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Abstract

As envisaged in the Sustainable Development Goals, eradicating poverty by 2030 is among
the most important steps to achieve a better and more sustainable future. A key contribution
to reach this target is to ensure that vulnerable households are effectively protected against
weather-related extreme events and other economic, social and ecological shocks and dis-
asters. Insurance products specifically designed for the needs of low-income households in
developing countries are seen as an effective instrument to encompass also the poor with an
affordable risk-coping mechanism and are thus highly promoted and supported by govern-
ments in recent years. However, apart from direct positive effects, the introduction of formal
insurance may have unintended side effects. In particular, it might affect traditional risk-
sharing arrangements where income losses are covered by an exchange of money, labour and
in-kind goods between neighbours, relatives or friends. A weakening of informal safety nets
may increase social inequality if poor households cannot afford formal insurance. In order to
design insurance products in a sustainable way, sound understanding of their interplay with
risk-sharing networks is urgently needed.

Socio-environmental modelling is a suitable approach to address the complexity of this chal-
lenge. In the first part of this thesis, an agent-based model is developed to investigate the
effects of formal insurance and informal risk-sharing on the resilience of smallholders. To lay
the conceptual foundation for this approach, a literature review is presented which provides
an overview of how to couple agent-based modelling with social network analysis. In two
subsequent modelling studies, it is analysed (i) how the introduction of insurance influences
the overall welfare in a population and (ii) what determines the resilience of the poorest to
shocks when income is heterogeneously distributed and not all households can afford formal
insurance. The simulation results underline the importance of designing insurance policies
in close alignment with established risk-coping arrangements to ensure sustainability while
striving to eradicate poverty. It is shown that introducing formal insurance can have nega-
tive side effects when insured households have fewer resources to share with their uninsured
peers after paying the insurance premium or when they reduce their solidarity. However,
especially when many households are simultaneously affected by a shock, e.g. by droughts
or floods, formal insurance is a valuable addition to informal risk-sharing. By applying a
regression analysis to simulation results for an empirical network from the Philippines, it is
furthermore inferred that network characteristics must be considered in addition to individ-
ual household properties to identify the most vulnerable households that neither have access
to formal insurance nor are adequately protected through informal risk-sharing.

In the second part of this thesis, a broader perspective is taken on the use of models in socio-
environmental systems. First, it is envisioned how models in combination with empirical
studies could improve insurance design under climate change. Second, requirements for
making socio-environmental modelling more useful to support policy and management and
scientific results more influential on policy-making are synthesised.

Overall, this thesis offers new insights into the interplay of formal and informal risk-coping
instruments that complement existing empirical research and underlines the potential of
socio-environmental modelling to address sustainability and development challenges.
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1 Introduction

1.1 Background: Risk management with formal and informal
instruments

Floods, droughts, storms and other extreme weather events pose significant financial risks, in
particular to agricultural households in developing countries. Especially when people have
limited resources at hand, unexpected incidents resulting in crop failures or livestock loss
can have serious implications for the standard of living. Climate change, which leads to in-
creased frequency and severity of weather-related shocks (Sheffield &Wood, 2008; Dai, 2013;
Thornton et al., 2014; Tabari, 2020) and disproportionately affects people living in poverty
(Linnerooth-Bayer & Hochrainer-Stigler, 2015; Hallegatte & Rozenberg, 2017; Charles et al.,
2019), could therefore threaten sustainable development. Global change processes such as
demographic growth leading to a rising competition for land, water and energy (Godfray
et al., 2010) or increased health threats from the spread of new diseases (Bong et al., 2020;
Josephson et al., 2021) or air pollution (Kurmi et al., 2012; Gordon et al., 2014) may further
increase individual risks.

To defeat poverty, as envisaged in the Sustainable Development Goals by the United Nations
(UN, 2015), encompassing also the poor with appropriate and affordable risk-coping instru-
ments is consequently a key component (GIZ, 2015). Microinsurance or inclusive insurance,
i.e. insurance products specifically designed for the needs of low-income households, are seen
as a promising tool to protect the most vulnerable from climate-related extreme events and
other economic, social and ecological shocks and disasters, and strengthen their resilience to
unforeseen losses (Schaefer &Waters, 2016; Wanczeck et al., 2017). These insurance schemes
are characterized by modest premium levels that are intended to be affordable for the low-
income population (Churchill, 2006). Current programs include life, accident, and funeral
insurance, as well as low-cost health insurance, which mainly covers hospitalization. In addi-
tion, agricultural insurance against crop failures and livestock loss is offered (Merry, 2020).
While personal insurance products are mostly indemnity-based, i.e. they cover the actual
losses occurred, insurance against the impacts of natural hazards is increasingly linked to an
index. In this case, payouts are triggered when an index that maps a weather-related vari-
able exceeds a predefined threshold. The level of a drought can, for example, be inferred
using the normalized difference vegetation index (NDVI) as a proxy for vegetation condition,
water level indices denote the severity of flood events, and wind indices can provide an esti-
mate of the intensity of storms (Brown et al., 2011; Benami et al., 2021). This concept bears
the advantage of low operation costs compared to traditional insurance product since actual
losses do not need to be controlled by the insurance company or proven by the policy holder
(Alderman & Haque, 2007; Barnett & Mahul, 2007; Hazell et al., 2010). In recent years,
microinsurance products have been highly promoted and supported by governments. The
‘InsuResilience’ initiative launched by the G7 countries in 2015, for example, promotes the
development of innovative and sustainable climate risk insurance in developing and emerg-
ing countries (GIZ, 2015). The Global Index Insurance Facility managed by the World Bank
Group (GIIF, 2019) and the Access to Insurance Initiative (A2ii, 2020) have similar aims.
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In the absence of formal protection mechanisms, in many developing countries, social net-
works are an important element of risk-coping (Platteau, 1991; Dercon, 2002; Cronk et al.,
2019a). To deal with the consequences of unexpected income losses, households in need
borrow from neighbours, relatives or friends (Fafchamps & Lund, 2003; De Weerdt & Der-
con, 2006; Kinnan & Townsend, 2012). In addition to monetary support, exchanges also
include in-kind transfers, such as when households share food (Nolin, 2010; Nolin, 2012)
or borrow material goods like kerosene from their neighbours (Banerjee et al., 2013). Infor-
mal support in social networks is often established on the basis of agreements among several
households in a village (De Weerdt & Dercon, 2006; Caudell et al., 2015). In addition, there
are also community-based arrangements with often hundreds of members. In Ethiopia, for
example, such groups offer financial assistance to compensate costs for funerals, medical ex-
penses or food shortage against the payment of a premium (Dercon et al., 2006; Aredo, 2010;
Abay et al., 2018). Some of these semi-formal risk-sharing arrangements include external en-
forcement through courts and other adjudication processes (Barr et al., 2012). Most support
networks are, however, based on unwritten rules with punishment being only implicitly in-
cluded through reductions in support (Coate & Ravallion, 1993; Kranton, 1996; Fafchamps,
2011). Twomain motives are assumed for people to engage in informal risk-sharing: altruism
and reciprocity. In the case of altruism, contributions are driven solely by a preference for
social welfare, i.e. people help either because they are concerned about the well-being of a
particular person or out of a general sense of goodwill or duty (Foster & Rosenzweig, 2001;
Leider et al., 2009; Ligon & Schechter, 2012). Altruism might also be driven by the existence
of social norms with people contributing to transfers to avoid social sanctions (De Weerdt &
Fafchamps, 2011; Fafchamps, 2011; Ligon & Schechter, 2012). On the other hand, transfers
might be granted on the basis of self-interest if households assume reciprocity and expect
their generosity to be returned when they are in need themselves (Coate & Ravallion, 1993;
Leider et al., 2009; Fafchamps, 2011).

In general, social support arrangements have the potential to contribute to risk management.
However, among the poorest, most households are exposed to strong income fluctuations and
have few financial resources at their disposal (Banerjee & Duflo, 2007). In addition, certain
types of risks are better insured by informal risk-coping arrangements than others. While
idiosyncratic shocks that affect only particular individuals or households can be covered by
private transfers, risk-sharing networks may not work for covariate shocks that hit many
households simultaneously (Gautam et al., 1994; Dercon, 2002; Devereux, 2007). Because
networks are often not diversified and risks are therefore spread across households that live
geographically close or have similar occupations, connected households are more likely to
be affected by similar shock events and often not able to support each other when in need
(Banerjee & Duflo, 2007). Especially as the threat of weather-related losses due to climate
change will continue to increase, the fact that informal risk-sharing arrangements do not
provide adequate support for these types of losses becomes particularly concerning.

While formal insurance products are undoubtedly an important contribution to addressing
the shortcomings of informal risk-sharing arrangements, assessment studies of these poli-
cies show that, apart from direct positive effects, the introduction of formal insurance may
have unintended side effects (see review in Müller et al., 2017). Two potential consequences
deserve particular attention: First, the availability of insurance might result in a change of
land-use strategies leading to a degradation of natural resources. Insurance coverage provid-
ing financial means for supplementary fodder may, for example, prevent the need to reduce
livestock following a drought (Schulze et al., 2016; Gebrekidan et al., 2019). While having
a positive impact on households’ livelihood in the short-term, this may result in overgrazing
and pasture degradation, which increases the vulnerability to future extreme events. Sim-
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ilarly, the availability of insurance may create incentives to intensify production and, for
instance, turn to cash crops or mono-cropping, which yield higher returns but are riskier
and potentially less environmentally sustainable (Mobarak & Rosenzweig, 2012; Mobarak &
Rosenzweig, 2013; Cai, 2016; Cole & Xiong, 2017; Jensen et al., 2017). Reduced diversity in
agricultural production systems may also ultimately have a crucial impact on household food
and nutrition security (Habtemariam et al., 2021). Second, lab-in-the-field experiments and
household surveys covering different cultural contexts and insurance products have provided
evidence that households covered by formal insurance may be more reluctant to help unin-
sured neighbours (Landmann et al., 2012; Lin et al., 2014; Geng et al., 2018; Strupat & Klohn,
2018; Anderberg & Morsink, 2020; Lenel & Steiner, 2020). This would not only have con-
sequences for households that cannot afford formal insurance and thus may no longer have
access to support, but could also have far-reaching consequences in other areas of life. Infor-
mal social networks provide social capital that goes beyond mere financial support including
information sharing, access to resources or equipment, or conflict intervention (Fletcher et
al., 2020). These features may get lost if social networks become less important when formal
insurance is available.

When introducing insurance products, potential side effects must be taken into account.
However, only few studies analyse possible long-term implications on the welfare of a popu-
lation and consequences on the environment following the introduction of insurance. In par-
ticular, little is known about lasting impacts that potential behavioural changes in informal
support from households with access to insurance may have on the effectiveness of formal
and informal risk-coping instruments and whether this may result in unintended social side
effects. In addition, insurance policies must be able to deal with changing circumstances that
pose new challenges for developing the measures. In particular, increasing shock frequency
and intensity due to climate change must be explicitly taken into account in the design of
insurance products in order to continue to provide adequate protection against unexpected
income losses. Therefore, to help policymakers shape insurance products for sustainable and
effective risk management, a better understanding of these interrelated aspects is urgently
needed.

1.2 Methodological background: Socio-environmental modelling

1.2.1 Using models to address sustainability and development challenges

Unintended side effects of policies can occur if a system is not considered as a whole but only
particular components are taken into account. Especially in socio-environmental systems, it
is important to take an integrated view on coupled natural and human components and their
feedbacks to derive sustainable solutions (Reid et al., 2010; Liu et al., 2015). To deal with the
complexity of sustainability and development challenges in such interlinked systems, simu-
lation models are a suitable approach. They allow to explore dependencies between social,
environmental and economic influences that need to be understood to effectively manage
risks (Barbero Vignola et al., 2020). By including quantitative descriptions of the main com-
ponents of a system and their relationships, models can help to disentangle cause and effect
of human behaviour, environmental dynamics, and policy implications, and identify where
solutions are needed and how they can be reached (Levin et al., 2013; Barbero Vignola et al.,
2020). Since models of socio-environmental systems can cover different temporal and spatial
scales, an additional advantage is that they can represent short- or long-term effects as well as
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regional or global developments, depending on the focus of the research question (Elsawah
et al., 2020).

When a system of interest is composed of autonomous decision-making entities like humans,
households, firms or institutions, agent-based modelling is a particularly well suited analysis
tool (Parker et al., 2003; Squazzoni et al., 2014; Schulze et al., 2017). It allows including
the complexity of a system as well as the diversity of its individual actors (Bonabeau, 2002;
Railsback & Grimm, 2012). By accounting for agents’ micro-level behaviour, capturing feed-
back between their current state and interactions with other agents and the environment,
they enable the exploration of emergent patterns at the macro-level. Policies can only lead to
a change towards sustainable management if human behaviour is appropriately considered
and the instruments are aligned accordingly. When models are used to depict the effects of
policy measures in socio-environmental systems, an adequate representation of human be-
haviour is therefore as important as a sound account of environmental components (Milner-
Gulland, 2012; World Bank, 2014). A particular strength of agent-basedmodels in this regard
is that different aspects of human behaviour, such as learning, adaptation or uncertainty, can
be included (Bonabeau, 2002; An, 2012). However, despite the importance of integrating
human decision-making explicitly, the theoretical basis of the behavioural frameworks used
in agent-based models is often still quite simplified (Groeneveld et al., 2017; Schlüter et al.,
2017). Furthermore, analyses of human behaviour in socio-environmental models are de-
manding and often not systematic enough (Schlüter et al., 2012; Schulze et al., 2017; Schwarz
et al., 2020).

Human decisions are rarely made independently of others but are often affected by personal
relationships or communities. To understand complex socio-environmental processes, it is
therefore essential to consider the structure and dynamics of social networks that influence
individual decisions. A promising approach to address these aspects is to combine agent-
based models with social network analysis, which can help to understand social phenomena
by quantifying patterns of relationships among social entities using formally defined graph-
theoretic methods (Emirbayer & Goodwin, 1994; Wasserman & Faust, 1994; Scott, 2011).
Since the interaction of agents with one another can be mapped to the concept of nodes and
links established in the field of network science, a combination of both approaches can be eas-
ily achieved. This helps to fill gaps that both methods have and opens many possibilities to
study human behaviour that neither the evaluation of social networks nor agent-based mod-
els alone can provide. However, despite a wide range of applications in various disciplines
of current research, the potential for combining both approaches is far from being exhausted
and needs to be further pursued to adequately represent and evaluate the dynamics of human
interactions in agent-based models.

1.2.2 Using models to support policy and management

Models are a critical tool to inform decision-making, as they allow to evaluate consequences
of specific policies prior to their implementation (Baumgärtner et al., 2008; Holtz et al., 2015;
Grimm et al., 2020). With the help of models, it can be assessed which of the intended
goals can be achieved with an intervention and which undesirable side effects may occur. By
means of a multi-criteria analysis that takes into account effects on different aspects of a sys-
tem, models can provide concrete contributions to disentangle interdependencies between
different objectives (IPBES, 2016; Barbero Vignola et al., 2020). This can help to harmonize
socioeconomic and environmental goals (Allen et al., 2016). In other words, models can be
used as a “virtual lab” to test the impact of different policy options and evaluate multiple
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scenarios (Carley et al., 2009; Seppelt et al., 2009). Scenarios are considered as possible fu-
tures of individual components of the combined human and environmental system (Swart
et al., 2004; Baumgärtner et al., 2008). This includes direct and indirect drivers and their
anticipated change, as well as alternative policy and management options that target these
drivers (IPBES, 2016). Models can help to translate these different future scenarios into so-
cioeconomic and environmental consequences (Holtz et al., 2015; Allen et al., 2016; IPBES,
2016).

Despite the fact that modelling can provide effective support to decision-making, dynamic
process-based modelling, and agent-based modelling in particular, has so far mainly made
contributions in the scientific field, but few socio-environmental models have had impact
on decision support and policy-making (Schulze et al., 2017; Polhill et al., 2019; Elsawah
et al., 2020). To make progress in this regard, it is important to understand the underlying
reasons of the low application to date, so that socio-environmental modelling can be further
advanced and eventually realize its full potential.

1.3 Objectives and structure of this thesis

The preceding sections provided the motivation for the two overarching research objectives
(R1 and R2) of this thesis, each of which is composed of two subthemes (i and ii):

R1: Assessing risk management with formal and informal instruments: (i) Explore the in-
terplay of formal insurance and risk-sharing networks and (ii) advance insurance design
under climate change

R2: Advancing socio-environmental modelling: (i) Investigate the potential of social net-
work analysis and agent-based modelling to explore dynamics of human interaction and
(ii) make socio-environmental modellingmore useful to support policy andmanagement

In this thesis, these objectives are approached in several interlinked steps (Figure 1.1) which
are structured in two main parts. Part I focusses on modelling the interplay of formal insur-
ance and risk-sharing networks and comprises the core of this thesis. Part II is in close relation
to Part I and takes a broader perspective on the use of models to address socio-environmental
challenges in the context of risk management and beyond. In the following, the overall struc-
ture of the two parts is presented, after which a brief summary of each chapter of this thesis
is given.

1.3.1 Overall structure

In Part I, the focus is on modelling the effects of the interplay of formal and informal risk
management instruments (insurance and risk-sharing networks) on the resilience of small-
holders (R1.i). This topic is presented in two studies with different problem settings and
methodological emphases. To lay the conceptual foundation for these studies, an introduc-
tory literature review provides an overview on coupling agent-based models with social net-
works and on evaluating the integrated approach (R2.i, Chapter 2). The first modelling study
analyses the social side effect on the overall welfare in a population when insured house-
holds no longer show solidarity with their uninsured peers after the introduction of formal
insurance (Chapter 3). In the second modelling study, it is examined what determines the
resilience of the poorest to shocks when income is heterogeneously distributed (Chapter 4).
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Behavioural change:
Solidarity

and no solidarity
(Chapter 3)

Income inequality:
Determinants for

resilience to shocks
(Chapter 4)

Effects of formal insurance and

risk-sharing networks on

the resilience of smallholders

Improving insurance
design under

climate change:

Combining empiri-

cal approaches

and modelling

(Chapter 5)

Making socio-
environmental

modelling more use-

ful to support policy

and management

(Chapter 6)

Combining social network analysis
and agent-based modelling to

explore dynamics of human interaction

(Chapter 2)

R1: Assessing risk management with formal and informal instruments

R2: Advancing socio-environmental modelling

Figure 1.1: Schematic overview of the chapters in Part I (red) and Part II (blue) and their relations
within the two overarching research objectives (R1 and R2) of this thesis (grey)

In this case, it is assumed that all households show solidarity, but not everyone can afford
formal insurance.

Part II focuses on the importance of models to address pressing socio-environmental chal-
lenges in the context of risk management and beyond. First, it is outlined how empirical
and model-based approaches should be combined to advance insurance design under cli-
mate change (R1.ii, Chapter 5). Second, the topic is addressed from a broader perspective
by giving an overview on what has to be done to make socio-environmental modelling more
useful to support policy and management, i.e. how scientific results such as those derived in
this thesis can have an impact on actual policy-making (R2.ii, Chapter 6).

1.3.2 Chapter overview

Chapter 2: An introductory literature review provides an overview on the coupling of agent-
based models with social networks and the evaluation of the integrated approach. Selected
studies from three main areas of application (epidemiology, marketing and social dynam-
ics) are classified based on three aspects covering the purpose of networks in agent-based
models, the way of integrating networks in models and the type of their analysis. All of
these approaches are illustrated with key examples from the reviewed literature. Current
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implementations are critically evaluated and recommendations on how to overcome com-
mon shortcomings are provided. The findings are synthesized in guidelines that contain the
main aspects to consider when integrating social networks into agent-based models. This
chapter has been published in Socio-Environmental Systems Modelling (Will et al., 2020).

Chapter 3: The first modelling study presents a stylized agent-basedmodel to explore indirect
effect of the introduction of formal insurance products on the resilience of those smallholders
in a social network who cannot afford this financial instrument. Specifically, it is analysed
whether and how economic needs of households (i.e. level of living costs) and characteristics
of extreme events (i.e. frequency, intensity and type of shock) influence the ability of for-
mal insurance and informal risk-sharing to buffer income losses. In the model, households
can request money from their neighbours in a stylized small-world network when their fi-
nancial resources are not sufficient to sustain themselves. To investigate which unintended
side effects might arise when insured households lower their contribution to traditional in-
formal arrangements, two types of behaviour with regard to monetary transfers are explicitly
considered. First, all households are assumed to provide financial assistance whenever they
are asked for support and can afford to contribute. In a second scenario, only uninsured
households show solidarity and insured households do not transfer. All households have ac-
cess to the same financial resources and insurance uptake is randomly distributed across the
population neglecting explicit reasons behind the decision to insure. This chapter has been
published in PLOS ONE (Will et al., 2021a).

Chapter 4: In a second study using the same modelling approach as in the previous chapter,
the focus is not on transfer decisions but on the effectiveness of formal and informal risk
management in communities with heterogeneous wealth. While many aspects of the model
are still stylized, income distribution and network characteristics are based on a household
survey that was conducted in 2012 on the Philippines (Lenel, 2017). In this study, insurance
uptake is linked to the financial resources of a household. Only households that are wealthy
enough to cover the costs of insurance can decide to insure. All households are assumed to
show solidarity with uninsured peers. Themodel is used to assess the impact of heterogeneity
in income and network characteristics on the effectiveness of informal risk-sharing for the
poorest that cannot afford formal insurance. With the help of a logistic regression analysis of
simulation outcomes, a variety of factors going beyond the individual financial resources are
identified that determine the households’ resilience to shocks.

Chapter 5: A broad range of methods including experimental games, household surveys,
process-based crop models and agent-based models is currently used to assess the demand
for and the effectiveness of insurance products. However, climate change raises specific so-
cioeconomic as well as environmental challenges that need to be considered when designing
insurance schemes. In the light of these challenges, some of the currently used methodolog-
ical approaches might reach their limits when applied independently. In this chapter, it is
envisioned how methodological synergies, particularly when linking empirical analyses and
modelling, can make insurance products more effective in supporting the most vulnerable,
especially under changing climatic conditions. This chapter is currently under review in
Climate and Development.

Chapter 6: In this chapter, a broader view is taken on dynamic process-based modelling that
is often proposed as a powerful tool to understand complex socio-environmental problems
but has so far only limited impact to support policy-making. By investigating a number of
good practice examples from fields where models have influenced policy and management,
themain aspects that promote or impede the application of thesemodels are identified. These
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insights are used to synthesise four key factors for successful modelling for policy and man-
agement support in socio-environmental systems and to give recommendations specifically
to modellers, decision-makers or both to make the use of models for practice more effective.
This chapter has been published in People and Nature (Will et al., 2021b).

Chapter 7: The last chapter of this thesis summarizes the main finding on the interplay of
formal insurance and risk-sharing networks and provides methodological reflections on the
value of an agent-based modelling framework with integrated social network and the general
merit of models to address socio-environmental challenges. The thesis concludes with a final
summary and an outlook on future studies and potential areas of application.
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Part I

Modelling the interplay of formal insurance
and risk-sharing networks





2 Combining social network analysis and agent-based

modelling to explore dynamics of human

interaction: A review

This chapter has been published as Will, M., Groeneveld, J., Frank, K., & Müller, B. (2020). Com-
bining social network analysis and agent-based modelling to explore dynamics of human inter-
action: A review. Socio-Environmental Systems Modelling 2, 16325. DOI: 10.18174/sesmo.
2020a16325

Abstract

Agent-based modelling (ABM) and social network analysis (SNA) are both valuable tools for
exploring the impact of human interactions on a broad range of social and ecological pat-
terns. Integrating these approaches offers unique opportunities to gain insights into human
behaviour that neither the evaluation of social networks nor agent-based models alone can
provide. There are many intriguing examples that demonstrate this potential, for instance in
epidemiology, marketing or social dynamics. Based on an extensive literature review, we pro-
vide an overview on coupling ABMwith SNA and evaluating the integrated approach. Build-
ing on this, we identify current shortcomings in the combination of the two methods. The
greatest room for improvement is found with regard to (i) the consideration of the concept of
social integration through networks, (ii) an increased use of the co-evolutionary character of
social networks and embedded agents, and (iii) a systematic and quantitative model analysis
focusing on the causal relationship between the agents and the network. Furthermore, we
highlight the importance of a comprehensive and clearly structured model conceptualization
and documentation. We synthesize our findings in guidelines that contain the main aspects
to consider when integrating social networks into agent-based models.

