
PH
D

 D
IS

SE
RT

AT
IO

N
 1

|2
02

4
H

el
m

ho
ltz

 C
en

tr
e 

fo
r E

nv
iro

nm
en

ta
l R

es
ea

rc
h 

– 
U

FZ
D

ep
ar

tm
en

t o
f C

om
pu

ta
tio

na
l B

io
lo

gy
 a

nd
 C

he
m

is
tr

y

Florian Schunck 

Effects of Esfenvalerate on Daphnia  
magna under Multiple Levels of Biological 
Complexity – The Influence of Time,  
Competition and Environmental Stressors

Centre for Environmental Research

ISSN 2941-3885 (Online)



Effects of Esfenvalerate on Daphnia
magna under Multiple Levels of Biological

Complexity

The Influence of Time, Competition and
Environmental Stressors

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University zur Erlangung
des akademischen Grades eines Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

M.Sc.

Florian Schunck
aus

Göttingen

Berichter:

Prof. Dr. Matthias Liess
Prof. Dr. Andreas Schäffer

Tag der mündlichen Prüfung: 06. November 2023





Acknowledgements

Meeting the challenges of this project would not have been possible
without the support of countless people who have helped and sup-
ported me throughout this work. First and foremost, I would like to
thank Prof. Dr. Matthias Liess from the Helmholtz Centre for Envi-
ronmental Research—UFZ for his guidance and support throughout
this project. I am especially grateful for the scientific arguments we
had and for his persistence in helping me to focus on the important
aspects of my research. I would also like to thank Dr. Eberhard
Küster, whose thoughtful comments and literature recommendations
have helped me improve my work and anticipate future challenges. In
addition, I would like to thank Prof. Dr. Andreas Schäffer of RWTH
Aachen University for his continued support and kind words that mo-
tivated me throughout my project.

My sincere thanks also go to my colleagues in the Department of Sys-
tems Ecotoxicology, without whom this project would not have been
possible. In particular, I would like to thank Oliver Kaske and Franz
Dussl for their insights and support in the laboratory and for reward-
ing conversations. Ingrid Ränker deserves my thanks for helping me
to take my first steps with the small organisms that have been central
to this work. I would also like to thank Klaus Seyfarth, whose expe-
rience with laboratory equipment was invaluable when things did not
work as expected. Finally, I would like to thank the many undergrad-
uate students who helped with this research. In particular, I would
like to thank Lisa Hertges for her inspiring dedication to the minute

i



Acknowledgements

details of the experiments and for her support in the lab throughout
the pandemic.

This project would not have been the same without my friends at
the UFZ in Leipzig, who shared moments of joy and frustration with
me, especially Friedrich, Tim, Saskia, Paul, Polina and Anh. I look
forward to more lunch breaks. My deepest gratitude goes to my family
and friends for always believing in me and encouraging me to go the
last mile. Finally, my heartfelt thanks go to Vera for her thoughtful
advice, enduring patience, and for always being by my side.

ii



Abstract

Worldwide, ecosystems are increasingly stressed due to rapidly chang-
ing environmental conditions. Simultaneously, the nutritional needs
of a growing world population require a highly productive agriculture,
which will still rely on fertilizers and pesticides in the forseeable fu-
ture. Pesticides, however, are also one of the largest contributors to
the global loss of invertebrate diversity, biomass and the associated,
agriculturally relevant, ecosystem functions. We are, metaphorically
speaking, cutting the branch on which we all sit. In order to maintain
this delicate balance, it is essential to protect the ecosystems close
to arable lands. Invertebrates in surface waters are very susceptible
to pesticide runoff from the field. This leads to unpredictable effects
in complex aquatic communities—effects that are often much larger
than thresholds determined in single species laboratory tests. Despite
the increased interest in the conservation of stressed ecosystems, the
mechanistic understanding of pesticide effects under higher levels of
biological complexity is still limited.

This work is therefore set out to understand the processes that regulate
the effects of low concentrations of pesticides under environmental
complexity. To this end a sequence of investigations was conducted,
increasing the complexity step by step from the individual level, to
the population level until the species–species competition level. To
allow for comparisons between the investigations, the standard model
organism Daphnia magna (water flea) was exposed in all experiments
to pulses of the insecticide esfenvalerate.
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Abstract

In Chapter 3, the effects of interacting stressors on individuals of D.
magna are described. Esfenvalerate was combined with ultraviolet-
B (UV-B) radiation in varying order of exposure and with differ-
ent pauses between exposures in order to identify the influence of
time on stressor interactions. It was shown that increased temporal
distance between an esfenvalerate pulse and an environmental stress
pulse, shifted the interaction between the stressors from antagonism to
synergism on the individual level. It was also shown that low stressor
doses elicited antagonistic responses while high doses led to synergistic
responses.

The next level of complexity investigated was that of the population
(Chapter 4). D. magna populations were non-invasively monitored
during a complete development cycle. When populations at carrying
capacity were exposed to 1⁄3 of the half maximal effective concentration
(EC50), 2 out of 4 replicates collapsed due to direct mortality effects
of esfenvalerate. In contrast, concentrations at 1⁄30 and 1⁄10 of the EC50

significantly increased the population biomass for up to 7 weeks after
the exposure. It was hypothesized that population increases are due
to a hormetic response, where reduced intraspecific competition is the
trade-off that enabled this response.

In the final investigation (Chapter 5), populations of D. magna and
Culex pipiens (mosquito larvae), competing for a limited amount of
food, were exposed to repeated pulses of esfenvalerate at extremely
low concentrations (1/1000–1/10 of the EC50). This was done to test
if the presence of a competitor changes the interspecific competition
between co-existing species with a shared ecological niche. It was
revealed that species–species correlations significantly increased after
the exposure. This was associated with a decrease in interspecific com-
petition. In contrast to the results shown in the previous investigation,
low concentrations of esfenvalerate did not provoke a stimulatory re-
sponse in the density and biomass of either population.
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The level of ecological complexity had a substantial influence on the
detected effects of esfenvalerate in this work. Ecological organiza-
tion, stressor timing and pesticide dose had strong influences on the
stress response. Those non-linearities can help to explain why it is
so difficult to predict effects of pesticides in the field. The approach
taken in this work suggests that environmental risk assessment (ERA)
should consider intraspecific and interspecific competition when as-
sessing the effects of very low doses of pesticides on the biodiversity of
ecologically similar species. By combining the results from Chapter 4
and Chapter 5, it was hypothesized that the stimulatory hormesis re-
sponse, which is an increasingly discussed phenomenon, only emerges,
when associated trade-offs are not penalized by environmental condi-
tions.
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Zusammenfassung

Aufgrund der sich rasch verändernden Umweltbedingungen stehen Öko-
systeme weltweit zunehmend unter Druck. Gleichzeitig erfordert der
steigende Nahrungsmittelbedarf einer wachsenden Weltbevölkerung
eine hochproduktive Landwirtschaft, welche auch zukünftig auf Dün-
gemittel und Pestizide angewiesen sein wird. Allerdings werden Pesti-
zide auch mit dem weltweiten Rückgang der Biodiversität und Bio-
masse von wirbellosen Tieren in Verbindung gebracht. Die damit ver-
bundene Reduktion von landwirtschaftlich relevanten Ökosystemfunk-
tionen ist sehr besorgniserregend. Um diese Funktionen zu erhalten,
müssen Ökosysteme in der Nähe von Ackerflächen besser geschützt
werden. Wirbellose Tiere in Oberflächengewässern sind sehr anfällig
gegenüber Pestiziden, die vor allem bei Starkregen von Feldern gespült
werden. Dies führt zu unvorhersehbaren Auswirkungen in komplexen,
aquatischen Gemeinschaften, welche oft um ein Vielfaches größer sind
als Effekte, die in Labortests für einzelne Arten ermittelt wurden.
Trotz des zunehmenden Interesses am Erhalt von Ökosystemen ist das
mechanistische Verständnis der Wirkungen von Pestiziden bei biolo-
gischen Systemen höherer Komplexität noch immer begrenzt.

Ziel dieser Arbeit ist es daher, jene Prozesse zu verstehen, die die Aus-
wirkungen niedriger Pestizidkonzentrationen unter komplexen Um-
weltbedingungen regulieren. Zu diesem Zweck wurde eine Reihe von
Untersuchungen durchgeführt, bei denen die Komplexität schrittwei-
se von der individuellen Ebene über die Populationsebene bis hin zur
Ebene der kompetitiven Gemeinschaft erhöht wurde. Um Vergleiche
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Zusammenfassung

zwischen den Untersuchungen zu ermöglichen, wurde in allen Experi-
menten der Standardmodellorganismus Daphnia magna (Wasserfloh)
verwendet und die Auswirkungen des Insektizids Esfenvalerat unter-
sucht.

In Kapitel 3 wurden die Auswirkungen von interagierenden Stressoren
auf Individuen der Art D. magna untersucht. Esfenvalerat wurde mit
ultraviolett-B (UV-B) Strahlung in unterschiedlicher Reihenfolge und
mit verschieden langen Pausen zwischen den Expositionen kombiniert,
um den Einfluss der Zeit auf die Wechselwirkungen zwischen Stresso-
ren zu ermitteln. Es zeigte sich, dass ein größerer zeitlicher Abstand
zwischen den Expositionen die Interaktion zwischen UV-B Strahlung
und Esfenvalerat auf individueller Ebene vom Antagonismus zum Syn-
ergismus verschob. Außerdem wurde beobachtet, dass niedrige Dosen
von Stressoren antagonistische Reaktionen auslösten, während hohe
Dosen zu synergistischen Reaktionen führten.

Die nächste Ebene der untersuchten Komplexität war die der Popula-
tion (Kapitel 4). D. magna Populationen wurden nicht-invasiv über
einen kompletten Entwicklungszyklus beobachtet. Wenn Populatio-
nen nach exponentiellem Wachstum an der Grenze ihrer Tragfähigkeit
mit 1⁄3 des EC50 exponiert wurden, brachen 2 von 4 Wiederholungen
aufgrund direkter Mortalitätseffekte von Esfenvalerat zusammen. Im
Gegensatz dazu führten Konzentrationen von 1⁄30 und 1⁄10 des EC50

zu einem signifikanten Anstieg der Populationsbiomasse, der bis zu
7 Wochen nach der Exposition andauerte. Es wurde angenommen,
dass die Zunahme der Populationen auf eine Hormesis-Reaktion zu-
rückzuführen ist, wobei die reduzierte intraspezifische Konkurrenz der
energetische Trade-off war, der diese Reaktion ermöglichte.

In der abschließenden Untersuchung (Kapitel 5) wurden konkurrieren-
de Populationen von D. magna und Culex pipiens (Stechmückenlar-
ven) wiederholten Esfenvaleratpulsen in extrem niedrigen Konzentra-
tionen (1/1000–1/10 des EC50) ausgesetzt. Damit wurde getestet, ob eine
Pestizidexposition den interspezifischen Wettbewerb zwischen koexi-
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stierenden Arten mit einer gemeinsamen ökologischen Nische verän-
dert. Es zeigte sich, dass die Korrelationen zwischen den Arten nach
der Exposition mit extrem niedrigen Pestizidkonzentrationen deut-
lich zunahmen. Dies konnte mit einer Abnahme der interspezifischen
Konkurrenz in Verbindung gebracht werden. Im Gegensatz zu den Er-
gebnissen der vorangegangenen Untersuchung hatten niedrige Esfen-
valeratkonzentration keine stimulierende Wirkung auf die Dichte und
Biomasse der beiden Populationen.

In dieser Arbeit hatte der Grad der ökologischen Komplexität einen
wesentlichen Einfluss auf die festgestellten Auswirkungen von Esfen-
valerat. Die ökologische Organisation, der Zeitpunkt der Stressexposi-
tion und die Pestiziddosis hatten starken Einfluss auf die Stressreak-
tion. Diese Erkenntnisse können einen Beitrag leisten, die Auswirkun-
gen von niedrigen Pestizidkonzentrationen im Feld zu erklären. Der
in dieser Arbeit verfolgte Ansatz legt nahe, dass die Bewertung von
Auswirkungen sehr niedriger Pestiziddosen auf die biologische Viel-
falt ökologisch ähnlicher Arten sowohl die interspezifische als auch
die intraspezifische Konkurrenz berücksichtigen sollte. Durch die Zu-
sammenführung der Ergebnisse aus Kapitel 4 und Kapitel 5 wurde
die Hypothese aufgestellt, dass zunehmend diskutierte stimulierende
Hormesis-Reaktionen nur dann auftreten können, wenn damit verbun-
dene Trade-offs nicht durch entsprechende Umweltbedingungen kom-
pensiert werden.
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Chapter 1

Introduction

Species are going extinct at rates 100–1000 times larger than prehis-
toric background extinction rates (Pimm et al., 2014). As if studies like
this were not disconcerting enough, a growing number of studies report
the decline of abundance and biomass of insects (Hallmann et al., 2017;
Rundlöf et al., 2015; Wagner, 2020; Stuligross and Williams, 2021), re-
flecting anecdotal reports of fewer smashed insects on windshields of
cars or lower number of moths buzzing around street lamps. All this
while novel substances are emitted into the environment at increasing
rates, overwhelming the capacity of ecosystems to deal with constantly
renewing challenges (UNEP, 2019; Persson et al., 2022).

The loss of biodiversity and ecosystem quality leads to impoverished
ecosystem functions. This harms not only wildlife but undermines the
foundations that human existence is built upon. Functioning ecosys-
tems produce biomass, decompose organic matter, cycle and retain
nutrients (Hooper et al., 2012; Cardinale et al., 2012) and provide ser-
vices like pollination (Vanbergen and the Insect Pollinators Initiative,
2013). If the provision of these services ended, the global annual cost of
the pollination service alone would be an estimated $215 billion.

Of all animal species, invertebrates are by far the most abundant (May,
1988), and it is recognized that invertebrates are the workhorses of
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ecosystems, both on land and in the water. In a response to the
question, “Why should I care about bugs in the mud?”, Suter and
Cormier (2015) listed an extensive catalogue: Invertebrates are food
for fish and birds, insects retain nutrients in their biomass and return
them to the terrestrial landscape when they emerge. As shredders
they break down leaf litter, ensuring the integrity of forest streams and
thus maintain habitats. Filter feeders grow in spring and summer and
keep the algae blooms in eutrophic lakes at bay. Finally, invertebrates
serve several recreational and educational purposes—so, we should
care.

1.1 Pesticides in the Aquatic Environment and Their
Influence on the Invertebrates in Freshwater Bod-
ies. Limitations of Aquatic Risk Assessment

Pesticides are an ubiquitous source of pollution in water bodies around
the world. They have been linked to altered invertebrate community
composition (Schäfer et al., 2007) and were repeatedly associated with
the loss of invertebrate biodiversity (Beketov et al., 2013; Stehle and
Schulz, 2015) and deterioration of ecosystem services (Malaj et al.,
2014).

Many classes of pesticides are used today including herbicides, fungi-
cides and insecticides. Insecticides like neonicotinoids can accumulate
in the soil and leach to surface waters (Goulson, 2013) and affect wa-
terborne emerging insects. The most sensitive taxa are Trichoptera,
Diptera and Ephimeoptera (Morrissey et al., 2015). The case of neon-
icotinoids exemplifies very well that a risk assessment, which is un-
til today predominantly based on single species tests (Figure 1.1),
can severely underestimate the risks of pesticides. Because the stan-
dard test species, D. magna, is insensitive to neonicotinoid insecticides
(Beketov and Liess, 2007; Wood and Goulson, 2017), the risks for other
non-target organisms were largely underestimated leading to the well
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1.1. Pesticides in the Aquatic Environment and Their Influence on the
Invertebrates in Freshwater Bodies. Limitations of Aquatic Risk Assessment

known decline of bee populations (Rundlöf et al., 2015; Cressey, 2017;
Stuligross and Williams, 2021).

Of course a growing world population will still rely on the use of pes-
ticides for the coming years in order to sustain high productivity of
agricultural systems and support the growing demand for food. How-
ever, considering the previously listed ecological side effects of pesti-
cide use, it is vital to understand their effects in complex ecosystems,
so that damage of pesticide use can be minimized and neonicotinoid-
like scenarios can be prevented.

In order to monitor and protect the ecological functioning of its water
bodies, the European Union launched the Water Framework Directive
(WFD) (European Union, 1988; European Parliament, 2000) and im-
plemented Directive 2009/128/EC for the sustainable use of pesticides
(European Parliament, 2009). This legislation enabled the EU to re-
strict the use of harmful pesticides, such as neonicotinoids (Stokstad,
2018). However, other pesticides quickly filled this gap and today
pyrethroids emerge as the main replacement in agricultural applica-
tions (Jactel et al., 2019). Therefore, it comes as no surprise that the
ecological status of 60% of surface waters in the European Union are
still in moderate, poor or bad ecological status. In densely populated
areas such as Germany this figure is much higher (80%), indicating
that still in 2018 surface waters in the vicinity of human activity are
under massive stress (EEA, 2018).

While the ecological status of ecosystems is also affected by nutrients
(Gieswein et al., 2017; Birk et al., 2020), it is assumed that the risks
of pesticides are still underestimated (Stehle and Schulz, 2015). Rea-
sons for this include the insufficient monitoring of pesticides, missing
peak exposures after heavy rain events (Chow et al., 2020; Halbach
et al., 2021). In a large scale study on small rivers in Germany, Liess
et al. (2021) showed that pesticides are the main driver of loss of
sensitive invertebrate species in lowland streams at concentrations 3
orders of magnitude below the half maximal effective concentration
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Figure 1.1: Pesticide effects on 3 levels of biological complexity. Individual tests,
used in routine risk assessment, have a low complexity. The causality between
pesticide exposure and effect is easily established, but this comes at the cost of
low environmental realism, which limits the transfer of effects observed in the lab-
oratory to conditions present in the field. The other extreme is encountered in field
studies, where pesticide may elicit effects on multiple groups in trophic networks.
Under such complex conditions it is difficult to understand the mechanisms by
which pesticides act. Nanocosms that are employed in Chapters 4 and 5 are a
middle ground and allow insights into effects mechanisms.

(EC50) determined in single-species laboratory studies. Even scales of
complexity lower, single organism dose-response relationships cannot
be extrapolated to experimental mesocosms (Gessner and Tlili, 2016).
Similar studies recently accumulate and support the assumption that
risks of pesticides cannot be predicted from single species laboratory
tests (Fleeger et al., 2003; Knillmann et al., 2012a,b; Alexander et al.,
2016; Vaugeois et al., 2020; Allen et al., 2021). This relationship be-
tween decreasing predictability between pesticide exposure and effects
under increasing complexity is illustrated in Figure 1.1.
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1.2 Considering the Environmental Context to As-
sess the Effects of Ultra-Low Concentrations of
Pesticides

Box 1: Stress
Stress is defined as environmental
change that affects functioning of
an organism (Calow, 1989; Parker
et al., 1999; Heugens et al., 2001).
Environmental change can be physi-
cal (temperature, radiation), chemi-
cal (oxygen, pH, toxicants) or biolog-
ical (density of competitors, preda-
tors). However, in the course of evo-
lution, changing environmental con-
ditions have been the norm rather
than the exception, and it can be as-
sumed that the organism is adapted
to tolerate stressful conditions up to
species specific energetic constraints
(Sokolova et al., 2012; Sokolova,
2013). Depending on the frequency
and intensity, exposure to multiple
stressors can lower the threshold for
adverse effects. This concept has
been partially dealt with in the for-
mulation of the concentration ad-
dition (CA) model where concen-
trations of toxicants with a similar
mode of action can be summed to
an effect concentration (Bliss, 1939;
Altenburger et al., 2000). It has
been extended with the stress ad-
dition model (SAM) by Liess et al.
(2016) to model the effects of envi-
ronmental stress and toxicants (mul-
tiple stress).

The mismatch between concentrations at
which effects are observed in the field and
those determined in low-level laboratory
studies indicates that unknown factors
confound the effect of pesticides and other
anthropogenic stressors (see Box 1, Fig-
ure 1.1). Interactions of pesticides with
environmental stressors can increase the
impact of toxicants in the field (Lemm
and Feld, 2017; Laetz et al., 2009) and in
the laboratory (Holmstrup et al., 2010;
Shahid et al., 2019). On the contrary,
other studies show that stressors may not
interact at all (Dinh et al., 2016; Cheng
et al., 2015; Kath et al., 2018). Finally,
meta-analyses show that toxicants can
interact synergistically, antagonistically,
or additively with environmental stres-
sors without identifying a central ten-
dency (Jackson et al., 2016; Birk et al.,
2020).

The issue is confounded even further by
hormesis theory, which postulates bene-
ficial effects from low doses of stressors
(Schulz, 1888; Stebbing, 1998; Calabrese,
2010). Due to a rising research interest,
a number of studies accumulated showing
positive feedbacks of small doses of toxi-
cants (Calabrese and Mattson, 2017; Wolz et al., 2021; Shang et al.,
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2021). While these findings are usually constrained to effects on the in-
dividual or population level (Agathokleous et al., 2022), they certainly
raise the question, whether such non-linear dose-response relationships
(Calabrese and Baldwin, 2003; Costantini, 2019; Liess et al., 2019a)
need to be considered in environmental risk assessment (ERA).

