIP may also fail to 225 

identify slow-growing organisms as primary substrate users. In structurally less-integrated 226 

microbial systems, microorganisms using secondary metabolites released by fast-growing 227 

primary users may assimilate an isotope label at the same time as slow-growing primary 228 

users [e.g. [68]. Ultimately, investigators must address the potential for cross-feeding within 229 

each system individually, and bring to bear accessible metadata to interpret nanoSIP results. 230 

Artefacts of Phylogenetic labelling 231 

In many nanoSIP approaches, protocols used for fixation and phylogenetic labelling have 232 

numerous cell treatment steps. Recently, concerns have been raised that these treatments 233 

may alter the cellular isotopic composition following SIP experiments by loss of low 234 

molecular-mass compounds (permeabilization), or addition of nonlabeled elements (during 235 

chemical fixation or tyramide deposition). NanoSIMS studies with 13C- and 15N-labelled type 236 

strains showed a stepwise dilution of both carbon and nitrogen isotopic composition after 237 

chemical fixation, FISH and CARD-FISH protocols [14,54]. Additional experiments suggest 238 

that alteration of the isotopic composition may depend not only on the isotope in question 239 

and fixation method, but also the taxa in question (J. Pett-Ridge and S. Behrens unpublished 240 

results). For example, in gram-negative Vibrio cholerae, CARD-FISH reduced cell 13C 241 

enrichment by 60-80%, and Δ15N values between 30-60%, relative to chemical fixation 242 

alone. For gram-positive Bacillus subtilis, CARD-FISH treatment resulted in 55-80% lower 243 
13C enrichment, and 70-75% lower Δ15N values (Fig. 3). The high variance in dilution effect 244 

attributable to fixation and/or FISH treatments is a particularly important consideration for 245 

researchers interested in the absolute enrichment of a particular cell population. 246 

Despite the caveats associated with isotopic dilution, FISH-based cell identification is still 247 

widely used to target individual populations within samples of unknown microbial 248 
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composition, and preserves cell integrity for subsequent imaging analyses. This is especially 249 

true for phylogenetically cohesive populations where a confined rRNA oligonucleotide probe 250 

may be used. In samples where good community composition data exists, it may even be 251 

possible to use multiple reporter elements or fluorescent dyes (e.g. Multiplex FISH or CLASI-252 

FISH) for simultaneous identification of multiple phylotypes [69,70] followed by NanoSIMS 253 

analysis.  254 

Sample preparation  255 

Sample preparation for nanoSIP experiments should attempt to conserve the ultrastructural 256 

organization of cells and, if possible, their elemental and isotopic composition and spatial 257 

distribution. NanoSIMS analyses can resolve some subcellular structures (e.g. cell wall, 258 

nucleoid, ribosomes) and these ultrastructural features may be imaged in advance with high 259 

spatial resolution by electron microscopy [32]. However, conventional sample preparation 260 

methods for TEM or SEM aiming to maintain high structural integrity of samples may lead to 261 

isotope dilution or physical rearrangement of molecules. High pressure freezing followed by 262 

freeze-substitution and sectioning is an excellent alternative to conventional protocols even 263 

for samples with a high-water content and has been used to map the distribution of ions and 264 

light elements in plant and mammalian tissue [71-74]. Similar protocols need to be 265 

developed for correlative analyses in microbiology, ideally in combination with phylogenetic 266 

labelling.  267 

Secondary metabolites 268 

Identification of the secondary metabolites that are transferred among microorganisms in 269 

complex systems adds additional challenges to microbe interaction studies. Since nanoSIP 270 

can only track isotopes or elements, the biochemical pathways, excreted metabolites and 271 

molecular forms by which a tracer is assimilated have to be inferred by other methods. One 272 

approach is to predict and test for secondary metabolites based on genetic potential and 273 

bulk analytical methods, and to conduct follow-up nanoSIP experiments by adding the target 274 

metabolite [49]. This combination offers direct fingerprinting of catabolic pathways, thus 275 

resolving the flow of primary intermediates within microbial communities. Another approach 276 

is correlative application of complementary single cell imaging techniques, such as Raman 277 

microspectroscopy, ToF-SIMS or scanning transmission X-ray microscopy with NanoSIMS 278 

imaging [64,75]. In experiments with known starting substrates, biochemical pathways and 279 

potential intermediates can also be inferred from orthogonal methods such as genomics, 280 

transcriptomics and proteomics.  281 

Conclusions 282 
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The study of microbial interactions with nanoSIP is rapidly advancing and expanding, and we 283 

expect this trend to continue. The level of sophistication in these studies has increased over 284 

the last decade as questions move from “which microbe uses which substrate?” to “how 285 

does this organism interact with another and its host?”. While nanoSIP alone in an 286 

unperturbed system can identify potentially interesting interactions, data from orthogonal 287 

methods (geochemistry to ‘omics) and/or manipulation experiments are critical to providing 288 

deep understanding. The key role of nanoSIP is demonstrating that an OTU is involved in an 289 

assimilatory function or process at the single cell or subcellular scale. Because microbial 290 

interactions are critical to human health, food security and global climate, we expect to see 291 

even more studies using nanoSIP to investigate a diverse range of microbe interactions. 292 
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 310 

Figure 1. Illustration of microbial communities and associations where NanoSIMS in 311 

combination with stable isotope probing (nanoSIP) has been applied to resolve assimilation 312 

and exchange of specific metabolic substrates. These include label uptake and transfer from 313 

primary to secondary processors in planktonic communities; assimilation of carbon and 314 

nitrogen by syntrophic consortia involved in anaerobic oxidation of methane; CO2 and N2 315 

fixation by environmental populations of cyanobacteria and the subsequent transfer of 316 

organic carbon and ammonia to attached microbial communities; and trophic networks in 317 

microbial communities living in the gut of higher organisms, here exemplified by cellulose-318 

degrading protozoa and their epibionts in the gut of termites.  319 

 320 

 321 

 322 

Figure 2. Example of direct label imaging by NanoSIMS for phylogenetic identification of 323 

target cells. In this example, key microbes responsible for autotrophic processes at deep sea 324 

vents were targeted. The NanoSIMS data is depicted as a composite RGB image showing 325 
13C assimilation from 13C-labelled inorganic carbon (green), phylogenetic identification of the 326 

dominant autotrophic microbial group by 19F introduced in the cells via CARD-FISH (red) and 327 
32S as a biomass indicator (blue). Image, courtesy of Stefan Sievert. 328 
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 329 

Figure 3. The effects of fixation technique (paraformaldehyde (PFA), ethanol) and CARD-330 

FISH on the isotopic composition (13C and 15N) of Vibrio cholerae (92A 1552 El Tor, Inaba, 331 

wild type, Rifs) and Bacillus subtilis (JH642) cells cultivated on 99.9 atom% 13C/15N mixed 332 

amino acids (Cambridge Isotope Laboratories) (J. Pett-Ridge and S. Behrens, unpublished 333 

data). The number of single cells analysed by NanoSIMS for each treatment is indicated on 334 

the x axis.  335 

336 
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