2.1 Introduction

Many of the challenges society is facing today are not determined by individualistic action,
but by behaviour embedded in complex networks of personal relationships, communities
and markets. Climate change, for example, can only be tackled if people change their every-
day behaviour, which strongly depends on actions of their surroundings (Senbel et al., 2014;
Kjeldahl & Hendricks, 2018). Connections in a digitalized world allow communication in-
dependent of physical distances, but also bear specific risks (Pastor-Satorras & Vespignani,
2001; Kaplan & Haenlein, 2010). Epidemics such as measles and Ebola spread more easily
the more people resist proper prevention (Andre et al., 2008; Chowell & Nishiura, 2014), and
global markets are largely dominated by the interaction of customers, suppliers and busi-
nesses (Gereffi, 1999; Garlaschelli & Loffredo, 2005). To understand these complex social
processes of our time, it is essential that research draws attention both to human behaviour
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and to the structure of social networks and their dynamics. A promising approach to ad-
dress these two aspects is the combination of social network analysis (SNA) and agent-based
modelling (ABM).

Analysing social structure in a formalized way has attracted interest from a wide range of
social and behavioural disciplines (Borgatti et al., 2009; Butts, 2009). As an approach to
rigorously quantifying patterns of relations between social entities by means of formally de-
fined graph-theoretic methods, SNA can contribute to the understanding of various social
phenomena (Emirbayer & Goodwin, 1994; Wasserman & Faust, 1994; Scott, 2011). On the
other hand, ABM, too, has proven to be a valuable approach to address the complex task
of analysing the interplay between individuals or groups (Gilbert, 2008; Squazzoni, 2010).
Agent-based models are process-based simulation tools that can capture feedbacks between
the behaviour of heterogeneous agents and their surroundings. In this context, agents can be
entities such as humans, households, firms or institutions (Railsback & Grimm, 2012). On
a micro-level, agents act interdependently according to prescribed rules and adjust their be-
haviour to the current state of themselves, of other agents and of the environment (Bonabeau,
2002; Railsback & Grimm, 2012). On the macro-level, emergent patterns and dynamics arise
from the aggregated individual behaviours and the interactions between the agents (Kiesling
et al., 2012).

As the interaction of agents with one another can be mapped to the concept of nodes and
links established in the field of network science, a combination of both approaches can be
easily achieved. Embedding networks in ABM makes it possible to define the set of agents
with which a focal agent interacts not exclusively via spatial relationships, as in virtually all
spatial agent-based models, but via the agent’s social network, i.e. a (dynamic) set of other
agents (Railsback & Grimm, 2012). Since individual behaviour and network structure are
largely intertwined, social systems often show nonlinear and unpredictable behaviour. In-
tegrating social networks in computer simulations such as ABM helps to understand these
processes (Bonabeau, 2002; Squazzoni et al., 2014). Furthermore, ABM can complement the
sampling bias that is common in network structures mapped by empirical approaches of the
social sciences (Costenbader & Valente, 2003; Stumpf et al., 2005). As complete network data
is rare, a comprehensive picture of the whole node-ties landscape is often missing. Compu-
tational modelling can be used as a “virtual lab” to explore systems in space and time and to
test hypotheses about causal relationships (Carley, 2009). A systematic combination of these
theory-driven approaches with the empirically-driven aspects of network science thus helps
to fill gaps that both approaches have and opens many possibilities to investigate human
behaviour that neither the evaluation of social networks nor agent-based models alone can
provide.

The potential to explore the dynamics of social networks with agent-based models has been
recognized in various disciplines of contemporary research. Examples can be found, among
others, in the context of epidemiology (Eubank et al., 2004; Verelst et al., 2016), marketing
(Rand & Rust, 2011; Kiesling et al., 2012; Rai & Henry, 2016) or social dynamics (Macy &
Willer, 2002; Castellano et al., 2009; Squazzoni et al., 2014). Despite this broad range of
application, the potential to combine both approaches is far from being exhausted, as will be
shown in this review.

The aim of this paper is threefold: (i) bring together different research streams, in which ABM
is coupled with social networks, to enable an increased methodological cross-fertilization be-
tween disciplines, which has so far been hardly realized, (ii) detect current limitations in
the combination of the two methods, and (iii) propose guidelines that provide a basis for
a comprehensive and clearly structured model set-up which supports the application of a
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systematic and quantitative analysis of social networks in agent-based models. The guide-
lines take full advantage of combining both approaches to explore human interaction and
are meant to serve modellers in future projects.

2.2 Methods

To reveal the diverse range of applications and identify key challenges when combining
agent-based models and social networks, we provide a review of a selection of exemplary
studies. We evaluated 54 publications from different fields to gain an overview of the current
usage of social networks in agent-based models and to find possible gaps in their implemen-
tation and analysis. Our search was limited to agent-based and multi-agent models, a term
often used as a synonym for agent-based models, where it is explicitly stated that social net-
works are integrated (see Appendix A.1 for details). We are aware that especially in the area
of network research there are other terminologies (e.g. network model or game-theoretic
model) that refer to similar concepts and do not fall under our search restrictions. However,
we believe that ABM is a reasonable umbrella term for all these approaches and that most
results are transferable. Furthermore, we did not aim to conduct a systematic review of all
sampled models, but tried to cover the most recent and, according to the number of cita-
tions, the most established results (see Appendix A.1 for the selection criteria and Appendix
A.2 for a detailed classification of the reviewed models). As an outcome of this investiga-
tion, we elaborate in the remainder of the review on the potential of linking ABM with social
networks. We highlight three areas of common shortcomings and offer opportunities for im-
provement. First, we focus on the role of social networks in agent-based models in terms of
their purposes. Second, we distinguish ways of integrating networks in agent-based models;
and third, we emphasize currently used as well as potentially more beneficial approaches for
model analysis. Table 2.1 summarizes all aspects on the classification for social networks in
ABM that will be revealed in the course of the review. To address the observed deficiencies in
terms of comprehensive and clearly structured model conceptualization and evaluation, we
conclude with proposing guidelines covering all aspects that need to be considered for sound
modelling and systematic analysis of social networks.

2.3 Potential of linking ABM with social networks

The unmatched potential to address the dynamics of social interaction through a coupled so-
cial network and ABM approach has been recognized in various disciplines of contemporary
research. By reviewing the selected publications, we identified three main areas of appli-
cation, which are not without overlaps: epidemiology, marketing and social dynamics. To
reveal the full spectrum of social networks in these contexts, we illustrate different (i) pur-
poses, (ii) ways of network integration, and (iii) types of analysis of social networks in ABM
and give recommendations on how to overcome common shortcomings. For all approaches
in the following sections, we include key examples from the reviewed literature to illustrate
different possible realizations and their suitability.
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2 Social network analysis and agent-based modelling

Table 2.1: Summary of classification aspects for social networks in ABM used in this review with
reference to the respective sections that address these aspects

Levels

Purpose
(section
2.3.1)

Diffusion: Links between agents
in a network serve as channels
for transfer of material or
non-material resources.

Social integration: Social ties
represent integration of actors in
a group; agent’s network position
provides social capital which
leads to achievements, success or
power.

Network
integration
(section
2.3.2)

Endogenous:
Network topology
evolves during the
simulation based on
individual decisions
of agents and further
impacts through the
environment.

Exogenous: Network
topology is imposed
and fixed during the
simulation; focus on
how social network
structure affects
state of the agents
and system
dynamics.

Co-evolutionary:
Feedback loop
between changing
the states of agents
through their
interaction and
adapting the
topology of the
network leads to
dynamically
evolving network.

Types of
analysis
(section
2.3.3)

Agent-centric: Effect
of parameters not
related to the
network.

Network-centric:
Effect of link
properties or global
network measures.

Structurally
explicit: Causal
relation between
agents and network
structure, effect of
local network
measures.
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2.3 Potential of linking ABM with social networks

2.3.1 Purpose

Social networks in ABM have two main purposes: diffusion and social integration (Macy
& Willer, 2002; Borgatti & Foster, 2003; Goldstone & Janssen, 2005; Granovetter, 2005;
Klabunde &Willekens, 2016). The relevance of both is addressed separately in the following
two sections.

2.3.1.1 Diffusion

If diffusion is the model purpose, the linkages between agents in a network serve as channels
for transfer of material (e.g. goods) or non-material resources (e.g. information). Implement-
ing connections between agents allows to model how new ideas, practices or diseases spread
within and between communities through interpersonal contacts (Wasserman & Faust, 1994;
Valente, 2005).

In epidemiology, ABMwith integrated social networks is widely used to overcome the unreal-
istic assumptions of homogeneous mixing used in traditional models of disease spread based
on differential equations (Eubank et al., 2004; Rahmandad & Sterman, 2008). As the trans-
mission of a disease is directly influenced by the behaviour of individuals, social networks
are not only included in the models to serve as a channel for the diffusion of epidemics but
they allow the direct incorporation of social factors such as the propensity to vaccinate (Fu et
al., 2011) or hygiene compliance (Hornbeck et al., 2012) that can influence health outcomes
(El-Sayed et al., 2012; Verelst et al., 2016).

Marketing research addresses the spread of non-material processes when dealing with the
diffusion of innovations (Peres et al., 2010; Kiesling et al., 2012). Agents exchange informa-
tion with their peers which influences their decision towards a new product (Janssen & Jager,
2001; Janssen & Jager, 2003; Goldenberg et al., 2007; Bohlmann et al., 2010; Amini et al.,
2012; Haenlein & Libai, 2013; Libai et al., 2013; Hu et al., 2018; Negahban & Smith, 2018)
or technology such as sustainable mobility (Huétink et al., 2010), solar photovoltaics (Pearce
& Slade, 2018; Wang et al., 2018), water conservation (Rasoulkhani et al., 2018), smart me-
tering (Zhang & Nuttall, 2011), flood prevention measures (Erdlenbruch & Bonte, 2018) or
innovations like autonomous vehicles (Talebian & Mishra, 2018).

Similar research questions are addressed with respect to social dynamics (Macy & Willer,
2002; Bianchi & Squazzoni, 2015). In this field, the main focus is on social influence on
the dissemination of attitudes (e.g. regarding sustainable energy use (Moglia et al., 2018;
Niamir et al., 2018) or organic farming (Kaufmann et al., 2009)), culture (Flache & Macy,
2011; Keijzer et al., 2018), language (Ke et al., 2008; Lou-Magnuson & Onnis, 2018), opinions
(Lu et al., 2009; Biondo et al., 2018; Piedrahita et al., 2018), trends (Weng et al., 2012; Schlaile
et al., 2018) or information (Chareunsy, 2018; Frank et al., 2018).

2.3.1.2 Social integration

Interaction between agents, however, does not necessarily involve a direct exchange. Apart
from being channels for transfer, social ties also represent the social integration of actors in a
group. These connections to others provide possibilities and constraints for action (Granovet-
ter, 1985; Macy & Willer, 2002; Borgatti & Foster, 2003; Smith & Christakis, 2008; Bianchi &
Squazzoni, 2015). The network structure can be seen as a form of coordination which enables
collective action, self-organization and cross-scale support (Cumming, 2016; Rockenbauch &

15
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Sakdapolrak, 2017). An agent’s network position provides social capital which leads to cer-
tain achievements, success or power. Examples include the evolution of cooperation based
on familiarity (Son & Rojas, 2011), similarities (Hadzibeganovic et al., 2018) or trust (Bravo
et al., 2012; Growiec et al., 2018; Laifa et al., 2018). Additionally, a social environment can
provide existential security (Gore et al., 2018) or can support people to promote an activity
(Garcia et al., 2018).

2.3.1.3 Recommendations

We observe that ABM most often addresses the concept of networks as channels for transfers
and considers social integration only rarely. We want to underline that the two different
purposes of networks, however, both have their justification and want to encouragemodellers
to apply the concept of social integration which is one of the main thrusts of SNA in agent-
based simulations.

2.3.2 Network integration

2.3.2.1 Exogenously imposed and endogenously emerging networks

The critical specification for networks in agent-based models is whether their structure is
exogenously imposed or endogenously emerging (Macy &Willer, 2002; Jackson, 2010; Bruch
& Atwell, 2015; Namatame & Chen, 2016). In the first case the network structure is fixed
and the focus is on how social network structures affect the state of the agents and system
dynamics (Figure 2.1a). The vast majority of the models assessed in this review focuses on
this approach.

On the other hand, networks can also emerge based on predefined rules in the model. In this
case, agents are aware of the impacts of each connection and decide whether they establish
relations with other agents, depending on the gains these links provide (Figure 2.1b). In es-
tablished network formation models such as random networks (Erdős & Rényi, 1959), small-
world networks (Watts & Strogatz, 1998) or scale-free networks (Albert & Barabási, 2002),
the formation rules are not necessarily appropriate to describe sociological questions (Flache
& Snijders, 2008). Endogenously evolving networks in agent-based models of social networks
enable the integration of individual decisions of agents and further impacts through the en-
vironment in the formation process and can therefore be used to investigate which structures
are likely to emerge in certain contexts. Furthermore, ABM allows to analyse the effect of
agents’ knowledge of the network on the choice of connections. Partial or imperfect informa-
tion on existing and possible connections induces agents to create, maintain or strategically
invest in their ties. Examples of network formation can be found mostly in context of social
dynamics and include friendship selection in secondary schools (Fetta et al., 2018), relation-
ships based on similar attitudes (Neal & Neal, 2014) or creation of urban networks due to
spatial closeness of agents’ residential locations and workplaces (Zhuge et al., 2018).

2.3.2.2 Co-evolutionary networks

Models considering both endogenous network formation and a dynamic update of the state
of the agents depending on the network and vice versa are often called co-evolutionary net-
work models (Gross & Blasius, 2008) (Figure 2.1c). The incorporation of the feedback loop
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c. Co-evolutionary network: 

dynamics on network 

affect network formation 

and vice versa

b. Endogenous network formation

a. Dynamics on exogenously imposed network

Figure 2.1: Exogenous, endogenous and co-evolutionary networks in agent-based models with social
networks. a. Exogenous network: Social networks enable an appropriate representation of the social
interaction between agents. The model dynamics are determined by the interaction of agents linked in
an exogenously imposed network which is fixed during the simulation. Here, the focal agent (marked
with a bulb) decides to change its state (black to grey) based on the current status of the agents it is
linked to. b. Endogenous network: Agent-basedmodels allow the integration of individual behaviour
and environmental influences in models of network formation. Links between agents emerge and
disappear, but the states of the agents do not necessarily change. Here, the focal agent decides to
establish a new link to another agent. c. Co-evolutionary network: The combined approach of both
aspects takes into account the feedback loop between state of agents and topology. Agents change
their state according to their network connections and their network connections according to their
state. Figure adapted from Gross & Blasius (2008).

between changing the states of agents through their interaction and adapting the topology of
the network (i.e. the arrangement of nodes representing agents and links connecting them)
through link formation and dissolution combines the advantages of pure networkmodels and
the modelling of human behaviour in agent-based models. We observed, however, that this
has rarely been used in ABM so far. Examples for co-evolutionary networks comprise agents
that add or remove links to maximize the information they can gain from their acquaintances
(Frank et al., 2018; Lozano et al., 2018; Moradianzadeh et al., 2018; Phan & Godes, 2018), to
establish monogamous mating relationships (Simão & Todd, 2002), to express their dissatis-
faction within a cooperation (Bravo et al., 2012) or if the trust between agents has vanished
due to offenses between neighbours (Laifa et al., 2018). Additionally, modified spatial con-
figurations that emerge from the behaviour of the agents (e.g. migration decisions (Fu &
Hao, 2018)) or the appearance and disappearance of additional agents due to birth and death
(Hadzibeganovic et al., 2018) can lead to changes in the network structure.

2.3.2.3 Recommendations

The choice of a suitable approach for network integration depends, apart from the research
question at hand and the availability of data, largely on the time scale on which the relevant
processes take place (Figure 2.2). Both the network structure and the interaction of the agents
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fast

slow

slow fast

variation of 

network 

structure

variation of 

agent states

endogenously 

emerging 

networks

exogenously 

imposed 

networks

co-evolutionary 

networks

Figure 2.2: Time scales of variation of network structure and agent states and adequate ways of inte-
grating social networks in ABM. Fixed exogenously imposed networks are suitable if the states of the
agents adapt rapidly but changes on the network structure are slow. Endogenously emerging networks
capture situations with fast network changes and slowly adjusting agent states. In co-evolutionary
networks both processes, variation of network structure and agent states, run fast.

can change slowly or quickly (for an overview on the concept of slow and fast variables see
e.g. Walker et al., 2012). A network that slowly adapts to the actions of the agents can be
considered constant, i.e. it can be determined by fixed exogenously imposed structures. In
cases where connections between agents change rapidly but their states adjust slowly, net-
works form endogenously without affecting the internal characteristics of the agents. If both
processes run fast, co-evolutionary networks are the appropriate method of choice. As many
social connections change over time, this allows adopting concepts of dynamic social net-
works observed in reality for connections in agent-based models. We strongly recommend
that modellers carefully determine the relevant time scales of network and agent dynamics
in the specific cases to capture cross-fertilization between network topology and agent be-
haviour if needed. In situations in which either only the causes or only the consequences of
networks are to be investigated, however, the use of endogenously emerging or exogenously
imposed structures, respectively, is equally appropriate.

2.3.3 Types of analysis

Understanding overarching patterns that emerge from assumptions and model rules at the
individual level is the key challenge in interpreting the outcomes of agent-based models.
We distinguish three approaches to assessing social networks in agent-based models with
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a. agent-centric

1. Reference state

2. Varying agent state

3. Varying external 

    influences

b. network-centric

1. Reference state

2. Varying network density

3. Varying network size

c. structurally explicit

1. Highly connected agent 

    as innovator

2. Loosely connected agent 

    as innovator

Figure 2.3: Agent-centric analysis, network-centric analysis, and structurally explicit analysis of social
networks in agent-based models. a. Agent-centric analysis: The network plays an important role in
the interaction between agents, but different model outcomes are obtained by varying input param-
eters that are not related to the network itself, such as agent states (1,2), which here are represented
by the agent colours, or external influences such as policies (3). b. Network-centric analysis: Agent
states are kept constant and the focus is on the impact of modifications at the network level such as
varying initial network density (1, 2) or size (3). c. Structurally explicit analysis: Model outcomes are
assessed not only based on agent or network properties but depend on the location of specific agents
in the network. The example shows the initial condition for an innovation to spread (grey colour)
for two different scenarios: highly connected agent as innovator (1) and loosely connected agent as
innovator (2).

increasing emphasis on structural characteristics: (i) agent-centric, (ii) network-centric, and
(iii) structurally explicit analysis. Figure 2.3 illustrates all three types of analysis exemplar-
ily. These distinctions mainly apply to exogenously imposed and co-evolutionary networks,
since the analysis of models dealing with endogenous network formation is always network-
centric. However, driving mechanisms behind endogenous network formation can be classi-
fied similarly.

2.3.3.1 Agent-centric analysis

Topics that require agent-centric analysis cover cases where the network plays an important
role in the interaction between agents, but the effect of its structure on model results does
not need to be explicitly addressed. Figure 2.3a shows a stylized representation of the initial
state of a diffusive system. Input parameters that are not related to the network itself, such
as agent states, e.g. the number of black and grey agents, or external influences, e.g. policies,
can have effects on the outcome, i.e. howmany agents are of grey state at the end of the simu-
lation. Examples from the literature include the comparison of agent properties like variable
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adoption thresholds (Bohlmann et al., 2010) or group identification of agents (Frank et al.,
2018), or the inclusion of external influences such as policies accompanying the introduction
of new products (Amini et al., 2012; Negahban & Smith, 2018), influencing risk prevention
of individuals (Erdlenbruch & Bonte, 2018), mitigating influenza pandemics (Davey et al.,
2008; Perlroth et al., 2010) or encouraging the transformation towards sustainable behaviour
(Kaufmann et al., 2009; Zhang & Nuttall, 2011; Rasoulkhani et al., 2018; Wang et al., 2018).

2.3.3.2 Network-centric analysis

Network-centric analysis, on the other hand, is applicable for questions where agent proper-
ties can be kept constant and the focus is on the impact of modifications on the network level.
This can be induced by varying link properties or global networkmeasures (such as density or
size, see stylized example in Figure 2.3b) or by a comparison of different network topologies.
In contrast to modifications at the agent level, these changes affect the network as a whole.
Global network measures map network properties to a single value (Araújo & Banisch, 2016),
thus modifying them also changes the entire network. SNA provides several metrics at this
level such as network density (Kaufmann et al., 2009; Chica et al., 2018; Growiec et al., 2018;
Phan & Godes, 2018) and size (Janssen & Jager, 2001; Ke et al., 2008; Chen et al., 2012;
Laifa et al., 2018) or the rewiring probability in small-world networks (Janssen & Jager, 2001;
Janssen & Jager, 2003; Bohlmann et al., 2010; Baggio & Hillis, 2018). In addition, the global
clustering coefficient, network diameter and average path length fall under this category. For
the comparison of network topologies, model outcomes emerge based on different network
structures such as scale-free, small-world or regular networks (Janssen & Jager, 2003; Ke et
al., 2008; Lu et al., 2009; Bohlmann et al., 2010; Huétink et al., 2010; Fu et al., 2011; Bravo
et al., 2012; Chen et al., 2012; Chica et al., 2018; Erdlenbruch & Bonte, 2018; Hadzibeganovic
et al., 2018; Heinrich, 2018; Keijzer et al., 2018; Moglia et al., 2018; Negahban & Smith, 2018;
Rasoulkhani et al., 2018; Schlaile et al., 2018). Changes in link properties include strength
(Goldenberg et al., 2007) and direction of social interaction (Flache & Macy, 2011).

2.3.3.3 Structurally explicit analysis

Both agent- and network-centric analysis methods capture the network as a way to connect
agents, but do not address its internal characteristics. The third approach, a structurally ex-
plicit analysis, allows a shift to a more causal relation between agents and network structure
(Bodin et al., 2011). Here, SNA is applied at the local level to determine the association be-
tween the state of the agents and their location in the network. This approach goes beyond
the mere combination of agent- and network-centric analysis. The network is not evaluated
separately, but directly associated with the properties of agents. Network metrics that can
be considered from this perspective are for example degree distribution, local clustering and
centrality measures. These local network measures provide information about the relative
position to other agents, the importance of specific agents or the existence of subgroups.
The stylized example in Figure 2.3c shows the initial condition for an innovation to spread
for two different scenarios with either a highly or a loosely connected agent as innovator.
With insights into the correlation between network and agents, implications of the network
structure on human behaviour and vice versa can be sensibly addressed. In comparison to
network-centric analysis, this allows a targetedmodification of both network andmodel rules
to compare the results of different scenarios. Agents can be selected and manipulated not
only according to their properties, but also depending on their position in the network.
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An example that underlines this advantage is given in the context of models dealing with dif-
fusion in networks. The position of the seed, i.e. depending on the context the first infected
or convinced agents, strongly influences model outcomes, as the number and type of contacts
of the selected agents can increase or decrease the dissemination. Although there exists an
extensive theoretical background on this aspect in social network sciences (Freeman, 1979;
Friedkin, 1991; Borgatti, 2006), we observed that in ABM the choice of specific key play-
ers based on network properties is often undervalued. In most models the set of actors from
which a diffusion starts to propagate is selected randomly or according to agent-centric prop-
erties such as personality. Table 2.2 is based on the few examples among the articles in the
literature review where common network measures have been used to determine individuals
selected as first adopters of an innovation or technology (Haenlein & Libai, 2013; Libai et al.,
2013; Beretta et al., 2018; Hu et al., 2018; Negahban & Smith, 2018).