This bouquet of results paired with the repeated discovery of strong
ecological effects under low exposure concentrations indicates that
comprehensive understanding of the ecological effects of especially
low doses of pesticides is still lacking (Liess et al., 2019b). There
are several reasons that can explain this lack of accuracy in predict-
ing the effect of toxicants in complex ecosystems. Habitat structure
and physico-chemical parameters can obscure causal effects between
chemical stress and biological responses in field studies (Rico et al.,
2016). Moreover, pesticide contamination can trigger cascading effects
in ecosystems (Figure 1.1), leading to indirect community effects de-
pending on interactions between species in food webs (Fleeger et al.,
2003). In order to overcome this difficulty, Orr et al. (2020) suggest to
study the effects of stressors under temporal and biological complexity.
Especially, understanding the role of biological organization in effects
of stressors is emerging to become the top priority of researchers and
risk assessors (van den Brink et al., 2018; Simmons et al., 2021) to
foster safer use of chemicals in the environment.

Due to multiple levels of biological organization, the supposed non-
linearity in dose–response relationships (hormesis), and the interaction
with anthropogenic and environmental stressors, disentangling cause
and effect of single or multiple stressors is very difficult. As illus-
trated by Figure 1.1, standard tests are too simple to predict effects
and field studies too complex to understand the causes of effects of
pesticides. In order to gain mechanistic understanding, it is therefore
necessary to take a step back in the complexity of experiments and in-
vestigate stressors in the context of controlled but complex laboratory
systems.
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1.3 Aims and Hypotheses

Understand Low Dose Effects
The aim of this work is to investigate the
effect mechanisms of ultra-low pesticide
doses. Reasons are findings of ecological
effects in the field far below the EC50 and
conflicting reports of stimulatory effects
of low doses (hormesis) on individuals and
populations.

This work studies the factors and
mechanisms, which are suspected to
play a central role in the emergence
of strong ecological effects under ex-
posure to ultra-low concentrations of
pesticides. In addition, this works
aims to shed light on the reasons for
the reported variability of interactions
between multiple stressors. Given the limited scope of this work, those
factors that are ubiquitous in nature have been selected to advance our
understanding of pesticide effects in complex biological systems.

THE DIMENSION OF TIME is ubiquitous in the research of multiple
stressors. Due to a large variety of possible patterns of stress events
and the infinite number of resulting combinations when long term
development of ecological systems is considered (Ryo et al., 2019),
time becomes an inevitable variable when confounding factors for risk
assessment are studied. In ecological environments, pulses of pes-
ticides (Liess and Schulz, 1999; Wittmer et al., 2010; Halbach et al.,
2021) and environmental stressors such as heat waves and ultraviolet-B
(UV-B) radiation (Lhotka et al., 2018; Masson-Delmotte et al., 2021)
may occur in arbitrary order and temporal distance. It is assumed
that the likelihood for non-additive interaction between stressors in-
creases if they occur in temporal proximity (Gunderson et al., 2016)
and it was shown that past stress exposure can increase the effect of
a second exposure, if the toxicokinetic and toxicodynamic properties

Time Hypothesis (1)

Interactions between pesticides
and environmental stress depend
on the timing and order of expo-
sures. (Chapter 3)

of the principally exposed toxicant prolong
the duration of its effect so that it can inter-
act with a later exposed substance (Ashauer
et al., 2007, 2017). It has so far not been
researched if this phenomenon extends to
interactions with environmental stressors,
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and, if it holds for exposures to different doses. This leads to Hy-
pothesis 1, which will be discussed in Chapter 3.

Competition Hypothesis (2)

The effect of low-dose pesticides on
aquatic populations is dependent on
the degree of competition in the sys-
tem. Related questions to be consid-
ered, are:

How do populations respond to ex-
posure to low concentrations of pes-
ticides when the competition within
the population is large? (Chapter 4)

In what ways does strong competi-
tion between species modulate the
effects of repeated exposure to low
concentrations of pesticides? (Chap-
ter 5)

THE DEGREE OF COMPETITION WITHIN
AND BETWEEN SPECIES in the envi-
ronment and laboratory experiments is
of superior importance for the assess-
ment of pesticide effects. Density depen-
dent processes regulate the abundance of
populations in many ecological systems
(Malthus, 1798; Volterra, 1928; de Roos
et al., 1992). In other words, popula-
tions grow, when their food source is
abundant and decline when it is depleted,
which in turn leads to renewed growth
of the food source. Especially, when the
food source for a population is scarce,
the influence of competition between indi-
viduals within populations (intraspecific

competition), but also between populations of different species (in-
terspecific competition) is expected to increase. Therefore, it is no
surprise that populations react differently to acute pesticide expo-
sure depending on their developmental stage (Stark and Banken, 1999;
Hanazato and Hirokawa, 2004). Young, exponentially growing popu-
lations, can overcome the effects of acute exposure to pesticides faster
then mature, stationary population (Pieters and Liess, 2006). What,
however, are the population responses of exposure to ultra-low doses
of pesticides when the competition for resources is high? This ques-
tion is addressed in Chapter 4. In nature, competition for resources
between different species is extremely common. This process leads
to diversification of the less fit species into its own ecological niche
(Gause, 1936; Hardin, 1960). Often, however, competitors co-exist
that share resources to varying degrees (MacArthur, 1958; Pastore
et al., 2021). Such co-existence is a cornerstone of resilient ecosys-
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tems, since functions and food-chains can be maintained even if one
population breaks down. Repeated exposure to pesticides can disrupt
the balance between competitors at acute concentrations (Liess et al.,
2013), but how do competing species react to the repeated exposure of
ultra-low concentrations of pesticides? This question will be studied
in Chapter 5. Hypothesis 2 will be assessed in Chapter 6 by jointly
discussing the findings from Chapters 4 and 5 and comparing them to
results from Chapter 3, where no competition was present.

ENVIRONMENTAL CONDITIONS can influence the effects of pesti-
cides. Increased mortality of test organisms has been observed at low
food concentrations (Heugens et al., 2001; Pieters et al., 2005; Beketov
and Liess, 2005; Shahid et al., 2019). While this result is intuitive, it is
even more surprising that risk assessment is routinely conducted unter
standard conditions that assume saturated food conditions, which is
a rare environmental scenario (Stevenson et al., 2017). Also other en-
vironmental parameters have been shown to interact with pesticides,
but, as indicated in Section 1.2, findings do not conclusively indi-
cate whether interactions with environmental stressors always result
in synergistic or antagonistic interactions with pesticides. Throughout
Chapters 3 to 5, the question of interactions between environmental
conditions and pesticides will be addressed and common factors will
be discussed in Chapter 6.

The next Chapter will outline the overarching experimental approach
to tackle the listed questions and hypotheses. The selected pesticide,
esfenvalerate, which has been used in all studies will be introduced in
Section 2.1 along with the main test organism, D. magna (Section 2.2).
The method of non-invasive population monitoring will be described
in Section 2.3, and the bayesian approach to statistical inference will
be briefly summarized in Section 2.4.
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Chapter 2

Overall Experimental Approach

As a methodological approach, the complexity of the studied systems
will be stepwise increased to build an understanding of the underlying
mechanisms of the studied systems. At the same time, the main char-
acteristics of the experiment will be kept constant in order to learn
about the influence of varying factors across biological scales. Daphnia
magna was used as a well studied model organism to study pesticide
effects from the individual to the community level. The pesticide es-
fenvalerate was used as a chemical stressor of the class of pyrethroids.
In order to approach realism the applied concentrations of esfenvaler-
ate were reduced with increasing order of complexity, assuming that
higher levels of complexity can reveal subtler effects as compared to
low levels of complexity.

2.1 Properties of the Pyrethroid Insecticide Esfen-
valerate

After concerning reports about the ecological effects of neonicotinoids
(Rundlöf et al., 2015; Cressey, 2017), most neonicotinoids were banned
in Europe and their usage is also being reevaluated in the USA. Farm-
ers now turn to pyrethroids, which emerge as the most common alter-
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Figure 2.1: Structure formula of esfenvalerate. Chemical Abstracts Service
(CAS)-number: 66230-04-4, molecular weight = 419.9 g mol−1, logP = 6.2, solu-
bility = 2 µg/L at 25°C

native in agricultural applications (Jactel et al., 2019). Esfenvalerate,
as a type-II pyrethroid, affects the peripheral nervous system and its
main mode of action is the blockage of voltage gated sodium channels
(VGSC), which increases the opening times of these channels and dis-
rupts the nerve signalling. Ultimately this process leads to incoordina-
tion, paralysis and convulsions (Soderlund, 2005; Werner and Moran,
2008; Palmquist et al., 2012). For filter feeders such as D. magna,
these effects imply reduced feeding rates (Reynaldi et al., 2006) and
if recovery does not take place, death occurs due to starvation after
several days.

Consequently, pyrethroids produce a whole range of ecologically rele-
vant effects on invertebrates such as increased mortality rates in insects
at 1⁄100 half maximal effective concentration (EC50) for the caddisfly
Limnephilus lunatus (Liess, 2002) and at 1⁄1000 EC50 for the mayfly
Cloeon diperum (Beketov and Liess, 2005). Further, low doses of
pyrethroids affect feeding at 1⁄10 EC50 for D. magna (Christensen et al.,
2005), reduce swimming behavior of Hyalella azteca (Hasenbein et al.,
2018) and energy allocation to offspring between 1/1000–1/10 EC50

for Daphnia schoedleri (Martínez-Jerónimo et al., 2013). In addition,
also stimulatory effects for various organism types are observed be-
tween 1⁄10–1⁄100 EC50 (Gottardi et al., 2017; Margus et al., 2019; Shang
et al., 2021; Wolz et al., 2021). In the aquatic environment, pyrethroids
generally occur as short pulses in the water phase, due to their fast
dissipation from the water column. In surface waters, maximum con-
centrations of only 1–2 orders of magnitude below the acute EC50 (D.

12



2.2. Daphnia magna as a Model Organisms

magna) were detected (Rösch et al., 2019a,b) while median concen-
trations range around 3–4 orders of magnitude below the acute EC50.
In ditches close to agricultural fields (close to the source of input),
the measured concentrations of pyrethroids may be much higher, even
above the EC50 (Bennett et al., 2005). The D. magna EC50 of esfen-
valerate lies approximately at 300 ng L−1 (Table A.1). This means
that test concentrations between 0.01–1000 ng L−1 can be considered
environmentally relevant.

Table 2.1: EC50 for D. magna immobility after 48 h. NR = not reported,
AI = Active Ingredient. F = Formulation. Data retrieved from Environmental
Protection Agency (EPA) database (https://cfpub.epa.gov/ecotox/search.
cfm). Mean EC50 = 0.31 ± 0.33 µg/L

Exposure Type
Organism
Age (h)

Concentration
(AI µg/L)

Source

Static (AI) NR 0.89 Chevalier et al. (2015)
Static (AI) < 24 0.05 Bjergager et al. (2012)
NR (AI) < 24 0.16 Bjergager et al. (2012)
Static (F) < 24 0.18 Ma et al. (2009)
Static (AI) < 24 0.27 Fairchild et al. (1992)

2.2 Daphnia magna as a Model Organisms
Systematically the species Daphnia magna belongs to the genus of wa-
ter fleas (Daphnia). It is placed in order of Cladocera, which resides
in the phylum of invertebrate organisms (Arthropoda). In an excel-
lent review, Ebert (2022) outlines several unique properties of this
versatile model organism, such as its transparent body and short and
predominantly asexual reproduction cycle (Figure 2.2).

Due to such properties, D. magna is the preferred toxicological test
species for aquatic toxicology screening. In fact Organisation for Eco-
nomic Co-operation and Development (OECD) protocols exist for
acute (OECD, 2004) and chronic (OECD, 2012) toxicity testing that
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2. Overall Experimental Approach

Figure 2.2: The life cycle of D. magna. Under laboratory conditions, D. magna
predominantly follow the (haploid) parthenogenic reproduction cycle. The sexual
reproduction cycle can be triggered by adverse environmental conditions. Diploid
(sexual) eggs, can survive many years until favorable conditions occur again,
launching another cycle of haploid reproduction. Figure conceptualized by D.
Vizoso and D. Ebert, Drawing by D. Vizoso (https://upload.wikimedia.org/
wikipedia/commons/3/37/DaphniaMagna_LifeCycle_DVizoso.svg)

were specifically developed for D. magna. As a filter feeder it is con-
sidered a keystone species in standing water bodies and ponds across
a wide area of geographical distribution, contributing to its relevance
as a test organism (Ebert, 2022). For risk assessment in the aquatic
environment, the European Food Safety Authority (EFSA) and EPA
rely on D. magna for it’s lowest level (Tier 1) screening to assess eligi-
bility of novel compounds for approval of use and determination of safe
levels of application (European Food Safety Authority, 2013).

Responses of Daphniae are studied over a wide range of toxicants
and environmental stressors, for example pesticides and their mixtures
(Maggio and Jenkins, 2021; Chevalier et al., 2015; Martínez-Jerónimo
et al., 2013; Navis et al., 2013; Bjergager et al., 2012; Relyea and
Diecks, 2008; Werner and Moran, 2008; Andersen et al., 2006), preda-
tor presence (Graeve et al., 2021), metals and their mixtures (Hansul
et al., 2021; da Silva et al., 2020; Soetaert et al., 2007) nanoparticles
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2.3. Non-Invasive Population Monitoring through
Imaging and Motion Detection

(Lesser et al., 2022), nutrients (Serra et al., 2019), ultraviolet-B (UV-
B)-radiation (Song et al., 2020; Wonkwon et al., 2019; Beketov et al.,
2011; Hansson and Hylander, 2009), and temperature (Betini et al.,
2019; Wojtal-Frankiewicz, 2012; van Doorslaer et al., 2009).

2.3 Non-Invasive Population Monitoring through
Imaging and Motion Detection

Populations of single and competing species should be monitored to
understand the alterations of population dynamics provoked by the
exposure to acute and low doses of pesticides. How these populations
are monitored also influences how successful and how sensitive such
studies can be. Typically, experimental systems are filtered and or-
ganisms are returned to the systems after a census (Vlaeminck et al.,
2020; Palamara et al., 2022). While this method is obviously the
most accurate, it has 2 major caveats. It is time and labor consum-
ing making this method unattractive for routine assessment of risks of
toxicants, and the removal of organisms itself is a disturbance of the
system (Sims et al., 1993; Rousseaux et al., 2010). Therefore, it can
be doubted whether this method is suitable to assess subtle effects of
extremely low dosed pesticides.

For this reason, in population studies conducted in this work, non-
invasive monitoring via imaging and detection algorithms was applied.
Because the applied methods differ in the studies in Chapter 4 and
Chapter 5, here, only the general approach will be outlined.

The basis for this approach is build on the detection of motion in a
series of consecutive images that are taken from a single system with
a static camera (Pieters and Liess, 2006; Foit et al., 2012). Compu-
tationally, images are just arrays of integers. Each index of the array
contains an integer in the interval [0, 255]. The principle of motion
detection lies in the background subtraction. Consider two exactly
identical images. Subtracting one from the other would result in a
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Figure 2.3: Basic algorithm of motion detection for the example of a grayscale
image of size 25 pixels. Values indicate the brightness of a pixel. Orange pixels
indicate a moving object which changes its position from M1 to M2, and dark-
gray pixels represent its negative (the position it has moved to). White and gray
pixels represent white noise on the background and green pixels represent a fixed
object which is of greater brightness than the moving object. By element-wise
computation of the difference M∆ and max(0, M∆)

difference of zero in all indices of the matrix. Now consider two im-
ages M1 and M2 with a static background, where parts of the image
are moving (Figure 2.3). The difference of such a pair of images will
contain all moving objects twice (M∆). For this reason the resulting
matrix should be trimmed to positive numbers to only include the
initial location of the moving objects.

Due to white noise in the imaging process, pre- and post-processing
steps can improve the sensitivity of the algorithm. To reduce noise,
and consequently false-positive detections, images can be convoluted
during pre-processing. This process takes the average of an n × n

kernel. A very typical post-processing step is thresholding to separate
movement from noise. In the example given above (Figure 2.3), a
good threshold would lie between 0 and 15, in order to capture the
complete signal. Static objects that are brighter than the objects of
interest (green pixels, Figure 2.3) can complicate the detection and
the associated problems will be discussed in Section 5.4.
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2.4 Using Bayesian Methods to Quantify Uncertainty
in Ecology

In this work, bayesian methods will be used throughout all chapters.
In order to familiarize the reader with the method, some introductory
concepts are provided and the theory is explained with a bayesian
model that is used in Chapter 5.

Pr(θ | Y ) = Pr(θ) Pr(Y | θ)
Pr(Y ) 2.1

Posterior ≈ Prior × Likelihood 2.2

Equation 2.1 is also known as Bayes Theorem and it is used to cal-
culate conditional probabilities. It reads as: The probability of a set
of parameters θ, conditional on the observed data Y is equal to the
joint probability of the probability of the parameters and the proba-
bility of the likelihood of the data given the set of parameters, divided
by the probability of the observations Y . Because the calculation of
the denominator Pr(Y ) of the equation is complicated, it is usually
ignored due to its independence of the parameters (no θ is involved)
and considered as a proportionality constant, which ensures that the
resulting probability function integrates to 1. Thus, equation 2.2 con-
tains the remaining components of the equation that actually bear
relevant concepts for the understanding of uncertainty in statistics—
posterior, prior and likelihood.

For simple examples it is possible to calculate an analytical solution
of equation 2.1. However, due to the rise of computational power, it is
nowadays much easier to simply calculate results of the right hand side
(RHS) of equation 2.1 very often for random samples of the parame-
ter θ, and to record parameters with a high probability proportionally
more often than parameters with a low probability. This is essentially
a description of Markov Chain Monte Carlo (MCMC) (Robert and
Casella, 2011), which removes the constraint to assume normality of
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Figure 2.4: Estimation of covariance structure and its associated uncertainty of
simulated population abundance (N = 1000). The black vertical line indicates the
true correlation between species A and B and black dots are simulated samples.
The blue markers indicate the observational uncertainty of in the phase-space of
species abundances (i.e. where, conditional on the data, the model would expect
to observe abundance pairs.). The blue curve shows the estimated posterior of
the correlation between A and B recovered from the and its associated uncer-
tainty. It indicates that the true correlation can be recovered very well with the
model specified in equations 2.3–2.8). a) highly negative correlation (ρ = 0.95),
impossible co-existence. b) no correlation (ρ = 0.0), species do not interact or are
not influenced by the same environmental drivers. c) strongly positive correlation
(ρ = 0.95), species share a common resource or have a highly dependent synchro-
nized mutual dependence.

the underlying parameter distributions. As an example, consider the
relationship between the covariance of two species and their degree
of coexistence, which will be needed in Chapter 5 to assess the com-
petition between species across replicated test systems. Suppose two
species (A and B) cannot coexist in the same environment. In any
snapshot of an environment, if species A is abundant, the density of
species B must be very low and vice versa. This state is reflected by
Figure 2.4a. Note that the bayesian posterior density estimate of the
correlation between species A and B was estimated to lie between −0.8
and −1.0 with a maximum near −0.95, which is the true correlation
coefficient that was used to simulate the data. In comparison, calcu-
lating the Pearson or Spearman correlation coefficient, will estimate
a correlation of −0.1 or −0.5, respectively, which is a gross underesti-
mation of the true effect. The following bayesian model explains how
to derive such solutions.
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Ns ∼ Poisson(λs) 2.3
λs = elog(λs) 2.4

log(λs) ∼ MultivariateNormal(mu = µs, covariance = cov) 2.5
cov ∼ LKJ(η = 1, σs) 2.6
µs ∼ Cauchy(0, 1) 2.7
σs ∼ HalfCauchy(1) 2.8

Box 2: Bayesian Statistics

A bayesian posterior estimates the
parameters of a statistical model
along with their associated uncer-
tainty. Modern probabilistic frame-
works like PyMC can be used to di-
rectly estimate interpretable param-
eters of ecologically relevant ques-
tions, by formalizing them in statisti-
cal models (e.g. equations 2.3–2.8).

The degree of co-existence between
two species directly corresponds to
the correlation between their log
occurrence-rates, which follow a mul-
tivariate Normal distribution.

The above system of equations can be re-
lated to the RHS of the posterior (equa-
tion 2.2). The likelihood in this exam-
ple is represented by equation 2.3. It
states that the probability of observing
N individuals of species s is Poisson dis-
tributed with the rate parameter λ. So,
how to get the correlated rate parameters
λ for both species? The answer is sam-
pling. For each of the model parameters
a random sample θ∗

i is drawn and com-
pared against the specified prior distribu-
tions (equations 2.5–2.8); and the result-
ing data distribution (equation 2.3, the
likelihood) is compared against the ob-
served data. Sometimes, parameters need to be transformed to follow
requirements of the used distributions; in the case of equation 2.4, the
rate parameters λs of Poisson distribution can only be positive, which
is why the log(λs) parameter was exponentiated. Finally all com-
puted probabilities are multiplied so that the posterior probability of
any random parameter sample is the product of the likelihood and the
probability of the parameter sample under their specified priors. With
an increasing amount of samples, parameters that are likely to repre-
sent the data are sampled proportionally more often than parameters
that are less likely to represent the data well. The resulting distri-
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2. Overall Experimental Approach

bution (histogram) of samples approximates the posterior parameter
distribution (equation 2.2).

Translated into plain language this means, the parameters of a bayesian
model will represent the best possible compromise between the data
and the a priori assumptions of its parameters. In this work, weakly
informative priors were used, which rule out extreme parameter combi-
nations but allow the posterior estimate be governed by the data. For a
comprehensive overview of the theory of bayesian statistics the reader
is referred to McElreath (2015) and Salvatier et al. (2016) for the orig-
inal publication of the probabilistic modeling framework, PyMC , for
Python which is used in this work.
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Chapter 3

Time Between Stressors Turns
Antagonism into Synergism1

3.1 Introduction
Multiple stress effects are of emerging concern as interactions between
drivers of ecosystem change may result in synergistic effects on pop-
ulations (Liess et al., 2016), resulting in unexpected unpredictable ef-
fects for ecosystems (Vinebrooke et al., 2004; Chapin and Díaz, 2020;
Simmons et al., 2021). The problem is further exacerbated by the
existence of a variety of temporal sequences of different stressors (Ryo
et al., 2019). Among these, stress pulses are particularly common in
nature. For example, storm events channel pesticides from fields into
aquatic environments in the form of pulses (Liess and Schulz, 1999;
Liess et al., 1999; Wittmer et al., 2010; Halbach et al., 2021; Liess
et al., 2021). Also, ultraviolet-B (UV-B) radiation is an intrinsically
pulsed stressor due to its dial nature and dependence on cloud cover.
Heat waves may further increase the risk of occurrence and intensity

1Published in a slightly modified form as: Schunck F, Liess M. 2022. Time be-
tween Sequential Exposures to Multiple Stress Turns Antagonism into Synergism.
Environ. Sci. Technol. 56(20):14660–14667.
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(Schoetter et al., 2015; Lhotka et al., 2018; Masson-Delmotte et al.,
2021; Neale et al., 2021; Singh et al., 2021) of those pulsed stressors,
which can occur in any arbitrary order or temporal alignment in na-
ture.

In such dynamic exposure scenarios, it is key to understand the effect
of time gaps between stress pulses and the effects of stressor order. For
instance, short time gaps are hypothesized to increase stressor interac-
tions (Gunderson et al., 2016) both synergistically (Bible et al., 2017)
or antagonistically (Brooks and Crowe, 2019). Also, it has been shown
that the sequential order affects the outcome of exposure to multiple
stress (Fukami, 2001; Ashauer et al., 2007, 2017; Meng et al., 2020).
However, due to the enormous complexity of necessary experiments
(Rozman and Doull, 2000), the knowledge about the effects of timing
and order on the quality and quantity of interactions between multi-
ple pulsed stressors is limited. Still, most aquatic studies on multiple
stress focus on simultaneous exposure (Backhaus and Faust, 2012; Al-
tenburger et al., 2013; Heys et al., 2016; Altenburger et al., 2019). On
longer time scales, the trans-generational effects (Beketov and Liess,
2006; Stuligross and Williams, 2021), culmination (Liess et al., 2013),
and recovery (Liess and Schulz, 1999; Kattwinkel et al., 2012), are
studied. Research on intermediate time gaps between stress exposures,
however, is sparse (2 weeks (Ashauer et al., 2007), 3 days (Ashauer
et al., 2017), 1 week (Brooks and Crowe, 2019), 2–4 weeks (Liess et al.,
2013; Bible et al., 2017)). So far, the effects of temporal dynamics in
stress exposure have been investigated based on a maximum of three
exposure levels at high doses in the range of the half maximal effec-
tive concentration (EC50) per substance (Ashauer et al., 2007, 2017;
Bible et al., 2017; Brooks and Crowe, 2019; Meng et al., 2020). This
is insufficient because high-dimensional investigations with more than
two factors (Leavitt, 2020) and gradient-based designs with many fac-
tor levels (Kreyling et al., 2018) are needed to reveal interactions of
stressors and nonlinear (non-additive) effects. In sum, we identify a
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relevant knowledge gap in the effect of the timing and order on the
outcome of interactions between multiple stressors.

Interactions between multiple stressors are predominantly studied at
doses far above realistic environmental concentrations (Cedergreen,
2014). In this context, it is hypothesized that synergism between
toxicants occurs only at doses comparably close to the EC50 (Bjer-
gager et al., 2017). Antagonistic interactions, on the other hand, have
been observed at low doses (Johnson et al., 2013; Bjergager et al.,
2017). It was shown that low stress doses can induce stimulatory
effects (Schulz, 1888; Stebbing, 1998; Calabrese and Baldwin, 2003;
Christopher Cutler et al., 2009; Calabrese, 2010; Cutler, 2013) and
antagonistic effects at ultra-low concentrations, leading to the occur-
rence of bi-phasic and tri-phasic (non-monotone) dose–response rela-
tionships, respectively (Liess et al., 2019a). Despite this, few studies
show that pesticide mixtures at environmental realistic concentrations
can cause synergistic interactions (Laetz et al., 2009; Shahid et al.,
2019). This controversial evidence underlines the importance of im-
proving the understanding of stressor interactions at doses on several
orders of magnitude below the EC50 (Shahid et al., 2019).

The aim of the present study is therefore to investigate the interaction
effects between an environmental stressor and a toxicant, exposed at
doses ranging from lethal effects to doses below observed effect lev-
els, under different time gaps between exposures and exposure orders.
For this, we pulse-exposed populations of D. magna to UV-B radiation
and the pyrethroid insecticide esfenvalerate under four different expo-
sure scenarios. Additionally, we analyzed the data with an abstract,
mechanistic-empirical model to quantify the relationship between the
timing and order of stress exposure and stressor interaction.
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3.2 Material and Methods

3.2.1 Experiment Design
In total, 720 neonates of D. magna (age < 24h), cultured in the De-
partment of System Ecotoxicology, Helmholtz Centre for Environmen-
tal Research—UFZ, Leipzig, Germany, were used as experimental or-
ganisms. The organisms were subdivided into separately kept groups
of three individuals. The resulting groups were pulse-exposed to es-
fenvalerate for 24 h, followed by one UV-B radiation pulse of varying
duration or in reverse order (Figure 3.1).

Figure 3.1: Fully-crossed multiple stress experiment design with four factors.
(a) Employed stressors: esfenvalerate concentration (9 + 1 levels: 0.01–2.56 µg/L
+ control) and UV-B radiation exposure duration (5 + 1 levels: 4–14 h + control).
(b) Temporal factors of the experiment: order of exposure (2 levels: esfenvalerate
then UV-B, UV-B, then esfenvalerate) and periods between exposures (2 levels:
0, 2 days). The corresponding temporal dynamics treatments are denoted E-0-U,
U-0-E, E-2-U, and U-2-E.

Exposure to the second stress began immediately after ending the
first stressor or with a time gap of 2 days. Simultaneous exposure was
left out deliberately to avoid physicochemical interactions between the
stressors. To analyze the full spectrum of potential interactions be-
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tween esfenvalerate and UV-B radiation under varying exposure sce-
narios, a full factorial treatment design with 240 treatments was set
up (Figure 3.1) featuring 9 esfenvalerate concentrations plus controls
(0.0, 0.01–2.56 µg/L), 5 UV-B exposure durations plus controls (0,
4–14 h) at 0.2 mW/cm2, two exposure scenarios (UV-B first, esfen-
valerate first), and two intervals between exposure (0, 2 days). Note
that this setup includes controls for all exposure scenarios (no stress,
UV-B-only, esfenvalerate-only). In total, the experiment lasted for 11
days.

3.2.2 Experimental Conditions
During the first week, populations were kept in beakers of 20 mL con-
taining Aachener Daphnien Medium (ADaM) (Klüttgen et al., 1994)
which was exchanged three times per week. After 1 week, the organ-
isms were transferred to 80 mL beakers. Due to the short duration of
the experiment as well as sufficient water volume and food, negligible
effects of intraspecific interaction were expected. Total food rations
were adapted to maintain a constant algae concentration of 3.75 and
7.5 µg C mL–1 in 20 and 80 mL in week 1 and 2, respectively. This
averages to the proposed amount of 0.15 mg C per individual per
day (OECD, 2012) to ensure no food limitation over the entire du-
ration of the experiment. Individual monitoring of survival as well
as feeding with freshly prepared suspensions of Desmodesmus subspi-
cata (Shahid et al., 2019) were conducted on a daily basis. During
the whole duration of the experiment, constant temperature condi-
tions were maintained at 20.0 ± 1 °C under a photoperiod of 16:8 h
day/night cycle.

3.2.3 Exposure to Stress
Treatments receiving UV-B radiation were placed on a randomized
grid in a UV test chamber (UV test chamber BS-04, Opsytec Dr.
Grobel GmbH, Ettlingen, Germany) to avoid positional effects due
to varying irradiation intensities inside the chamber. In all exposure
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scenarios, UV-B radiation treatments were aligned according to their
duration of exposure to ensure a constant time gap between all expo-
sures. If UV-B radiation was exposed first, treatments were started
with a delay according to their duration so that all treatments would
end at the same exact time. Afterwards, organisms were pulse-exposed
for 24 h to esfenvalerate immediately (U-0-E) or with a 2-day delay
(U-2-E). For organisms that were first exposed to a 24 h pulse of
esfenvalerate, all UV-B treatments were commenced simultaneously
immediately after decontamination (E-0-U) or with a 2-day delay (U-
2-E). In this scenario, UV-B exposure treatment ended in a staggered
manner in accordance with the duration of exposure.

Exposure to esfenvalerate was performed in the absence of food to
avoid potential sorption of esfenvalerate to algae cells. After esfen-
valerate exposure, the organisms were rinsed with an uncontaminated
medium to completely remove traces of the insecticide and subse-
quently placed in a fresh, uncontaminated medium. Esfenvalerate
(CAS 66230-04-4) stock solutions were prepared by serial dilutions in
dimethylsulfoxide (DMSO) at the beginning of the experiment and
stored at 5 °C. All tested solutions, prepared in exactly the same way
as during exposure, were analyzed once on the first day of the exper-
iment to assert the quality of stock solutions. Test vessels were then
spiked individually with corresponding stock solutions on each expo-
sure to Esfenvalerate (day 0, 1, 3). DMSO never exceeded a maximum
concentration of 0.1% (v/ v), which is an order of magnitude below
observed lethal effects on D. magna after 24 h exposure to DMSO
(Huang et al., 2018). Chemical analysis of the test solutions was per-
formed by Wessling GmbH, Landsberg OT, Oppin, Germany, using
Thermo Fisher Scientific TSQ 8000 Evo gas chromatography–triple
quadrupole mass spectrometry (GC-MS/MS). Measured concentra-
tions are shown in Table A.1 and are well in line with the nominal con-
centrations, except for the nominal concentration of 0.32 µg/L, which,
however, follows a clear dose–response relationship (Figure A.5k–n).
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Therefore, the results in the following sections are analyzed and dis-
played using the nominal concentrations.

3.2.4 Data Analyses

The aim of the analysis was to compare the degree of interactions
ranging from antagonistic via additive to synergistic responses across
temporal treatments. (1) For this, dose–response curves were esti-
mated with a log-logistic model with the bayesian inference framework
Python Markov Chain Monte Carlo (MCMC) library (PyMC) (Sal-
vatier et al., 2016). Note that effects of both stressors are reported
in effect concentration (EC), although UV-B exposure is technically
a duration. (2) Next, dose–response curves were normalized to the
EC50 value of the corresponding control treatment by linear scaling.
Linear transformations did not affect statistical inference and were
used to facilitate the comparison of stressors operating on different
scales (µg/L vs min). (3) For evaluation of significant EC50-deviations
from the control treatments, Not a Number (NaN)-estimates, result-
ing from intercept samples > 0.5, were discarded. Then, bayesian
probability of direction (pd) values were computed, which are closely
related to p-values (Makowski et al., 2019). This was done for differ-
ences between treatment-EC50 and control-EC50. (4) Following this,
the uncertainty of EC50 values was calculated with 95% posterior den-
sity intervals (PDI), which represent the region of highest plausibility
of the true EC50. (5) Two-sided t-tests were computed with all ob-
servations that continuously deviated from the control in the same
direction to test if low doses led to a significant increase in the EC50

response. (6) Further, EC50 predictions of the stochastic independent
action (IA) model (Bliss, 1939) were calculated from the esfenvalerate-
only and UV-B-only treatments of the respective exposure scenario.
This accounted for the different ages of organisms at the start of ex-
posure. We chose IA as the predictive null model because IA was
assumed for the joint effects arising from independent molecular effect
cascades of esfenvalerate and UV-B radiation. Esfenvalerate acts by
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blockage of voltage gated sodium channels (VGSC) (Soderlund, 2005),
while UV-B induces deoxyribonucleic acid (DNA) breakage, protein
oxidation, lipid peroxidation, and altered energy metabolism mainly
through a reactive oxygen species (ROS) and photoproduct formation
(Song et al., 2020). Although there may be a slight overlap in target
sites through oxidized membrane proteins impeding the functioning
of VGSCs, we consider the main routes to be independent. For com-
parison, we additionally included the stress addition model (SAM)
(Liess et al., 2016) in the analysis. (7) Predictions were compared
to experimental EC50 values by calculating pd-values for deviations
of treatment-EC50 from predicted values. (8) Finally, dose–response
curves were fitted through experimental EC50 values with cubic splines
(df = 3). Those were compared to IA predictions by integration of
model prediction and dose–response curves and calculation of their
differences. Before integration, doses (x-axis) were harmonized by
scaling to the EC50 value of the respective dose of the stressor that
was exposed first (Figure 3.1a). This was done to achieve comparabil-
ity across the different temporal treatments.

The resulting dose–response curves (drc) and their comparison to con-
ventional maximum likelihood fits obtained with the R language (R)
package drc (Ritz et al., 2015) can be reviewed in Figures A.4 and A.5.
Additionally, the posterior distributions of EC50 values for all treat-
ments are provided in Figure A.6 to show the uncertainty of the data.
For the bayesian fitting procedure, mildly regularizing priors were used
for slopes and inflection points to avoid separation, i.e., to avoid over-
fitting of logistic regression models with small sample sizes (Gelman
et al., 2008; Gordóvil-Merino et al., 2012). Detailed information about
the chosen priors is provided in the (method A.1). Any further data
processing and statistical analysis were performed with the software
R (R Core Team, 2018).
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Figure 3.2: Description of action–effect analysis: (a) interaction is estimated as
the integrated difference between cubic splines of observed scaled EC50 values and
IA-EC50 predictions; stressor doses on the x-axis were scaled to an average EC50

value of the respective stressor. (b) Model fitting procedure. (c) Regression model
yielding the adjusted R2 value, which serves as the loss function for optimization
process. (d) Stressor action curves (SACs) of a first stressor (light gray) and a
second stressor (dark gray) with an exemplary computation of action of the first
stressor at the beginning of the second stressor, denoted action (t2).

3.2.5 Description of Action–Effect Analysis

The goal of this analysis was to assess whether the total interaction be-
tween both stressors depends on the duration between exposures and
stressor order. For this, we designed an abstract-mechanistic model in-
spired by the concept of Einwirkung (action) and Auswirkung (effect)
introduced by Loewe in 1953. This concept understands Einwirkung
as the principal action in the early phase after a stress event that does
not directly induce changes in the organism’s performance. Following
this, the Auswirkung of these changes influences the performance of the
organism in the late stage of the stress response. As a more tangible
example, consider a racing sprinter who is pushed (stress exposure),
loses balance (action), and finally falls (effect). Interactions between
multiple stressors can take place at any time point in the stress re-
sponse, but their outcome may depend on whether this occurs in the
action or effect phase.
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With an abstract-mechanistic model, we can formalize our assump-
tions and test if the direction and magnitude of stressor interactions
can indeed be predicted by the delay between exposures and order
of stressors, based on those assumptions. Explicitly, we assume that
(1) the abstract quantity action follows a stressor-specific temporal
dynamic and that (2) the magnitude of action at the beginning of
exposure to a second stress modulates the overall stress response. In
the following, we refer to the stress-specific temporal dynamics of the
early-stage response as action, otherwise known as the SAC.

We tested if SACs can be fitted such that the action of the first stressor
at the beginning of exposure of the second stressor (Figure 3.2d) can
predict the interaction between both stressors for all tested temporal
treatments (Figure 3.2c). X-axis scaling described in point (8) of the
data analysis section and in Figure 3.2a was necessary to harmonize
the magnitude of interactions for different types of dosing scales (min
vs µg/L). Due to this scaling, the shape of the characteristic SACs is no
longer concentration-dependent but only responds to the magnitude
and direction of the total interaction (Figure 3.2a). It is not informed
a priori and converges to those shapes that best reflect the interac-
tion between esfenvalerate and UV-B radiation under all treatments,
given their specific exposure order and timing. Triangular shapes, pa-
rameterized by base length (action duration) and peak position (time
point of maximum action after the beginning of exposure to stress),
were chosen over Gaussian or Gamma distributed shapes because such
a form introduces no assumptions, apart from (i) following linear in-
crease, then linear decrease (ii) satisfying the unit area of the triangle
with a base at an action equal to zero (when the area of a triangle is
one, slopes are only determined by the position of its peak and base
length). The final curve fitting process (Figure 3.2b) was carried out
with the R package optim, using the adjusted R2 of the regression
shown in Figure 3.2c as a loss function and thereby optimizing the
curve parameters for esfenvalerate and UV-B radiation.
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3.3 Results and Discussion

3.3.1 Interaction Shifted from Antagonism to Synergism when
the Second Stressor was Applied with a 2-Day De-
lay

When UV-B radiation and esfenvalerate were exposed directly in suc-
cession, the interactions between the stressors were dominantly an-
tagonistic (Figure 3.3a,b). This was expressed by significant antago-
nistic deviations from the independent action prediction in the esfen-
valerate EC50 after 240 min UV-B exposure (increase factor of EC50:
2.7, p < 0.001) and significant antagonistic deviations in the UV-B-
EC50 after exposure to 0.01–0.08 µg/L esfenvalerate (increase factor
of EC50: 1.5–1.9, p < 0.05). No synergistic deviations were observed
in these treatments. In contrast, with a 2-day delay between expo-
sures, synergistic interactions at high concentrations were observed
(Figure 3.3c,d). Here, significant synergistic deviations were observed
after exposure to 0.16 µg/ L esfenvalerate (increase factor UV-B-EC50:
0.44, p = 0.02) and after exposure to 720 and 840 min of UV-B expo-
sure (increase factor esfenvalerate-EC50: 0.05 and 0.002, respectively,
p < 0.001). One significant antagonistic interaction was recorded af-
ter 0.02 µg/L esfenvalerate exposure (increase factor UV-B-EC50: 1.6,
p = 0.02).

We tested whether the total interaction, calculated as the integrated
difference between observed IA and predicted effects (Figure 3.3, ar-
rows), can be predicted by a linear regression model, where the re-
gression predictor is determined by the timing and order of exposure
through SACs (see the model description for a detailed explication,
Figure 3.2). The resulting SACs are shown in Figure 3.4a–d and indi-
cate that a perfect model fit was possible (slope = 3.1, y-intercept =
−0.75, adj.-R2 = 1.0, Figure 3.4e). Therefore, under the assumptions
of the model, action can correctly predict antagonisms and syner-
gisms of all temporal treatments, suggesting that a causal link exists
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between exposure time and order and stressor interaction. Note, how-
ever, that the analysis does not discriminate between the effects of
different stressor doses, since all interactions are summed into the in-
tegral. Consequently, this method does not consider the possibility
of nonlinear interactions between the stressors (Duncan and Kefford,
2021), which still may exist beside the dominant effect revealed in this
study.

Figure 3.3: Effect of first stressor (red: esfenvalerate, blue: UV-B) on the EC50

of the second stressor applied in sequence with a 0-day delay (a, b); and with a
2-day delay (c, d). Each colored dot (a, c: n = 18, b, d: n = 30) corresponds to
the maximum a posteriori (MAP) EC50 value of a dose–response curve with 95%
posterior density interval (PDI). The colored lines are cubic splines (df = 3) fitted
to the EC50 values and symbolize idealized response relationships between the first
and second stressors. Dots above the solid line (IA prediction) indicate antago-
nism, and dots below the line indicate synergism. Total interaction, quantified as
the integrated difference between effect and prediction, is indicated by the black
arrows. The values on top of confidence intervals are approximated p-values from
bayesian posterior density intervals. The p-value above the squared bracket is the
probability that the group of EC50 values is not different from the control-EC50

value. The asterisk (*) indicates the control-EC50 of the first stressor. Fitted
control-EC50 of the second stressor (scaling values): (1) 330 (95%-PDI [240, 460]),
(2) 0.6 (95%-PDI [0.40, 1.2]), (3) 640 (95%-PDI [380, 690]), and (4) 0.58 (95%-
PDI [0.33, 1.0]). Complete EC50-histograms, including estimated p-values of the
posterior distribution are displayed in Figure A.6.
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Figure 3.4: Results of action–effect analysis. Relationship between delay be-
tween exposures and order of stress exposure and interactions between the stres-
sors through fitting of stressor action curves (SACs). Panels (a–d) show triangular
SACs of esfenvalerate (red) and UV-B radiation (blue) over time. The shapes of
the colored curves are equal for each panel, varying only by shifts along the time
axis, according to order and delay of exposure of the employed treatments. The
central value of this analysis is the magnitude of the abstract quantity action of
the first stressor at the beginning of exposure to the second stressor, which repre-
sents unmanifested effects in the organism. It is denoted action (t2) and indicated
by an empty circle (◦). The shape of the curves is optimized so that action (t2)
can predict the interaction between both stressors. Panel (e) shows the resulting
regression. The adjusted R2 of the regression model is close to one, in accordance
with the expectation due to optimization of the curve shapes, with R2 as the loss
value.