2.3.3.4 Recommendations

In our evaluation, we observed that the use of agent- and network-centric analysis methods
is widespread. However, the application of SNA at the local level to gain insights into the re-
lation between network structure and agent properties is the exception. Examples for specif-
ically targeted selection of first adopters were found only in models in the context of product
or technology diffusion (Table 2.2), although this issue is also relevant for the dissemination
of knowledge or information in social systems or with respect to epidemic diffusion. The
most common approach to assessing model outcomes is to implement various network struc-
tures and compare the results under these different assumptions. However, restricting the
analysis to a limited set of network metrics that only monitor global properties of networks
and omit the full range of SNA at the local level ignores a valuable aspect of the integration
of social networks in agent-based models. Depending on the research problem and ques-
tions at hand, a structural analysis of the network is not a prerequisite to gain new insights.
However, we would like to emphasize the additional benefits of the causal relation between
network connections and agent properties and therefore encourage modellers to devote more
attention to approach (iii), the structurally explicit analysis.

2.3.4 Condensed classification of models included in the review

Table 2.3 classifies all models evaluated in the review according to the types of analysis and
the context of application (see Appendix A.2 for the corresponding references). It is clearly
visible that most of the reviewed models focus on agent- or network centric analysis or a
combination of both methods. Within the subset of studies we analysed for the review, struc-
turally explicit analysis was found only in models in the context of marketing. Only one
of the selected publications managed to combine all three methods: to evaluate the optimal
combination of seeding and inventory build-up policies for new products, Negahban & Smith
(2018) compared the effect of different strategies of initial dissemination, build-up periods
before a product is launched and stylized network structures on adoption rates. In general,
this overview provides a good starting point for a transfer of concepts between disciplines, as
it facilitates seeing what has been successfully applied in one discipline and what is missing
in others. We would like to stress that none of the categories is superior to the others. It is
essential to consider the degree of feedback between network structure and agent states and
the research questions that the model should address in order to make an informed decision
about the appropriate levels of network integration and analysis.
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Table 2.2: Overview of common network measures for the selection of seeding scenarios, i.e. depend-
ing on the context first infected or convinced agents, with application examples among the articles in
the literature review where innovation diffusion is studied with ABM

Network
measure

Description References

Degree Select agents based on their number of
neighbours. Select agents with high degree
first.

Haenlein & Libai
(2013), Libai et al.
(2013), Hu et al.
(2018), and Negahban
& Smith (2018)

Local
clustering
coefficient

Select agents based on the number of edges
between neighbouring nodes divided by the
total number of possible edges between
neighbouring nodes. Select agents with low
clustering as there is less overlap between
the neighbours.

Negahban & Smith
(2018)

Closeness
centrality
(average path
length)

Select agents based on the average number
of steps to reach any other node in the
network. Select agents with the shortest
average path length first.

Beretta et al. (2018)
and Negahban &
Smith (2018)

Betweenness
centrality

Select agents based on the number of times
they act as a bridge along the shortest path
between two other nodes. Select agents with
the highest betweenness centrality first.

Beretta et al. (2018)

Eigenvector
centrality

Select agents based on the centrality of their
neighbours. The eigenvector centrality is
higher the more central the neighbouring
agents are. Select agents with the highest
eigenvector centrality first.

Beretta et al. (2018)
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Table 2.3: Classification of models included in the review. The studies are distinguished according to the types of analysis (agent-centric, network-
centric and structurally explicit), the network integration (endogenous, exogenous and co-evolutionary), and the context in which the model is applied
(epidemiology/public health, marketing and social dynamics). Models in the context of social integration are written in italics; all other models deal with
diffusion processes.

Analysis Network integration Context

Agent-
centric

Network-
centric

Structurally
explicit

Endo-
genous

Exo-
genous

Co-
evolutionary

Epidemiology/Public Health Marketing Social dynamics

X X
Davey et al. (2008), Perlroth et al.
(2010), and Hornbeck et al. (2012)

Zhang & Nuttall (2011), Amini et al.
(2012), Chareunsy (2018), Niamir
et al. (2018), Talebian & Mishra
(2018), and Wang et al. (2018)

Biondo et al. (2018), Garcia et al.
(2018), Gore et al. (2018), Piedrahita

et al. (2018)

X X Moradianzadeh et al. (2018)
Simão & Todd (2002), Frank et al.

(2018), and Lozano et al. (2018), Son
& Rojas (2011)

X X

Goldenberg et al. (2007), Huétink
et al. (2010), Chen et al. (2012),

Heinrich (2018), and Pearce & Slade
(2018)

Bravo et al. (2012), Flache & Macy
(2011), Growiec et al. (2018), Weng

et al. (2012), Keijzer et al. (2018), and
Lou-Magnuson & Onnis (2018)

X X Bravo et al. (2012), Fu & Hao (2018)

X X Libai et al. (2013)

X X X Fu et al. (2011)

Janssen & Jager (2001), Janssen &
Jager (2003), Kaufmann et al. (2009),
Bohlmann et al. (2010), Baggio &
Hillis (2018), Erdlenbruch & Bonte
(2018), Moglia et al. (2018), and

Rasoulkhani et al. (2018)

Ke et al. (2008), Lu et al. (2009), Chica
et al. (2018), and Schlaile et al. (2018)

X X X Phan & Godes (2018)
Hadzibeganovic et al. (2018), Laifa

et al. (2018)

X X X Hu et al. (2018)

X X X
Haenlein & Libai (2013) and Beretta

et al. (2018)

X X X X Negahban & Smith (2018)

X Fetta et al. (2018)
Neal & Neal (2014) and Zhuge et al.

(2018)
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2.4 Conceptualization and documentation of social networks in
agent-based models

When implementing social networks in agent-based models, several decisions have to be
made about the structure and character of the network and the interaction of agents on it.
As these choices decisively influence the model outcome, model conceptualization and doc-
umentation are crucial to make the modelling process transparent and reproducible. How-
ever, on the basis of our literature review, we observed, on the one hand, that the reasoning
behind the choice of certain network topologies and network properties is often based on ad
hoc assumptions, not on insights from the broad field of social network research. On the
other hand, the model and in particular the network and the interactions on it are often not
sufficiently documented. Similar aspects have been criticized in reviews with regard to the
operationalization of decision making in agent-based models (Crooks et al., 2008; Kiesling
et al., 2012; Müller et al., 2013; Flache et al., 2017; Groeneveld et al., 2017; Janssen, 2017).
We build on the solutions to overcome the problems proposed in these studies and focus on
(i) incorporating theoretical and empirical insights in the process of model conceptualiza-
tion and (ii) guidelines as a basis for comprehensive and clearly structured model set-up and
evaluation.

2.4.1 Incorporating theoretical and empirical insights

Modelling precisely how agents are linked is an essential task when integrating social net-
works in ABM (Amblard et al., 2015; Klabunde & Willekens, 2016). Inspired by empirical
studies, a multitude of theoretical network topologies have been developed that allow an in-
formed decision on the choice of suitable networks and their characteristics (Newman, 2003).
Because of the variety of options available, the reasoning behind each choice of topology is
particularly important (Cointet & Roth, 2007; Zacharias et al., 2008; Amblard et al., 2015). A
thorough analysis of the impact of the underlying topology on the model outcome, which can
then be tested with ABM, is required. Only when these considerations are made in advance,
a meaningful conclusion can be drawn from the results. Additionally, hypotheses about the
behaviour of humans in networks such as homophily (i.e. the tendency to form links with
similar others), reciprocity (i.e. the number of reciprocated ties of an actor) or transitivity (i.e.
friends of friends become friends), which can be drawn from empirical studies, should be in-
tegrated in the process of model design (Snijders et al., 2010). The inclusion of knowledge
from empirical network research in the decisionmaking of agents on the network is necessary
to enable an adequate representation of the co-evolution of networks and behaviour.

2.4.2 Guidelines for model set-up and evaluation

Hand in hand with a sound justification of decisions made for the model conceptualization
goes a precise documentation of the model (Grimm et al., 2006; Schmolke et al., 2010; Rand
& Rust, 2011). The choice of a particular network model and the corresponding properties
for the interaction of agents need to be substantiated in the model documentation to ensure
comprehensibility, comparability and replicability of models which highly strengthens the
advancement of the method and its use. We summarize the main aspects that need to be
considered for agent-based models combined with social networks in guidelines which can
easily be integrated in existing standards for the description of agent-based models, such as

24



2.4 Conceptualization and documentation of social networks in agent-based models

the ODD protocol (Grimm et al., 2006; Grimm et al., 2010) or its extension concerning the
integration of decision making, the ODD+D protocol (Müller et al., 2013). Following the cat-
egories of these formats, networks can, for example, be listed as state variables and referred to
when specifying the design concepts “Interactions” and “Collectives”. Our proposed guide-
lines are divided into three main categories: network definition, dynamics of the network,
and dynamics on the network. The first section covers different aspects of complexity con-
cerning the set-up of nodes and links and network initialization. The two remaining sections
focus on the co-evolution of networks and agents and comprise dynamics of and on the net-
work (Gross & Blasius, 2008). Dynamics of the network cover the network itself as a dynamic
system that changes according to specific rules. This section introduces the rules to be de-
scribed when modifying the topology. Dynamics on the network deal with the dynamically
changing state of each node, and comprise the conditions for interactions between agents, the
interaction direction and the choice of interaction partners as well as the state transition of
the agents and are thus only relevant for exogenously imposed and co-evolutionary networks.

The guidelines with the main principles that need to be considered for model set-up and
documentation are presented in Box 2.1. Modellers intending to design a model with en-
dogenously emerging networks need to focus specifically on the section on the dynamics of
the network. For models with exogenously imposed networks, the section on the dynamics on
the networks is most applicable. In models with co-evolutionary networks, all sections must
be considered. Careful reflection and justification of all relevant aspects of the guidelines
during the model building process provides a solid foundation for analysis. The guidelines
ensure that all variables that can be investigated with an agent- or network-centric sensitivity
analysis are properly introduced. In addition, it is particularly useful when local network
metrics are evaluated in a structurally explicit analysis.

Box 2.1: Guidelines for improved model set-up and documentation

i. Network definition

a. Nodes

Level of aggregation: What is represented by an agent (c.f. “Collectives” in ODD
design concepts)?
The chosen subdivision that represents interacting partners has crucial influ-
ence on the network (Levin, 1992). Subdivisions depend on the level of de-
cision making or action and the required level of accuracy but are limited by
computational power (number of interacting agents grows fast if low level of
aggregation is chosen). Possible subdivisions are:

• Individual agents: used in situations where the personal context is rele-
vant (e.g. epidemics, opinion formation)

• Households: aggregated behaviour of family members or relevant deci-
sions made by household head (e.g. land-use context: farmers, energy
consumption: data availability on household level)

• Firms: similar to households but no relation to family (e.g. marketing:
product diffusion can be either on individual or on firm level)

• Higher level of aggregation possible (e.g. regions, countries)

Typology of agents: Which entities are grouped together and treated in a similar
manner?
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Within the levels of aggregation, agents are grouped according to their at-
tributes to allow generalizations of individual actors (Arneth et al., 2014). This
includes classification on the same organisational level with same (e.g. green
vs. conventional farmers, early vs. late adopters) and different functions (e.g.
buyers vs. sellers) or across hierarchical organisational scales (e.g. land users
vs. government).

b. Links

Reciprocity: Are the links directed or undirected?
Some problems need reciprocal links, some can deal with both but are prob-
ably more realistic with either directed or undirected links (opinion diffusion
sometimes modelled in directed networks, sometimes in undirected), some
need directed links (e.g. material transfer often only in one direction).

Weight: Do the links include weighted relationships and preferences?
Link strength allows including weighted relationships and preferences among
neighbours. Link strength can be discrete (e.g. strong/weak) or continuous
(assigning relative or absolute weights to links) and can be determined by the
number of common contacts or emotional intensity such as trust or similarity
of opinions.

c. Initialization

Initial condition: Which links are present as initial conditions?
The network formation can start from scratch with no links between the
nodes established at the beginning of the simulation or with links set up ac-
cording to a specified topology.

Network topology: How are initial links motivated?
If links are set up according to a specified topology, initial network topolo-
gies can be calibrated with empirical data or with idealized topologies (e.g.
random, small-world or scale-free).

ii. Dynamics of the network

Link formation: Why are links formed between agents?
The formation of links between agents can be based on agent properties (e.g. spa-
tial proximity or similarity), probability, utility maximization, etc.

Network size: Does the number of nodes in the network vary during the simulation?
Network size can be static if the network consists of the same nodes over the whole
simulation or dynamic if the nodes vanish or appear during the simulation (e.g.
due to extinction and reproduction processes or migration).

iii. Dynamics on the network

Condition for interaction: When do agents interact?
In some contexts, interaction takes place independent of the network. Thus, no
condition on the interaction is needed (e.g. if influence of social norms is always
present). Alternatively, a threshold (e.g. number of neighbours, fraction of neigh-
bours, distance (spatially or between opinions), properties of neighbours etc.) has
to be reached before the agents interact (Granovetter, 1978).
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Interaction direction and partners: Who do agents interact with?
The interaction direction has a large effect on the dynamics on the network as it
influences the direction of causality and therefore the relevance of the positions
of the agents. The acting agent can either be influenced by the agents in its net-
work (“in”, unidirectional) or influence other agents it has links to (“out”, unidirec-
tional). Additionally, both agents can change their status based on the interaction
(“both”, bidirectional). The acting agent can either pick one (“pairwise”), several
(“selected”) or all other agents of its network as interaction partners.

direction

in out both
pairwise

partner selected

all

Agent state transition: How do agents change their status?
Change of agent state is influenced by processes like e.g. imitation or averaging
or based on probability, distance, utility, etc. The representation of agent state
(i.e. behaviour, opinion, health condition etc.) is possible either as continuous
traits (e.g. opinions) or distinct nominal categories (e.g. product adoption levels,
epidemics). Change of agent state is possible either in one way only (e.g. adoption
of an innovation: once somebody has adopted a product he will never come back to
the non-adopted state; opinion dynamics: models of assimilative social influence
(Flache et al., 2017)) or in two or more ways (e.g. opinion dynamics: models with
repulsive influence, opinions can be influenced positively or negatively (Jager &
Amblard, 2005; Flache et al., 2017); epidemiology: agents can get infected but also
recover from a disease).

2.5 Conclusion

In this review, we analysed studies in the field of ABM and social networks with a focus on the
conditions for sound implementation and evaluation. We stressed that ABM in combination
with social networks is a promising approach to address the behaviour of interacting indi-
viduals. However, we also indicated that there is room for improvement and offered ways
to overcome the deficits. Explicitly, we encourage modellers to improve the integration of
the two methods with respect to three main aspects: (1) to not only focus on the network
as channels for transfer of material or non-material resources, but also design models where
the network provides social integration, such that an agent’s network position allows for cer-
tain achievements, success or power; (2) to carefully determine the appropriate approach for
the integration of social networks in ABM, being it endogenously emerging, exogenously im-
posed or co-evolutionary, according to the research question at hand, the availability of data
but also the relevant time scales of network and agent dynamics; and (3) to devote attention
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to structurally explicit analysis of the model, i.e. to use local network metrics to gain insights
into causal relations between network connections and agent properties.

In addition to these recommendations, we would like to point out that the integration of
social networks in agent-based models highly benefits from interdisciplinary exchange. The
core themes for the use of networks are similar in different contexts, regardless of the concrete
problem they are applied to. Our cross-disciplinary review provides a starting point for this
exchange, but is not intended to give a comprehensive overview of all possible realizations.
Further efforts are needed to bring together the achievements in different areas and to lower
disciplinary barriers that currently hinder a broader transfer of concepts. A systematic doc-
umentation of the model conceptualization, as supported by the guidelines, would facilitate
this goal by allowing an efficient way of comparing models and their analyses. Additionally,
as in many areas of ABM, also with regard to social networks in agent-based models the in-
clusion of empirical data is a crucial issue (Grimm et al., 2005; Laatabi et al., 2018). For this
purpose, the approach of stochastic actor-oriented models is worth to consider. This statis-
tical method is similar to agent-based models in the property to include local rules for actor
behaviour and is an established tool for the analysis of longitudinal network data (Snijders et
al., 2010; Snijders & Steglich, 2015). ABM has, however, more opportunities to include envi-
ronmental constraints and heterogeneity among agents (Bruch & Atwell, 2015). Calibration
of network initialization and validation of model outcomes with empirical data are therefore
crucial next steps to fully exploit the potential of ABM.
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This chapter has been published as Will, M., Groeneveld, J., Frank, K., & Müller, B. (2021). Infor-
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Abstract

Microinsurance is promoted as a valuable instrument for low-income households to buffer
financial losses due to health or climate-related risks. However, apart from direct positive
effects, such formal insurance schemes can have unintended side effects when insured house-
holds lower their contribution to traditional informal arrangements where risk is shared
through private monetary support. Using a stylized agent-based model, we assess impacts
of microinsurance on the resilience of those smallholders in a social network who cannot
afford this financial instrument. We explicitly include the decision behavior regarding in-
formal transfers. We find that the introduction of formal insurance can have negative side
effects even if insured households are willing to contribute to informal risk arrangements.
However, when many households are simultaneously affected by a shock, e.g. by droughts or
floods, formal insurance is a valuable addition to informal risk-sharing. By explicitly taking
into account long-term effects of short-term transfer decisions, our study allows to comple-
ment existing empirical research. The model results underline that new insurance programs
have to be developed in close alignment with established risk-coping instruments. Only then
can they be effective without weakening functioning aspects of informal risk management,
which could lead to increased poverty.

3.1 Introduction

Within its Sustainable Development Goals, the United Nations has identified the eradication
of poverty as one of the most important goals that humanity should meet by 2030 (UN, 2015).
An essential contribution to achieving this target is to ensure that vulnerable households are
effectively protected against extreme climate-related events and other economic, social and
ecological shocks and disasters (Wanczeck et al., 2017). Traditionally, households in rural
communities across the world manage to cope with such threats through informal arrange-
ments (Platteau et al., 2017; Cronk et al., 2019a). These risk-sharing networks buffer income
shocks by an exchange of money, labor or in-kind goods between households in need and
those with the capacity to help. Various forms of such informal networks exist. In Ethiopia,
for example, group-based support arrangements with often hundreds of members, so-called
iddirs, offer informal insurance to compensate costs for funerals, medical expenses or food
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shortage against the payment of a premium (Aredo, 2010; Dercon et al., 2014; Abay et al.,
2018). Similarly, in Burkina Faso, individuals linked by neighborship, religious confession
or shared ethnic affiliation arrange in tontines and make monetary contributions to a com-
mon fund from which risk-sharing is financed (Sommerfeld et al., 2002). Among the Maasai,
the bilateral gift-giving concept osotua is established where, based on reciprocity, households
exchange livestock or other goods when in need (Cronk, 2007). However, when the whole
risk-sharing network is affected by a large-scale extreme event such that many households
suffer substantial losses simultaneously, private transfers can no longer provide buffering
(Barrett, 2011; Wossen et al., 2016). Droughts or floods, which both are expected to increase
under climate change (Sheffield & Wood, 2008; Dai, 2013; Thornton et al., 2014; Tabari,
2020), are an example of such shocks. Insurance products specifically designed for the needs
of low-income households in developing countries, known as microinsurance or inclusive
insurance, are seen as an effective tool to address these challenges and are therefore highly
promoted and supported by governments in recent years. Current programs to help vul-
nerable countries, particularly in the southern hemisphere, include the G7 ‘InsuResilience’
initiative launched in 2015 (GIZ, 2015) or the Global Index Insurance Facility managed by
the World Bank Group (GIIF, 2019).

However, apart from direct positive effects, the introduction of formal insurance in commu-
nities where informal risk-coping instruments exist may have unintended side effects (Müller
et al., 2017). In lab-in-the-field experiments and household surveys covering different cul-
tural contexts and insurance products, evidence has been found that formal insurance can
crowd-out informal risk-sharing arrangements (Landmann et al., 2012; Lin et al., 2014; Geng
et al., 2018; Strupat & Klohn, 2018; Anderberg & Morsink, 2020; Lenel & Steiner, 2020).

It was shown that households reduce their willingness to provide informal support if they
themselves do not need any other risk coverage apart from insurance. In the case of index in-
surance in Ethiopia, the results of household surveys suggest, conversely, that the availability
of insurance could encourage informal transfers, as insured households are better able to help
(Takahashi et al., 2018; Matsuda et al., 2019). Theoretical models show, on the one hand, that
the introduction of insurance can lead to a decline in welfare due to reduced private transfers
(Attanasio & Ríos-Rull, 2000; Boucher & Delpierre, 2014), but also that informal safety nets
and microinsurance can complement each other in the presence of basis risk – the potential
mismatch between actual losses and received insurance payouts (Mobarak & Rosenzweig,
2012; Dercon et al., 2014).

This broad range of studies underlines the different implications that the introduction of for-
mal insurance can have on people’s behavior towards informal transfers. However, long-term
effects of these changes on the resilience of low-income households, particularly through a
direct comparison of the various potential behavioral responses to private monetary support,
have not yet been investigated. To address this gap, we develop an agent-based model that
considers smallholders in a social network and captures dynamics between income losses,
insurance payments and informal risk-sharing. We focus our analysis on smallholder farm-
ing, a predominant form of rural agriculture in developing countries that is driven by sub-
sistence production. Households practicing this type of agriculture have limited financial
means to deal with the multiple risks that affect them individually or hit an entire commu-
nity. Therefore, they rely on effective mechanisms to cope with risk (Morton, 2007). By using
an agent-based modelling approach, we exploit several advantages compared to empirical
and theoretical methods already applied in studies on formal and informal insurance. First,
insights can be gained independently of the specific local context and where empirical data
is lacking (Squazzoni et al., 2014; Bruch & Atwell, 2015). In contrast to household surveys
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or behavioral games that cover only short time spans limited to specific regions, a model
can represent conditions from several regions with different risk contexts independent of a
particular case study. Second, agent-based models allow us to include complex strategies of
human decision making (An, 2012; Schulze et al., 2017) that go beyond economic rationales
implemented in existing theoretical models on formal and informal insurance. In particular,
it is possible to integrate that households differ in their behavior as they adapt their decisions
to individual characteristics and influences from their environment (Bonabeau, 2002). Third,
with our model we can analyze the implications of transfer behavior of households linked
to several others in a network. In most theoretical models, it is assumed that households in-
teract only bilaterally or that all households in a community are connected. However, when
households have a limited number of neighbors that they can request for help, this can give
crucial information on how effective monetary transfers can be. In the context of informal
risk-sharing, agent-based modelling has already helped to assess whether traditional gift-
giving relationships increase the viability of pastoralists’ herds (Aktipis et al., 2011; Aktipis
et al., 2016) and how spatial and temporal correlations of shock events impact the resilience
of households (Hao et al., 2015). Furthermore, agent-based models have been used to analyze
the ecological effects of formal insurance on rangeland management and pasture conditions
(Müller et al., 2011; John et al., 2019).

With our study, we contribute to that research strain by evaluating impacts of the combina-
tion of formal and informal risk-sharing mechanisms. The main objective of our model is to
reveal unintended social consequences of insurance programs when households additionally
help each other informally when in need. Specifically, we analyze whether and how economic
needs of households (i.e. level of living costs) and characteristics of extreme events (i.e. fre-
quency, intensity and type of shock) influence the ability of formal insurance and informal
risk-sharing to buffer income losses. We assume that households are connected in a social
network and can request money from their neighbors when their financial resources are not
sufficient to sustain themselves. We explicitly distinguish two types of behavior with regard
to monetary transfers that are based on observations from empirical studies. First, we assume
that all households provide financial resources whenever they are requested and can afford to
(solidarity). Second, we simulate scenarios where only uninsured households show solidarity
and insured households do not transfer (no solidarity). With its stylized characterization of
transfer behavior and budget dynamics, our modelling approach provides a qualitative un-
derstanding of when formal insurance complements existing risk mitigation tools and when
potentially reduced support from insured households has harmful consequences for the re-
silience of smallholders. On the basis of a systematic analysis of external conditions and
human behavior, we highlight aspects that are necessary for effective insurance design to
prevent a degradation of functioning aspects of informal risk management and thus avoid an
increase in poverty.