We interpret SACs as the intensity of the initial, unmanifested effects
in an organism during the early stage of a stress response (Loewe,
1953). If stressors are applied without delay, action of the first stres-
sor appears to be able to reduce unmanifested effects of the second
stressor and explain the observation of antagonism. When transient
effects of the first stressor have disappeared (after 2-day time gap be-
tween exposures) and physiological effects have manifested, resulting
effects can be synergistic when the reduced organism fitness induces
larger effects as compared to control treatments. This could explain
why synergism is most strongly observed in the absence of SAC over-
lap (Figure 3.4d). With increasing SAC overlap, synergistic effects
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are progressively reduced by antagonistic effects caused by action. Al-
though the action–effect analysis does not provide a mechanistic model
for the observed effects, it does provide a consistent explanation of
the relationship between temporal stressor setup and observed effects
across all treatments.

An increase of combined effects on various end points with increasing
delay (2–4 weeks) between pulses of chlorpyriphos and copper was re-
ported by Brooks and Crowe (2019). Their findings match the results
obtained in this study for a different exposure time scale and other
scales of ecological complexity (cellular viability, community respira-
tion, and clearance rate). In contrast, our findings differ from those
of Bible et al. (2017) who reported disappearance of synergism with
an increasing delay between exposures. However, in their work, a
long recovery (2–4 weeks) was the likely cause for the disappearance
of synergistic effects. Also, in the work of Ashauer et al. (2017) the
chosen recovery times may have been too large to produce antagonis-
tic effects, especially because the toxicants used were chosen because
of their fast toxicokinetic recovery time. A comparison of SAM and
IA models showed that SAM outperformed IA when synergism was
present. However, both models did not predict the antagonism of the
stressor effect.

Fitted SACs also tentatively reveal temporal attributes of the ana-
lyzed stressors. These attributes reflect aggregated values for all tested
doses but may also differ in relation to the applied dose. Action of
esfenvalerate persisted for approximately 4.5 days, with a maximum
after one day. The UV-B radiation SAC was fitted with a duration
of 2.5 days and maximum action after just 1.5 days (Figure 3.4a–d).
Whereas esfenvalerate induces adverse effects via nerve damage that
interrupts feeding and causes mortality after several days (Palmquist
et al., 2012), UV-B radiation mainly induces DNA damage due to ROS
and photoproduct formation, causing mortality by excessive apoptosis
(Song et al., 2020). Such effects were observed 12 h after UV-B expo-
sure in freshwater prawns (Schramm et al., 2017), indicating similar
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durations of action as reported in this study. Despite the accuracy
of the proposed action–effect model, we are aware of its limitations.
The estimated SACs (Figure 3.4a–d) can be seen only as first approx-
imations to the true forms and the quantification of action used in
predicting interaction and may depend on more factors than the mag-
nitude of the action of the first stressor at the beginning of exposure
to the second. However, due to the simplicity of the model and the re-
semblance of fitted SACs to physical modes of action, we believe it to
be of great value for interpreting stressor interactions in dynamic expo-
sure scenarios, and we are confident that existing frameworks such as
toxicokinetic-toxicodynamic (TKTD) (Jager et al., 2011) can benefit
from the conceptual progress made in this study. Especially, because,
to our knowledge, the prediction of antagonism between stressors is
outside of the scope of current TKTD models. Whether our findings
also extend to other stressors and different timings must be analyzed
in future work. Also, a characterization of the involved biochemical
processes and a molecular description of action identified in our study
are missing pieces in this study and would be a very desirable goal in
future research.

3.3.2 Low Doses of the First Stressor Increased Resistance
to the Second Stressor

The application of low stress doses, independent of the stress type,
significantly increased the EC50 response of second stressor applied
without delay (EC50 shift = +0.85, p = 0.01). Thus, an exposure
to UV-B radiation of 240 min led to a significant positive shift of
the esfenvalerate-EC50MAP values (EC50 shift = +1.5, p = 0.03) (Fig-
ure 3.3b). EC50MAP values of UV-B radiation, calculated at the five
lowest esfenvalerate concentrations, were combined significantly higher
from the EC50 value of the control (EC50 shift = +0.6, p = 0.002) (Fig-
ure 3.3a). When the organisms were exposed to the second stressor
with a 2-day delay (Figure 3.3c,d), the majority of antagonistic effects
of the primary stressor disappeared (EC50 shift = +0.04, p = 0.7);
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however, the concentrations 0.01 and 0.02 µg/L of esfenvalerate still
elicited an EC50 increase, which was significant under 0.02 µg/L. In
contrast, significant synergistic interactions were only provoked by
high doses of the first stressor (Figure 3.3c,d). This evidence sug-
gests that increased resistance to a second stressor is induced only by
low doses of the first stressor, but this process is more effective if the
stressors are applied without delay. Observations of antagonism at
low doses and synergism toward doses near the EC50 response were
also made by Loureiro et al. (2010) and Bjergager et al. (2017). It is
possible that sub-lethal doses of the first stressor triggered a general
homeostasis-maintaining response mechanism only at low doses, re-
sulting in a bi-phasic response (Calabrese and Baldwin, 2003; Costan-
tini et al., 2010; Shahid et al., 2019). Such a mechanism could coun-
teract the effects of the second stressor and invoke an EC50 increase
above the control, as observed in this study. Also, a reduction of
system stress (Shahid et al., 2019) that is outlasted by direct effects
of the stressors could explain the present results. Both explanations
are supported by the finding that each of the stressors, esfenvalerate
and UV-B radiation, elicited an EC50 increase above control levels of
the second stressor at low doses and the disappearance of antagonistic
effects at higher doses. An identification of the mechanisms respon-
sible for the antagonistic response to low doses of the first stressor
would benefit future investigations into the combined effects of multi-
ple stressors.

Sequential exposure to esfenvalerate and UV-B radiation may be char-
acterized by competing processes between interactions in both the
early- and late-stage of the stress response dependent on the timing
of stress exposure. We believe that the developed action–effect anal-
ysis can be seen as a promising contribution toward quantifying the
influence of timing and order on interactions between multiple stres-
sors. Our research further points out that low doses may serve a more
critical role than previously assumed. Low doses had a significant
antagonistic effect on the second stressor when applied without delay.
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This result indicates that risk assessment of interactions between mul-
tiple stressors should be based on broad dose–response relationships
so that the combined effects are not overlooked or underestimated. Fi-
nally, with this study, we underline the importance of including more
realistic exposure scenarios in environmental risk assessment.
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Chapter 4

Ultra-low Esfenvalerate
Concentrations Increase Biomass
and May Reduce Competitiveness of
Daphnia magna Populations2

4.1 Introduction
Current environmental risk assessment (ERA) aims to safeguard species
and populations in the environment by combining exposure and effect
assessment. The concentrations at which adverse effects of pesticides
occur in toxicity tests are lowered by assessment factors so that pop-
ulations in the field should also be protected. Field-studies, how-
ever, show that the ecological status of most streams with agricultural
catchments is still affected by pesticides below regulatory acceptable
concentrations (Liess et al., 2021). Similarly, the effects of low-dose
neonicotinoids have been underestimated by the same risk assessment

2Published in a slightly modified form as: Schunck F, Liess M. 2023. Ultra-low
Esfenvalerate concentrations increase biomass and may reduce competitiveness
of Daphnia magna populations. Sci Total Environ. 163916.
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that is based on lethal effects and short-term observations (Rundlöf
et al., 2015; Cressey, 2017). Therefore, to identify truly protective
thresholds for pesticide applications the population effect mechanisms
of low pesticide concentrations need to be assessed.

With the ban of most neonicotinoids in Europe and pending decisions
in the US in 2024, pyrethroid insecticides emerge as the most com-
mon alternative in agricultural applications (Jactel et al., 2019). In
the aquatic environment, pyrethroids generally occur as short pulses.
This is due to their fast dissipation from the water column; in stream
water, only 3% of pyrethroids are bioavailable (dissolved in water and
bound to dissolved organic matter), while 97% are bound to suspended
solids (Lu et al., 2019). Nevertheless, maximum concentrations only
1–2 orders of magnitude below the acute half maximal effective con-
centration (EC50) (D. magna) have been detected in surface waters
(Rösch et al., 2019b).

At such concentrations, stimulatory effects of pyrethroids have been
reported (Margus et al., 2019; Shang et al., 2021; Wolz et al., 2021) and
discussed in the context of hormesis theory (Townsend and Luckey,
1960; Stebbing, 1982; Calabrese and Baldwin, 2003; Liess et al., 2019a;
Agathokleous et al., 2022). In contrast to linear no threshold or thresh-
old models, hormesis assumes that dose–response relationships are
bi-phasic. This identifies that low levels of toxicants can have stim-
ulatory effects, while high concentrations have adverse effects. It is
hypothesized that positive, hormetic effects have associated negative
trade-offs, predicting that net population growth cannot be positive
(Forbes, 2000), due to limitations of available resources (Calow and
Sibly, 1990), or due to interactions with physical or biological ecosys-
tem components (Agathokleous et al., 2021). These trade-offs, how-
ever, remain poorly understood (Agathokleous et al., 2021), as do the
effects of hormesis within populations.

Thus, the aim of this study is to investigate the consequences of low-
dose pyrethroid exposure on the multi-generational development of
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aquatic populations. To this end, we exposed D. magna populations
close to their carrying capacity to the pyrethroid insecticide, esfen-
valerate. We tested concentrations of 1/3, 1/10 and 1/30 of the EC50,
which are expected to induce sublethal and hormetic responses, and
contrasted them with concentrations that induce lethal population
responses. Effects on population biomass and abundance were mon-
itored with a non-invasive imaging technique 3 times per week for a
total of 89 days.

4.2 Material and Methods

4.2.1 Experiment Design

The nanocosm experiment consisted of 40 D. magna populations, each
initialized from 15 neonates (age <24 h). After 4 weeks of develop-
ment, the populations were assigned to 8 exposure groups (control,
0.01, 0.032, 0.1, 0.32, 1.0, 3.16, 10.0 µg/L esfenvalerate). This as-
signment of nanocosms to one of the exposure groups was based on
the pre-exposure population density to achieve a balanced treatment
design. The populations were subsequently exposed to a single pulse
of the pyrethroid insecticide esfenvalerate at the respective concentra-
tion. Following this, the experiment was continuously monitored for
another 9 weeks. Throughout the entire duration of the experiment,
populations were monitored 3 times per week using an image analyz-
ing system. In general, the experimental design followed the works of
(Liess et al., 2006) and (Foit et al., 2012).

4.2.2 Test Systems

Each experimental unit consisted of a 5.5 L glass beaker (Harzkristall,
Derenburg, Germany), filled with 500 g of washed aquarium sand of
1–2 mm diameter. The sediment layer served as a habitat for mi-
croorganisms to facilitate self-purification of the systems. Aachener
Daphnien Medium (ADaM) (Klüttgen et al., 1994) was used as the
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test medium for the experiment. Throughout the duration of the ex-
periment, the medium was not changed and kept at a constant volume
of 4.5 L by replenishing the beakers with double distilled water on a
weekly basis. Water loss due to evaporation was minimized by cover-
ing the systems with glass plates. A 2 cm cut at the edge of the glass
plates provided access to the nanocosms. Sufficient oxygen saturation
was ensured by aeration of the test systems with glass tubes, which
were connected to Osaga Air Compressor LK-35 air pumps (Fish farm
Schierhölter, Glandorf, Germany) by silicon tubing. Aeration was
turned on 3 times per day for 15 minutes each. The populations were
fed three times per week with a diet of ground stinging nettle (Fo-
lia urticae), ground dog food (Organic dog biscuits, Yarrah Organic
Petfood BV, Harderwijk, The Netherlands) and batch cultured green
algae (Desmodesmus subspicata). The exact preparation of the feeding
suspensions is detailed in method B.1. Throughout the experiment,
the organisms received a total of 3.6 mg C per feeding. For the first 10
days only, this amount was doubled in order to promote the growth
of microbial communities in the system.

4.2.3 Environmental Conditions

The experimental units were exposed to a 16:8 h, day/night cycle and
were positioned with the water surface approximately 20 cm below 70
W cool-white fluorescent tubes. Throughout the whole duration of the
experiment, the room temperature was maintained at 20 ± 1 °C. Due
to the heat input from the lighting, the temperature of the systems
was increased by approximately 1 °C, resulting in system tempera-
tures of 21 ± 1 °C. The acidity of the systems reached a stable pH of
7.9 ± 0.1 within the first week. Conductivity was kept constant at ap-
proximately 1080 ± 17 µS/cm by water replenishment. In previously
conducted experiments of the same type, chemical parameters did not
differ substantially between treatments and were in bounds where no
effects on aquatic organisms are expected (Liess et al., 2006). This
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was asserted once, 4 weeks after exposure: NO3
– , 0.3 ± 0.1 mg/L;

NO2
– , 0.02 ± 0.003 mg/L; PO4

3– < 0.15 mg/L.

4.2.4 Exposure to Chemicals and Chemical Analysis
To study the effects of pyrethroids on D. magna, esfenvalerate (CAS
66230-04-4, HPC Standards GmbH, Cunnersdorf, Germany) was se-
lected as a representative of the group of type-II pyrethroid insecti-
cides. Esfenvalerate is approved for agricultural use in the EU un-
til 2023, and additional type-II pyrethroids continue to be allowed
until the end of the decade (https://ec.europa.eu/food/plant/
pesticides/eu-pesticides-database/active-substances/?event=
search.as). The hydrophobic insecticide esfenvalerate had to be
dissolved to ensure bioavailability in aquatic environments; we used
dimethylsulfoxide (DMSO) at concentrations of 0.01% and 0.02% v/v
for this purpose. To maximize the number of replicates per treatment,
no solvent controls were run in this study. However, we assessed
the influence of DMSO on reproduction and survival of D. magna,
by running chronic exposure tests on a range of DMSO concentra-
tions according to (OECD, 2012). These tests were conducted under
low feeding conditions (0.016 mg C/individual/day) and high feeding
conditions (0.16 mg C/individual/day) to estimate the effects on or-
ganisms under food limitation, comparable to the conditions in the
nanocosms. DMSO concentrations below 1% v/v, 2 orders of magni-
tude higher than the DMSO concentration used in this study, had no
effect on the survival and the cumulative offspring of D. magna up to
21 days post exposure (Figures B.2 and B.3), regardless of whether
the organisms were cultured under high or low feeding conditions. The
solvent concentrations used in this study (Table B.1) were 2 orders of
magnitude below this effect threshold. In addition, no effects on the
movement of D. magna were observed below 0.1% v/v in a different
study (Huang et al., 2018).

The stock solutions were prepared by serial dilutions in DMSO at the
day of exposure and measured once for each test concentration in 1 L
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volumes of ADaM, spiked parallel to the experimental units. Individ-
ual nanocosms were spiked with corresponding stock solutions, except
for control treatments, which were not treated with DMSO. Chemi-
cal analysis of the test solutions was performed by Wessling GmbH,
Landsberg OT, Oppin, Germany, using a Thermo Fisher Scientific
TSQ 8000 Evo gas chromatography–triple quadrupole mass spectrom-
etry (GC-MS/MS). Measured concentrations as well as used DMSO
concentrations are shown in Table B.1 for each treatment and are well
in line with the nominal concentrations. Therefore, we report the re-
sults in relation to the nominal concentrations of esfenvalerate.

4.2.5 Monitoring, Image Analysis and Calculations

D. magna populations were monitored 3 times per week for a total
period of 13 weeks using a non-invasive image detection method de-
scribed in (Liess et al., 2006) and improved by (Foit et al., 2012).
The method uses D. magna phototaxis and background subtraction
to detect abundance and estimate size. Images were captured using
a PowerShot G12 (Canon, Tokyo, Japan) mounted on a rectangular
box attached to the cylindrical vessel, in order to prevent reflections
on the glass surface. Prior to imaging, the observed system was briefly
shaded so that only the front of the aquarium was exposed to light.
Because D. magna are attracted to light, this resulted in a concen-
tration of D. magna closest to the camera-exposed front of the sys-
tems. Immediately after the shading was removed, a series of three
photographs were taken at a resolution of 2816 × 2112 pixels. The
remaining camera settings are listed in Table B.4. Due to the static
camera, three images with a fixed background and moving D. magna
were obtained for each system and monitoring date. In a final step
the images were converted to grayscale images and their difference was
calculated. Consequently, the resulting images contained only moving
objects. In the case of single-species systems, these objects must be
exclusively D. magna. The pixels were then counted to estimate the
size and biomass of the organisms. From the 3 resulting difference-
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images, the image with the highest number of D. magna was selected.
The exact procedure is detailed in (Foit et al., 2012).

The resulting abundance is the total number of organisms detected
in the systems. Since the volume of 4.5 L was kept constant in the
systems the reported abundance is comparable across all experimen-
tal replicates. The length L in mm of the organisms was calculated
using the formula L =

√
npixel/35.5, where 35.5 is an empirical factor

that was calibrated to a fixed camera distance (60 cm) and a reso-
lution of 2048 × 1536 (Figure B.1), to which the images, also taken
at a 4:3 ratio, were downscaled before calculation. The factor also
accounts for the fact that organisms of D. magna have an ellipsoid
shape rather than a square shape. From this, the dry-weight biomass
W (µg) of a single organism was estimated using the empirical rela-
tionship W = 1.5×10−8 ×L2.84, derived for D. magna (Dumont et al.,
1975). Since the length of the organisms is calculated and reported
in mm, it was converted to µm before being used in the equation.
The total biomass of the system was calculated as the sum ∑

W and
converted to mg.

Population pre-exposure growth rates were calculated by (∑
Wt=0 −∑

Wt=−5) ∆t, while post-exposure biomass growth rates were calcu-
lated by (∑

Wt=+5−∑
Wt=0) ∆t, where ∆t indicates the time interval,∑

W indicates the total system biomass in mg, and t = 0 corresponds
to the time point of exposure to esfenvalerate. Division by ∆t = 5 days
gave biomass growth rates in mg/day. The 5–day interval was chosen
for the calculation of population growth rates, because it represented
a long-enough time frame to show early effects and was available sym-
metrically on either side of the time of exposure.

4.2.6 Statistics

During the 4-week pre-exposure period, 9 systems did not develop
successfully. Systems were considered unsuccessful if the average pop-
ulation abundance stagnated during the pre-exposure period and was
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below the initial abundance of 15 neonates. In contrast, populations in
valid systems grew exponentially with an average of 98 neonates dur-
ing the exponential growth period; the lowest pre-exposure average of
successful systems was 50 neonates. Consequently, unsuccessful sys-
tems were removed from further investigation. Because the treatment
groups were previously balanced for population density, this change
harmoniously reduced the number of replicates per treatment from 5
to 4, except for the highest (10 µg/L) treatment, for which 3 valid
replicates remained.

We used a bayesian model of a random walk to estimate the treat-
ment trend µk that dominates the population time series Yi of all
observations i belonging to treatment k, which follows a random nor-
mal distribution around the trend at each time point t with a treat-
ment specific variation of σk. The trend is estimated by a Gaussian
random walk grw, where the size of each step-innovation follows a
half-normal distribution with a standard deviation of 1. It is offset
by a treatment-specific intercept, which follows a half-normal distri-
bution with a standard deviation of 2. Before model computation, the
response variable was centered and scaled, and back-transformed after
computation to calculate effect sizes.

Yi:i∈k,t ∼ Normal(µk,t, σk) 4.1
grwk,t+1 ∼ Normal(grwk,t, innovationk) 4.2

innovationk ∼ HalfNormal(sd = 1) 4.3
interceptk ∼ HalfNormal(sd = 2) 4.4

σk ∼ HalfNormal(sd = 1) 4.5

We concluded that the trend of a treatment was significantly differ-
ent from the control treatment if the lower bound of the 95% poste-
rior density interval (PDI) of the difference distribution was greater
than zero. This method is an application of bayesian null hypothe-
sis testing (Kruschke, 2013). The Python Markov Chain Monte Carlo
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(MCMC) library (PyMC) (Salvatier et al., 2016) was used to compute
the bayesian models. Further data analysis was done with Python and
statistical tests were computed with the package statsmodels (Seabold
and Perktold, 2010). The xarray package (Hoyer and Hamman, 2017)
was essential for handling high-dimensional data sets.

4.3 Results
The results shown in Figure 4.1 are time series of D. magna popula-
tion over the entire three-month period of experimentation. The 95%
PDI indicates the trend uncertainty due to variation in experimental
replicates. Trends were highly similar during the exponential growth
phase, prior to exposure to esfenvalerate, after which time series of all
treatments diverged significantly in terms of abundance and biomass
from control populations.