3.2 Methods

3.2.1 Model description

The model is not used to analyze a particular case study, but represents conditions from
several regions with different risk contexts where informal support networks between small-
holder farmers are prevalent. We simulate NH = 50 households which roughly corresponds
with empirical observations of traditional support arrangements (Sommerfeld et al., 2002;
Aredo, 2010; Dercon et al., 2014). Each agent Hi , i = 1, ...,NH, represents a smallholder
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household and is characterized by its budget Yi . Households are endowed with an initial
budget Y 0. They generate a regular yearly income I and have to spend an amount C to cover
annual living costs. The population is homogeneous with all households having the same
initial budget, income level and annual living costs. Income shocks reduce the budget of a
household by an amount S if the household is affected. We distinguish unexpected events
which are either idiosyncratic, hitting the households independently (such as illness), or co-
variate, affecting many households at the same time (such as droughts or floods). Only one
shock type is considered per simulation run. Idiosyncratic shocks occur with a probability ps
for each household. For covariate shocks, the chance of a shock at village level is pV. If such
a shock occurs, households are hit with probability pH. Households that are not affected in
this case might, for example, have a more favorable geographical location in case of floods or
an agricultural management strategy more adapted to drought risks. Overall, this results in
a shock probability ps = pV × pH for an individual household.

To smooth income shocks households can engage in informal safety nets. Households are con-
nected in an undirected network on which they can request money from and donate money
to other households. The network is imposed during the initialization of the model and is
kept constant (i.e. static) for a simulation run. We have implemented small-world networks
using the Watts-Strogatz model (Watts & Strogatz, 1998). This algorithm creates a regular
ring network with each household connected to NN/2 neighbors on either side and each link
rewired with probability pr.

Some households have access to formal insurance schemes. Why households decide to insure
is currently a highly explored topic. Next to purely economic aspects, social and cultural in-
fluences such as risk aversion and influence from peers or personal and demographic factors
such as age and gender are also considered being important (Eling et al., 2014; Platteau et al.,
2017). Explicitly including reasons behind the decision to insure is therefore out of the scope
of this paper. Hence, we assume that a fixed proportion γ of households is informed about
insurance and choose to buy it. Insurance status is then randomly assigned to households at
the beginning of the simulation and is kept throughout the simulated period. Insured house-
holds insure their complete income. We model indemnity insurance that covers the actual
losses a household suffers from. The payout α in case of a shock is α = S . The yearly premium
β, which insured households have to pay, is actuarially fair and thus equals the expected loss
given the shock probability ps and the shock intensity S and reads β = ps × S .

Each household’s objective is to maintain prosperity with a budget above or equal to zero.
Households whose budget is below this threshold may receive transfers from households
with whom they share a link in the network that are rich enough to help others, i.e. that have
a budget above zero. The household randomly picks one of its neighbors and requests trans-
fers. If the request cannot be fulfilled by one single agent, households continue requesting
the missing amount from other agents in their network. We explicitly distinguish two types
of transfer behavior: solidarity and no solidarity. For simplicity, in one simulation run all
households decide on their transfers according to the same strategy. When households show
solidarity, they transfer whenever they can afford it. This implies that households may as-
sume that the requesting household will return the transfer in the future if they need support
themselves. Since, in the simulated scenarios, insurance covers all losses, this will only occur
for uninsured households. It is incorporated that donors do not put themselves at financial
risk through transfers. Therefore, it is ensured that the minimum budget of a donor after a
transfer is zero. On the other hand, the household in need should not get too rich through the
help of others. The maximum achievable budget through support of other households is thus
also zero. For the second type of transfers (no solidarity), only uninsured households show
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solidarity and contribute to informal risk-sharing whenever they can afford it; insured house-
holds do not transfer at all. Here, we assume that insured households refuse contribution as
they are not dependent on reciprocal behavior of others.

We assume that if households do not manage to reach the poverty threshold either on their
own or with the support of their neighbors, they must leave the system. This implicitly
includes that households that cannot cover their living costs may migrate to other regions
where they expect to strengthen their resilience to shocks through improved economic, envi-
ronmental or social conditions(Black et al., 2011; Neumann & Hermans, 2017) but neglects
that households may have other sources of support from outside the village that they could
use to cover their losses (Adams & Page, 2005; Giuliano & Ruiz-Arranz, 2009). We condense
the capacity of households to cope with income shocks in a ‘survival rate’ that indicates the
fraction of households that manages to maintain a budget above zero over the simulated time
span.

In order to make our observations comparable between scenarios with varying number of in-
sured households, we present the results always for the same subgroup of households. When
referring to uninsured households, we determined the reference group by all households that
are uninsured in the case with the highest insurance rate (NH = 20, γ = 60%). We ensured
that these households are uninsured in every other scenario. The shock exposure, network
relationships and transfer requests of this reference group is the same for each repetition of
the simulation run regardless of the specific scenario. When presenting results for insured
households, we refer to those households that are insured in the scenario with lowest in-
surance rate (NH = 15, γ = 30%). These households are insured in every scenario (except
γ = 0%).

The model uses discrete annual time steps and a long-term perspective of T = 50 years is
assumed. For each setting, we have carried out 100 repetitions. A detailed model description
in a structured form based on the ODD+D protocol (Müller et al., 2013) can be found in
Appendix B.1. The model is implemented in NetLogo and available to download at CoMSES
Net (Will et al., 2021c).

3.2.2 Parameter selection

We calculate the expected value of budget change per time step to select parameter combi-
nations for living costs C, shock probability ps and shock intensity S in a range where formal
and informal insurance can both be used effectively. This implies (1) that the shock intensity
should be high enough to make financial protection necessary and (2) that formal insurance
should be affordable. Additionally to the mathematical restrictions, we constrain the param-
eters with respect to ecological and economic observations. We divide all parameter ranges in
equidistant steps of 0.1, which results in 52 reasonable parameter combinations that meet the
constraints. Amore detailed description of the selection procedure can be found in Appendix
B.2.
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3.3 Results

3.3.1 Effectiveness of risk-coping instruments over time

To illustrate the effectiveness of different risk-coping instruments, we present simulation runs
over 50 years for one specific parameter combination of income I , living costs C, shock prob-
ability ps and shock intensity S (I = 1, C = 0.8, ps = 0.3, S = 0.6; I is normalized to 1, C and S

are unitless and related to I ). We consider idiosyncratic shocks and analyze the results for a
small-world risk-sharing network with rewiring probability pr = 0.2 and an average number
of four neighbors (NN = 4). Results for a more random network (pr = 0.8) and more (NN = 8)
or less (NN = 2) neighbors can be found in Appendix B.3. Our analysis covers different risk-
coping scenarios depending on the availability of insurance and informal transfers and the
transfer decision of insured households. We assume three main types of transfer behavior: (1)
no informal transfer, (2) all households show solidarity and (3) only uninsured households
show solidarity. Additionally, we distinguish three levels of insurance rates γ all households
are uninsured (γ = 0%), a small part (γ = 30%) and a large part (γ = 60%) of households is
insured.

When considering the fraction of surviving households for different risk-coping instruments
and insurance rates (Figure 3.1), we observe that informal transfers, independent of the trans-
fer decision, have a positive impact on the survival rates. To disentangle the effects of insur-
ance and decisions behind informal transfers, we have separately investigated the survival
rates for uninsured households. In order to make our observations comparable between sce-
narios with varying number of insured households, we present the results always for the same
subgroup of households. The survival rate of uninsured households is lower when insurance
is available than when households cover their risks only through informal risk-sharing (Fig-
ure 3.2). For the selected external conditions, the introduction of insurance thus has negative
effects for uninsured households. Even if insured households maintain showing solidarity,
the introduction of insurance diminishes the survival rate of uninsured households: Shortly
after the introduction the same number of uninsured households has to leave the system as if
insured households refuse to contribute to informal transfers. Only in the long run, solidarity
of insured households has a positive effect on uninsured households.

This can be explained by the total transfer that the selected uninsured households have given
and received per time step (Figure 3.3). When more households cover their risks with for-
mal insurance, less households need to request informal transfers. For these circumstances,
our model results indicate that the transfer amount is lower when insurance rates are higher.
However, the selected households receive less transfers also due to the lower contributions by
insured households (Figure 3.3A). In the first time step, the transfer demand of the selected
households is equal regardless of the scenario (not shown here). Each uninsured household
affected by a shock needs support. However, even if insured households were in general will-
ing to help, the total transfer was lower than in the case without insurance. From this it can be
concluded that insured households did not contribute as much as uninsured households. Due
to the premium payments, which lower their available budget, their ability to help through
informal transfers is weakened. Especially shortly after the introduction of insurance, where
insured households have not benefited much from refunded losses, this reduces the number
of surviving uninsured households. Furthermore, we can see that, if insured households do
not show solidarity, the side effects of the introduction of insurance is even worse. Not only
do uninsured households receive less, they also have to transfer more compared to when
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Figure 3.1: Fraction of surviving households for different risk-coping instruments and insurance rates
γ (A – 0%, B – 30%, C – 60%). Results show the mean over 100 repetitions for a selected parameter
combination of income I , living costs C, shock probability ps and shock intensity S (I = 1, C = 0.8,
ps = 0.3, S = 0.6).

insured households contribute as well (Figure 3.3B). This is particularly evident for high in-
surance rates. If transfers are only provided by households that are themselves vulnerable to
transfers, this in the end lowers their own ability to cope with future losses and leads to even
lower survival rates.

Resilience to shocks, i.e. the ability to recover from losses, is manifested not only in whether
households survive at all but also in the amount of their financial resources. By comparing
the budgets of the surviving insured and uninsured households separately (Figure 3.4), we
can observe financial consequences of insurance and informal transfers. This may help to
understand reasons for the empirically observed transfer decisions of insured households.
Comparing the budgets of the surviving households underlines that individual uninsured
households manage to obtain substantially higher budgets than insured households (Figure
3.4A). However, especially in the scenario without informal transfers, this applies only to a
small fraction of households and can therefore not be seen as a sustainable strategy to ensure
that budgets are resilient to shocks. Additionally, since the transfers are not repaid, these
gains are at the expense of the insured households that show solidarity, which end up with a
budget that is lower than what they could have received without helping households in need
(Figure 3.4B).

For all outcome measures, we observe differences between the scenarios with and without
solidarity of insured households. As showing no solidarity de facto reduces the links of the
network that embeds the uninsured households, this indicates the importance of the num-
ber of neighbors. To investigate the relevance of the network structure more systematically,
we present the same outcome measures for a small-world network with more (NN = 8) or less
(NN = 2) neighbors in Appendix B.3. Overall, these results confirm our hypothesis and under-
line that a network withmore interactions leads to higher resilience of uninsured households.
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in every scenario for different risk-coping instruments with insurance rates γ . Results show the mean
over 100 repetitions for a selected parameter combination of income I , living costs C, shock prob-
ability ps and shock intensity S (I = 1, C = 0.8, ps = 0.3, S = 0.6). Without informal transfers the
survival rates are independent of the insurance rates and the resulting curves for different insurance
rates would overlap. They are therefore not represented separately.
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3.3.2 Effectiveness of risk-coping instruments for different external conditions

So far, we focused on the consideration of an exemplary scenario of external conditions. To
investigate the transferability of these observations to a broader range of living costs and in-
creased or decreased shock probability as well as intensity in a systematic way, we analyzed
the behavior of the system for all parameter combinations that were found to be economically
feasible (see Appendix B.2 for the selection criteria). We compared the effects of 50 years of
purely informal transfers (γ = 0%) on the survival rate of uninsured households to the sit-
uation 50 years after the introduction of insurance with low (γ = 30%) and high (γ = 60%)
insurance rates, respectively. In Figure 3.5, we present the model results for a fixed income
(I = 1) and a fixed level of living costs (C = 0.8). Results for higher and lower annual expenses
and different network structures can be found in Appendix B.4. In general, we see that for
more severe shocks, i.e. higher shock intensity, less uninsured households survive. For the
same external conditions, in many cases the respective survival rate of uninsured households
is lower if a fraction of households is insured, even if after the introduction of insurance all
households show solidarity and contribute to informal transfers. This is due to the premium
payments that lead to missing budget of insured households to help others. For few cases,
there is no clear effect of the introduction of insurance with prevailing solidarity. For these
external conditions, uninsured households are not harmed by the introduction of insurance
but they do not benefit either. If insured households are no longer willing to help unin-
sured households in need, there is a clear trend that this leads to lower survival rates among
uninsured households. In this case, the informal support has to be covered by a smaller sub-
group of households that are willing to transfer. This lowers the available budget of these
households and might bring more uninsured households to financially critical situations. In
addition, especially for high insurance rates, the network of households willing to partici-
pate in transfer arrangements is thinned out. Hence, households in need may no longer be
connected to households willing to help them.
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Figure 3.5: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario depending on insurance rates γ , shock probability ps and shock intensity S for
idiosyncratic shocks with fixed income (I = 1) and level of living costs (C = 0.8). Upper rows show
the results for solidarity between all households, lower rows show the results for solidarity between
uninsured households only. The darker the color the less households survive, numbers in each panel
denote the exact fraction. If a panel is left blank, the parameter combination is economically not
feasible (see Appendix B.2) and therefore not selected for the analysis. Results show the mean over
100 repetitions of the number of surviving uninsured households at the last simulation step (t = 50).

The overall conclusions drawn from the selected parameter combination are therefore found
to be robust and valid for a broad range of external conditions with different levels of living
costs, probabilities for shock occurrence and shock intensity. Households that cannot afford
formal insurance do not benefit from its introduction even if their insured peers are willing
to help them. In many situations, insured households might simply be not able to cover
requests from the informal network in addition to their regular premium payments.

3.3.3 Effectiveness of risk-coping instruments for covariate shocks

To investigate how shocks which affect many households simultaneously stress the perfor-
mance of informal risk-coping instruments, we conduct the same model analysis for covari-
ate shocks. We again present an overview of the behavior of the system for all economically
feasible parameter combinations and conduct the analysis for the subset of those households
that are uninsured in every scenario to allow for best comparison. In Figure 3.6, we show the
resulting survival rates of uninsured households when 80% of the households are affected if
a shock hits the village (pH = 0.8). The model results for the more extreme case in which all
households are affected by the shock (pH = 1) can be found in Appendix B.5. Although, in
total, each household suffers equally often from a shock in the idiosyncratic and the covariate
cases, the survival rate of uninsured households is lower when they are exposed to covariate
shocks in all external conditions which were considered. This implies that protection against
this type of shock is more difficult without formal insurance. In contrast to what we observed
for idiosyncratic shocks, the introduction of insurance leads to slightly higher survival rates
of uninsured households if insured households are willing to contribute informal transfers.
This is because, in case of idiosyncratic shocks, uninsured households were in general able
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Figure 3.6: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario depending on insurance rates γ , shock probability ps and shock intensity S for co-
variate shocks with fixed income (I = 1) and level of living costs (C = 0.8). In case of a shock at village
level, 80% of the households are affected (pH = 0.8). Upper rows show the results for solidarity be-
tween all households, lower rows show the results for solidarity between uninsured households only.
The darker the color the less households survive, numbers in each panel denote the exact fraction. If
a panel is left blank, the parameter combination is economically not feasible (see Appendix B.2) and
therefore not selected for the analysis. Results show the mean over 100 repetitions of the number of
surviving uninsured households at the last simulation step (t = 50).

to make larger contributions to the transfers than insured households if not in need them-
selves. For covariate shocks, however, it is unlikely that an uninsured neighbor is able to
make a contribution at all, as many households are in need at the same time. In this case,
even the sometimes small contribution of insured households can help to ensure the survival
of some uninsured households. On the other hand, if insured households are not willing to
give transfer payments, this leads, as in the case of idiosyncratic shocks, to lower survival
rate of uninsured households. Then, a link to an uninsured household is more valuable than
that to an insured households. Uninsured households can at least provide informal transfers
in the few situations where they are not affected by a shock but their neighbors are.

3.4 Discussion

To fight poverty, the poorest and most vulnerable households need opportunities to recover
from financial losses that result from climate-related extreme events or other unexpected
shocks. Microinsurance products are promoted as effective tools to address this challenge.
With this study, we aimed to assess potential long-term consequences of introducing such
formal insurance schemes to communities in which informal risk-sharing arrangements be-
tween smallholder farmers are prevalent. Since empirical studies have shown how diverse
the transfer behavior of households can be after they have purchased insurance (Landmann
et al., 2012; Lin et al., 2014; Strupat & Klohn, 2018; Takahashi et al., 2018; Matsuda et
al., 2019; Anderberg & Morsink, 2020; Lenel & Steiner, 2020), it is important to explic-
itly take transfer decisions into account when assessing the effectiveness of the combination
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3 Informal risk-sharing threatened by formal insurance

of these risk-coping instruments. To systematically distinguish situations where formal in-
surance complements existing risk-sharing arrangements from situations in which harmful
consequences on the resilience of smallholders emerge, we developed an agent-based model
with formal and informal insurance options and combined this with social network analyses.
We explicitly included two behavioral implications of the availability of insurance on infor-
mal transfers: We assumed that insured households in the social network either continue
to engage in informal risk-sharing arrangements or refuse transfers after taking up formal
insurance.

Our model results showed that the introduction of formal insurance can have serious conse-
quences, even if insured households maintain private transfers. Informal risk-sharing is only
effective with a sufficient number of strong actors. Insured households that do not contribute
at all or are, due to premium payments, only able to contribute a small amount, reduce the
strength of informal transfers. Similarly, in the case of covariate shocks where many house-
holds are affected simultaneously, purely informal risk-coping cannot be considered effective.
In this case, the solidarity of insured households contributes to saving some uninsured house-
holds, which makes formal insurance a valuable complement to informal private transfers.
As extreme weather events like droughts or floods which cause such types of shocks are ex-
pected to occur more frequently under climate change (Sheffield & Wood, 2008; Dai, 2013;
Thornton et al., 2014; Tabari, 2020), formal insurance will become increasingly important in
the future. In any case, the resilience of the financial resources to shocks is the highest for
insured households. In general, households can financially benefit from not investing in any
form of risk protection, but this is at the expense of a small number of uninsured households
which can survive and is therefore the riskiest option. Taking part in informal risk-coping
within social networks lowers this risk and, at the same time, still leads to individual budgets
which are on average higher than those of insured households. From this perspective, it is
understandable that insured households might stop their contribution to uninsured house-
holds.

The use of an agent-based model in this theoretical study enabled a systematic analysis of ex-
ternal conditions as well as human behavior in a social network, and allowed to disentangle
effects of formal and informal insurance on the resilience of smallholders to shocks. With the
particular focus on the role of monetary transfers as a risk-coping mechanism emerging from
the social network and insurance as an external factor, we provided a differentiated view
on drivers contributing to vulnerability and resilience in coupled human-environmental sys-
tems (Turner et al., 2003). Here, the combination of agent-based modelling with social net-
works was crucial (Will et al., 2020). It allowed, on the one hand, to integrate individual
behavior explicitly and distinguish responses to the introduction of formal insurance de-
pending on the insurance status of the households. On the other hand, it was possible to
assess how these specific decisions affect other households given the limited the range of in-
teraction with few neighboring households defined by the imposed network structure. Both
aspects, household behavior and network characteristics, could be modified and tested sep-
arately which contributed to an improved mechanistic understanding that would not have
been possible without the use of these two methods.

Still, the model results should be seen in light of our rather stylized conceptualization that
entails some limitations which narrow the external validity of our conclusions to some de-
gree. Specifically, the assumption that all households have the same initial budget, income
level and annual living costs, the actuarially fair insurance design with losses being covered
completely and the stylized network offer plenty of potential for further studies.
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In particular, if households had different financial resources, the decision to insure and po-
tential changes in transfer behavior could be included into the model in more detail. When
limited economic means alone inhibit some households from purchasing insurance (Eling
et al., 2014; Platteau et al., 2017), uninsured households would on average have lower as-
sets at their disposal which might increase their dependence on informal support. Given
the different characteristics of the shock events this could have various consequences. On
the one hand, the capacity of insured households to support their peers might be substan-
tially lowered through premium payments even though they have more financial resources
available than their uninsured peers. As a result, the negative effects of introducing formal
insurance might potentially be even greater than that revealed in our analyses, as poor unin-
sured households could be less often able to sustain themselves. On the other hand, wealthy
households with insurance might still be able to make effective contributions to informal
risk-sharing when the premium payments only cover a small share of their available budget.
In this case, informal risk-sharing could probably increase the overall welfare and formal
insurance might pay-off not only for the insured households themselves but also for their
uninsured peers.

Furthermore, when it is assumed that not all households with the possibility to insure are
willing to do so, a heterogeneous income distribution would allow to include changes in
transfer behavior more specifically. In addition to the two extreme cases of full support, on
the one hand, and complete decline of solidarity by insured households, on the other hand,
as shown in our analyses, a more nuanced sharing scenario could be taken into account. One
could, for example, assume that insured households help only those who cannot afford insur-
ance but do not support households with sufficient financial resources who have deliberately
chosen not to purchase insurance (Lenel & Steiner, 2020). In this case, the poorest might
benefit from their insured peers being protected against income shocks and richer house-
holds that do not get any help from others might be able to cover losses from shocks through
their own budget, making the lack of informal support potentially less severe.

Additional dynamics could also be observed when taking into account a discrepancy between
actual losses and insurance payouts. This could be due to basis risk, i.e. when index insur-
ance measurements do not match the suffered damages, or due to a contract with reduced
insurance coverage that requires insured households to pay for parts of their losses. Sim-
ilarly, when insurance is actuarially unfair, i.e. when it comprises an insurance load that
covers administrative costs, moral hazard and adverse selection or allows the insurance com-
pany to make profit, households get on average less return in case of a loss compared to what
they have paid as premium (Gollier, 2003; Landes, 2015). In these cases, informal support
might get more important also for insured households that could profit from neighbors tak-
ing over losses not covered by insurance (Mobarak & Rosenzweig, 2012; Dercon et al., 2014;
Takahashi et al., 2018; Matsuda et al., 2019).

Another step towards increased realism would be the use of empirical social networks in
which households differ in their number of neighbors. Heterogeneity with respect to the net-
work position could affect the resilience to shocks of uninsured households. If a household in
need has few neighbors and is not connected to those having enough resources to share, the
informal support might not be able to effectively cover its losses. Next to further alignment
with context-specific details, the model could also be used to test other behavioral theories
and try to replicate empirically observed practices (Schlüter et al., 2017). This could include
explicit assumptions on risk-sharing motives such as tit-for tat (Axelrod & Hamilton, 1981)
or indirect reciprocity (Nowak & Sigmund, 2005; Clark et al., 2020) combined with punish-
ment to those who free-ride on the cooperation of others (Fehr & Gächter, 2002). On the
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other hand, the model could be extended to account for rather unexpected behavior, such
as insured households increasing their informal transfers driven by guilt-aversion (Lin et al.,
2020) or uninsured households sanctioning their insured peers for their privilege through re-
ducing contributions to a public good (Cecchi et al., 2016). The latter could, for example, be
analyzed by explicitly modelling a common property grazing system (Dressler et al., 2019).
Incorporating these diverse aspects into the model would further allow for increased inter-
action between empirical and model-based studies, as results obtained from different model
assumptions can also inspire additional empirical research (Chávez-Juárez, 2017).

Disentangling cause-effect relationships of empirically observed patterns of transfer behav-
ior and exploring their long-term implications is valuable for sustainable insurance design.
From our model results, we can derive that insurance products should be developed in close
alignment with existing risk-coping arrangements in order to maintain these crucial struc-
tures and use their benefits effectively. If an extensive uptake of formal insurance results
in crowding-out of informal networks, this bears consequences not only for households that
cannot afford formal insurance. Social networks include adaptive strategies going beyond
financial support such as information sharing, access to resources or equipment, or conflict
intervention (Fletcher et al., 2020). Moreover, embeddedness within communities promotes
forward-looking decisions that can contribute to finding ways out of impoverishment (Jachi-
mowicz et al., 2017). Offering insurance to groups rather than individuals or families could
be a suitable approach to harness formal insurance but at the same time maintain informal
relationships (Dercon et al., 2006; Trærup, 2012; Müller et al., 2017; Chemin, 2018). The net-
work would in this case pay the insurance as a whole which allows internal agreements on
contributions to the premium. Thus, every household could provide a fair share to a formal
contract that protects the whole group. Existing informal associations have been successfully
addressed in the context of savings (Karlan et al., 2017) and microfinance (Banerjee et al.,
2013). Given different group structures and power relations, group insurance is, however,
not equally well applicable to all informal networks (Trærup, 2012). Furthermore, as under-
lined by our simulation model, idiosyncratic risks can be covered at least partially by infor-
mal risk-sharing and only when facing covariate risks households are highly dependent on
formal protection. Taking this risk layering into account by including informal risk manage-
ment in the design of formal insurance products could reduce insurance costs, which would
allow more households to participate and decrease social inequality (Mahul & Stutley, 2010;
Ahmed et al., 2016; Fisher et al., 2019).