The development of the control populations followed a density depen-
dent trajectory typical of D. magna populations. Before exposure,
replicate populations grew exponentially. As expected, the smallest
size class (≤ 1.68 mm), approximating the neonate population (Fig-
ure 4.1a,e,i,m,q), grew fastest and reached a maximum growth rate 2
weeks after the start of the experiment. After 3 weeks, the neonate
abundance peaked in the control treatments, indicating that carrying
capacity had been reached. From this point on, the development of
this size class was characterized by a steady decline. Only towards
the end of the experiment did a second neonate growth cycle become
apparent. Juvenile organisms, approximated by the intermediate size
class (1.68–2.28 mm), continued to grow until 2 weeks after exposure,
when the abundance stabilized for the remainder of the experiment
(Figure 4.1b,f,j,n,r). The largest size class (≥ 2.28 mm), which ap-
proximates mature organisms, grew briefly in the exponential growth
phase, then decreased until 8 weeks after the start of the experiment
and showed strong growth thereafter (Figure 4.1c,g,k,o,s). The ini-
tial growth and decrease of the largest size class can be associated
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Figure 4.1: Time series of mean abundance and biomass of D. magna popu-
lations (N = 4). Each row corresponds to a tested esfenvalerate concentration,
with increasing levels from top to bottom. Solid lines indicate the bayesian esti-
mates of the mean trend in abundance (columns 1–3) and biomass (column 4) of
experimental replicates over time. Shaded areas indicate the uncertainty in the
trend with 95% PDI intervals. Asterisks (*) indicate significant deviations from
the control trend (black). The dashed line indicates the time point at which the
experimental systems were exposed to esfenvalerate. The minor ticks on the x-axis
represent 1-week intervals.
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with the initial population, which was the first to reach maturity and
slowly decreased in numbers due to aging and starvation. The second
growth cycle of D. magna adults emerged only when the populations
of adults and neonates were sufficiently low. This pattern is typical
of D. magna populations that, in the absence of predation or other
stressors, are dominated by few adult individuals.

Approximately 1 week after the smallest individuals reached their ini-
tial maximum, the systems were exposed to pesticides; this was 2
weeks before the medium-sized individuals and approximately 7 weeks
before the large-individuals reached their maxima. Related to the
population biomass, exposure occurred close to the control carrying
capacity (Figure 4.1).

4.3.1 Effects of Low Doses

During first week after the exposure, especially the smallest size class
of the populations exposed to 0.01 µg/L esfenvalerate (1⁄30 EC50) showed
a significant increase in abundance compared to pre-exposure values
(+7%), while exposure to 0.031 µg/L only led to an insignificant in-
crease in the abundance of small organisms (+5%). At the same
time, the abundance of the smallest size class in control treatments
decreased by 10%. The increased population growth of the lowest es-
fenvalerate treatment was also reflected in the significantly increased
population biomass during this period. In contrast, the medium and
largest size classes were generally not significantly increased by the
two lowest concentrations during the first week after the exposure. In
weeks 2–3 after exposure, the population dynamics of the low esfen-
valerate treatments showed similar trends to the control treatments
with respect to the abundance of all size classes and also for the
biomass (Figure 4.1a–h). Beginning in week 3 after exposure, sys-
tems dosed with 0.01 µg/L esfenvalerate again increased significantly
from control treatments in both abundance and biomass in all size
classes, lasting until the end of week 7 after exposure:
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Figure 4.2: Population biomass (mg
dry-weight) trajectories of experimen-
tal replicates of the control treatment
(black) and esfenvalerate treatments (col-
ored lines). Lines represent the ag-
gregated population development over-
all size classes. The trajectories were
smoothed with a moving average (10-day
backward window) to focus on the trend
of each time series.

Small organisms peaked in week
3–7 (+160% of control values),
medium-sized organisms peaked
in weeks 3–5 (+130%) and large
organisms peaked in weeks 3–
4 (+370%). Total biomass was
approximately twice that of the
control during weeks 3–7 after
esfenvalerate application. Expo-
sure to 0.031 µg/L esfenvalerate
resulted in similar but milder and
later deviations from the con-
trol trajectories: small organisms
peaked in weeks 5–6 after expo-
sure (+200% of control values),
medium-sized organisms peaked
in weeks 6–8 (+80%), and large
organisms were not significantly
more abundant in this treatment
than in the control. Popula-
tion biomass was significantly in-
creased in weeks 5–8 after expo-
sure (+60%). Figure 4.2 shows
the individual biomass trajecto-
ries of the different treatments
compared to the control trajec-
tories. The figure shows that
2 out of 4 control populations
went through an episode of low
population density in weeks 3–7
post exposure. These were also
the systems with the highest pre-
exposure biomass.
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4.3.2 Effects of Moderate and High Doses

Towards the end of the experiment, the onset of a new cycle of pop-
ulation growth was observed in these systems. Episodes of low pop-
ulation density prior to the onset of a new population growth cycle
were not observed in any of the systems exposed to low concentra-
tions of esfenvalerate (Figure 4.2a,b). Concentrations of 0.1 µg/L (1⁄3

EC50) induced mortality in D. magna. During the first week after ex-
posure, these concentrations induced a significant reduction in small
sized organisms: 0.1 µg/L esfenvalerate resulted in a significant reduc-
tion of 60%, 0.31 µg/L resulted in a 90% reduction and 1 µg/L and
above eliminated all small organisms. Such a concentration-response
relationship was also observed in the larger size classes. Concentra-
tions of 1 µg/L esfenvalerate and above also completely eliminated
the larger size classes of the populations entirely with no chance of
recovery.

Moderate doses of 0.1 µg/L (1 order of magnitude below the esfen-
valerate EC50 on D. magna) appear to have little effect on population
trends in the medium and large size classes (Figure 4.1j,k). How-
ever, closer examination of the individual trajectories (Figure 4.2c)
shows that, contrary to the control populations, 50% of the Daphnia
populations exposed to 0.1 µg/L esfenvalerate collapsed completely,
while others recovered to levels of control populations. Such a com-
plete population collapse did not occur in the controls. Exposure to
0.316 µg/L esfenvalerate resulted in stronger responses compared to
0.1 µg/L treatments—only one population recovered from the pes-
ticide effects (Figure 4.2d). This is also reflected in the significant
decrease in abundance and biomass trends from the control treatment
in all size classes. Figure 4.1m–p shows that the size classes of this
treatment recovered sequentially and that effects persisted until the
end of the experiment. Experimental replicates exposed to 1 µg/L
esfenvalerate and above (data not shown) collapse completely within
1 week after exposure to esfenvalerate (Figure 4.1q–t).
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4.3.3 Short-Term Esfenvalerate Toxicity and Population Den-
sity Effects

Figure 4.3: Post-exposure biomass growth rate in relation to the pre-exposure
biomass growth rate and esfenvalerate effects. (a) Relationship between 5-day pre-
exposure and 5-day post-exposure growth rates of population biomass. The colored
lines represent the regression line, offset by the respective effects of esfenvalerate
exposure. The diagonal thin line indicates the inverse 1:1 relationship; observations
on this line indicate that the post-exposure biomass growth was the opposite of the
pre-exposure growth. Shifted regression lines on the y-axis indicate that the post-
exposure growth rate changed with the same negative correlation. Observations
in the lower-right quadrant are indicative of populations that were at carrying
capacity during exposure. (b) Esfenvalerate effect on 5-day post-exposure growth
rates, assembled in a dose-response curve. The black markers are the resulting
y-intercepts of the linear regression model (see Table B.2). The line through the
points is based on a cubic spline calculation. The dashed-extension of the spline
indicates that the maximum effect was reached and a reasonable fit of the cubic
spline was no longer possible at these concentrations.

Figure 4.3 shows that the population biomass growth after the ex-
posure to esfenvalerate is strongly dependent on the biomass growth
before the exposure (slope = −1.1, p < 0.001). The more biomass
grew before exposure, the more it decreased after exposure, and vice
versa. The accumulation of observations in the lower-right quad-
rant (75% positive pre-exposure growth and negative post-exposure
growth) and the few observations in the upper-right quadrant (9%
continued positive growth) of Figure 4.3a suggest that the population
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was approaching carrying capacity, regulated by density-dependent
processes. In the treatments exposed to 0.01 µg/L and 0.0316 µg/L es-
fenvalerate, a slightly offset relationship was observed. Post-exposure
growth rates were offset by +0.12 mg/day and +0.08 mg/day, re-
spectively (Figure 4.3a,b). In contrast, control populations did not
deviate from the effect of pre-exposure growth rates (+0.005 mg/day
post-exposure growth rate), and concentrations of 0.316 µg/L esfen-
valerate and above resulted in significantly decreased post-exposure
growth rates (avg. = −0.29 mg/day, p < 0.05). In fact, the com-
parison with a model without concentration effects (Table B.3) shows
that the concentration explains an additional 24% of the variation in
post-exposure growth rates. The resulting hormetic response (Fig-
ure 4.3) was also present in the long-term increase in abundance and
biomass, with the 2 lowest concentrations increasing and the higher
concentrations decreasing (Figure 4.3).

4.4 Discussion

4.4.1 Density Dependent Oscillations of D. magna Popula-
tions

We observed a substantial and significantly increased population abun-
dance and biomass in D. magna populations exposed to concentra-
tions of 0.01 and 0.031 µg/L esfenvalerate for up to 7 weeks after
pulse-exposure (Figure 4.1a–h). To understand the processes govern-
ing the observed systems, the population dynamics of the control pop-
ulations must be considered. The control populations went through
an exponential growth phase, which in the case of neonates reached a
maximum after 3 weeks (dominance phase). In the following weeks,
the number of neonates decreased and the population was dominated
by adult organisms. This resulted in a low but variable population
biomass (suppression phase). Such demography is very common in D.
magna population dynamics (McCauley and Murdoch, 1987; Faerøvig
et al., 2002; Rutter et al., 2017). Oscillating population dynamics
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are a well-known phenomenon (Halbach, 1970; May, 1974), and have
been repeatedly observed in D. magna populations even in the absence
of an external forcing (Murdoch and McCauley, 1985; Grover et al.,
2000; Preuss et al., 2009). The behavior of D. magna to reproduce in
batches can lead to high growth rates and corresponding overshoots
with delayed corresponding strong downward fluctuations (McCauley
and Murdoch, 1987), with a large potential for demographic stochas-
ticity. Due to the limited size of the experimental units (4.5 L), the
variation in the observed control replicates is therefore most likely due
to demographic stochasticity and has been frequently observed in lab-
oratory Daphnia populations (Palamara et al., 2022; Vlaeminck et al.,
2022).

In this study, none of the populations exposed to low concentrations
of esfenvalerate (0.01, 0.03 µg/L esfenvalerate) went through a low-
density phase (Figure 4.2a,b). Instead, abundance and biomass of
D. magna were significantly increased compared to the control (Fig-
ure 4.1a–h). Hence, we consider the observed stimulatory effects as
positive deviations from the typical suppression phase in D. magna af-
ter reaching peak population density. Possible hypotheses to explain
this observation are presented below.

4.4.2 Reductions in Individual Competitiveness May Explain
Hormetic Stimulation in Single Species Laboratory Pop-
ulations

Hormesis theory proposes that low doses of toxicants can induce stim-
ulatory effects in individuals and populations. This was first reported
by (Schulz, 1888) who identified increased CO2 production in yeast
populations exposed to various toxicants. Similar, beneficial effects of
toxicants well below acute mortality have been observed in a number
of other studies (Stebbing, 1998; Christopher Cutler et al., 2009; Cal-
abrese, 2010; Cutler, 2013; Carvalho et al., 2020; Wang et al., 2021).
For pyrethroids, positive effects of sublethal concentrations have also

54



4.4. Discussion

been observed in Daphnia (Liess et al., 2019a) and mayfly survival
(Beketov and Liess, 2005), trans-generational increases in aphid repro-
ductive rates (Shang et al., 2021), trans-generational beetle hatching
success (Wolz et al., 2021), and beetle body mass increases (Margus
et al., 2019). In D. magna, increased reproduction rates of population
were observed under sublethal concentrations of esfenvalerate (Bjer-
gager et al., 2012). A hormesis-induced increase in reproduction (e.g.
Costantini, 2019) following exposure to 0.01 and 0.03 µg/L esfenvaler-
ate is a possible explanation for the observed results (Figure 4.1a–h,
Figure 4.3b). Hormesis-induced stimulation, however, demands that
free resources were available for the increased population growth. Fig-
ure 4.3a shows very clearly that the growth rates before and after the
exposure were inversely proportional, indicating that reaching carrying
capacity of the populations coincided with the exposure to esfenvaler-
ate. In addition, the clear peak in the smallest size class prior to the
exposure event indicates that the carrying capacity was reached. Thus,
simple stimulation is not sufficient to explain the sustained increase
in abundance and biomass for several weeks after exposure. Hormesis
theory also suggests that positive responses to low doses of stress can
result from conditioning (Costantini, 2019), but since organisms are
only exposed to esfenvalerate only once in their lifetime, this explana-
tion is ruled out. Considering the high intraspecific competition under
carrying capacity, it is very likely that not only a hormetic-induced
increase in reproduction, but also trade-offs affecting resource avail-
ability contributed to the observed results.

Environmental change may induce stimulation of some functions and
repression of others in the transcriptional programs of the environ-
mental stress response (Gasch et al., 2000; Hackley and Schmid, 2019).
Therefore, stimulatory effects should come at the expense of energetic
trade-offs, resulting in net neutral population growth rates (Calow and
Sibly, 1990; Forbes, 2000). We show that, contrary to this assump-
tion, the resulting net population growth was positive, suggesting that
hormetic trade-offs may not be detectable in conventional population
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responses such as density and biomass. To explain the significant and
long-lasting positive deviation from control treatments within popu-
lations at carrying capacity, some other resource-consuming process
must have been reduced. We hypothesize that at the population level,
intraspecific competition is reduced by pesticide exposure at low, sub-
lethal concentrations. The concept of an intrinsic longsys that can
be reduced by external stress has been previously described at the in-
dividual level (Liess et al., 2019a), and has been successfully applied
to model the stimulatory effects of low toxicant concentrations (Liess
et al., 2020). A reduction in intraspecific competition, along with an
associated reduction in resource requirements, may have allowed the
short-term increase in population growth (Figure 4.3b) to take hold
and result in an increased population biomass throughout most of the
life span of D. magna. Only 8 weeks after exposure—at the end of
the life span of D. magna—did population density and biomass re-
turn to control levels. Therefore, we conclude that the reduction in
individual competitiveness is the likely trade-off of hormesis in popu-
lation growth rates of D. magna exposed to sublethal concentrations
of pyrethroids. It is a limitation of this study that no indicators of re-
duced intraspecific competition were measured. Reduced metabolism,
activity, or swimming speed while maintaining filtration rates could
mechanistically explain the observed results and should be tested in
future work. It should also be noted that the results cannot necessar-
ily be extrapolated to environmental ecosystems, where predator-prey
dynamics greatly complicate the system. Nevertheless, the study pro-
vides mechanistic information on the effects of ultra-low doses on the
population dynamics of D. magna.

4.4.3 Considerations for Esfenvalerate Effects in the Envi-
ronment

In this work’s experimental setup—which mimicked a natural system
with sediments and suspended organic matter—a single pulse of 1⁄3 of
the esfenvalerate EC50, resulted in a collapse of 50% of the popula-
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tion; and, as argued above, even much lower concentrations affected
the population dynamics of D. magna. Our study therefore shows that
single pulses of pyrethroids are a relevant threat to aquatic organisms
even far below acute concentrations. This contradicts the assump-
tion of (Yang et al., 2006) and (Lu et al., 2019), who argued that the
toxicity of pyrethroids is overestimated when using the total chemical
concentration, due to high sorption to sediments and consequently low
bioavailability. Despite the quick dissipation of esfenvalerate, initial
pulses occur and result in long-term detrimental effects in populations,
as demonstrated in this experiment. While we acknowledge the low
bioavailability of pyrethroids after chemical equilibrium is reached, ef-
fects at the individual level do occur after ultra-low pulses (Liess, 2002;
Beketov and Liess, 2005), and our study shows that pyrethroid pulses
even have long-term effects at the population level. Given the demon-
strated occurrence of such pyrethroid pulses (Rösch et al., 2019a) and
the likely increase in pyrethroid use in the future (Jactel et al., 2019),
we argue that the effects of transient pyrethroid pulses should be con-
sidered in aquatic risk assessment.

Finally, it could be argued that low concentrations of pyrethroid insec-
ticides are acceptable as they lead to increased stability of the exposed
systems. However, we do not consider this to be a valid argument, as
the presumed long-term reduction in competitive strength under con-
ditions of interspecific competition with another species could have a
negative effect on population development. To clarify, suppose that
sublethal effects of a pesticide induce a population increase in biomass
and abundance, conditional on a reduction in individual competitive-
ness. Then, in an ecological community, a less sensitive competitor
could exploit this competitive advantage and outcompete the more
sensitive species. Such a mechanism is supported by the theory that
changes in the competitive difference between species can lead to the
exclusion of one species (Pastore et al., 2021) and has already been
observed for the case of acute concentrations (Liess et al., 2021).
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We conclude that concentrations below 1⁄10 of the acute EC50 signif-
icantly increased the population abundance and biomass for several
weeks following exposure to the pyrethroid insecticide esfenvalerate.
This provides evidence that responses to low-dose toxicants may re-
duce long-term intraspecific competition by reducing the competitive
strength of individuals. We therefore propose the use of long-term
non-invasive population monitoring to detect subtle but relevant ef-
fects on the performance of individuals within populations. Further-
more, we propose to conduct multi-species experiments to assess pop-
ulation performance under the influence of interspecific competition
and ultra-low pesticide exposure.
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Chapter 5

Persistent Disruption of Interspecific
Competition after Ultra-low
Esfenvalerate Exposure3

5.1 Introduction
Effect assessment is centered around the screening for toxic effects with
single species, single substance tests (European Food Safety Authority,
2013). However, a growing number of studies indicate that whenever
complex biological systems are exposed to a stressor, results diverge
from expectations (Fleeger et al., 2003; Knillmann et al., 2012a,b; Liess
et al., 2013; Arce-Funck et al., 2016; Alexander et al., 2016; Allen et al.,
2021; Vaugeois et al., 2020). Due to this gap between single species
lab experiments and mesocosm experiments, the inclusion of species
interactions is one of the most important aspects of strengthening risk
assessment (Gessner and Tlili, 2016). Indeed, the question “how [. . . ]
interactions among different stress factors operating at different levels
of biological organization [can] be accounted for in environmental risk

3Published in a slightly modified form as: Schunck F, Liess M. 2024. Ultra-low
esfenvalerate exposure may disrupt interspecific competition. Sci Total Environ.
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assessment”, was ranked first place by experts on the topic of how to
advance sustainable development of environmental quality (van den
Brink et al., 2018). Unfortunately, little progress has been made, as
studies considering biological stressors such as species interactions are
still underrepresented in literature (He et al., 2023).

The population state is an important co-variate for toxic effects of
chemicals. Intraspecific competition can delay recovery of the popu-
lation structure (Pieters and Liess, 2006; Liess et al., 2006; Liess and
Foit, 2010). The competitive exclusion principle states that complete
competitors (i.e. those that compete for exactly the same ecological
niche) cannot coexist (Gause, 1936; Hardin, 1960), in natural ecosys-
tems species diversify into their own niche, however, usually some
overlap between shared resources remains, allowing for co-existence
of competitors (MacArthur, 1958; Hawlena et al., 2022). When such
communities are exposed to toxicants, species–species interactions can
therefore be expected. This is because usually one species will have
a competitive advantage if exposed to a toxicant due to differences in
the species’ sensitivity. Interspecific competition can delay recovery
of species after disturbances (Knillmann et al., 2012b) and increase
toxic effects of pesticides (Knillmann et al., 2012a). Under repeated
lethal exposure to toxicants, the more sensitive species is gradually
excluded, even when food density is abundant (Liess et al., 2013). In
a synthetic freshwater community, the exposure to acute concentra-
tions of an insecticide lead to reduced abundance in both competitors
when they had a comparable sensitivity towards the toxicant and led
to compensatory dynamics if sensitivities were different (Mano and
Tanaka, 2016).

How do pesticides alter interactions between competing species? Do
they cease or do they change when concentrations are far below levels
that elicit acute effects? In the field, pesticide exposure 3 orders of
magnitude below the half maximal effective concentration (EC50) re-
sults in severe degradation of community composition with the loss of
sensitive species (Liess et al., 2021). Recently, it was shown that expo-
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sure to esfenvalerate at 1–2 orders of magnitude below the acute EC50

may lead to a long-term increase in abundance of D. magna popula-
tions at their carrying capacity (Schunck and Liess, 2023), reinforcing
the question how subacute concentrations act on the ecological level
of the community.

This experiment aims to reveal the effect of ultra-low dosed esfenvaler-
ate concentration on the population development of two competing
species (D. magna and C. pipiens) in a food limited system that fa-
cilitates high competition between the species. For this we set up 80
laboratory nanocosms and repeatedly exposed them with esfenvalerate
concentrations as low as 3 orders of magnitude below the acute EC50.
The system state was monitored over a period of 4 months through
non-invasive weekly monitoring of species abundance and measure-
ment of physico-chemical parameters to assess the influence of envi-
ronmental parameters on population development. The correlation
between competing species was estimated with bayes methods in or-
der to identify effects of esfenvalerate on the interaction between D.
magna and C. pipiens.

5.2 Material and Methods

5.2.1 Experiment Design

To study the effects of low doses of esfenvalerate on competing pop-
ulations under limited availability of food and varying environmental
conditions, 80 artificial 2–species systems were assembled in November
2020, under controlled temperature (20 ± 1 °C) and light conditions
(16:8 day/night cycle). D. magna and C. pipiens were selected as
competitors, both of which are common invertebrates that dwell in
standing freshwater and brackish water bodies (Ebert, 2022). While
D. magna spends its entire life cycle in the water, the species C. pip-
iens emerges after an approximately 20 day underwater larval stage
as an adult mosquito and can reproduce without feeding on animal
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blood. Both species feed on suspended particles in the water column
(Merritt et al., 1992; Ebert, 2022) or moved close to the sediment to
graze on organic particles of periphyton.

Each experimental unit consisted of a 5.5 L glass beaker (Harzkristall,
Derenburg, Germany), filled with 1.5 kg of washed aquarium sand of
1–2 mm diameter. The sediment layer served as a habitat for microor-
ganisms to facilitate self-purification of the systems as well as sub-
strate for periphyton growth. Aachener Daphnien Medium (ADaM)
(Klüttgen et al., 1994) was used as the test medium for the experi-
ment. Throughout the duration of the experiment, the medium was
not exchanged and kept at a constant volume of 3.5 L by replenish-
ing the beakers with doubly distilled water on a weekly basis. The
systems were covered with a polypropylene net to prevent escape of
the adult mosquitos. Two eyelets were embedded in the netting to
grant access to the systems for measurement, sampling and supply
of glucose solution. Additionally, a reaction vessel was fitted in the
netting and immersed in the water column and filled with distilled
water itself. This provided access for temperature monitoring without
cross-contaminating the measurement device.

For 5 months, the systems were continuously colonized, while the
systems were developing periphyton growth on the sediments, which
served as a food source for the organisms. The systems were delib-
erately left to diverge from the initial homogeneous state to reflect
random variation in environmental habitats. In contrast to previously
conducted nanocosm experiments (Liess et al., 2006; Foit et al., 2012),
no additional food was supplied to the systems after the end of the
colonization period. Instead, nutrition came from periphyton growth
on the sediments and suspended algae and bacteria in the water col-
umn. This set-up was chosen to mimic density dependent processes
in natural systems (Halbach, 1970) and enforce competition between
the two test species. Only adult mosquitoes were provided with a
saturated glucose solution to enable reproduction.
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5.2.2 Water Quality During the Pre-exposure Period
After 5 months of colonization, population monitoring of C. pipiens
(once per week) and D. magna (twice per week) began. Those sys-
tems, with low emergence rates of adult C. pipiens were still popu-
lated with larvae and eggs to simulate spawning events for another
two months. Physicochemical parameters were very homogeneous in
the pre-exposure period (temperature 20.2 ± 0.3 °C, conductivity 987
± 84 µS/cm, oxygen 10.1 ± 0.5 mg/L, pH 7.3 ± 0.4). Nutrient lev-
els were similar to previously conducted studies (PO4

3– : 0.2 ± 0.1
mg/L, NO3

– : 0.7 ± 0.4 mg/L, NO2
– : 0.02 ± 0.01 mg/L, NH4

+: 0.03
± 0.04 mg/L). The median suspended biomass of 0.2 mg/L was in
the range of oligotrophic lakes, suggesting that most systems were
strongly limited in biomass available for feeding however measure-
ments had a considerable range (90%-quantile: 0.01–2.97 mg/L). The
environmental parameters that characterized the systems are summa-
rized in Table C.1 for the pre-exposure period and in Table 5.1 for the
post-exposure period.

5.2.3 Exposure
After the 2-month pre-exposure period, the systems were exposed two
times to the pyrethroid insecticide esfenvalerate with a recovery period
of 1 month between exposures. The treatments consisted of 5 esfen-
valerate exposure levels (solvent control, 0.1, 1, 10, 100 ng/L) with a
treatment size of 16 replicates each. For the preparation of stock so-
lutions, 5 mg esfenvalerate (CAS 66230-04-4, HPC Standards GmbH,
Cunnersdorf, Germany) were dissolved in dimethylsulfoxide (DMSO)
and diluted to a concentration of 1000 µg/L, which also served as ex-
posure solution for the highest exposure treatment. From this stock,
exposure solutions were diluted to 100µg/L, 10µg/L and 1 µg/L. An
additional solution containing DMSO was prepared to serve as the ex-
posure solution for the solvent control. The stocks were prepared on
the day preceding the exposure and refrigerated overnight. On the day
of exposure, 350 µL of the treatment specific exposure solutions were
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added to the corresponding systems containing 3.5 L ADaM medium,
amounting to a solvent concentration of 0.01% v/v.

The accuracy of the exposure concentrations was determined by mea-
suring the concentration of the stock solutions spiked to 1 L samples
of freshly prepared ADaM. In addition, 50 mL water samples from 4
selected replicates of the highest exposure treatment (100 ng/L) were
taken exactly 1 h after exposure and 48 h after exposure. Chemical
analysis of the tested samples was performed by SGS Analytics Ger-
many GmbH, using a gas chromatography–mass spectrometry (GC-
MS). Measured concentrations of stock solutions and samples of exper-
imental replicates are shown in Table S3 and Table S4. The measured
concentrations in experimental replicates in the 100 ng/L esfenvaler-
ate treatment were very homogeneously at 38.8 ± 11 ng/L, 1 h after
exposure and were always below the limit of quantification (LOQ) of
20 ng/L after 48h. Rapid dissipation of esfenvalerate from the water
column due to sorption and photodegradation can explain the repaid
decay in the first 48h hours after exposure. For the remainder of this
work the nominal esfenvalerate concentrations are reported.

5.2.4 Biological Assessment of Exposure Concentrations
In addition to chemical analysis of the exposure solutions, the effect
of esfenvalerate on standard test organisms was assessed. This was
done under standard conditions and in the nanocosm medium. These
standardized experiments were conducted in parallel to the exposure
of the main experiment. For each test system, 2 × 25 ml beakers were
filled with 20 ml samples of the test systems 1 hour after exposure. 5
neonates (< 24 h) of D. magna were placed in one beaker and 5 larvae
(< 96 h) of C. pipiens in the other; then survival was observed for 48
h. During this duration organisms were not fed to mimic conditions
in the test systems. In addition, the same setup was prepared for
each exposure concentration, plus a test concentration of 1000 ng/L,
in standard ADaM medium. Populations were monitored for survival
for 2 days without feeding, according to the acute standard test for D.
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Figure 5.1: Similar sensitivity of D. magna (age < 24 h) and C. pipiens (age
< 96 h) after 48 h of exposure to esfenvalerate. The average esfenvalerate EC50

for D. magna from Environmental Protection Agency (EPA) database is 0.31 ±
0.33 µg/L (Table 2.1). Survival data were obtained from standard tests conducted
in parallel to the 1st and 2nd exposure of the nanocosm test systems with the
same exposure solutions (a) under standard conditions (Culex EC50 = 71 ng/L,
Daphnia EC50 = 176 ng/L), and (b) in samples of experimental units (nanocosms)
taken 1h after exposure to esfenvalerate (Culex EC50 = 80 ng/L, Daphnia EC50

= 187 ng/L). The squares indicate the EC50 and shaded areas show the bayesian
credible intervals (CIs) of the estimate. The solid line is the maximum likelihood
estimate of a 3-parameter log-logistic function and the dashed line is the bayesian
fit.

magna (OECD, 2004). Figure 5.1a shows that under standard condi-
tions C. pipiens were slightly more sensitive (Culex EC50 = 71 ng/L,
Daphnia EC50 = 176 ng/L). When tested in the nanocosm medium,
Culex had 10% higher control mortality also under non-lethal esfen-
valerate concentrations (Figure 5.1b), while no control mortality was
detected in D. magna.

5.2.5 Monitoring of Species Abundance

Population development of D. magna was monitored by taking 3 im-
ages of each system with a Panasonic DC-FZ1000-II (Panasonic Cor-
poration, Kadoma, Japan), twice per week and was analyzed with an
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improved image analysis technic compared to the approach developed
by Foit et al. (2012).

Initially, motion is detected by background subtraction; this method
is based on differences between two consecutive images. Background
subtraction removes all static parts of the image, so that only moving
objects of both images remain. Taking the elementwise maximum of
this difference results in only the moving objects of the first image.
Depending on the amount of movement in the system, between 100–
100000 proposal candidates are generated. Large numbers of proposals
can occur when the background is even slightly moving, or the light-
ing conditions change during capture. In a second step, the bounding
boxes around the coordinates of the detection are analyzed for charac-
teristic properties and stored in a file. These data points comprise the
basis for the classification. 50 randomly selected images were anno-
tated based on the candidate proposals. After annotation, a support
vector machine (SVM) classifier was trained with the annotated tags
from the 50 images. The resulting accuracy of the unseen test set was
98%.

Of all labelled D. magna, 97% were correctly classified as such, how-
ever an arbitrary proposal of a moving object generated a 2% chance
of a false positive detection, resulting in a slight tendency for over-
detection (Figure 5.2a). This effect can result in problems if a large
number of proposals is generated (e.g. when the camera is slightly
moved during image capture). Therefore, in a 3rd step of the analysis,
the image with lowest overall difference in pixels was chosen in each se-
ries and manual removal of few images, where no successful difference
image could be calculated. This classification method was then used
to detect population abundance in 7680 images taken throughout the
experiment. Validation with the true organism count obtained at the
end of the experiment shows that approximately 50% of the organ-
isms are detected (Figure 5.2b), however, this divergence is consistent
throughout the assessed systems, which allows to assess the relative
effects in the system.
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Figure 5.2: Validation of the detection method. The manual count indicates
the number of organisms identified by visually counting D. magna in an image. In
contrast, the true count is the actual number of organisms in the vessels determined
when the experiment was ended. The predicted count is the number of organisms
estimated by the classification algorithm. (a) Classifier evaluation of the capacity
to detect organism from images. (b) Validation of the method by comparison
of estimated organism count from image segmentation and classification with the
true count from the last day of experimentation.

The abundance of larvae of C. pipiens was manually counted once per
week. Since larvae of C. pipiens generally remain static in their po-
sitions below the water surface, it was possible to determine accurate
population counts. Also, in contrast to automatic detection methods
it was easily possible to distinguish between exo-skeletons of emerged
larvae and their submerged siblings. In order to detect any organisms
hiding in the sediments, the systems were gently moved to provoke es-
cape reactions of Culex larvae. The abundance of Culex larvae directly
after hatching is not included in the population count. Only organ-
isms larger then approximately 2 mm (newly hatched) were included
in the analyses.

5.2.6 Sampling and Measurement of Environmental Param-
eters

Weekly, a 5.5 mL sample was taken to measure physicochemical pa-
rameters and cell density. Every second week, an additional 20 mL
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sample was taken to measure the nutrient status of the systems. Great-
est care was taken to avoid cross contamination of the systems. For
this, syringes were connected with silicon tubing to each nanocosm
and reused for the entire duration of the experiment. After sampling,
the samples were stored cool until analysis or measured directly and
discarded thereafter. Sampling was conducted in parallel to the mon-
itoring of the systems. Since this process took several hours, varia-
tions in the reported parameters due to daily temperature fluctuations
are present in the dataset. Medium reductions due to sampling and
evaporation were replenished with bi-distilled water. Major nutrient
concentrations (NO2

– , NO3
– , NH4

+, PO4
3– ) were measured every

second week with a photometer (PF-12plus, Macherey-Nagel, Düren,
Germany). To increase the accuracy, values were calculated from re-
calibrated spectral absorbance measurements and estimated concen-
trations (Figure C.1). Physicochemical parameters were measured
with a multi-parameter device (Portavo 908 Multi, Knick Elektronis-
che Messgeräte GmbH & Co. KG, Berlin, Germany). The density of
suspended cells was measured with a CASY-TTC cell counter (Schärfe
Systems, Reutlingen, Germany, now OMNI Life Science, Bremen, Ger-
many). The raw count data was passed through a filter, discarding
measurements where total counts were < 2, to separate white noise
from signal. Data were then smoothed and the total volume in µL/L
was calculated and estimated as suspended biomass density in mg/L,
assuming a wet weight density of 1 mg/µl (e.g. Zhu et al., 2021). The
pre-exposure measurement values are reported in Table C.1.

The measured levels of N and P were in the range of eutrophic lakes
(compare e.g. Šorf et al., 2015; Beklioğlu et al., 2017). However, con-
tinuously high levels of dissolved oxygen and low densities of sus-
pended cells indicate that the observed nutrient concentrations had
no effect on the studied systems. Direct effects of these nutrients are
also unlikely since, they were not near high enough to elicit direct
effects on D. magna (Serra et al., 2019).
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5.2.7 Statistics
For the entire analysis 17 systems were excluded from subsequent anal-
ysis. The detailed reasons for removal are listed in method C.1. For
all analyses considering the temporal dynamic of the systems, the time
series were smoothed by computing centered running averages with a
time window of 11 days (Figure 5.3). This was done to reduce the
influence of very short termed fluctuations in the signal, which makes
the analysis more robust to measurement errors, but may rarely under-
estimate true treatment effects such as the saw tooth pattern visible
in Figure 5.3a.

Figure 5.3: Time series smoothing and exemplary disturbance analysis of one
experimental unit. (a) shows a running average (solid black line) that has been
computed through the time series (blue dots). The lower panels show deviations
from the linear pre-exposure trend that has been extrapolated (dashed line). (b)
first exposure on the 3rd of June (day 62) (c) 2nd exposure on the 30th of June
(day 89).

Disturbance Analysis to Identify Short Term Effects of Esfenvalerate

Due to the complexity of the analyzed systems, high variance between
experimental replicates complicated the identification of general pat-
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terns in the time series. The following analysis was developed to ro-
bustly identify immediate effects of the tested esfenvalerate concentra-
tions in replicated time series with high variance between replicates.
In smoothed time series, 21–day long segments, centered around the
exposure events, were isolated (Figure 5.3, gray boxes). Then lin-
ear trends were computed through the 10–day pre-exposure sections
(Figure 5.3b,c, solid horizontal lines) and were extrapolated to the fol-
lowing 11 days (Figure 5.3b,c, dashed horizontal lines). Disturbances
were then estimated by calculating differences between extrapolated
pre-exposure trends and the true development of smoothed time se-
ries (Figure 5.3b,c, red vertical lines). The described analysis allows
the estimation of low disturbances when the population development
is characterized by smooth, non-volatile cycles, which we interpret as
normal behavior. On the contrary, high variance in the signal will
lead to strong disturbance signals and be indicative of treatment ef-
fects.

Correlation Analysis to Identify Changes in Interspecific Competition

In the study of interaction between species, measuring the correlations
between species can give insight into their relationship (Moran, 1953;
Ranta et al., 1995; McCarthy, 2011). Strongly positive correlations
between abundance will in theory emerge, when both species equally
respond to low or high levels of resource availability. In essence, when
they are coexisting with significant overlap of shared resources. On
the other hand, if the exclusion of either one species occurs, strong
negative correlations between species will be observed. Natural sys-
tems, repeatedly observed over time, will show correlations between
these extremes. However, trends in either one of the directions are
indicative of changes in the relationship between species and will be
interpreted as such in this study.

Estimating the correlation between count data is a non-trivial task.
The approximation with the Pearson correlation coefficient will under-
estimate negative correlations due to the constraint of count data to
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be non-negative. In addition, multivariate Poisson distributions have
been previously restricted to positive correlations (Ghosh et al., 2021).
Modern bayesian inference frameworks (Salvatier et al., 2016) allow
for flexible transformations of variables, which enabled us to approach
the problem by modelling the count data (Ns) as Poisson distributed
variables (Equation 5.1), modeling their log-rates (log(λ)) as corre-
lated normal distributed variables (Equation 5.3), and transforming
the log-rates positive constrained rate parameters by exponentiation
(Equation 5.2).

Ns ∼ Poisson(λs) 5.1
λs = elog(λs) 5.2

log(λs) ∼ MultivariateNormal(mu = µs, covariance = cov) 5.3
cov ∼ LKJ(η = 1, σs) 5.4
µs ∼ Cauchy(0, 1) 5.5
σs ∼ HalfCauchy(1) 5.6

Weakly informative Cauchy distributions with heavy tails (Gelman
et al., 2008; McElreath, 2015) were used as priors for µs and σs, which
describes the log species occurrence rates (Equation 5.5) and their
intrinsic deviation (Equation 5.6). An LKJ prior with uniform proba-
bility density over the correlation between the species (η = 1) was used
as an uninformed prior for the covariance structure of the multivariate
Normal (Equation 5.4). A calculation example for 3 imaginary test
systems: Assume the numbers of organisms (Culex, Daphnia) in the
respective systems were (5, 10), (10, 20) and (20, 40). A correlation
coefficient close to 1 would be estimated, although with large highest
density intervals (HDIs) representing the uncertainty, since only 3 sam-
ples are given. In an opposing example, where (1, 20), (50, 2), (0,0)
are observed, a correlation coefficient near −1 would be estimated,
representing the observation, at most one species was dominant. An
estimation example for a simulated dataset is given in Figure C.2,
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which shows that the correlation coefficient can be estimated very
well, even with only 12 samples, which is representative for this study.
The 95% posterior density interval (PDI) was computed to calculate
the CIs, which are considered to be the bayesian analog to confidence
intervals. However, in contrast to confidence intervals, a 95% CIs in-
clude the true parameter value with a 95% probability by definition.
Interspecific correlation coefficients, including bayesian uncertainty
estimates were recovered from the covariance matrix (Equation 5.4),
which fitted estimated for whole pre- and post-exposure datasets (re-
sults: Fig. Figure 5.6) and for each day in the smoothed time series
(see Figure 5.3) to obtain trends in the interspecific correlation (re-
sults: Figures 5.4 and 5.7).

5.3 Results

Figure 5.4: Species abundance (λ) per treatment over the time of the experiment
in days computed with a bayesian model of correlated, Poisson distributed vari-
ables. The vertical lines indicate the times of exposure to esfenvalerate. Shaded
areas are 95% CIs and indicate the uncertainty of the estimates. (a–d) Expected
abundance C. pipiens. (e–h) Expected abundance D. magna.

Figure 5.4 shows the development of population densities of the com-
peting species before and after exposure to esfenvalerate as a treatment
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average. Larvae populations of C. pipiens were stable or increasing
in the pre-exposure period with highly variable population densities
across replicates, indicated by large CIs (Figure 5.4a–d). This is at-
tributed to continued stocking of low density Culex populations with
additional eggs and larvae in the pre-exposure period. Only when
stocking was ceased in the post exposure period, negative trends were
visible in the population density of C. pipiens. In contrast, D. magna
populations, which were not artificially stocked in the pre-exposure
period, follow a steady decline over the entire period of the exper-
iment (Figure 5.4e–h). In general, the declining population density
reflect that the systems were characterized by resource scarcity. This
corresponds to the low density of suspended organic matter (median
0.21 mg/L, 90%-quantile: 0.01–2.97 mg/L). As expected, due to the
necessity of artificial stocking in the pre-exposure phase and slightly
but significantly higher baseline mortality in nanocosm medium (Fig-
ure 5.1b), C. pipiens were significantly less abundant then D. magna
over the entire duration of the experiment.

After exposure to esfenvalerate, average trends of populations exposed
to esfenvalerate did not significantly deviate from the controls. And,
despite differences in relative population densities before exposure,
the fractions of low-density populations towards the end of the exper-
iment (≤ 10% of the pre-exposure maximum) did not differ between
C. pipiens and D. magna. Also, the physico-chemical parameters were
remarkably similar across all treatments in the post exposure period
(Table 5.1). Compared to the pre-exposure period (Table C.1), oxygen
saturation slightly decreased by 7%, while the medium pH, conduc-
tivity and temperature did not change. PO4

3– and NO3
– concentra-

tions approximately doubled in the post-exposure period, while NO2
–

and NH4
+ did not change. Only suspended biomass differed among

treatments, however, the differences are smaller than the standard
deviations (Table 5.1).
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5.3.1 Community Response to Esfenvalerate Exposure

Figure 5.5a shows that a concentration of 100 ng/L elicits a significant
negative disturbance (−6.0, p = 0.02) on populations of D. magna.
This is also visible in the volatile trajectories of Figure 5.4h (100 ng/L).
While disturbances after exposure to 100 ng/L were negative after
both exposures, an exposure to concentration ≤ 10 ng/L resulted in
negative disturbances after the 1st exposure and positive disturbances
after the 2nd exposure. On C. pipiens, exposure to esfenvalerate in-
duced no significant short-term disturbances (Figure 5.5b). Under
standard conditions the species had similar sensitivities to esfenvaler-
ate (EC50 Culex = 80 ng/L, EC50 Daphnia = 180 ng/L, Figure 5.1).
However, these sensitivities were not reproduced on the community
level, where D. magna is the only species significantly disturbed by
exposure to 100 ng/L esfenvalerate. This could be explained by differ-
ent durations of the observed post exposure period in standard tests
(2 days) and the nanocosm test systems (11 days).

Figure 5.5: Average 11-day disturbance of competing populations calculated from
the deviation of extrapolated pre-exposure trend (10 days) to observed post expo-
sure development in a 21-day time window (see methods: disturbance analysis).
(a) Daphnia disturbance after exposures to esfenvalerate. (b) Culex disturbance
after exposure to esfenvalerate. A significant deviation from the control treatment
is indicated by an asterisk.
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Figure 5.6: (a–d) Population densities of observed Culex and Daphnia during
the entire post exposure period of all experimental replicates. High correlations
indicate that fluctuations in population density were synchronized, while low cor-
relations indicate that fluctuations in population density were not synchronized.
The colored treatments are always compared to the same control dataset (gray).
The displayed data-range was truncated to increase visibility of the dataset. Not
shown data are indicated by triangles at the upper or right-hand side of the pan-
els. (e–h) bayesian posterior density estimates of the Daphnia–Culex correlation
coefficient, fitted on the data in panels a–d with the model described in equations
5.1–5.6.