3.5 Conclusion

Introducing formal insurance in communities with functioning informal risk-sharing ar-
rangements can have a crucial impact on household welfare, especially for those who do not
have access to formal insurance. Our simulation results show that when insured households
become unwilling to help households without insurance and withdraw their contribution to
informal transfers, this largely reduces the ability of households without access to insurance
to cope with income losses. Uninsured households alone cannot provide the assistance that
is required by households in need. We also observe that even if the solidarity of insured
households remains unchanged, uninsured households may be worse off than without some
of their neighbors being insured. This is because the regular premium payments that insured
households have to make reduce their ability to contribute to informal transfers. However, in
the case of shocks that affect many households at the same time (such as droughts or floods),
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formal insurance complements informal risk-sharing, since in this case uninsured households
cannot do much to help their peers.

Overall, our study offers new perspectives on the interplay of formal and informal risk-coping
instruments that complement existing empirical research. The combination of agent-based
modelling and social networks made it possible to systematically analyze the effects of ex-
ternal conditions as well as human interaction on the resilience of smallholders to shocks.
By embedding a broad range of theoretical and experimental findings, our results allow con-
clusions on potential unintended consequences that the introduction of formal insurance
may have on the functioning of informal transfers in a long-term perspective. These poten-
tial feedbacks have to be kept in mind for an effective design of insurance policies as only
if formal insurance and existing risk-sharing mechanisms are well aligned, they provide a
good basis for achieving the goal of eradicating poverty worldwide in a sustainable manner.
However, since our results are based on a theoretical simulation model, which by its nature
involves a number of simplifying assumptions, the specific empirical circumstances must be
taken into account in any case when evaluating an appropriate insurance design. To this end,
our analyses provide an orientation on which potential side effects should be borne in mind.
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4 Determinants of household resilience in networks

with formal insurance and informal risk-sharing

This chapter is based on a manuscript in preparation for submission: Will, M., Groeneveld, J.,
Lenel, F., Frank, K., & Müller, B. Determinants of household resilience in networks with formal
insurance and informal risk-sharing

Abstract

Insurance products specifically designed for the needs of low-income households in devel-
oping countries can effectively buffer financial losses from personal or weather-related risks.
However, even though this type of insurance specifically addresses the poor, not all house-
holds can afford to pay the regular premiums. The resilience of these households to shocks,
i.e. their ability to cope with income losses, often highly depends on traditional informal
arrangements where risk is shared through private monetary support in social networks. If
income is heterogeneously distributed in a network and poor households are not connected
to those with enough resources and willing to share, this support might, however, not reach
the households in need. With this study, we assess the impact of heterogeneity in income
and network characteristics on the effectiveness of informal risk-coping for the poorest when
some of their neighbours have access to formal insurance. In addition, we derive a functional
relationship between the resilience of the poorest and key household and network charac-
teristics to obtain a measure for actual vulnerability. Using a stylized agent-based model,
we show that formal insurance pays off not only for the insured households themselves, but
also for poor households that benefit from their neighbours being insured, especially when
shocks affect many households simultaneously. By applying logistic regression to the simu-
lated data for random networks, we infer that, in addition to one’s own financial situation,
the financial situation of neighbouring households and the position in the network, which is
determined by a household’s indegree and outdegree, are crucial for coping with income loss.
We show the transferability of our findings by testing the accuracy of the regressionmodel for
an empirical risk-sharing network of a village on the Philippines. Our study highlights the
potential of using model-based approaches to identify vulnerable households by assessing
their financial as well as network characteristics. This can help to effectively target subsidies
when informal risk-sharing is insufficient and households cannot afford formal insurance.

4.1 Introduction

Unexpected losses due to personal or weather-related shocks pose significant financial risks
to the poor in developing countries (Dercon, 2002; Xu et al., 2003; Strömberg, 2007). Illness,
for example, can force people to use a large share of their income to cover costs of medical
care and is simultaneously often associated with reduced labour supply and a loss of income
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(Gertler & Gruber, 2002). Additionally, many households in low-income countries are par-
ticularly susceptible to damages by natural disasters such as droughts or floods resulting in
harvest failure or livestock loss (Barrett & Santos, 2014; Thornton et al., 2014). Due to cli-
mate change it is expected that such weather-related shock events become evenmore frequent
and severe in the future (Sheffield & Wood, 2008; Dai, 2013; Thornton et al., 2014; Tabari,
2020). Building resilience of the most vulnerable against income loss is thus key to ending
poverty as aspired by the Sustainable Development Goals (UN, 2015). Microinsurance or in-
clusive insurance, i.e. insurance products specifically designed for the needs of low-income
households, are seen as a promising tool to encompass also the poor with an appropriate
and affordable risk-coping instrument and strengthen their resilience to unforeseen losses
(Wanczeck et al., 2017). Current programs include funeral insurance, health insurance as
well as crop and livestock insurance (Merry, 2020).

However, even though these schemes are intentionally designed for the most vulnerable, they
might not reach the poorest as for this part of the population unsubsidised premiums are of-
ten still too expensive (Biener & Eling, 2012; Eling et al., 2014; Marr et al., 2016; Platteau
et al., 2017). The ability of these households to cope with income losses therefore highly
depends on traditional informal arrangements where households help each other in times of
need with money, labour, or in-kind goods (Platteau, 1997; Cronk et al., 2019a). Such risk-
sharing networks exist in various forms and cover extended families, villages, ethnic groups,
or professional relations (Dercon, 2002). It is assumed that engaging in these arrangements
is driven by altruism and reciprocity, i.e. by contributions solely due to a preference for so-
cial welfare and those where later reward is expected (Leider et al., 2009; Ligon & Schechter,
2012). However, when households rely on informal support, their ability to maintain re-
silience to shocks depends largely on their position in these networks. If income is heteroge-
neously distributed and poor households are not connected to those with enough resources
and willing to share, the informal support might not reach the households in need. Similarly,
if many households seek financial help from the same households that are expected to be
wealthy these may not be able to fulfil all requests. Yet, while several studies consider the
effect of wealth differences on the formation of risk-sharing networks (Fafchamps & Gubert,
2007; Schechter & Yuskavage, 2011; Caudell et al., 2015; Lenel, 2017), little is known about
how well households are protected in these arrangements, especially if some households can
afford formal insurance in addition to informal risk-sharing and others cannot.

We address this gap by analysing the impact of heterogeneity in income and network char-
acteristics on the effectiveness of informal risk-sharing for the poorest when some of their
neighbours have access to formal insurance. Specifically, we assess under which conditions
formal insurance complements informal risk-sharing and whether the availability of insur-
ance can have an indirect benefit for poor, uninsured households. In addition, we derive a
functional relationship between the resilience of the poorest and key household and network
characteristics to obtain a measure for actual vulnerability. Using a stylized agent-based
model, we simulate the resilience of individual households to income losses. By applying
logistic regression to the simulated data, we reveal which household and network character-
istics can strengthen a household’s ability to cope with extreme events.

Agent-based modelling is a valuable approach to disentangle the complex interplay of formal
and informal insurance, network characteristics, and external conditions as it allows to sys-
tematically analyse interlinked causal relationships of human and environmental processes
(Schulze et al., 2017). The method already helped to understand how different degrees of
inequality between nodes evolve in stylized risk-sharing networks (Chiang, 2015). In a more

46



4.2 Methods

applied setting, agent-based models provided useful insights into how risk-sharing can sta-
bilize herd sizes when households exchange livestock (Aktipis et al., 2011; Aktipis et al.,
2016). The approach was also used to determine how the resilience of pastoralists depends
on whether households in need prefer to ask the wealthiest of their partners for help (Hao
et al., 2015) and whether households with the capacity to help decide to provide transfers
based on the social status or the financial situation (Kayser & Armbruster, 2019).

We contribute to the literature by evaluating the interplay of formal and informal risk-coping
instruments in the presence of wealth inequality. We analyse a broad range of conditions in
order to provide insights on how these mechanisms might be affected by climate change re-
sulting in more frequent extreme weather events like droughts or floods (Dai, 2013; Tabari,
2020) or by demographic changes such as urbanization that impose greater health threats es-
pecially with respect to chronic diseases (Allender et al., 2008; Vearey et al., 2019). We build
on an existing model (Will et al., 2021a) and extend this model by incorporating income
and network characteristics based on empirical observations of a village on the Philippines
(Lenel, 2017). Through the development of a functional relationship between the resilience
of the poorest and key household and network properties, our study helps to reveal which
characteristics are crucial to identify those households that neither have access to formal in-
surance nor are adequately protected through informal risk-sharing. In cases where informal
risk-sharing is insufficient and not all households have enough financial resources to cover
formal insurance premiums, additional support, for example through subsidised insurance
contracts, is needed to make more households resilient to shocks. Assessing financial as well
as network characteristics of households allows a systematic understanding of their vulnera-
bility that can be used to effectively target such external assistance. In combination with an
improved insurance design that is attractive to a large share of the population, this can have
a major impact on reducing poverty.

4.2 Methods

4.2.1 Model description and parametrization

We describe the key processes of the model with a focus on budget dynamics of individual
households and their formal and informal risk-coping instruments. The main processes of
the simulation model, presented in a structured form based on the ODD+D protocol (Müller
et al., 2013), can be found in Appendix B.1. Details on the differences to the model version
used in Chapter 3 are outlined in Appendix C.1. The model is implemented in NetLogo and
the source code of the model is available at CoMSES Net (Will et al., 2021d).

To model the effectiveness of formal and informal risk-coping instruments, we simulate
NH = 65 households and the dynamics of their budgets Y over a long-term perspective of
50 years with annual time steps. We consider households connected in a social network as
individual agents. All households gain a regular income I and have to spend a fraction c

of their income to cover living costs. Additionally, they are exposed to unexpected events
that lower their budget by an amount S . These income shocks either occur independently
for each household with probability ps (idiosyncratic shocks) or affect several households in
the village simultaneously, e.g. through extreme weather events. In case of such covariate
shocks, the village is hit with probability pV. The individual households are then affected
with probability pH which reflects that some households are resistant to income losses, e.g.
due to a more favourable geographical location or better adapted agricultural strategy. To
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make individual shock frequencies ps comparable to that of the idiosyncratic shocks, we as-
sume that the probability for a specific household to be hit by a shock is ps = pV ×pH. In each
simulation run, only one shock type is considered.

When their financial resources are not sufficient to sustain their livelihood, i.e. when their
budget is below zero, households can request money from other households to which they are
connected in a social network. A household requests as much money as is needed to reach the
poverty threshold of zero from a household randomly chosen among its links. If the selected
household cannot provide the full amount, the household in need asks further neighbours
for support until it obtains the desired amount or until no more households are left to ask.
To investigate to which extent our results can be generalized or are conditional on specific
network properties, we simulate two different types of networks in which the households are
connected: Households are either linked based on an empirical network (see section 4.2.2) or
in random networks with the same number of nodes and links as in the empirical case.

We assume that income is distributed heterogeneously among the households and households
gain an individual income Ii . In the empirical network, the income distribution is derived
from the survey data (see section 4.2.2). In the artificially created networks, the same distri-
bution of income as in the empirical case is assumed. Here, the position of households in the
network is randomly assigned and varies for each newly created network topology. House-
holds are endowed with an initial budget Y 0 which is set to zero to facilitate comparison
across different external conditions. Relations between income and consumption are not un-
ambiguously confirmed in the literature (Howe et al., 2009). As a first approach to account
for heterogeneous consumption, we assume a simplistic linear relation where households
spend a fixed proportion c of their income to cover their living costs. We model a subsistence
economy with low saving rates and set c = 0.8. The increase in consumption with income can
be justified by the fact that income is not adjusted for household size and that there is po-
tentially higher consumption of goods exceeding basic needs when more income is available
than needed.

In addition to informal risk-sharing, some households have access to formal insurance
schemes. Formal insurance is offered with a yearly premium that is actuarially fair, i.e. the
premium β equals the expected payout determined by the shock probability ps and shock
intensity S (β = ps ×S). Only households that have enough budget available to cover the pre-
mium after paying the living costs can decide to insure. This is in accordance with empirical
studies showing a positive relationship between wealth and insurance purchase (Eling et al.,
2014). We assume that not all households with enough financial resources to insure are will-
ing to do so and distinguish three levels of insurance propensity δ, where either none (δ = 0),
half (δ = 0.5), or all (δ = 1) of the households wealthy enough to afford the premium choose to
insure. This allows us to implicitly account for other non-financial factors, such as social or
cultural influences, that affect the decision to insure but are not included in the model (Eling
et al., 2014; Platteau et al., 2017; Panda et al., 2020). For each simulated scenario, we assume
a constant insurance propensity for all households that can afford insurance.

Households that do not manage to reach the poverty threshold either on their own or with
the help of others are excluded in further time steps of the model, i.e. it is assumed that these
households are no longer part of the system. This assumption implicitly includes migration,
as households that are not able to cover their living costs might leave the region and search for
improved economic, ecological, or social conditions elsewhere (Black et al., 2011; Neumann
& Hermans, 2017). However, this does not take into account that households might obtain
further support from outside the village which is not included in the model (Adams & Page,
2005; Giuliano & Ruiz-Arranz, 2009). We summarize the resilience of households to shocks,
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i.e. their capacity to cope with income losses, in a ‘survival rate’ which indicates the fraction
of households that manage to maintain a budget above zero over a specific time span.

For further analyses, we examine selected parameter conditions for shock intensity ps and
shock probability S for which, due to the resulting premium levels, a different proportion
of the population can afford insurance. On the one hand, as microinsurance products are
specifically designed for low-income households, we consider scenarios where at least 50%
of all households can afford to insure. On the other hand, as we are particularly interested
in how households that do not have enough financial resources to insure cope with income
losses, we focus on external conditions of shock frequency and severity where at least 25% of
the population are too poor to afford the regular premium payments. We assume a shock fre-
quency between 10 and 30% which is in the range of empirically observed values (see section
4.2.2 for the reported shock frequency in the case study on the Philippines). Dividing all pa-
rameters in equidistant steps of 0.1, this results in five possible parameter combinations with
between 54% and 75% of the population having enough financial resources to insure. If not
all households that can in principle afford the insurance are inclined to pay the annual pre-
miums, the effective insurance rate in the population is reduced accordingly (see Appendix
C.2 for details on the parameter selection and the resulting number of insured households
for different external conditions).

4.2.2 Case study

Empirical network and income data are based on a household survey that was conducted
in 2012 in small fishing villages in the provinces Antique and Iloilo in the region Western
Visayas on the Philippines (Lenel, 2017). The focus of the survey was the use of financial ser-
vices and the structure of support networks. One village with 65 households was surveyed
completely. The survey covered socioeconomic characteristics of all household members,
including access and use of formal financial services, housing characteristics, as well as de-
tailed questions on the informal support networks within and outside the community (see
Table C.2 for a summary of the household characteristics). In particular, the respondents
were asked to provide a list of households that they consider as close to their household.
There were no limitations on the number of names that respondents could list. For each of
the mentioned households, the respondent was asked (1) “Would these people help you if
you/the main income provider would turn very ill and would not be able anymore to earn
income and in addition you would need to cover the medical expenses?” and (2) “Would you
ask these people for help?”. For these questions, respondents could respond “Immediately”,
“After some hesitation”, “Only in extreme emergency situations”, or “Never”. A support link
was defined as existing if a respondent answered “Immediately” for both questions. In total,
236 links were reported with on average 3.63 support links per household (see Figure C.1
for the resulting network and Figure C.2 for the degree distribution). 55 of the 65 house-
holds named at least one other household from the village as a potential source of support
and 62 households were named by at least one household. One household is isolated, i.e.
this household was neither naming other households nor was this household named by any
other household. The resulting network characteristics resemble those of rural social net-
works in villages in Malawi, Uganda and India, where similar data have been collected (for
an overview see Chandrasekhar, 2016).

As most of the declared income is highly irregular and income reports are not always reli-
able, an asset index normalized to a value between 0 and 1 was derived as a measure for
wealth (Moser & Felton, 2007). The asset index includes variables that describe ownership
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of technical devices, agricultural tools, or livestock and housing characteristics such as roof
materials, source of lighting, and general housing conditions. The asset distribution of the
selected village fits well with that of a larger sample obtained in the same survey campaign
with only slightly less poor households and slightly more rich households (Figure C.3) and
can therefore be seen as a good proxy for the wealth distribution in the region. Although
an asset index differs from income as a wealth measure (Poirier et al., 2020), it is seen as a
valuable proxy to differentiate the economic status of households (Ucar, 2015). We therefore
base the income distribution in the model on the empirically derived asset values and assume
that households gain a regular income according to their asset index.

Among all households in the sample, 24.6% reported a severe health shock in the year previ-
ous to the survey. This is in accordance with a study from Kenya, where households denoted
to experience losses due to illness in 26.6% of the weeks in one year (Geng et al., 2018).

4.3 Results

4.3.1 Effectiveness of informal risk-sharing

We focus our analysis of the effectiveness of informal risk-sharing on the poorest of the pop-
ulation, i.e. households that cannot afford formal insurance. To determine their long-term
protection against income losses and their dependency on transfers from other households,
we present simulation runs over 50 years with varying degrees of propensity to insure δ

among those households with sufficient income to consider insurance. We show results for
cases with half (δ = 0.5) or all (δ = 1) of these households being insured and, as reference,
scenarios without formal insurance (δ = 0). In a first step, we analyse one specific parameter
combination of shock probability ps = 0.1 and shock intensity S = 0.6. For this scenario, the
threshold below which households cannot afford insurance is at It = 0.3 which leads to an
effective insurance rate of 31% (δ = 0.5) and 62% (δ = 1) in the whole population. We first
focus on the outcome for random networks that are newly generated in every repetition of
the simulation. In a second step, we compare the results with those for the empirical network
that does not change between simulation runs.

To analyse to which extent households that cannot afford formal insurance rely on the sup-
port of others, we present how many of them manage to cover their living expenses over
the simulated time span (Figure 4.1A) and the transfer amount that these households receive
during this period (Figure 4.1B). Whereas without the help of their neighbours only 8% of
these households manage to survive the entire simulated period, the fraction increases to
up to 47% when other households provided informal transfers to those in need. The most
important contribution to the survival of uninsured households comes from wealthy house-
holds with enough financial resources to insure (Figure 4.1B). The positive effect of informal
risk-sharing on the survival of the poorest slightly varies for different insurance levels. In
the long-term, poor households benefit from many of their neighbours being insured (δ = 1).
Only shortly after the introduction of insurance, rich households cannot cover the requests
to the same extent as they could when they were not insured (δ = 0). This is due to the lower
budget that insured households have available after paying the insurance premium which is
especially pronounced in the early years of the contract, when insured households have not
yet benefited from reduced losses due to insurance payouts (Will et al., 2021a). In the long
run, however, formal insurance pays off not only for the insured households themselves but
also for their uninsured peers. For households that can afford insurance but choose not to, we
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Figure 4.1: (A) Fraction of surviving uninsured households without enough financial resources to
insure for three different insurance propensities δ. The scenario without informal transfer is added
as reference (yellow line). As in this case the survival rates are independent of the insurance rates,
results for different insurance rates overlap and are not represented separately. The shaded areas
represent the 95% confidence interval. (B) Mean transfer that households without enough financial
resources to insure receive per time step. Line types distinguish the source of the transfer. For both
panels, results show the mean over 1000 repetitions for a selected parameter combination of shock
probability ps = 0.1 and shock intensity S = 0.6 and households connected in a random network that
is newly created in every repetition.

observe in general similar trends (Figure C.4). However, their higher income makes it easier
for them to buffer income shocks which reduces their dependence on informal transfers.

Based on this analysis, it is, however, still unclear why some households survive and others do
not. One reason could be the heterogeneous income distribution, which allows some to save
more than others when not affected by a shock. To examine the importance of households’
own financial situation, we determine the survival probability of a household with certain
income for 1000 replications of the simulation (Figure 4.2). We observe that in random net-
works, households tend to survive more often the higher their income. Because insurance
covers complete losses, survival is certain for insured households. This is reflected in the
increase in survival probability for income greater than 0.3, which denotes the threshold be-
low which households cannot afford insurance. In the empirical network described in section
4.2.2, i.e. a specific network configuration that is fixed for every repetition of the simulation,
a household with the lowest income is, however, far more likely to survive than one with
nearly enough financial resources to insure (similar observations can be made for a selected
random network kept fixed for 1000 repetitions, see Figure C.5). Thus, income does not seem
to be the only determinant for survival. In addition, network characteristics, which vary be-
tween simulation runs in the case of the random networks but remain fixed for the empirical
network, might influence the survival rate.
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Figure 4.2: Fraction of runs out of 1000 repetitions in which a household with a given income Ii sur-
vives in random networks that are newly created in every simulation run (black) and the empirical
network where a household with a certain income has always the same position in the network (or-
ange). For each simulation run, shocks occur in random order for individual households. As some
households have the same income, not all dots represent exactly one household. Results are shown for
a selected parameter combination of shock probability ps = 0.1 and shock intensity S = 0.6 (with re-
sulting threshold below which households cannot afford insurance at It = 0.3) and different insurance
propensities δ.

4.3.2 Determinants for the survival of the poorest

To reveal the functional influence of various factors on the survival probability of those
households that do not have enough financial resources to pay for formal insurance, we per-
form a logistic regression on the simulated data of households’ survival after a time span of 50
years. Specifically, we include as dependent variable the survival of the poorest households
that cannot afford formal insurance (25 households). We consider three different insurance
propensities δ and 1000 repetitions of the simulation which overall leads to 75000 observa-
tions that are used in the regression. The regression model contains independent variables on
the financial situation of a household and its neighbours as well as information on its network
position. For the financial situation, we include in particular the household’s income and the
disposable income of its neighbours. The latter includes the budget that all households a
household is connected to can on average share, i.e. the amount that they have available after
paying their living costs and the insurance premium. For uninsured households, the average
expected loss from shock events is deducted instead of the premium. Households that have
a negative budget after subtracting these costs do not contribute the disposable income of
a household’s neighbours. With respect to network characteristics, we include the number
of households that can be asked for support (outdegree) and the number of households that
potentially need support (indegree). Here, we only consider links from households that are
not insured as insured households do not need informal support. We test the influence of in-
surance propensity δ by including interactions between all four predictors and the insurance
levels δ = 0.5 and δ = 1. In particular, we estimate with a logistic regression the following
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specification

P(activei = 1) = β0 + β1 Ii + β2Di + β3degout,i + β4deg
unins
in,i + β5 δ0.5 + β6 δ1

+ β7 Ii × δ0.5 + β8Di × δ0.5 + β9degout,i × δ0.5 + β10deg
unins
in,i × δ0.5 (4.1)

+ β11 Ii × δ1 + β12Di × δ1 + β13degout,i × δ1 + β14deg
unins
in,i × δ1 + εi

i.e. the probability P(activei = 1) that household i survives the simulated time span of
50 years is explained by i’s income Ii , the disposable income of i’s neighbours Di , where
Di =

∑J
j=1max{Ij (1 − c) − ps × S,0} with j = 1, ..., J being those households household i can

ask for support, i’s outdegree degout,i , and i’s indegree from uninsured households deguninsin,i .
Furthermore, we include the prevalent insurance propensity, where the dummy variables δ0.5
and δ1 denote whether the insurance propensity equals 0.5 or 1, respectively. Standard errors
εi are clustered on household level.

Results using standardised coefficients for better interpretability are reported in Table 4.1.
Unstandardised coefficients can be found in Table C.3. As already assumed, a household’s
survival depends less on its own financial situation than on how much potential donors can
share. The number of neighbours that can be asked for support (outdegree) is also crucial
whereas the number of households that might approach a household for support (indegree)
plays a smaller role. Requests from other households lead to a slight decrease in a house-
hold’s survival probability, since the money given to others in one year might be missing in
subsequent years. With increasing insurance propensity, the importance of the donors’ dis-
posable income further increases while the number of potential donors (outdegree) becomes
less important. It should be kept in mind that the higher the propensity to insure, the lower
the number of households a donor’s disposable income must be shared with. In addition, for
uninsured households the disposable income is only an average value that results from the
shock probability and shock intensity. When these households are affected by shocks, they
have a smaller budget to share and may not be able to fulfil requests. Only for insured house-
holds does disposable income represent the amount actually available for transfers. This
further explains why this factor becomes more important as insurance propensity increases.