5.3.2 Changes in Species Correlation after Exposure to Es-
fenvalerate

It was a key question of this study, whether exposure to pesticide in-
fluences the interspecific competition at low concentrations. To assess
this question, the correlation between both species over time was eval-
uated by applying bayesian estimation of the covariance between two
Poisson distributed variables.

Figure 5.6a–d shows the pairs of population density of C. pipiens and
D. magna at each observation in the post-exposure period. States with
simultaneously high population densities of both D. magna and C. pip-
iens were rarely observed. Figure 5.6c shows the population densities
of highly correlated species across multiple systems. The development
of C. pipiens and D. magna populations in these replicates was syn-
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chronized, meaning that rarely one species was abundant while the
other species was not. Figure 5.6e–h shows the estimated correlation
coefficient between both species in the community. Small concentra-
tions of esfenvalerate increased the correlation between competitors
compared to the control treatment (Figure 5.6e–g). This deviation is
significantly positive over the entire post-exposure period in systems
that were exposed to 10 ng/L (Figure 5.6g). In contrast, exposure to
100 ng/L induced a slightly negative correlation shift between Culex
and Daphnia. Considering the effect of 100 ng/L on the disturbance of
Daphnia population (Figure 5.5a), the reduction of correlation is a sign
of extinction, also visible in Figure 5.6d, which shows that one or the
other species became dominant, while the other was excluded.

Figure 5.7: Estimation of the developing correlation between abundance of C.
pipiens and D. magna in smoothed time series, showing the competitive exclusion
in the control treatments and 100 ng treatments, and showing synchronized be-
havior in the low concentrations. For each day of the time series, the correlation
coefficient was estimated that best predicted the abundance pairs of C. pipiens and
D. magna in all systems of one treatment. The shaded area shows the 95%-CI and
indicates the uncertainty of an estimate. The vertical lines indicate the times of
exposure to esfenvalerate. Linear regression models were fitted to the correlations
in the post-exposure period.

To show the temporal development of interspecific competition, the
correlations between competitors were computed for each day in the
monitoring period by fitting the model (equations 5.1–5.6) on inter-
polated and smoothed daily observations. Linear regressions were
computed to show the treatment trends in competition in the post-
exposure periods. We observed that the significantly negative trend in
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the control treatment emerged shortly after the exposure (p < 0.001),
i.e. shortly after addition of manual stocking of C. pipiens larvae to
the systems was stopped. Figure 5.7a–c shows that after exposure
to 0.1–10 ng/L esfenvalerate correlations were significantly positive
(p ≤ 0.01). However, the trend in the treatment exposed to 100
ng/L esfenvalerate was significantly negative (p < 0.001), although
the correlations substantially dropped only after the second exposure
(Figure 5.7d).

5.3.3 Effects of Environmental Conditions
Neither physicochemical parameters (e.g. temperature, oxygen) nor
major nutrients varied among the treatments during the post-exposure
phase (Table 5.1). While exposure to esfenvalerate significantly dis-
turbed the population development of D. magna, the remaining unex-
plained variance was large (Figure 5.5a). Pre-exposure environmental
parameters could not explain this variance (Figure C.3) as there were
no significant correlations. Only the pH was mildly positively corre-
lated with the disturbance residuals (ρ = 0.27). The concentration of
major nutrients was the range of eutrophic lakes (Table C.1), however
no significant positive or negative correlations with the final abun-
dance of D. magna or C. pipiens could be identified. Also, the cor-
relations between other pre-exposure environmental parameters and
the final abundance of D. magna and C. pipiens were insignificant
(Tables C.4 and C.5).

5.4 Discussion
In this study we investigated the effect of environmentally realistic
esfenvalerate exposures on a 2-species community in a highly compet-
itive environment. The employed detection algorithm for quantifying
the population density of D. magna based on machine-learning ap-
proach was very successful to identify organisms in the water body
(Figure 5.2a). Although, the fraction of D. magna in the water col-
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umn was representative of the system state (Figure 5.2b), future stud-
ies should use more homogeneous, dark sediments to facilitate the de-
tection of organisms on the sediment. The detection of slow-moving
organisms like C. pipiens could be enabled by using permanently in-
stalled cameras with longer intervals between images. The improved
approach could substantially simplify the employment of experimental
nanocosm for routine assessment of population level effects of chem-
icals. Here, we showed that exposing competing species with sim-
ilar sensitivities to esfenvalerate results in substantial reduction of
interspecific competition at low concentrations. These effects were
detected far below effect concentrations established in standard tests
that were conducted in parallel to the experiment. The exposure to es-
fenvalerate increased the correlation between D. magna and C. pipiens
with increasing levels of exposure, beginning as low as 3 orders of mag-
nitude below the measured EC50 (Figure 5.6). Species correlations of
treatments exposed to 0.1, 1 and 10 ng/L significantly increase during
the post-exposure period. On the contrary, the concentration clos-
est to the EC50 (100 ng/L) decreased the correlation between species
and also provoked significant disturbances in the population of D.
magna.

5.4.1 Interspecific Correlation is Associated with Interspecific
Competition in This Study

Species, experiencing the same environmental conditions are synchro-
nized (Volterra, 1928; Moran, 1953; Ranta et al., 1995; Post and Forch-
hammer, 2002), i.e. their populations are correlated over time. When
species are ecologically similar, co-existing populations will be pos-
itively correlated over time, because they react similarly to environ-
mental changes (Hansen et al., 2013; Robertson et al., 2015). However,
when competition between species increases, correlations decrease and
become negative due to suppression of the less fit species and dom-
inance of the fitter species (Lee et al., 2020). In this study, small
systems (3.5 L) were colonized with D. magna and C. pipiens–species
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which occupy different niches but also compete for resources, such as
suspended organic particles in the water column (Merritt et al., 1992;
Ebert, 2022), which was indeed a scarce resource in this experiment
(Tables 5.1 and C.1). Therefore, we assume that the species in this
study experienced the same environmental conditions, and were also
ecologically similar. Thus, according to theory, high correlations indi-
cate low interspecific competition, and low correlations indicate high
interspecific competition.

Overall, C. pipiens were much less abundant than D. magna but both
species showed a similar decrease in abundance relative to their popu-
lation density (Figure 5.4). This decrease can be attributed to low lev-
els of primary production, approximated by the density of suspended
biomass (Table C.1). We assume that sufficiently large concentrations
of N and P could not be converted to biomass in the studied systems.
Possible reasons are strong competition of filter feeders, which pre-
vented growth phases of phytoplankton, or insufficient lighting con-
ditions. In the absence of suspended biomass, organisms were ob-
served to graze on periphyton and biofilm, which were not quantified
in this study but varied considerably among the experimental repli-
cates.

Resulting from this diversity, dominance and suppression of either
species was approximately random, indicated by similar fractions of
low density-populations, which led to negative correlations between
the species’ population densities in the control treatment. This is as-
sociated with high interspecific competition between C. pipiens and D.
magna, which increased during the post-exposure period (Figure 5.7)
after colonization of C. pipiens was stopped. These results fit the the-
ory that narrow environments with considerable niche overlap do not
favor coexistence of competing species (Pastore et al., 2021).
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5.4.2 Exposure to High Doses of Esfenvalerate Disturbs Pop-
ulation and Increases Risk of Single Species Domi-
nance

The exposure to esfenvalerate at 100 ng/L, induced significant, direct
short-term disturbances in Daphnia populations and decreasing cor-
relations between the species’ abundances in the post-exposure phase.
Decreasing correlations indicate the suppression of one species, which
could be exploited by the dominant species if the composition of the
system in terms of suspended biomass, periphyton and biofilm allowed
population growth. Since the variation between biomass density and
other environmental parameters across experimental replicates could
not explain the residual variance of the disturbance of species after
exposure nor final population densities of either species, periphyton
and biofilm may well have been responsible for the heterogeneity in
the systems. However, due to the heterogeneity of the tested systems,
the observation of significant population level disturbance of esfen-
valerate at 100 ng/L is assumed to be very robust. The direct effect of
esfenvalerate at 100 ng/L is also visible in Figure 5.6d, where species
abundances increasingly converge to one or the other axes. Similar dy-
namic behavior has been observed for subpopulations of potato beetle
larvae and adults (Costantino et al., 1997). When harvesting rates of
adults were experimentally increased, which is comparable to induced
direct mortality of 100 ng/L esfenvalerate, beetle populations were
pushed out of equilibrium. Although the experimental conditions are
only partly comparable, the results show that disturbances compet-
ing (sub)populations can lead the way to significant changes in the
dynamic of ecological communities.

5.4.3 Exposure to Low Doses of Esfenvalerate Reduces In-
terspecific Competition

From day 70, the control treatment showed a marked interspecific
competition (Figure 5.7). In contrast, treatments exposed to low doses
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of esfenvalerate (0.1–10 ng/L) showed a reduced interspecific compe-
tition. This already occurred at concentrations 3 orders of magnitude
below the EC50 and reached its maximum at 10 ng/L (Figure 5.6e–g).
The observed results are comparable to a recently conducted simula-
tion study, which found that the covariance of competitors, receiving
the same amount of environmental noise, increases when growth rates
of species are more similar (Lee et al., 2020). And in marine environ-
ments, low pH led to altered competitive interactions between com-
peting algae species and gradually led to a community shift (Kroeker
et al., 2013). In a single species population study, exposure to 10 ng/L
esfenvalerate reduced the competitiveness of D. magna and led to a
hormetic increase in population abundance (Schunck and Liess, 2023).
Such an effect did not occur in this study. Here, we assume that the
presence of a competitor can explain the absence of a stimulatory pop-
ulation effect, suggesting that findings of hormesis are dependent on
the environmental context, i.e. only emerge when the environmen-
tal conditions do not penalize trade-offs associated with stimulatory
effects. With respect to the present study, we hypothesize that ultra-
low concentrations of esfenvalerate may have shifted the competitive
difference between the species towards an equilibrium. This could be
due to a reduction of fitness differences between species (stabilizing
mechanism Chesson (2000)). Future work should test this hypothe-
sis in environments with higher population densities and investigate
whether competitive differences between species are modified by ultra-
low concentrations of pesticides.

Concluding, we showed that concentrations 3 orders of magnitude be-
low the EC50 reduced the interspecific competition between D. magna
and C. pipiens. Concentrations near the EC50 directly impacted D.
magna populations and led to an increased tendency of single species
dominance. This study also highlights, that single species sensitivity
tests are insufficient to predict ecological effects on the community
level. On the contrary, non-invasive population monitoring is very a
promising approach, which can complement the higher tier risk assess-
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ment of ecological effects of toxicants, since the absence of sampling
removes the most error prone and disturbing part of the method. By
monitoring of the correlation between competing species, more subtle
effects can be detected and potentially, hazardous long-term effects
can be identified before they occur in the field.
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Chapter 6

Discussion and Outlook

Pesticides are responsible for ecological effects in the water bodies
near agricultural sites and drive sensitive species to extinction far be-
low the half maximal effective concentration (EC50) determined in
the effect assessment process (Liess et al., 2021, 2019b; Malaj et al.,
2014). Such underestimations can lead to consequences like the de-
cline of bee populations caused by the class of neonicotinoid pesticides
(Rundlöf et al., 2015; Cressey, 2017; Stuligross and Williams, 2021);
these consequences do not only harm ecosystems but also impact the
economy (Vanbergen and the Insect Pollinators Initiative, 2013). How-
ever, conflicting results have also been published. It has been shown
that overall biodiversity can remain stable, while species colonization
and extinction are accelerated (Dornelas et al., 2019). Other stud-
ies have observed long-term stability in abundance and biodiversity
(van Klink et al., 2020; Crossley et al., 2020). Although studies re-
futing the loss of biodiversity are viewed with skepticism due to their
focus on protected areas (Gonzalez et al., 2016), they do point out
that our understanding of the effect of stressors on ecosystems is still
limited.

The aim of this work was to assess the effect mechanisms of ultra-
low doses of pesticides to understand their influence on observed eco-
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logical effects in the environment and to assess the implications for
the increasingly discussed hormesis theory. To address these topics,
the environmental complexity of the studied systems was stepwise in-
creased. While a variety of factors may modify or mask the effects
of pesticides in the environment, in this work we focused on the key
factors that modulate the effects of low doses of pesticides. These
are time, intraspecific and interspecific competition, and environmen-
tal conditions. In the following, the influence of the factors is discussed
and findings of this work are synthesized.

6.1 Timing is a Critical Factor for the Interaction
between Multiple Stressors

The study described in Chapter 3 assessed the hypothesis, whether in-
teractions between pesticides and environmental stress depend on the
timing and order of exposures (see Hypothesis 1). It was shown that,
at the individual level, the interval between stress exposures and their
order altered the lethality of the stressors. Increased time between
stressors shifted interactions from an antagonistic to a synergistic re-
lationship (Figure 3.3). Therefore, Hypothesis 1 can be maintained.
An increased effect of stressors applied with an interval between the
exposures has also been reported for the mortality of damselflies ex-
posed to heat waves and esfenvalerate (Janssens et al., 2017), and
for respiration of marine epifauna exposed to copper and a biocide
(Brooks and Crowe, 2019). The novelty of the results reported here
lies in the shift in interaction between stressors, when time intervals
between exposures were changed. Regrettably, Hypothesis 1 could not
be assessed for higher levels of biological organization in this work,
because the environmental factors measured in Chapter 5 were not
variable enough over time.

The hypothesis that explains these findings is that a in the first step
of a two-stage process, stressors may interact antagonistically at the
biomolecular level until they are manifested at the physiological level.
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It is still unclear whether this outcome resulted from the specific na-
ture of the stressors or is a general phenomenon in multiple stress
research. To further develop the theory, more stressor combinations
should be tested with the time-lag and order approach (Figure 3.1).
Also, the usefulness of toxicokinetic-toxicodynamic (TKTD) models in
the assessment of dynamic exposure profiles has been demonstrated
(Ashauer et al., 2007, 2017; Bart et al., 2021, 2022). For example, azole
fungicides have been shown to reduce the biotransformation rate of a
pyrethroid insecticide, leading to increased effects (Cedergreen et al.,
2017). Approaches like these would be very useful in understanding
the variation in effect introduced by temporal differences in the stres-
sor application and should be investigated in future work.

Ultraviolet-B (UV-B) radiation interacted both synergistically and an-
tagonistically with esfenvalerate, depending on the time difference be-
tween exposure pulses. The levels of UV-B used in this study were,
however, far above environmental realistic exposure levels (Hansson
and Hylander, 2009). The findings of Chapter 3 therefore have no
direct environmental implication, but they show that environmental
factors can distinctly modulate the effects of pesticide exposure. Fu-
ture work should investigate whether this effect is reproducible at en-
vironmentally realistic concentrations, to test if temporal differences
in stressor coupling can help explain heterogeneous findings of multi-
ple stressor effects identified in the field (compare e.g. Jackson et al.,
2016; Birk et al., 2020).

6.2 The Degree of Competition Modified the Ef-
fect of Low Concentrations of Esfenvalerate, but
Had No Influence on Acute Concentrations

In this work the sensitivity of D. magna to single and repeated pulses
of esfenvalerate was evaluated in the context of three levels of biological
complexity. The level of the individual (no competition, Chapter 3),

87



6. Discussion and Outlook

the level of the population (intraspecific competition, Chapter 4), and
the level of the community (interspecific competition, Chapter 5). It
was hypothesized that the effects of low-dose pesticides on aquatic
populations depend on the degree of competition in the system (see
Hypothesis 2).

Acute concentrations In individual toxicity tests, 24-hours of expo-
sure to esfenvalerate resulted in an EC50 of 0.6 µg/L for D. magna
(Figure 3.3). Under 48 hours of exposure, the EC50 was estimated at
0.18 µg/L (Figure 5.1). These values are very similar to data pub-
lished in the literature Table 2.1. Similarly, on the population level,
the exposure to an esfenvalerate pulse at 0.1 µg/L resulted in the col-
lapse of 2 out of 4 populations after 4–6 weeks (Figure 4.2). When
D. magna populations were exposed to esfenvalerate in the presence
of a competing species, 0.1 µg/L significantly disturbed the popula-
tions. Therefore, it is concluded that concentrations, which elicit an
acute effect at the individual level will also produce acute effects at the
population and community levels. For acute concentrations, thus, the
level of competition was not an influential factor in this work. How-
ever, it must be noted that the competitors tested in Chapter 5 had
similar sensitivities to esfenvalerate. When species with highly differ-
ent sensitivities are exposed to acute concentrations, this is likely to
change (Liess et al., 2013).

Low concentrations Esfenvalerate concentrations between 0.01–0.04
µg/L had a significant antagonistic interaction with UV-B radiation
when esfenvalerate was applied immediately before UV-B radiation.
The same concentration range of esfenvalerate (0.01 and 0.032 µg/L)
induced a stimulated population growth in the study described in
Chapter 4. However, it was assumed that the observed population
growth only emerged because of the associated reduction in individ-
ual competitiveness. This assumption was reinforced by the results
reported in Chapter 5; in the context of strong interspecific compe-
tition, no biomass increase was observed. Instead an increase in the
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correlation between population densities of the competitors emerged
after exposure to low doses of esfenvalerate (Figures 5.6 and 5.7). This
increase was associated with a reduction of competition between the
coexisting species, leading to an increased similarity in the population
development. The reduction in interspecific competition was most
pronounced after exposure to 0.01 µg/L esfenvalerate, but it was also
present at 0.0001 µg/L, that is 3 orders of magnitude below the acute
EC50. These findings indicate that esfenvalerate induces effects far be-
low acute levels. While these effects were beneficial at the individual
and population levels, they changed at the community level (in the
presence of a competitor).

Given these results, Hypothesis 2 is maintained for low concentrations
but cannot be maintained for high concentrations in the context of
this work. However, the previously mentioned caveat (i.e. similar
sensitivities of competitors) precludes the rejection of Hypothesis 2
for high concentrations in general. In the following, it is considered
how the level of competition may modify the response to low doses of
stressors.

6.2.1 Hormesis May Only Be Observed, when Environmen-
tal Conditions Do Not Penalize Trade-offs

Hormesis is a broad theory that refers to the beneficial effects of low
doses of stressors on several fitness endpoints of organisms. It as-
sumes that low levels of stress can activate adaptive mechanisms that
increase the competitive fitness of individuals (Schulz, 1888; Townsend
and Luckey, 1960; Stebbing, 1998; Calabrese, 2010; Costantini et al.,
2010). An increasing number of studies published each year (Calabrese
and Mattson, 2017; Sial et al., 2018; Costantini, 2019; Calabrese and
Agathokleous, 2019; Wolz et al., 2021; Shang et al., 2021; Schirrma-
cher, 2021; Agathokleous et al., 2022), indicate the actuality of the
concept. However, it has been argued that stimulatory effects of toxi-
cants must be accompanied by trade-offs that are unlikely to result in
evolutionary advantages (Calow and Sibly, 1990; Forbes, 2000). This
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assumption can be associated with the environmental stress response
(ESR), which predicts that a change in environmental conditions (e.g.
pesticide exposure, temperature, etc.) triggers a program of tran-
scriptional changes that redistributes the resources spent on various
cellular processes (Gasch et al., 2000). In the ESR, one group of
genes is induced and another group is repressed with strong temporal
anti-correlation. Induced genes are enriched for protection and dam-
age repair while the repressed group is enriched for genes regulating
growth and biosynthesis (Hackley and Schmid, 2019).

In Chapter 4, it has been shown that the density and biomass of a
D. magna population can increase after exposure to low doses of a
pyrethroid pesticide. This finding can be interpreted as a hormesis in-
duced stimulation (Costantini, 2019), because negative effects of the
associated trade-off (loss in individual competitiveness) were not ob-
served in this study. However, the effect disappeared in the presence
of a competitor (Chapter 5). Instead, an increase in correlation be-
tween species was observed, suggesting that extremely low esfenvaler-
ate changed the competitive balance between D. magna and C. pipi-
ens, so that the species reacted in higher synchrony to environmental
conditions. When environmental conditions are more influential than
competition, such increases in correlations have been observed in field
studies (Hansen et al., 2013; Robertson et al., 2015) and are predicted
in mathematical models (Lee et al., 2020).

The findings of this work therefore indicate that hormesis theory can
be reconciled with trade-offs expected by ESR theory, when the con-
ditions for emergence of positive effects are considered to be context
specific. This means, low concentrations of a stressor can positively
affect fitness of an organism or a population (see Figure 4.1); but, this
occurs only when the environmental conditions do not penalize the
associated trade-off (see Figure 5.4). Theoretically, this process can
occur both in the laboratory and in nature; however, due to highly
controlled conditions in the laboratory, the probability for the absence
of a regulating factor (e.g. competitor, predator) increases, making the
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observation of hormesis more probable in the laboratory than in nature
(see Figure 1.1 to compare different levels of complexity from labora-
tory to field). Therefore it is hypothesized that hormesis is a special
case of the ESR, where trade-offs are not penalized by environmen-
tal factors. This hypothesis should be further developed and tested
in future work to better assess the consequences of the controversial
hormesis theory for environmental risk assessment.

6.3 Environmental Conditions that Regulate Food
Availability are Important Factors in the Assess-
ment of Pesticide Effects

The identification of common environmental conditions that modify
the effect of pesticides was the final aim of this work. In Chapter 5,
the limited availability of biomass for feeding led to low densities of D.
magna and C. pipiens populations. After reaching carrying capacity,
the same pattern was observed in the experiment described in Chap-
ter 4, where biomass was supplied at a constant rate. It was discussed
(Section 4.4) that suppression phases, commonly observed in Daphnia
populations (e.g. McCauley and Murdoch, 1987) due to population
overshoots, were partly responsible for the observed significant in-
crease in population density and biomass after exposure to esfenvaler-
ate at low concentrations. This implies that food density is an impor-
tant factor for population development which always should be studied
when investigating effects of insecticides in population or community
contexts. In Chapter 5, the measured environmental parameters like
suspended biomass, oxygen, nutrient concentrations and temperature
were very similar across experimental replicates and could therefore
not explain the high variation in population densities of Daphnia and
Culex (Tables C.4 and C.5), or the residual variation in esfenvalerate-
induced population disturbance (Figure C.3). Instead, it is assumed
that periphyton on the sediment and biofilm on the glass contributed
to the observed variation in population densities and pesticide effects.
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This assumption is in line with the previously reported impact of habi-
tat characteristics on community composition under toxic stress (Rico
et al., 2016). Although the evidence presented in this work is insuffi-
cient to make conclusive judgments about the effects of environmental
factors on pesticides, the large unexplained variation in the effects of
pesticides on population densities observed in Chapter 5 suggests that
hidden factors remain that are responsible for increased or decreased
effects of pesticides, even in controlled environments. Therefore, fu-
ture studies should quantify periphyton, biofilm, and other biologically
relevant parameters to better understand the influence of habitat char-
acteristics on pesticide effects in biological systems of higher order.
Studies like these may finally bring mechanistic understanding under
which circumstances the effects of pesticides escalate and under which
circumstances they are dampened.

6.4 Future Perspectives: Non-Invasive Nanocosm
Systems Are Effective Tools to Investigate Pes-
ticide Effects in Complex Biological Systems

The effects of experimental handling are factors commonly ignored in
laboratory experiments (Rousseaux et al., 2010; Sims et al., 1993).
Under low stress exposure, experimental handling, especially invasive
monitoring, could obscure relevant effects and lead to wrong conclu-
sions about the harm of toxicants. Non-invasive nanocosm test sys-
tems do not have this deficiency and have been successfully applied in
a series of investigations on acute concentrations (Pieters and Liess,
2006; Liess et al., 2006, 2013). In this work, nanocosm systems were
used in the experiments described in Chapters 4 and 5 and were able
to reveal effects of concentrations far below the acute EC50. Although,
the test systems used in this work can still be improved as outlined
in Section 5.4, the findings of this work show that complex laboratory
systems coupled with non-invasive monitoring can contribute to the
understanding of effect mechanisms of low doses of pesticides (see Fig-
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ure 1.1). In the future, more biological processes should be considered
in increasingly automated nanocosms to improve the understanding of
the mechanics of the stress response even further. Predation as a key
ecological mechanism should be studied under controlled conditions
(Riedl et al., 2018). Also, the effects of temperature should be studied
in greater depth due to its universal influence on all processes of life
(Heugens et al., 2001; van der Meer, 2006), its role as a stressor in
a changing world climate (Masson-Delmotte et al., 2021), and mod-
ulator of toxicant effects (Heugens et al., 2006; Ribeiro et al., 2011).
Other mechanisms that should be studied include adaptation to stres-
sors and the roles of invasive species, infections and parasitism.

In light of these challenges, careful and stepwise development of con-
trolled ecosystems and their disturbance under close, non-invasive
monitoring can be of tremendous value in understanding the effect
mechanisms of pesticides in systems of high biological organization.
These efforts can ultimately help to reduce the risks of chemicals in
the environment.

6.5 Conclusion
It was shown that the effects of esfenvalerate are highly context de-
pendent. Time changed the interaction between esfenvalerate and
environmental stress, and the stimulated population growth after ex-
posure to low doses of esfenvalerate disappeared when a competitor
was present. The latter discovery led to the formulation of the context-
dependent stimulatory response hypothesis, which should be investi-
gated in future work.

This work has also shown that complex laboratory experiments can
reveal subtle effects of pesticides that do not become apparent from
single-species, single-substance experiments. Therefore, risk assess-
ment should consider to test new chemicals under higher levels of bi-
ological organization, for a safer use of pesticides, which will continue
to be applied in the forseeable future. Finally, this work aimed to un-
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derstand mechanisms of pesticide effects. This goal was achieved, but
many open questions remain, and many avenues for future research
emerged. Reproducible and non-invasive protocols for single-species
and multi-species nanocosm test systems were a cornerstone of this
work; and, to continue their improvement and to stepwise increase
their complexity are the final recommendations of this work.
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Appendix A

Supporting Information for Chapter
3

Method A.1. Bayesian parameter estimation

We used the modelling framework Python Markov Chain Monte Carlo
(MCMC) library (PyMC) (Salvatier et al., 2016) for fitting dose re-
sponse curves with bayesian parameter estimation. The description of
the statistical model is as follows Survival y follows a binomial distri-
bution according to mortality probability p and the number of trials
in each treatment.

y ∼ Binomial(p, trials) A.1

p = c + 1 − c

1 + exp(−dlog(x
e
)) A.2

Mortality probability p is deterministically modelled as a log logistic
function dependent on the parameters c, d, and e and the stressor
dose x. For the individual model parameters, priors were chosen as
follows
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ccontrol ∼ Beta(alpha = 1, beta = 10) A.3
c ∼ Uniform(a = 0, b = 1) A.4

eesfenvalerate ∼ PositiveNormal(loc = 1.5, scale = 3) A.5
euvb ∼ PositiveNormal(loc = 500, scale = 2000) A.6

besfenvalerate ∼ LogNormal(loc = 3, scale = 1) A.7
buvb ∼ LogNormal(loc = 2.6, scale = 0.7) A.8

A.9

Figure A.1: Prior distribution for the y-intercept (parameter c) of the log-logistic
model. Note that we used different priors the y intercept (parameter c) for control
treatments to incorporate prior knowledge that control effects (no stress) should
be near null. For the contaminated treatments we chose a uniform prior, in order
not to impose any knowledge on the fitting of the intercept.
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Figure A.2: Priors for inflection point (parameter e) of the log-logistic model for
esfenvalerate (a) and UV-B radiation (b). Since UV-B radiation and esfenvalerate
act on vastly different scales, different priors were required for the parameters e
(inflection point).

Figure A.3: Priors for the slope of the log-logistic regression (parameter b) of
esfenvalerate and UV-B radiation. To address the issue of separation, we used an
informative Log-Normal prior for the slope in order to assign low probability to
flat and nearly vertical intercepts. Note that slope parameter priors are slightly
different because the sampler had some problems with very high values of b in the
case of UV-B.
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Table A.1: Nominal and measured esfenvalerate concentrations (µg/L) applied
in the experiment described in Chapter 3.

Contaminant
Nominal

concentration
(µg/L)

Measured
Concentration

(µg/L)
Deviation (%)

Es
fe

nv
al

er
at

e

0.01 0.014 40
0.02 0.027 35
0.04 0.039 2.5
0.08 0.1 -20
0.16 0.18 12.5
0.32 0.15 -531

0.64 0.61 -4.7
1.28 1.1 -14
2.56 2.5 -2.3

1 The Large deviation in this sample most likely results from a sampling error.
It can be clearly observed by comparison of Figure A.5 k, l (0.16 µg/L) and
Figure A.5 m, n (0.32 µg/L) that nominal concentration of 0.32 µg/L had a
much stronger effect than the nominal concentration of 0.16 µg/L

a b
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e f

g h
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i j

k l

Figure A.4: Dose response curves of esfenvalerate after Exposure to UV-B radi-
ation. (a, c, e, g, i, k) Dose response curves for zero-day time-gap between stress
exposure. (b, d, f, h, j, l) Dose response curves for exposure scenarios with a
two-day time gap between exposures. The histograms beside the curves indicate
posterior estimates of the parameters of the log-logistic dose response curves. To
visualize the issue of division, the dashed blue line indicates maximum likelihood
fits obtained with the R language (R) package drc (Ritz et al., 2015). Absence,
of the dashed blue line indicates that a maximum likelihood fit was not possible.
The shaded area indicates the 95% credible interval (CI) of the true dose response
curve. The solid black line indicates the dose response curve with the highest prob-
ability (maximum a posteriori (MAP) estimate) and dotted black lines enclose the
95% CI interval of plausible data under the fitted parameter distributions of the
model.
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g h

i j

k l
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s t

Figure A.5: Dose response curves of UV-Bradiation after exposure to esfenvaler-
ate. (a, c, e, g, i, k, m, o, q, s) Dose response curves for zero-day time-gap
between stress exposure. (b, d, f, h, j, l, n, p, r, t) Dose response curves for
exposure scenarios with a two-day time gap between exposures. The histograms
beside the curves indicate posterior estimates of the parameters of the log-logistic
dose response curves. To visualize the issue of division, the dashed blue line indi-
cates maximum likelihood fits obtained with the R package drc (Ritz et al., 2015).
Absence, of the dashed blue line indicates that a maximum likelihood fit was not
possible. The shaded area indicates the 95% CI of the true dose response curve.
The solid black line indicates the dose response curve with the highest probability
(MAP estimate) and dotted black lines enclose the 95% CI interval of plausible
data under the fitted parameter distributions of the model.
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Figure A.6: Histograms of posterior distributions of EC50 values. The panels
(a-d) correspond to panels a-d in Figure 3.3 of the manuscript. (a) E-0-U, (b)
U-0-E, (c) E-2-U, (d) U-2-E. These histograms are the actual data where vertical
posterior density intervals of Figure 3.3 are derived from. In the above figure
complete EC50 distributions of respective concentrations of the second stressor
are compared to the EC50-distribution of the control, which only received the first
stressor. The dashed line indicates the independent action EC50 prediction. Bars
on top indicate the 95% quantile in the distribution (= 95% posterior density
interval (PDI)), including the NaN values that were converted to zeros (top) and
with removed NANs (bottom), which were selected for the analysis.
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Method B.1. Preparation and supply of feeding suspensions
used in the experiment

Two suspensions were prepared for feeding:

(a) 0.3 g ground dog food and 0.3g ground stinging nettle were mixed
with 100 mL doubly distilled water. The mixture was stirred for 15
minutes and 1.45 ml of the suspension was given to each system. On
the first 5 feeding dates (first 10 days of the experiment), the volume
of supplied feeding suspension was doubled (2.9 ml).

(a) green algae (Desmodesmus subspicata) was batch cultured in the
Helmholtz Centre for Environmental Research—UFZ. The procedure
is detailed described in (Shahid et al., 2019). The fed volume of the
algae suspension was calculated based on the counted cell density and
cell volume in the suspension with a Casy cell counter (OLS OMNI
Life Science GmbH & Co KG, Bremen, Germany). The systems were
fed with a target volume 0.75 µl algae per feeding. Again, the volume
was doubled during the first 10 days of the experiment.
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Table B.1: Nominal and measured esfenvalerate concentrations (µg/L) used in
the experiment described in Chapter 4.

Contaminant
Nominal

concentration
(µg/L)

Measured
Concentration

(µg/L)
DMSO (v/v) Deviation (%)

Control 0.0 0.0

Es
fe

nv
al

er
at

e

0.01 0.011 0.0002 +10.0
0.0316 0.038 0.0001 +20.2

0.1 0.089 0.0002 -11.0
0.316 0.32 0.0001 +1.3
1.0 1.1 0.0002 +10.0
3.16 3.0 0.0001 -5.0
10.0 10.0 0.0002 0.0

Table B.2: Ordinary least squares regression results of the model: post-exposure
biomass growth rate ∼ pre-exposure biomass growth rate + esfenvalerate con-
centration, where the applied concentration is treated as a categorical variable.
Adjusted-R2 = 0.84.

coefficient [0.025 0.975] t p-values

Intercept 0.005 -0.13 0.14 0.07 0.944
0.01 0.117 -0.072 0.307 1.287 0.212
0.031 0.082 -0.108 0.271 0.892 0.382
0.1 -0.043 -0.232 0.146 -0.47 0.643
0.316 -0.338 -0.527 -0.149 -3.702 0.001
1.0 -0.246 -0.446 -0.047 -2.559 0.018
3.16 -0.25 -0.439 -0.06 -2.728 0.012
10.0 -0.326 -0.53 -0.121 -3.297 0.003
pre-
exposure -1.106 -1.381 -0.832 -8.367 < 0.001

Table B.3: Ordinary least squares regression results of the model: post-exposure
biomass growth rate ∼ pre-exposure biomass growth rate. Adjusted-R2 = 0.60.

coefficient [0.025 0.975] t p-values

Intercept -0.092 -0.18 -0.005 -2.162 0.039
pre-
exposure -1.305 -1.699 -0.91 -6.768 < 0.001
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Table B.4: Camera Settings of Canon PowerShot G12 used in the experiment
described in Chapter 4.

Exposure 1/30
Manual exposure compensation +1
Aperture F/2.8
Iso 400
Resolution 2816 x 2112 pixels

Figure B.1: Calibration of D. magna size from the counted number of pixels
A = 35.5L2. Created by Oliver Kaske.
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Figure B.2: Effects of DMSO on reproduction of D. magna until 21 days after
contamination. Effects of low food availability and different size/age classes are
tested. No effects evident below 1% volumetric concentration.

Figure B.3: Effects of DMSO on survival of D. magna until 21 days after contam-
ination. Effects of low food availability and different size/age classes are tested.
No effects evident below 1% volumetric concentration.
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Figure B.4: Time-series analysis of population biomass, separated into three size
classes.
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Method C.1. Systems removed from analysis with the asso-
ciated reasons for removal

In 4 systems (4, 15, 22, 64) an accidental spill of glucose feeding solu-
tion entered the water body. In these systems massive bacteria growth
developed in the following weeks followed by a population explosion
of C. pipiens followed by oxygen depletion and consequent extinction
of D. magna population. While this cascade is highly interesting, it
has nothing to do with the effect of pesticides in the experiment and
was therefore excluded. 8 systems were additionally colonized with
D. magna throughout the 2-month pre-exposure period. For some
of these systems this had lasting effects until after the first exposure.
Therefore, the 8 affected systems (8, 33, 37, 43, 45, 46, 56, 77) were re-
moved from the analysis. 3 systems (63, 68, 80) was removed because
the D. magna population got extinct just before the first exposure. 1
System (34) was removed because it was kept in a different location
and 1 system (57) was removed because there an exceptionally large
fraction of organism was dwelling near the sediment and could not be
represented well with the image analysis technique.
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Table C.1: Environmental parameters during the pre-exposure period of the
experiment described in Chapter 5.

variable mean std-dev median 5%-Q 95%-Q n

Temperature (°C) 20.2 0.3 20.2 19.6 20.7 499
Conductivity
(µS/cm)

987 84 977 903 1095 504

Oxygen saturation
(mg/L)

10.1 0.53 10.0 9.23 11.01 562

pH 7.27 0.35 7.14 6.98 8.090 351
PO4

3– (mg/L) 0.18 0.13 0.16 0.00 0.398 188
NO3

– (mg/L) 0.72 0.40 0.65 0.11 1.467 252
NO2

– (mg/L) 0.02 0.01 0.01 0.01 0.028 314
NH4

+ (mg/L) 0.03 0.04 0.01 0.00 0.116 308
suspended biomass
(mg/L)

1.61 14.6 0.21 0.01 2.97 309

Table C.2: Nominal and measured esfenvalerate stock concentrations (ng/L)
used in the experiment described in Chapter 5.

Contaminant
Nominal
(ng/L)

Measured Concentrations (ng/L)
Avg.

Deviation
03.06.2021 30.06.2021

Control 0.0
Esfenvalerate 0.1 < LOQ < LOQ
Esfenvalerate 1.0 0.5 0.8 35%
Esfenvalerate 10.0 6.0 8.0 30%
Esfenvalerate 100.0 80 50 35%
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Table C.3: Measured esfenvalerate concentrations in random replicates of the
100 ng/L treatment described in Chapter 5.

Replicate id
Nominal
(ng/L)

Measured Concentrations (ng/L)

03.06.2021 30.06.2021
1h 48h 1h 48h

5 100.0 40 < 20 40 < 20
17 100.0 60 < 20 < 20 < 20
38 100.0 40 < 20 40 < 20
67 100.0 30 < 20 40 < 20

average 42.5 NaN 40 NaN

Table C.4: Correlation (Spearman-ρ) between Culex larvae at end of experiment
and pre-exposure environmental parameters. Significant correlations (α = 0.05,
k = 45 Bonferroni corrected) are marked with an asterisk (*).

Culex Temp. Cond. Oxy. pH PO4
3– NO3

– NO2
– NH4

+ W
susp.1

Culex 1 -0.28 -0.07 -0.05 0.17 0.13 0.13 0.3 -0.07 0.13
Temp. -0.28 1 -0.14 -0.03 0.1 -0.34 -0.08 0.08 -0.07 -0.13
Cond. -0.07 -0.14 1.0 -0.1 -0.41* 0.18 -0.19 -0.3 0.13 0.18
Oxy. -0.05 -0.03 -0.1 1 0.13 0.08 -0.01 -0.17 -0 0.23
pH 0.17 0.1 -0.41* 0.13 1.0 -0.14 0.08 0.27 -0.09 -0.03
PO4

3– 0.13 -0.34 0.18 0.08 -0.14 1 0.17 -0.28 0.05 0.25
NO3

– 0.13 -0.08 -0.19 -0.01 0.08 0.17 1 0.15 0.01 -0.03
NO2

– 0.3 0.08 -0.3 -0.17 0.27 -0.28 0.15 1 0 -0.22
NH4

+ -0.07 -0.07 0.13 -0 -0.09 0.05 0.01 0 1 -0.03
W
susp.

0.13 -0.13 0.18 0.23 -0.03 0.25 -0.03 -0.22 -0.03 1

1 Suspended biomass
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Table C.5: Correlation (Spearman-ρ) between Daphnia at end of experiment
and pre-exposure environmental parameters. Significant correlations (α = 0.05,
k = 45 Bonferroni corrected) are marked with an asterisk (*).

Culex Temp. Cond. Oxy. pH PO4
3– NO3

– NO2
– NH4

+ W
susp.1

Culex 1 -0.03 -0.18 -0.06 0.12 0.06 0.02 0.29 -0.07 0.16
Temp. -0.03 1 -0.14 -0.03 0.1 -0.34 -0.08 0.08 -0.07 -0.13
Cond. -0.18 -0.14 1.0 -0.1 -0.41* 0.18 -0.19 -0.3 0.13 0.18
Oxy. -0.06 -0.03 -0.1 1 0.13 0.08 -0.01 -0.17 -0 0.23
pH 0.12 0.1 -0.41* 0.13 1.0 -0.14 0.08 0.27 -0.09 -0.03
PO4

3– 0.06 -0.34 0.18 0.08 -0.14 1 0.17 -0.28 0.05 0.25
NO3

– 0.02 -0.08 -0.19 -0.01 0.08 0.17 1 0.15 0.01 -0.03
NO2

– 0.29 0.08 -0.3 -0.17 0.27 -0.28 0.15 1 0 -0.22
NH4

+ -0.07 -0.07 0.13 -0 -0.09 0.05 0.01 0 1 -0.03
W
susp.

0.16 -0.13 0.18 0.23 -0.03 0.25 -0.03 -0.22 -0.03 1

1 Suspended biomass
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Figure C.1: Relationship between spectral absorbance and nutrient measurement
of the photometer PF-12Plus. Due to low precision of the returned concentration
values of NO2

– , values were re-calculated by using the fitted regression line. The
dotted line indicates the limit of quantification. However, due to high similarity
between medium samples in terms of color, turbidity and physicochemical param-
eters we included also values below the detection limit.

Figure C.2: Estimated correlation coefficients (ρ) from bayesian model (equa-
tions 2.3–2.8) from simulated correlated data (black dots). The black vertical line
indicates the true correlation coefficient. Blue dots indicate the region in the phase
space where observations are expected and the blue curve represents the posterior
probability density function (pdf) and its mean (blue vertical line). Due to the
low amount of data the pdfs are very wide, but the mean estimate is an accurate,
conservative representation of the true value. (a) highly negative correlated data.
(b) highly positively correlated data. (c) uncorrelated data. It should be noted
that this scenario is sensitive to few data points, which can shift the estimate to
positive or negative correlations by chance, however, those will be indicated by
large confidence intervals between –1 and 1 (d) special case where one species
is suppressed and the other is dominant, here the posterior becomes flat, which
means that a correlation coefficient is meaningless when one species is not present,
but averages to zero, which is also intuitive. Note that values below –1 or above
1 in the inset axes are only because the true posterior density function was visu-
alized with a Gaussian kernel density estimate (KDE); the true, reported, values
will always follow the constraints of the posterior to be in the interval [–1, 1].
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Figure C.3: Correlation (Spearman-ρ) between residual disturbance (∆) of D.
magna and pre-exposure environmental parameters. Significant correlations (α =
0.05, k = 45 Bonferroni corrected) are printed in bold letters.
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