When not all households with enough financial resources decide for or against insurance
(δ = 0.5), we can furthermore disentangle whether insured or uninsured neighbours are more
important for the survival of the poorest. We therefore run an additional regression with
the donors’ disposable income split into two parts (Table C.4). Both predictors are of high
importance with the disposable income of insured neighbours having slightly higher impact
on the survival of poor uninsured households.

4.3.3 Transferability to the empirical network

To assess whether the regression results obtained for the random networks are a suit-
able proxy to derive survival rates of the poorest households, we test the accuracy of the
regression-based predictions compared to the simulation results for the empirical support
network from the Philippines. Here, we exploit the fact that for this network the replications
of the simulation differ only in the occurrence of shocks but not in the household characteris-
tics considered in the regression. We can therefore directly compare the survival probabilities
for each individual household obtained through regression with the fraction of runs among
the 1000 simulations where this household manages to cover the living costs over the whole
simulated period. To assess how well the survival rates of these two approaches match, we
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Table 4.1: Standardised regression coefficients for the selected parameter combination of shock prob-
ability ps = 0.1 and shock intensity S = 0.6 for the data obtained from the simulation on random
networks that are newly generated for each simulation run. The data contains 25 households without
sufficient resources to insure for three levels of insurance propensity (δ = 0,0.5,1) in 1000 repetitions.
Coefficients are mean-centred and scaled by 1 standard deviation (Menard, 2011). Standardised es-
timates for interaction terms are derived by standardising the product of both predictors. Standard
errors in parentheses, clustered on household level.

Standardised

(Intercept) −0.27∗∗∗

(0.01)
income 0.26∗∗∗

(0.02)
donors’ disposable income 0.75∗∗∗

(0.02)
outdegree 0.49∗∗∗

(0.02)
indegree (unins. neighbors) −0.10∗∗∗

(0.01)
ins. propensity δ = 0.5 0.09∗∗∗

(0.02)
ins. propensity δ = 1 0.16∗∗∗

(0.03)
income × ins. propensity δ = 0.5 −0.00

(0.01)
donors’ disposable income × ins. propensity δ = 0.5 0.09∗∗∗

(0.01)
outdegree × ins. propensity δ = 0.5 −0.07∗∗∗

(0.02)
indegree (unins. neighbors) × ins. propensity δ = 0.5 −0.04∗∗

(0.01)
income × ins. propensity δ = 1 −0.02

(0.02)
donors’ disposable income × ins. propensity δ = 1 0.14∗∗∗

(0.02)
outdegree × ins. propensity δ = 1 −0.15∗∗∗

(0.02)
indegree (unins. neighbors) × ins. propensity δ = 1 −0.03∗

(0.01)

McFadden R2 0.18
AIC 84576.73
Log Likelihood −42273.37
Num. obs. 75000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table 4.2: Goodness-of-fit statistics (R2, RMSE and bias) for the estimation of the survival probabil-
ities of households without enough financial resources to insure for different insurance propensities
δ and predictors in the regression model. In addition to the dummy variables for insurance propen-
sity, the following predictors are included: (#4) donors’ disposable income, own income, outdegree,
indegree from uninsured neighbours; (#2a) own income, outdegree; (#2b) own income, outdegree to
wealthy households; (#1) own income.

δ = 0 δ = 0.5 δ = 1

# R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

4 0.806 0.150 0.098 0.878 0.113 0.070 0.906 0.089 0.045
2a 0.515 0.191 0.068 0.514 0.180 0.048 0.465 0.175 0.032
2b 0.673 0.149 0.021 0.643 0.150 −0.001 0.561 0.159 −0.015
1 0.018 0.259 −0.050 0.016 0.257 −0.070 0.010 0.247 −0.081

provide goodness-of-fit statistics including R2, root mean square error (RMSE), and bias, i.e.
the mean difference between the values predicted by the regression model and those derived
by the simulation. This allows us to analyse whether the variability in the survival rates is
captured accordingly (R2), how accurate the fit is (RMSE) and whether the prediction shows
some general trends (bias).

Survival rates of the poorest households in the empirical network can be adequately pre-
dicted, even without explicitly mapping the temporal dynamics of the budget but by aggre-
gating the most important influence factors and assessing the survival rate only at the end of
the simulated period (Table 4.2, see Figure C.6 for a graphical representation). However, on
average, the regression model tends to slightly overestimate the survival rate of the poorest
(positive bias). The better prediction quality for higher insurance propensities is due to the
fact that the disposable income of the neighbours becomes more reliable as δ increases. The
drawback of such an accurate regression model is the amount of information needed about
the income distribution of all households as well as the network structure. Since this might
not be available for all empirically observed networks, we also test the performance of mod-
els with fewer predictors. Specifically, we consider models in which, in addition to one’s own
financial situation, only the number of neighbours one would approach if in need (outdegree)
is included, but no information about their income. In addition, we assume that households
are able to estimate whether their neighbours are wealthy enough to insure.

Missing information about the financial resources available for transfers crucially lower the
prediction accuracy of the regression model. Nevertheless, when the network structure, i.e.
the number of households that could be asked for support, is included in the regression, the
prediction is much more reliable than when only the household’s own income is considered.
Including information on whether a neighbour is wealthy enough to afford insurance further
improves prediction accuracy. The analysis underlines the importance of network character-
istics for revealing the actual vulnerability of households in situations where informal trans-
fers are an important risk-sharing mechanism and income is not homogeneously distributed.
In contrast to networks where all households have on average the same budget, including the
disposable income of potential donors is essential to precisely predict the surviving chances
of households that are unable to formally insure.
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Figure 4.3: Fraction of surviving uninsured households without enough financial resources to insure
for different shock probabilities ps and income thresholds for insurance It (due to different shock
intensities S , It = ps × S/(1 − c)). The darker the colour, the less households survive, numbers in each
panel denote the exact fraction. If a panel is left blank, the parameter combination was not selected
for the analysis (see Appendix C.2 for details on the selection criteria). Results show the mean over
1000 repetitions for different insurance propensities δ at the last simulation step (t = 50). Tables C.5
and C.6 report Z-scores to assess whether the differences between the survival rates are statistically
significant.

4.3.4 Transferability to different external conditions

So far, the results were obtained for one selected parameter combination of shock probabil-
ity and intensity. To investigate the effect of other external conditions that might arise, for
example, from changing climatic or demographic circumstances, we perform the same ana-
lyses on the survival rate of the poorest, the logistic regression, and the prediction accuracy
in empirical networks for the remaining four of the selected parameter combinations. First,
we compare scenarios with the same shock probability (ps = 0.1) but lower (S = 0.5) or higher
(S = 0.7) shock intensity than in the previous case. Here, 75% and 54% of all households
have enough financial resources to insure. In addition, we analyse cases in which shocks oc-
cur more frequently but less severe (ps = 0.2, S = 0.3 and ps = 0.3, S = 0.2), and where the
number of households with access to insurance remains the same (62% of all households).

For all parameter combinations, the same trend as described in section 4.3.1 is prevalent: The
more households decide to insure the more households without enough financial resources
to formally insure survive (Figure 4.3). This overall picture underlines the importance of the
contributions of insured households to informal risk-sharing for the poorest. When compar-
ing the outcome for different external conditions, we observe a large effect of shock intensity
when shocks occur equally often (ps = 0.1) but with different intensities. Since less severe
shocks result in lower premiums, more households can afford insurance and at the same
time more budget is available for informal transfers, leading to more effective informal risk-
sharing. When the same number of households are insured (It = 0.3) and the scenarios differ
in the combination of shock probability ps and intensity S , the variation in the survival rate is
less pronounced. There is no significant difference between seldom shocks where households
lose a large share of their income (ps = 0.1, S = 0.6) and shocks that occur more frequently
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but impose lower losses (ps = 0.2, S = 0.3). Only for shocks that hit households even more fre-
quently and cause even smaller losses (ps = 0.3, S = 0.2), a slight increase in survival rates can
be observed. Here, low support request make it easier to help others, even when households
have to cover own losses.

By applying the regression analysis to the different scenarios, the trends observed for the se-
lected parameter combination can be confirmed for all combinations of shock probability and
intensity (Tables C.7 and C.8). For each scenario, the disposable income of the neighbours
is most important followed by the outdegree and the own income. The slightly negative
influence of links from uninsured households is also present independent of the shock char-
acteristics. For all scenarios, the disposable income of insured neighbours has a larger impact
on the survival of the poorest than that of uninsured neighbours when these are treated sep-
arately for δ = 0.5 (Tables C.9 and C.10). Overall, the main conclusions on the determinants
for household survival are independent of the frequency and intensity of extreme events.

Across all scenarios, the simulated data of the empirical network can be reproduced with sim-
ilar prediction accuracy with the regression model. Again, information about the financial
situation of all households in combination with details on network characteristics reveals the
best prediction on the survival rate of the poorest (Table C.11). For shocks that occur rarely
and with low intensity (ps = 0.1, S = 0.5), we observe that restricting the predictor that covers
the outdegree of a household only to the wealthy neighbours does not lead to an increased
prediction accuracy compared to considering all links. This can be explained by the fact
that for low losses not only the rich but all households can contribute effectively to informal
risk-sharing.

4.3.5 Transferability to covariate shocks

For some types of shocks, households are not affected independently but several households
have to deal with financial losses simultaneously, e.g. if households derive their income from
agriculture and extreme weather events reduce the yields. To investigate the effect of such
covariate shocks, we perform the same analyses on the survival rate of the poorest, logistic
regression and prediction accuracy for the empirical network when in case of a shock event
80% of all households face losses at the same time.

Although on average each household is affected equally often by shock events for idiosyn-
cratic and covariate shocks, we observe that less of the poorest households can cover their
living costs when many households suffer from shocks simultaneously for all of the con-
sidered external conditions (Figure 4.4). However, the relative difference between surviving
rates for idiosyncratic (Figure 4.3) and covariate shocks (Figure 4.4) decreases with increas-
ing insurance rate. This indicates that insured households can cover most of the requests
even if many of their peers need help simultaneously. For covariate shocks, the increase in
survival with insurance level is much more pronounced than for idiosyncratic shocks, which
highlights the importance of insurance in these cases. When comparing the different external
conditions for shock events, we observe similar trends as for idiosyncratic shocks. Household
survival is strongly affected by the intensity of the shocks with more severe shocks leading to
fewer households that can cope with the losses. Again, the survival rate of the poorest does
not vary significantly between frequent shocks with low intensity and seldom shocks which
impose high losses.

Looking at the regression model, also for covariate shocks the disposable income of the po-
tential donors has the largest influence on the survival of the poorest (Tables C.15 and C.16).
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Figure 4.4: Fraction of surviving uninsured households without enough financial resources to insure
for different shock probabilities ps and income thresholds for insurance It (due to different shock
intensities S , It = ps × S/(1 − c)) for covariate shocks. In case of a shock at village level, 80% of the
households are affected (pH = 0.8). The darker the colour, the less households survive, numbers in
each panel denote the exact fraction. If a panel is left blank, the parameter combination was not
selected for the analysis (see Appendix C.2 for details on the selection criteria). Results show the
mean over 1000 repetitions for different insurance propensities δ at the last simulation step (t = 50).
Tables C.12, C.13 and C.14 report Z-scores to assess whether the differences between the survival rates
are statistically significant.

In contrast to idiosyncratic shocks, the number of neighbours that can be asked for trans-
fer is, however, less important than the own income. This could be because having a large
number of neighbours is of little use if many of them are affected by shocks at the same time
as oneself. The number of uninsured households requesting informal transfers is insignifi-
cant for the survival of the poorest. This is plausible as only few of the poor households can
contribute to informal transfers when most of them deal with the same shocks. The impor-
tance of insured neighbours becomes even more apparent when the influence of insured and
uninsured donors is considered separately (Tables C.17 and C.18).

The simulated survival probabilities of the poorest households in the empirical network can
be predicted with slightly lower accuracy than for idiosyncratic shocks (Table C.19). When
restricting the regression to predictors that can more easily be obtained from interview data,
the prediction accuracy for covariate shocks is far lower than that for idiosyncratic shocks.
This indicates that for covariate shocks exact information about the financial situation of
all households is even more important to effectively estimate the vulnerability of specific
households.

4.4 Discussion

With this study, we gained insights into how effectively households without formal insur-
ance can cope with income shocks by interacting in a social network. We specifically anal-
ysed whether the availability of insurance can have an indirect benefit for poor, uninsured
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households. To identify which households are most vulnerable, we uncovered the functional
relationship between the survival probability and key household and network characteristics
by combining agent-based modelling with regression analysis.

Our model results show that formal insurance does not only pay off for the insured house-
holds themselves, but also for poor households that benefit from their peers being insured.
The actual effectiveness of the interplay between formal insurance and informal risk-sharing
is dependent on the characteristics of the shock events: Mild losses can be well covered with
private transfers and without formal insurance. For more severe shocks, such support is lim-
ited as households have fewer resources to share due to higher losses. Especially in this case,
insurance significantly increases the chances of survival also of the weakest. Furthermore,
the indirect positive effect of insurance is particularly strong in the case of covariate shocks
that affect many households simultaneously. Since few of the uninsured households can help
their peers as they also face losses, insurance plays an even more important role: When many
households are insured, private transfers can be provided almost as effectively as in the case
of idiosyncratic shocks.

By applying a logistic regression analysis to the outcomes of the agent-based model, we were
able to show that a household’s financial situation alone says little about its ability to cope
with income losses. Rather, in addition to the individual budget, the disposable income of po-
tential donors and the network position must be taken into account. We tested the prediction
accuracy of the regression model on empirical network data from the Philippines. When in-
corporating detailed information about household and network characteristics, we were able
to precisely reproduce the simulated results. Furthermore, we showed that even a simplified
model can give important insights into the resilience of individual households. The regres-
sion model can therefore be considered a valuable proxy for the outcome of the structured
agent-based model and a predictor of the survival probability of the poorest households.
In this sense, the regression analysis can serve as an ‘early-warning system’ to test whether
formal and informal risk-coping instruments are effectively interplaying for the benefit of a
particular household or whether additional support is needed.

Given the stylized character of our model, we, however, neglected a number of factors, which
needs to be taken into account when interpreting the results. First, we assumed that all
households are unconditionally willing to provide informal transfers. Yet, households might
decide how much to transfer and to whom, depending on their wealth differences, possible
other sources of support that a household might have or the neediness of a household rela-
tive to others (Chiang, 2015). Second, the insurance status was not explicitly considered in
the transfer decision. This neglects empirical observations which show that the availability
of formal insurance can alter transfer behaviour (Strupat & Klohn, 2018; Takahashi et al.,
2018). Insured households might, for example, no longer be willing to transfer to uninsured
households, at least not to those that could have afforded to insure (Anderberg & Morsink,
2020; Lenel & Steiner, 2020). In a previous modelling study, this was shown to greatly reduce
the ability of uninsured households to cope with income losses when the income distribution
is homogeneous (Will et al., 2021a). If households differ in income and the poorest rely solely
on informal transfers in times of need, a decline in solidarity could have an even greater im-
pact on their resilience. Third, the network was assumed to be fixed, but connections might
change over time and in response to external circumstances. To improve the external validity
of the result, these aspects could be incorporated into later model versions.

Potential for further studies also exists with regard to the regression model. For simpli-
city, we focussed on a small subset of potential explanatory variables, namely the financial
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resources of a household and its neighbours as well as its network position. However, espe-
cially with regard to the disposable income of the neighbours, there are a number of further
scaling options that could increase the explanatory power of the regression and the respec-
tive influence factors. We could imagine weighting the disposable income with the number
of households that are requesting support from the same household and their probability of
being affected by income losses. Effects of an even higher order can be considered if we would
incorporate information on how many further possibilities of informal support are available
to the requesting households and how effective this help is likely to be, i.e. how wealthy the
other neighbours are. Moreover, in most analyses, we only considered the survival of the
poorest after a given period of time but did not include the complete temporal dynamics.
Especially for the regression analysis, we did not predict every single time step of the simu-
lation but used the aggregated outcome of the complete simulated time span. However, this
might overlook certain situations, such as when insured neighbours have few resources for
private support immediately after the introduction of insurance because they have not yet
benefited from reimbursed losses but must cover premium payments. By taking into account
the temporal dynamics more explicitly, it would be possible to examine even more specifi-
cally which households can cope with shocks and for how long, and when households need
external support in the form of subsidies.

In our study, the regression approach allowed us to aggregate the results of the agent-based
model and to make general statements about the resilience of an uninsured household to in-
come losses. However, all results are based on the same income distribution derived from
empirical observations on the Philippines. A systematic comparison of different network
structures and income distributions is needed to test which further insights emerge from
specific household and network characteristics. For example, in networks where segregation
between wealthier and less wealthy households is prevalent and households in need are not
supported by wealthier peers, informal risk-sharing might not be effective. Similarly, it could
have an effect whether income differences in the population are extreme, i.e. there are many
rich and many poor households, or whether all households have roughly the same level of
income. The structure of the network might also have an influence. For example, the effec-
tiveness of informal transfers might be different with a homogeneous distribution of links
than when there are pronounced hubs where many households ask the same few for help.
To obtain a comprehensive picture and develop a reliable tool to derive implications on the
resilience of the poorest, it would therefore be necessary to systematically analyse different
network configurations and compare the regression results in these scenarios. The basis for
the regression analysis yielding valuable results lies in the fact that household and network
characteristics were explicitly considered and disentangled in the agent-based model. Such a
structurally explicit approach is essential for understanding systems where humans interact
with each other as well as with the environment (Will et al., 2020). Despite the simplified
setting, our study already shows the potential of systematically analysing the sensitivity of
resilience to structural household and network characteristics and provides far-reaching in-
sights into the effectiveness of formal and informal risk-coping mechanisms under different
external conditions. Exploiting this strategy even further by analysing the interplay of house-
hold and network characteristics more systematically will further improve the understanding
of the effects of formal insurance and informal risk-sharing on the ability of the poorest to
deal with extreme events. If this model-based approach was applied to other network typolo-
gies and overarching conclusions could be found, this would allow transferability to any em-
pirical network to make predictions about the actual vulnerability of individual households
without having complete information about all network characteristics, but by aggregating
the relevant metrics.
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While this study showed that formal insurance is a valuable complement to informal risk-
sharing for households that are too poor to pay insurance premiums, a large fraction of these
households still cannot cover their living costs over a long period of time when regularly
affected by income shocks. This underlines how important it is that also the poorest have
access to formal protection instruments in order to reduce their dependence on other house-
holds and strengthen the resilience of the entire population. One way to achieve this goal
would be to make insurance more widely accessible. There are various options for doing
this: First, transaction costs related to distribution and administration must be reduced in
order to lower insurance premiums (Eling et al., 2014; Platteau et al., 2017). With respect
to weather-related risks, index-based insurance where payouts are linked to environmental
proxies rather than individual losses, is a promising approach for decreasing costs (Barnett &
Mahul, 2007). Similarly, for other types of insurance, using local infrastructure to distribute
the products, collect premiums and process claims might lower transaction costs (Biener &
Eling, 2012). Second, insurance schemes that incorporate price differentiation, with premi-
ums specifically tailored to the available financial resources of potential policyholders, could
help make insurance accessible to a larger part of the population. By making richer house-
holds pay a higher share than poorer ones, coverage for the entire population can improve.
When combined with collective insurance programs where insurance is offered to groups
rather than individuals (Trærup, 2012; Santos et al., 2021), internal agreements within a so-
cial network on contributions to the premium would be possible. Third, especially for crop
farmers where income is only realized at the end of the harvesting season, delaying premium
payments until the end of the insured period is another option to improve accessibility to
insurance (Liu & Myers, 2016). Finally, offering direct subsidies is also an effective tool to
achieve affordability and promote insurance, at least for a finite period after the introduction
of a new scheme (Mahul & Stutley, 2010; Biener & Eling, 2012; Hazell & Varangis, 2020).
Here, the insights obtained in our studies can help to target them effectively to support the
most vulnerable. In addition to insurance products, other government and non-government
social assistance programs that provide asset and cash transfers can contribute to promoting
resilience among the very poor (Johnson et al., 2013).

4.5 Conclusion

Even though insurance products specifically designed for the needs of low-income house-
holds are a valuable tool to buffer financial losses from personal or weather-related risks,
they might not be able to strengthen the resilience of all parts of the population as premium
payments can be too expensive for the poorest. Our simulation results show, however, that
these households can also indirectly benefit from formal insurance when requesting informal
support through their social network. Especially for covariate shocks where many household
are affected by income losses simultaneously, access to insurance increases the resilience of
the whole population including those that cannot afford the premiums. By aggregating our
results from a structurally realistic agent-based model in a regression model, we derived that
a household’s own income is not the main determinant of its financial survival. Rather, it
is important that its neighbours have enough disposable income and an atmosphere of soli-
darity is preserved. By testing the predictive accuracy of the regression model for simulated
data of an empirically observed support network on the Philippines, we conclude that this
aggregated model is a valuable tool for identifying those households among the poorest in
a population that benefit from informal protection, but also those households that are not
protected from income loss and are thus particularly vulnerable. This information can be

61



4 Determinants of household resilience

used to effectively target subsidies to households that cannot afford formal insurance and for
whom also informal support is insufficient.

The combination of agent-based modelling and social networks on the one hand and an ag-
gregated regression analysis on the other hand made it possible to systematically test the
effects of varying external conditions. While the implications for the resilience of the poorest
are based on a theoretical simulation model with a range of simplifying assumptions, the pre-
sented analyses nevertheless provide helpful insights into how effective the combination of
formal and informal risk-coping instruments can be and which factors have to be considered
when estimating the vulnerability of specific households.
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5 Improving insurance design under climate change:

Combining empirical approaches and modelling

This chapter is currently under review in Climate and Development as Will, M., Backes, A., Camp-
enni, M., Cronk, L., Dressler, G., Gornott, C., Groeneveld, J., Habtemariam, L. T., Kraehnert, K.,
Kraus, M., Lenel, F., Osgood, D., Taye, M., & Müller, B. Improving insurance design under climate
change: Combining empirical approaches and modelling.

Abstract

Extreme weather conditions in the face of climate change often disproportionately affect the
weakest members of society. Agricultural insurance programs that are specifically designed
for smallholders in low-income countries are seen as valuable tools that can help farmers
to cope with the resulting risks. At the moment, a broad range of methods including ex-
perimental games, household surveys, process-based crop models and agent-based models is
used to assess the demand for and the effectiveness of such insurance products. However,
climate change raises specific socioeconomic as well as environmental challenges that need
to be considered when designing insurance schemes. We argue that in light of these pressing
challenges, some of the currently used methodological approaches reach their limits when
applied independently. We therefore advocate for a sound combination of different methods
especially by linking empirical analyses and modelling and underline the resulting poten-
tial with the help of stylized examples that address the main challenges for insurance design
under extreme weather conditions. Our study highlights how methodological synergies can
make insurance products more effective in supporting the most vulnerable, especially under
changing climatic conditions.

5.1 Introduction

Extreme weather events resulting from climate change, such as droughts or floods, pose
a particular threat to low-income households in developing countries that are engaged in
agricultural activities (World Bank, 2009; Hallegatte & Rozenberg, 2017). Agricultural in-
surance products specifically designed for the needs of smallholder farmers, known as mi-
croinsurance or inclusive insurance, are seen as a promising tool for managing disaster risks.
The International Panel on Climate Change (IPCC), for example, has stressed the need for
risk-sharing and transfer mechanisms such as insurance as a climate adaptation mechanism
(IPCC, 2012). Similarly, the UNFCCC has pointed out the importance of insurance for ad-
dressing effects of climate change in their Warsaw International Mechanism for Loss and
Damage (UNFCCC, 2013). However, climate change poses specific socioeconomic as well as
environmental challenges to effective insurance design (Table 5.1). First, to allow for an ade-
quate combination of insurance with other risk management options such as credits, savings,
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and traditional informal risk-sharing arrangements, it has to be considered that an increas-
ing number of extreme events can alter the effectiveness or increase the costs of these existing
strategies (Peterson, 2012; Trærup, 2012; Linnerooth-Bayer & Hochrainer-Stigler, 2015). Sec-
ond, the introduction of insurance might have environmental side effects such as degradation
of natural resources (Bhattacharya & Osgood, 2014; Müller et al., 2017) as smallholders with
access to insurance might, for example, be able to quickly restock their livestock herd size af-
ter an extreme event (Bertram-Huemmer & Kraehnert, 2018), giving the pasture hardly any
time to regenerate. Changing climatic conditions that lead to an increased risk of droughts
and other extreme weather events further weaken the state of the natural resource. Third, a
particular challenge for agricultural index insurance, where payouts depend on exceeding or
falling short of a threshold derived from rainfall or vegetation data (Brown et al., 2011; Be-
nami et al., 2021), is the accurate assessment of crop yields especially when extreme events
occur on a local scale. A mismatch between actual losses from a weather shock and received
insurance payouts, commonly defined as spatial basis risk, could lead to low acceptance rates
of the insurance (Clement et al., 2018).

With experimental games, household surveys, process-based crop models or agent-based
models, a wide range of methods is currently used to assess the demand for and impact
of agricultural insurance and to identify its shortcomings and unintended side effects. How-
ever, with respect to the pressing questions arising due to climate change, some of the meth-
ods reach their limits. Experimental games, for example, are a valuable tool to assess specific
behaviour, but they usually include only a small number of individuals and, unless the same
experimental design is replicated in different contexts, the results are difficult to general-
ize. The econometric analysis of household surveys allows researchers to draw inferences
from large samples representative of the population. However, such surveys, and household
panel surveys in particular, from which conclusions can be drawn about the impacts of po-
tentially changing external conditions, are time and cost intensive. Modelling approaches
allow researchers to overcome these time and space constraints: Process-based crop models
that cover biophysical aspects of crop yield dynamics and agronomic management informa-
tion, however, do not include human behaviour explicitly. Agent-based models, on the other
hand, where human decision-making can be implemented in detail, depend heavily on the
availability of data to validate model assumptions.

From our point of view, the potential of each of these methods to contribute to a better un-
derstanding of insurance could be considerably enhanced by combining them. We believe
that this could lead to a more appropriate and sustainable insurance design given the current
challenges of climate change. Mixed-method approaches that link quantitative and qualita-
tive techniques have already been advocated in the context of microinsurance (White, 2014).
We reinforce this demand by proposing a combination of modelling and empirical analyses.
We address this aim by (a) exploring strengths and limitations of current approaches to as-
sess and improve the impact of insurance; (b) illustrating how a more holistic approach can
be beneficial to advance an appropriate and sustainable insurance design; and (c) underlin-
ing the potential of combining different methods with three stylized examples that address
challenges for insurance design under climate change.
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Table 5.1: Challenges for insurance design under climate change

Research theme Challenges

Risk management
options

How can insurance products be adequately combined with other
risk mitigation strategies especially when an increasing number
of shocks occurs? How can insurance be used to overcome
shortcomings of other risk mitigation strategies?

Environmental
effects

Which (indirect) effects does insurance have on natural resource
use? How can insurance design mitigate unintended
consequences?

Index design How to accurately assess crop yields and yield losses remotely to
minimize basis risk? How to distinguish between
climate-related and non-climate-related yield loss?

5.2 Strengths and limitations of current methods to evaluate
insurance design

Below, we provide brief descriptions of several methods that illustrate the range of ap-
proaches currently used to assess insurance demand and the impact of insurance payouts,
identify unintended social and environmental side effects, and develop appropriate insur-
ance indices. We focus on experimental games, the econometric analysis of household sur-
veys, process-based crop models and agent-based models, as these are the methods we pro-
pose to combine to tackle current challenges. For each of these approaches, we describe the
technique in general, highlight their strengths and limitations, and present problems that
have been addressed in the context of insurance. Importantly, the methods discussed are not
exclusive; analytical models, Bayesian Belief Networks, or qualitative research, for example,
may be similarly useful in examining the impact of microinsurance and improving its design.

5.2.1 Experimental games

Experimental games are used to learn what choices people make in specific, well-defined
situations and which factors drive these choices. Games can contribute to understanding
individuals and groups by mimicking the actual environments where policy interventions
will take place (Hernandez-Aguilera et al., 2020a). In most experimental games, the exper-
imenter first endows participants with a fixed amount of money or another easily shared
resource such as small packages of food and then gives them one or more decisions to make
about what to do with the resource. Because experimental games can be conducted in labo-
ratory and field settings located in any society in the world, they can yield useful insights not
only into behaviour but also into local cultural models (Henrich et al., 2004). One weakness
of the game method is that a researcher’s choice of a game and its usefulness for addressing
the research question at hand depends on the researcher’s understanding of the local cultural
context; in turn, researchers’ design choices can interact with the cultural contexts that sub-
jects bring to an experimental game. Indeed, small variations in the game design have been
shown to affect results considerably (DellaVigna & Pope, 2019; Landy et al., 2020). Another
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drawback is that it can be difficult at many field sites to obtain large sample sizes, particu-
larly if the game takes a long time to play or requires participants to play simultaneously.
Furthermore, although games aim to map realistic situations, participants might not behave
as they do in their everyday life, but rather as they think they should (Zizzo, 2010; de Quidt
et al., 2018). In the context of insurance, experimental games have been used primarily to
study whether formal insurance crowds out grassroots risk pooling. Such experiments have
been conducted in laboratory settings (Lin et al., 2014), and at field sites in the Philippines
(Landmann et al., 2012), Ethiopia (Anderberg & Morsink, 2020), and Cambodia (Lenel &
Steiner, 2020). Similarly, Cecchi et al. (2016) studied at a field site in Uganda whether formal
insurance crowds out social capital, operationalized as donations to a public goods game.
Norton et al. (2014) assessed demand for index insurance among farmers in Ethiopia by us-
ing a game in which people could allocate money across different risk management options.
Agricultural insurance is furthermore beginning to adopt game approaches known as “gam-
ification” (Hernandez-Aguilera et al., 2020b), which is the use of game design elements in
non-game contexts (Seaborn & Fels, 2015).

5.2.2 Econometric analysis of household surveys

Household surveys are an essential source of information on the well-being and behaviour of
individuals. The sample of households surveyed is ideally representative of subgroups and
geographical areas of the population of interest, and is usually based on census or administra-
tive data. Household surveysmay address different objectives, ranging from documenting the
living conditions of a target population to estimating the impact of development programs
and policies on households’ well-being (Grosh & Glewwe, 2000). Cross-sectional surveys that
are implemented with similar questionnaire design in several years, allow monitoring how
living standards change over time. A special case particularly informative to policy design
are household panel surveys, in which the same households are traced over time. When anal-
ysed with econometric methods, household surveys are a key source to establish a cause and
effect relationship between policy-relevant variables and household-level outcomes.

Despite these major advantages, household surveys are also subject to limitations. Depend-
ing on the level of representativeness and, in turn, the sample size, implementing household
surveys – and especially panel surveys – can be expensive. Furthermore, the amount of in-
formation that can be recorded in household surveys is constrained by the time respondents
readily devote to a survey interview. Also, there is a limit to the level of detail that respon-
dents can be asked to recall. While major events in life are usually remembered well, indi-
viduals typically face more difficulties to recall income streams retrospectively (Wooldridge,
2012). Moreover, some information can hardly be recorded at all, such as inherent ability,
skills, or work attitude. Finally, specific mechanisms that drive behavioural changes are diffi-
cult to detect with pure survey data. In the context of agricultural insurance, the econometric
analysis of household surveys was used to study drivers of the demand for insurance among
farmers in India (Mobarak & Rosenzweig, 2012; Cole et al., 2013; Mobarak & Rosenzweig,
2013), Ethiopia (Dercon et al., 2014), and Ghana (Karlan et al., 2014). In addition, the im-
pacts of agricultural insurance ex ante, i.e. before an extreme weather event occurred, on the
investment decisions of farm households were quantified using household survey data (Hill
& Viceisza, 2012; Cai, 2016; Cole et al., 2017; Hill et al., 2019). A related field of research
assesses whether indemnity payments from index insurance help farmers to recover from
losses. Studies quantifying these ex post effects of agricultural insurance based on survey
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data have focused on Kenya (Jensen et al., 2017; Janzen & Carter, 2019), Mongolia (Bertram-
Huemmer & Kraehnert, 2018), and Bangladesh (Hill et al., 2019).

5.2.3 Process-based crop models

Process-based crop models include biophysical plant and soil processes such as the growth
of above- and below-ground biomass as well as water and nutrient flows in the plant and
the soil to calculate interactions between environment and crop development (White et al.,
2011; Boote et al., 2013). Due to their plant physiological algorithm, the models can cap-
ture effects like extreme temperatures, dry spells or shifts in the growing season which have
not been observed in the past. Hence, these models can be used for quantifying yield and
environmental effects of adaptation measures and for projections of future periods or other
environments which is particularly interesting in the face of changing climatic conditions
(Wallach et al., 2016; Lobell & Asseng, 2017; Rötter et al., 2018). Since process-based crop
models can provide information on yield losses immediately after the harvest, they can be
used for risk assessments and adaptation planning (Challinor et al., 2018; Webber et al.,
2020). This is highly relevant for insurance indices, in particular in developing countries,
where crop yield information is not available and/or too expensive to collect because of re-
motely located fields. Furthermore, the process-based organization of the model allows to
distinguish between weather and management attributable influences on crop yield which is
crucial for the design of insurance indices, as only weather-induced losses should be covered
by the insurance product (Arumugam et al., 2020).

To feed process-based models, weather, soil and management information are needed.
Weather information is available on a global scale informed by weather stations, satellite
observations and weather models. Soil data are also widely accessible from global or regional
soil maps. However, there is often little information about management practices and under-
lying drivers of management decisions (Asseng et al., 2013; Folberth et al., 2019; Wang et al.,
2019). In particular, responses of farmers to changing environmental and economic condi-
tions are not reflected. This lowers the ability of process-based cropmodels to capture and re-
produce accurate crop yields, especially in developing countries where the range of manage-
ment practices differs highly across space, time, and farmer groups. So far, mainly weather
indexes (Dalhaus & Finger, 2016), remote sensing satellite vegetation indexes (Enenkel et al.,
2019), and statistical models (Conradt et al., 2015) have been used to quantify crop yield
losses. However, there is a growing interest among governments and insurance companies in
process-based model assessments, for instance in India (Arumugam et al., 2020).

5.2.4 Agent-based models

Agent-based models (ABMs) are simulation tools that focus on individual actors such as hu-
mans, households, firms or institutions. The interaction of these agents with each other and
the environment is explicitly considered in behavioural rules (Bonabeau, 2002; Railsback &
Grimm, 2012). Agents can differ in their characteristics, i.e. they can be heterogeneous in
their attributes and decision rules. Based on the prescribed rules and micro-level properties,
emergent temporal dynamics such as the spread of an innovation or collective behaviour can
be observed on a macro-level. ABMs can be used to systematically disentangle several influ-
ence factors by including and excluding environmental features or aspects that impact the
individual decision-making. Furthermore, they have few time and space constraints: Results
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can be obtained for large regions, which would require high financial resources if empiri-
cal methods were used. In addition, ABMs can simulate long-term effects of new policies
or altered climatic conditions on a time scale beyond what can be detected with empirical
observations. Apart from such explorative analyses, ABMs can also take a backward perspec-
tive and help to uncover relations that cannot be fully explained empirically. This so-called
pattern-oriented modelling can be used to test assumptions about human behaviour, which
can then be compared to observed results (Grimm et al., 2005).

As every other modelling approach, ABMs are only a simplified version of reality which has
to be taken into account when drawing general conclusions. Furthermore, ABMs can easily
become complex when many influencing factors are included, which can make it impossible
to derive cause and effect relations of certain aspects. Besides this, model outcomes crucially
depend on assumptions that require careful calibration with data that is often not available.
Moreover, although the explicit integration of human behaviour is one of the strengths of
ABMs, the theoretical basis of the decision-making frameworks used in such models is often
quite simplified (Groeneveld et al., 2017; Schlüter et al., 2017).

ABMs have been used to analyse potential long-term effects of index insurance on sustain-
ability of rangeland management (Müller et al., 2011) and resulting pasture conditions (John
et al., 2019). In other studies, the effectiveness of insurance through informal risk-sharing
(Aktipis et al., 2011; Hao et al., 2015; Aktipis et al., 2016) and impacts of combining formal
and informal insurance (Will et al., 2021a) were investigated.

5.3 Synergies between different approaches to improve
insurance design

To overcome some of the individual limitations of the different methods, a holistic approach
that couples several approaches could be beneficial. We use three examples that focus on
(1) combining different risk management options, (2) evaluating environmental effects of in-
surance uptake, and (3) appropriately designing insurance indices to show how this can be
used to address pressing challenges of insurance design under climate change. We suggest
approaching these challenges by linking empirical analyses that provide grounding in real-
ity and models that reduce this complex reality to a limited number of key variables and
processes. We use the first two examples to elaborate on combining household surveys, ex-
perimental games and ABMs, mediated by the use of econometric methods; with the third
example, we show the potential of integrating empirically parameterized ABMs into process-
based crop models.

5.3.1 Interplay between empirical data and ABMs

The general insights from household surveys and specific hypotheses tested using experi-
mental games provide an excellent basis for specifying ABMs. While econometric analyses of
household surveys can be used to parameterize individual household characteristics such as
income, social relationships, insurance status, and environmental conditions (Smajgl et al.,
2011), decision-making in ABMs can be based on inferences drawn from small-scale exper-
imental games with the same decision space (Smith & Rand, 2018). The outcome of ABMs
can, in return, help to refine experimental research. If this results in new observations, these
can again be implemented in ABMs (Chávez-Juárez, 2017). There exist successful examples
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Figure 5.1: Schematic representation of the interplay between empirical data and ABMs to determine
the effectiveness of formal and informal risk-coping instruments under climate change

of such back-and-forth approaches. Cronk et al. (2019b), for instance, designed a two-player
game to study risk pooling in a laboratory based on earlier ABMs of risk pooling in dyads
(Aktipis et al., 2011; Aktipis et al., 2016). The results from the game and ABMs were then
used to inform the design of additional experimental games (Claessens et al., 2021).

In the context of insurance, we suggest that a combination of methods could help to deter-
mine the effectiveness of formal and informal risk-coping instruments under climate change
(Figure 5.1). An increasing number of covariate shocks may threaten existing risk-sharing
instruments, such as when an entire community is affected by an extreme event and informal
safety nets can no longer absorb the losses (Wossen et al., 2016). At the same time, the in-
troduction of insurance may lead to rising social inequality if insured households no longer
contribute to traditional risk-sharing arrangements (Anderberg & Morsink, 2020; Lenel &
Steiner, 2020). The behaviour of insured households can be tested in experimental games
where participants are randomly matched. In reality, however, the structure of risk-sharing
networks determines their effectiveness. Informal protection varies depending on whether,
for example, particularly poor households are linked to rich households or whether there is
income segregation. Network structures can be revealed with the help of survey campaigns.
Integrating information on household behaviour observed during the games as well as net-
work structures of specific villages in ABMs allows researchers to draw precise conclusions
on the long-term welfare effects of potentially altered solidarity norms in a society.

A combination of methods is also promising for investigating the potentially negative side
effects of insurance uptake on the environment (Figure 5.2). In pastoralist communities, in-
surance coverage may prevent the need to reduce livestock following a drought (Gebrekidan
et al., 2019). While having a positive impact on households’ livelihood in the short-term,
this may result in overgrazing and pasture degradation, which increases the vulnerability to
future extreme events. In agricultural communities, insurance coverage may create incen-
tives to intensify production and, for instance, turn to cash crops or mono-cropping, which
yield higher returns but are riskier (Mobarak & Rosenzweig, 2012; Mobarak & Rosenzweig,
2013; Cai, 2016; Cole et al., 2017; Jensen et al., 2017). To grasp the long-term effects of insur-
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Figure 5.2: Schematic representation of the interplay between empirical data and ABMs to quantify
the side effects of insurance coverage on rural communities

ance uptake on the environment, econometric methods may be used to infer from surveys,
how households adapt their agricultural practices in response to purchasing insurance. Here,
behavioural changes before a payment-inducing extreme event (ex ante) as well as once pay-
ments from insurance are made (ex post) are of interest. Complementary experimental games,
conducted in the same empirical context, may reveal more explicitly how the introduction of
agricultural insurance changes households’ attitudes towards managing the global commons,
e.g. to what extent households shift priorities betweenmaximizing their own utility and com-
munal welfare. Agent-based models may be used to extrapolate from the behaviour observed
at the micro-level and derive macro-level trends in natural resource use under different sce-
narios of insurance design and uptake.

5.3.2 Interplay between ABMs and process-based crop models

In order for insurance products to be effective not only under the given conditions but also in
the long term, their design must take into account changes in climate but also adjustments in
agricultural practices (Siebert, 2016; Surminski et al., 2016). Whereas several long-term cli-
mate projections exist and can be used in agricultural modelling (Asseng et al., 2013; Jones &
Thornton, 2013; Folberth et al., 2019), future management decisions are much more difficult
to predict. Agricultural practices are highly dependent on a farmer’s individual psychologi-
cal and socioeconomic characteristics such as risk aversion, habits or openness to innovations.
Furthermore, there is a feedback between farming strategies and global change processes.
Farmers might adjust their crop portfolios or invest in irrigation to avoid losses due to altered
climatic conditions (Collier et al., 2009). In addition, there might be indirect adaptations of
farming decisions when insurance uptake incentivizes different management strategies (cf.
section 5.3.1) and insurance uptake is largely determined by farmers’ satisfaction with the
product (Shirsath et al., 2019).

The exchange of in- and output between process-based crop models and ABMs can help
to disentangle the complex interplay between human and environmental processes. ABMs
are suggested to be a powerful tool to investigate land use decisions (Parker et al., 2003;
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Figure 5.3: Schematic representation of the interplay between ABMs and process-based crop models
to improve index design

Matthews et al., 2007; Rounsevell et al., 2014), especially when empirically parameterized
(Robinson et al., 2007). Furthermore, insurance uptake can be explicitly modelled as adop-
tion of innovations (Kiesling et al., 2012). Here, the influence of other farmers and additional
factors that affect the insurance decision could be taken into account (Jones et al., 2017). Ex-
plicitly considering how farmers incorporate various influence factors into their management
and insurance decisions and providing these results as input to the process-based crop model
would therefore allow for a more holistic picture of the system and improve the accuracy of
insurance indices (Figure 5.3). The outcome of the process-based model could then again be
used as input for the ABM to further refine long-term projections.

5.4 Conclusions

In this study, we compiled how combining several methodological approaches could help
to tackle challenges associated with insurance product design under climate change. We
specifically addressed the potential of coupling empirical and model-based approaches to
overcome limitations that arise when applying these methods separately. The combination
of empirical research and agent-based models can help to understand the interplay between
different risk management options as household surveys identify potential income sources,
experimental games clarify in which situation households rely on which financial instrument
and ABMs extrapolate the findings to a larger spatial and temporal extent. Furthermore, this
combined approach can reveal the impact of insurance on natural resource use. How house-
holds change their management of global commons after having access to insurance can be
assessed using household surveys and experimental games. ABMs allow estimates of re-
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sulting long-term consequences on the environment. The challenge of adequately defining
insurance indices can be mitigated by established process-based crop models. Combining
this approach with ABMs helps to further improve the insurance design as it allows incor-
porating feedback loops between humans and the environment by explicitly including local
environmental constraints and potential effects on farmers’ behaviour.

To successfully combine different methods, it is important to clearly indicate which contri-
bution can be achieved with which methods while keeping the limits of each approach in
mind (White, 2014; Jones et al., 2017; Kline et al., 2017). An issue that needs to be addressed
in the context of microinsurance is, for example, choosing the most representative time to
obtain information on insurance uptake or land use. While this is also crucial for stand-alone
empirical studies, it is especially important in combination with models, since model rules
based on these observations are used to make statements about broad temporal and spatial
scales. Furthermore, it must be clearly communicated how much data is needed for the sim-
ulations and uncertainties in the empirical observations must be accounted for in the model
(Cheong et al., 2012). Additional challenges that arise for interdisciplinary research, such as
establishing a common language for exchange and allowing sufficient time for iterative cycles
of reflection across all phases of the research process, should also be considered (Kelly et al.,
2019).

In this study, we did not focus on the integration of qualitative research which can add fur-
ther relevant perspectives (Paluck, 2010; White, 2014; Millington &Wainwright, 2017). Since
understanding the local cultural process is crucial to framing specific research questions,
the use of quantitative methods should ideally be combined with qualitative ethnographic
approaches obtained through interviews and participant observation. For example, Cronk
(2007) used trust games to study a Maasai risk pooling system. He selected the game based
on what he learned during a first round of interviews and conducted a second round of inter-
views in light of the results of the game. In the context of microinsurance, qualitative meth-
ods could be used to assess risk exposure, risk perceptions, and risk management strategies
to gain an overall understanding of vulnerability particularly under climate change (Turner
et al., 2003).

Overall, we believe that the use of complementary methods to evaluate the effectiveness of
insurance and to elucidate potential (unintended) side effects as presented in our study may
improve insurance design and make this instrument more powerful in supporting the most
vulnerable in a sustainable manner. Future research projects should strive for such method-
ological synergies to tackle the pressing issue of effectively protecting the poorest against
extreme events that will be even more pronounced under climate change.
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Abstract

Dynamic process-based modelling is often proposed as a powerful tool to understand com-
plex socio-environmental problems and to provide sustainable solutions as it allows disen-
tangling cause and effect of human behaviour and environmental dynamics. However, the
impact of such models in decision-making and to support policy-making has so far been very
limited. In this paper, we want to take a critical look at the reasons behind this situation and
propose steps that need to be taken to change it. We investigate a number of good practice
examples from fields where models have influenced policy-making and management to iden-
tify the main aspects that promote or impede the application of these models. Specifically,
we compare examples that differ in their extent to how explicitly they represent human be-
haviour as part of the model, ranging from purely environmental systems (including models
for river management, honeybee colonies and animal diseases), where modelling techniques
have long been established, to coupled socio-environmental systems (including models for
land use, fishery management and sustainable water use). We use these examples to synthe-
sise four key factors for successful modelling for policy and management support in socio-
environmental systems. They cover (a) the specific requirements caused by modelling the
human dimension, (b) the importance of data availability and accessibility, (c) essential ele-
ments of the partnership between modellers and decision-makers and (d) insights related to
characteristics of the decision process. For each of these aspects, we give recommendations
specifically to modellers, decision-makers or both to make the use of models for practice
more effective. We argue that if all parties involved in the modelling and decision-making
process take into account these suggestions during their collaboration, the full potential that
socio-environmental modelling bears can increasingly unfold.

6.1 Introduction

Socio-environmental systems (SES) are characterised by a tight coupling of human and en-
vironmental dynamics (Berkes & Folke, 1998; Folke et al., 2010; Schulze et al., 2017). Both
aspects need to be understood to support sustainable management of these systems (Carpen-
ter et al., 2009; Ostrom, 2009; Chapin et al., 2010). Dynamic process-based modelling, and
in particular agent-based or individual-based modelling, is often proposed as an effective ap-
proach to address such interlinked dynamics and provide solutions to pressing challenges, as
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it allows disentangling cause and effect of human and environmental processes (Levin et al.,
2013).

Socio-environmental modelling has made many contributions in the scientific realm answer-
ing environmental issues on the sustainable management of natural resources focusing on
land use/land cover change (Parker et al., 2003), agriculture (Huber et al., 2018), fishery
management (Lindkvist et al., 2020) or biodiversity conservation (Drechsler, 2020). How-
ever, few SES models have had impact on decision support and policy-making (Schulze et
al., 2017; Polhill et al., 2019; Elsawah et al., 2020). In contrast, models from other areas
such as transportation planning, epidemiology or pesticide risk assessment have been rou-
tinely integrated into policy-making processes. Literature reviews evaluate the usefulness of
models for specific fields such as conservation management (Addison et al., 2013), marine
systems (Gregr & Chan, 2015), agriculture (Primdahl et al., 2010; Reidsma et al., 2018) or
environmental health (Currie et al., 2018), but this work does not address how to foster the
integration of socio-environmental modelling into practice.

With this paper, we aim to explore models across disciplines and topics that have already in-
fluenced policy-making and management. We look at seven good practice examples ranging
from those tackling purely environmental problems that do not explicitly represent a human
component as part of the model, such as the management of rivers for both fish and am-
phibian populations or control of animal diseases, to coupled SES models such as sustainable
fisheries in Australia andwater management in Jordan. Based on the evaluation of thesemod-
els, we explore factors that enabled or impeded the transfer of management-oriented model
results into practice. The examples have in common that they did deliver scientifically in-
novative insights and had an impact on policy or management decisions. Impact can range
from stimulating a discussion process (e.g. raising awareness for so far neglected issues), in-
fluencing debates around a decision (e.g. laying out certain options or scenarios), to policy or
management decisions being directly based on model results (see van Daalen et al. (2002) for
different roles of computer models in the environmental policy cycle). Impact does not state
whether the outcome of the decision was positive or negative from a given perspective. In
the context of modelling for decision support and policy-making, participatory approaches
for involving non-scientists in the modelling process have been suggested as an effective tool
to incorporate expert knowledge not only to validate model assumptions but also to tailor
policies to relevant local practices (Castella et al., 2014). Stakeholders’ expertise is required
in different stages of the project, ranging from defining a problem to solving conflict situa-
tions after the implementation of a measure (Pahl-Wostl, 2002). Several methods of citizen
engagement have proven to be effective including interviews, focus groups, scenario work-
shops, citizen science and digital participation (Šucha & Sienkiewicz, 2020). In the context
of modelling, various studies show the demand for stakeholder participation with a focus on
participatory modelling (Voinov & Bousquet, 2010; Voinov et al., 2016) where different ap-
proaches have been reviewed (Voinov et al., 2018; Sterling et al., 2019), classified (Barreteau
et al., 2017) and standardised (Seidl, 2015; Gray et al., 2018).

While we acknowledge both the benefits and the challenges of such transdisciplinary stake-
holder engagement, this is not the focus of this paper. Instead, we concentrate specifically
on the potential science–policy interface between (academic) modellers and (administrative)
decision-makers. When referring to stakeholders, we therefore primarily address decision-
makers who work in policy and management. Better integration of models in policy-making
has been suggested with a focus on modelling for public policy (Gilbert et al., 2018), model
acceptance in policy-making (Kolkman et al., 2016) and models used as decision support
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tools (McIntosh et al., 2007; van Delden et al., 2011; Zasada et al., 2017). Our paper con-
tributes to this strand of literature targeting the special requirements that SES modelling
bears.

The paper is structured as follows: in the next section, we present how the good practice ex-
amples were evaluated, and list the criteria used to classify them. We introduce background
information about the seven models in section 6.3. In section 6.4, we present key princi-
ples of success or failure that we derive from the evaluation. We conclude our paper with
recommendations to make modelling more relevant in policy-making and management.

6.2 Methods

6.2.1 Interview framework

Based on an initial literature review and the authors’ experience, we drafted a list of ana-
lytical categories which we suspected to be relevant to our problem regarding the practical
impact of SES models. We arranged them according to the ‘Four Ps’ framework developed by
Gray et al. (2018) which focuses on the purpose of the modelling endeavour, the processes of
exchange between modellers and managers, details on these partnerships, and the products
that emerge from this exchange, that is, the range and type of application of the model out-
come in practice. This results in the following grouping of the categories:

1. Purpose: background information, relevance of outcome, driving motivation

2. Processes: group size, actors involved, data availability and accessibility

3. Partnerships: previous relationship and experience, organisation of modelling process

4. Products: building confidence and transparency, learning processes, difficulties in the
project, usability of the model.

We formulated these categories as questions to compose a questionnaire for semi-structured
interviews (see Appendix D).

6.2.2 Interviews

Based on the questionnaire, we conducted semi-structured interviews with seven researchers
who were currently or had previously been part of modelling projects in a policy or manage-
ment context. The selection was by referral through colleagues and collaboration partners
and reflects a wide spectrum of models with impact in policy or management, ranging from
purely environmental models that do not explicitly involve a human component to socio-
environmental models coupling human and environmental processes. All interviews were
digitally recorded. Prior to the interviews, informed verbal consent to be included in this re-
search was obtained from the participants. As the study only includes expert interviews and
the participants were informed about the research objectives, it does not require ethical ap-
proval according to the criteria of the German Research Foundation (Deutsche Forschungs-
gemeinschaft, DFG). We assessed the respondents’ narratives against our categories. This
process helped us identify missing aspects as well as emerging common themes, which we
added and condensed in subsequent iterations, loosely inspired by ‘grounded theory’ ap-
proaches (Strauss & Corbin, 1997). This led, in the end, to a set of 14 gradients that include
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most of our questionnaire items but also go beyond them and thus reflect a conceptual learn-
ing process by which we amended our initial assumptions.

6.2.3 Gradients to describe good practice examples

The 14 gradients are again grouped according to the ‘Four Ps’ framework (Purpose, Processes,
Partnerships, Products; Gray et al., 2018) and listed with their definitions in Table 6.1. For
each gradient, the seven case studies are categorised as ‘low’, ‘medium’ or ‘high’. The inter-
viewees reviewed our evaluation afterwards (and sometimes suggested modifications). In the
following, we present details on the classification according to the gradients.

6.2.3.1 Purpose

The first three gradients (system complexity, model complexity and demand-drivenness) ad-
dress the background of the modelling example and ask by whom the modelling process was
initiated. System complexity, on the one hand, refers to the real-world system under study in
terms of the number of actors involved or the diversity of processes and interactions that are
important in that system. Depending on the research question, the identification of a ‘system’
already involves some degree of abstraction, as in most SES it is difficult to clearly delineate
what elements and links to include and which ones to leave out. On the other hand, model
complexity indicates to what level of detail elements and mechanisms of the real-world sys-
tem are represented in the model, that is, whether they are included in detail, appear in
strongly simplified form or are ignored altogether. Demand-drivenness reflects how far the
initiation of the modelling process was driven by demand from the decision-makers’ side.

6.2.3.2 Processes

The five gradients in this section (persons involved, decision-maker involvement, academic
fields, data availability and data accessibility) relate to the organisation of the modelling pro-
cess. This includes the number of persons involved (ranging from a single-person project
to a high number of participants involved), the number of academic fields or backgrounds
involved (from a single discipline to a highly interdisciplinary project) or the involvement of
decision-makers in the conceptualisation and development of the model. The latter relates
both to the number of decision-makers involved and to the extent of their participation in
the process. Availability of data refers to the general abundance of qualitative and quanti-
tative data needed to build the model. Here, the situation can be mixed, with, for example,
biological data readily available and socio-economic data hard to come by. Data accessibility
reflects that even when sufficient data bases exist, for example, within a public institution,
accessibility may be low if it is difficult for modellers to obtain access to them.

6.2.3.3 Partnerships

Gradients of partnerships (familiarity, modelling experience, exchange frequency and con-
tinued support) address the relations and interactions between the different project partners,
especially between modellers and decision-makers. Familiarity indicates how well project
partners already knew each other at the beginning of the modelling process. Modelling
experience summarises how experienced decision-makers were with modelling approaches
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Table 6.1: The 14 gradients used to classify the good practice examples. All gradients range from low
to high.

Dimension Definition/Guiding question

Purpose

System complexity Number of actors, processes, interactions; range of observed
real-world behaviour

Model complexity Number of variables, processes, interactions; range of
emergent model behaviour

Demand-drivenness How important was demand by decision-makers in initiating
the modelling process?

Processes

Persons involved Number of people involved in the modelling process

Decision-maker
involvement

How far were decision-makers involved in the
conceptualisation and development of the model? How
participatory was the process?

Academic fields Number of academic fields/backgrounds involved

Data availability Availability of qualitative and quantitative data to build the
model

Data accessibility Accessibility of qualitative and quantitative data to build the
model

Partnerships

Familiarity How familiar were project partners with one another?

Modelling experience How experienced with/open to modelling were
decision-makers?

Exchange frequency How frequently did project partners communicate?

Continued support How willing were modellers to continually support the model
users?

Products

Practical application How tangible were the project outcomes (e.g. actual
decision-making or even legislation vs. improving
understanding and stimulating discussion)?

Ease of use How easy was it for end users to use the model themselves
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before the project. Exchange frequency indicates how often the project partners met or com-
municated during the project. This may in practice be restricted by project funding timelines,
staff turnover or changing situations on the ground that make models obsolete. Continued
support reflects the modellers’ willingness and ability to provide ongoing support for model
users, including beyond the official project duration.

6.2.3.4 Products

The last two gradients (practical application and ease of use) relate to the end product of
the modelling project: practical application reflects whether outcomes of the model have
been relevant for decision-making or to initiate legislative changes (‘high’ practical applica-
tion), versus stimulating discussion and generating understanding (‘low’ practical applica-
tion). Ease of use reflects the complexity of the final model and how intuitive it is for the end
users to utilise the model by themselves. This depends, for example, on the availability of a
graphical user interface, compared to just a command line tool.

6.3 Good practice examples

The seven case studies we selected represent a wide range of influential modelling projects.
They span different regional scales: some deal with concrete environmental questions while
others attempt to understand complex socio-environmental or hydro-economic systems in
their entirety. In the following paragraphs, we briefly introduce the seven projects. Addi-
tional background information is presented in Table 6.2.

• FYFAM: The Foothill Yellow-legged Frog Assessment Model (FYFAM) shows how river
management affects frog breeding. It was designed to address the potential for conflicts
between river management for salmon and frogs: if we provide certain conditions for
the benefit of salmon, what are the impacts to frogs? Certain parts of the model (the
river habitat) were borrowed from a fish model. The FYFAM model has been used to
support the decision-making for river management at several sites.

• BEEHAVE simulates the development of a honeybee colony and its nectar and pollen
foraging behaviour in different landscapes. The goal is to understand how honeybee
colonies respond to multiple stressors (disease, extreme weather, beekeeping practice,
insufficient forage supply and pesticides), to identify stress levels and stressor combi-
nations that put honeybees at risk, to support risk assessment and devise mitigation
measures. The model has been used by different authorities and industries to explore
the effects of multiple stressors and suitable management options.

• FarmNet-BVD is an epidemic model. It evaluates the effectiveness of two different
strategies to identify virus infections among cattle. The policy question was whether
a switch to a new testing strategy would be beneficial to farmers in terms of the costs
involved. This was linked to the goal of completely eradicating a cattle-related virus
from the Irish cattle population. The model provided a quantitative basis for strategy
comparison and influenced the decision taken by managers on a new legislation for
specific testing strategies in Ireland.
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• Ecopay: This ecological-economic model is able to simulate 15 endangered bird species,
15 endangered butterfly species and 7 rare grassland habitat types in combination with
several hundred grassland conservation measures (such as different mowing and graz-
ing regimes) in different regions in Germany and Belgium. Its objective was to identify
both ecologically effective and cost-efficient payment schemes for land use measures
that contribute to the conservation of endangered species and habitats in agricultural
landscapes. The model systematically presents the range of alternatives, but no con-
crete measures were taken based on the outcomes of the model.

• Atlantis-SE is a fishery model representing Australia’s southeast regional marine
ecosystem. It covers 3 million km2 of Australia’s fisheries. The model evaluates dif-
ferent alternative management strategies for a complex multispecies fishery. Outcomes
from the model provided information that supported change in a fishery law.

• ALUAM-AB is a land use model. It studies agro-pastoral systems and ecosystem ser-
vices in the Swiss Alps under socio-economic and climate change. The research interest
was how to make payments for ecosystem services more effective, based on biophysical
factors and taking into account cooperation between land users rather than a uniform
distribution scheme. Moreover, ALUAM-AB was applied to better understand which
actor types and which type of collaboration are necessary to foster resilience to climate
and socio-economic changes. These results were incorporated in a new agrarian policy
for Switzerland.

• JWP: The Jordan Water Project is a coupled hydro-economic multi-agent model of the
entire Jordanian water sector, allowing for an integrated analysis of short- and long-
term sustainability challenges in this sector. More generally, the aim was to develop an
integrated framework for the evaluation of water policy interventions in water-stressed
countries, using Jordan as an example. The systematic representation of important in-
fluence factors regarding the water sector improved the awareness for socially accepted
and sustainable use of water among relevant authorities in Jordan.
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Table 6.2: Overview of the seven good practice examples that were evaluated. The models are arranged by how explicitly they represent human behaviour
as part of the model, ranging from purely environmental to socio-environmental models.

FYFAM BEEHAVE FarmNet-BVD Ecopay Atlantis-SE ALUAM-AB JWP

Degree of
explicitly
represent-

ing
human

behaviour

Environmental
Socio-

environmental

Case
study
setting

River
management
model for one
frog species

Development of
honeybee
colonies,
foraging
behaviour

Identification of
virus infections
among animals

Grassland
species and
conservation
measures

Marine
ecosystems and

fishing

Mountain
agro-pastoral
systems and
ecosystem
services

Hydro-economic
model of the

Jordanian water
sector

Location
and

spatial
scale

Managed rivers
of northern

California; the
model typically

represents
≈1 km length of

river

England,
Hertfordshire,
5 km × 5 km

(can be applied
to any region of
same scale)

Ireland,
resolution

depending on
geographical

coordinates and
cadastral maps

Saxony and
Lower Saxony
(Germany) and

Flanders
(Belgium),

resolution 250m
× 250m

SE Australia (3
million km2)

Swiss Alps,
smallest

landscape unit
100m × 100m

Representation
of whole

country (Jordan)

Research
question

How does frog
breeding success
depend on river

flows,
temperatures,
and channel

characteristics?

How do
honeybee

colonies respond
to multiple

stressors? What
mitigation

measures will
reduce risk?

Will the
introduction of a

new virus
monitoring

approach pay
off?

What land use
measures are
effective to
conserve

endangered
species and
grassland
habitats?

Which
management
strategies best

achieve
ecosystem-based

fisheries
management

goals?

How to manage
land to foster
ecosystem

services supply
and increase
resilience to
climate and

socio-economic
changes?

How will water
policy

interventions
affect

water-stressed
countries?
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.3
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tic
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le
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Project
duration

2014–2018
Since 2008,
ongoing

2015–2017
2008–2018 (in
several projects)

2003–2007
(ongoing, use for
new questions)

2008–2020
Since 2014,
ongoing

Model
type

ABM

ABM +
simulated

age-structured
model

Spatially
explicit,

stochastic,
pseudo

individual-
based

Ecological-
economic
modelling,
optimisation

ODE (ordinary
differential
equation)

model; complex
hybrid

approach: 58
ecological

components
modelled; 26

fisheries
represented

ABM ABM

People
involved

Modeller, river
engineer (for
modelling

hydraulics) and
biologists

Modellers, bee
ecologists,
industry

Authorities
(ministry);
official

veterinarians;
private

veterinarians;
subject matter
scientists;

modelling team;
farmers’

organisations

Scientists
(mostly

modellers),
nature

conservation
foundation,
ministry of
agriculture
(Saxony)

Scientists,
industry

representatives,
managers,

policymakers
and economists

Empirical
scientists,
modellers,
(local)

authorities,
engineers,

experts from
different field
(land use,
hydrology,

natural hazards,
forest, rural
development)

Scientists,
Jordan Ministry

of Water

Key
reference

Railsback et al.
(2016)

Becher et al.
(2014)

Thulke et al.
(2018)

Mewes et al.
(2017)

Fulton et al.
(2014)

Grêt-Regamey
et al. (2019)

Klassert et al.
(2015)
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6 Modelling for policy and management

6.4 Results: Observed patterns in good practice examples

Reviewing the interviews, we evaluated the good practice modelling studies along the gradi-
ents explained in section 6.2. The results are graphically represented in Figure 6.1. As the
positions on these gradients are not necessarily stable over the course of a project, we marked
the dominant position.

By definition, all of the selected examples had some kind of impact with policy-making
or management. However, the type of practical application differs, ranging from models
as tools for discussion (JWP) or a systematic representation of alternatives (Ecopay) to di-
rect influence on the decision-making of legislative or management authorities (ALUAM-AB,
Atlantis-SE).

According to the answers obtained from our interviews, few factors are truly indispensable
for models that have successfully been used for policy-making or management. Exchange
frequency, continued support and data availability stand out as the factors with consis-
tently high or high and medium ratings for all models. The majority of the aspects were
mentioned as being important only in some cases and not in others. In the following, we dis-
cuss the observed patterns of all dimensions of the modelling endeavour separately to extract
important factors and correlations.

In our sample, systems with a focus on environmental processes are in general less complex
than systems explicitly involving a social component. These systems are also characterised by
lowermodel complexity. In our good practices examples, model complexity always matches
system complexity. We decided to keep both gradients in our framework because complexity
mismatch may easily occur in other case studies. Similarly, the complexity of models with a
social and an environmental component tends to require higher numbers of persons involved
in the process. Due to the diverse aspects addressed, those people also have a broader range
of academic backgrounds.

Many models were used for policy-making after modellers themselves had advocated them.
Some processes were initiated on a joint proposal by decision-makers and modellers, but the
case that the demand came solely from decision-makers was rare. In our case, only the de-
velopment of FarmNet-BVD was initiated by policymakers. However, the source of original
interest in the collaboration does not influence the effectiveness of the process: models ini-
tiated by modellers can also be successful in policy-making. Independently of who initiated
the process, decision-makers were involved in model conceptualisation and development to
varying degrees. Some of the projects under consideration were developed in a participatory
way with considerable influence of decision-makers on the model implementation (FYFAM,
Atlantis-SE and FarmNet-BVD), others were developed from an academic perspective and
later applied to concrete policy-making settings (BEEHAVE, JWP). Project partners were not
necessarily familiar with one another beforehand. Similarly, not all decision-makers were
experienced with modelling in advance.

Our interviews suggest the exchange frequency as the most critical aspect during the whole
process. Meeting on a regular basis to discuss model results and project development ensures
a stable ground for project impact. For all our examples, it was furthermore guaranteed that
the model developers continued the support at the end of the project duration such that
some of the models could be adapted to new situations with similar research questions (Eco-
pay, FarmNet-BVD). Besides reusing the same model in follow-up projects, continuing the
application of models in policy-making can also be facilitated when decision-makers can
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Figure 6.1: Classification of the good practice examples along the 14 gradients. The large panel shows
the number of studies classified as low, medium or high for each gradient. The outer radar charts show
the classification of the individual models. Abbreviations correspond to the gradient named at the
respective circular position on the large panel. The outer charts are arranged according to their degree
of explicitly representing human behaviour as part of the model, ranging from purely environmental
to socio-environmental models. For better visualisation in the larger panel, we divided this continuous
gradient in three distinct groups with similar degree of human behaviour and use different colours in
the large panel to represent the classification of the models with low (white), medium (grey) and high
(black) level of human behaviour.
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6 Modelling for policy and management

apply the models to specific questions, potentially also different to the original one, indepen-
dent of the modellers. Only two models in our sample (FYFAM, BEEHAVE) are designed in a
way that policymakers can use them completely on their own. In other models, policymakers
design new scenarios or evaluation options in direct collaboration with modellers (Ecopay,
ALUAM-AB, JWP). One factor that simplifies the ease of use of models by non-modellers is
the creation of an intuitively designed graphical interface. Furthermore, training provided
by modellers can encourage decision-makers to work with the models on their own. Here,
the application of a programming language with low complexity (e.g. NetLogo) might be
beneficial.

Another key aspect across all selected studies which allowed them to be good practice ex-
amples is the availability and accessibility of data. Calibrating and validating models to
existing data at the required resolution is essential to make policy or management decisions
drawn from the models as precise and reliable as possible. Although all interview partners
confirmed that their models had excellent or appropriate data available, two also mentioned
that data accessibility can be an issue, for example, due to European data sharing regulations
(FarmNet-BVD, ALUAM-AB).

6.5 Discussion: Specific recommendations for SES Modelling

From the seven interviews and our general experience in the field, which also includes mod-
elling endeavours that were not seen as having achieved an impact in the sense used here, we
conclude that there are four key factors for ‘successful’ models. These factors refer to what
was mentioned as important by all our interviewees (data availability, exchange frequency
and continued support) but also go beyond that. Once more structured around the ‘Four Ps’
framework, we discuss the importance of modelling the human dimension (purpose); data
availability and accessibility (processes); collaboration, trust and acceptance (partnerships);
and decision processes (products). We give recommendations for each of these factors on
how to overcome difficulties that arise when modelling for policy and management support.
Some parts of the discussion are transferable to other domains, but as most of the aspects
are more difficult to address for socio-environmental models compared to models with a fo-
cus on environmental processes, the four key factors may explain why models have found
comparatively little use in policy or management advice in this field in particular.

6.5.1 Purpose: Human dimension

The human dimension, the ‘socio-’ in socio-environmental systems, adds levels of complex-
ity as humans, more vehemently than other species, continually innovate and adapt their
practices while negotiating their interests. This sometimes leads to what has been called
‘wicked problems’ (Churchman, 1967; Davis et al., 2018)—problems that involve a host of
stakeholders with conflicting interests, and for which no simple or optimal solutions exist.
Such a situation occurred, for example, when discussing effects of strategies to prevent new
infections during the coronavirus pandemic (Squazzoni et al., 2020). Here, models can be
particularly useful in providing a forum for discussion by revealing the interests and as-
sumptions of the different parties involved, creating a space to take new perspectives and,
thus, have the potential to stimulate a change in lines of thinking. With respect to our good
practice examples, such an approach was employed in the JWP example that aimed at a
long-term sustainability perspective—a view the involved ministry had not taken before.
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However, as structures and dynamics that involve humans are difficult to formalise in model
terms (Schlüter et al., 2017), their inclusion in a model may drastically increase the com-
plexity of model dynamics as well as the uncertainty around model results (Squazzoni et al.,
2014).

Recommendations: We encourage the use of models as discussion tools to bring different per-
spectives of stakeholders together—a process that is also referred to as social learning (Ed-
monds et al., 2019; Schlüter et al., 2019). Furthermore, we recommend that modellers and
decision-makers acknowledge that the understanding of complex socio-environmental sys-
tems depends to a large extent on a sound representation of human decision-making. The
need for rapid answers must therefore not lead to models being overly simplified (Squazzoni
et al., 2020). The trade-off between the expectation of quick responses and precise projections
of the future, which can only be achieved by a detailed implementation of human behaviour,
should rather be resolved by clearly communicating the purpose of a model (Grimm et al.,
2020).

6.5.2 Processes: Data availability and accessibility

The seemingly obvious assumption that it is generally more difficult to obtain reliable data
on socio-environmental problems compared to purely environmental ones, once again due
to the complexity added by the human factor, was not fully confirmed by our good practice
examples. In the cases of JWP and Atlantis-SE, socio-environmental data were relatively
abundant and accessible. In contrast, accessing existing databases was an issue in two of our
examples, as mentioned above. Since these difficulties arose in both the socio-economic and
the ecological context, this factor appears to be context-specific rather than systematic. In
the case of the BEEHAVE model, the interview partner indicated that industry partners had
easier access to data; however, most of these data were subject to company confidentiality
regulations and would therefore not be available for other projects to use.

Recommendations: As we have observed for our good practice examples that data availability
was a key aspect for impactful models, we highly encourage coordinated and harmonised
data collection not only of ecological but also of socio-economic data. Examples for this are
endeavours such as Long-Term Socio-Ecological Research (LTSER) platforms, where socio-
ecological data collection is organised across the world (Dick et al., 2018). These systematic
efforts come along with transparent rules for data accessibility which are crucial for impactful
modelling projects.

6.5.3 Partnerships: Collaboration, trust and acceptance

With exchange frequency and continued support, two aspects of the partnership between
modellers and decision-makers stood out as being important in all our case studies. This sug-
gests that the collaborative process is critical to an impactful modelling endeavour. Strong
exchange can help to prevent false expectations of decision-makers concerning the power
of models (Kolkman et al., 2016). In the Ecopay project, there were diverging expectations
between scientists on the one hand (long-term project, transferable models) and decision-
makers on the other (concrete measures). Providing enough time to understand the per-
spectives of other disciplines and to find a common language was seen as crucial. In the
JWP project, for example, a series of four 2-week workshops was organised to foster un-
derstanding of the model. However, a large heterogeneity in the group of stakeholders and
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disciplines involved made it difficult to find the appropriate speed for workshop discussions.
Continuous communication ensures the understanding of decision-makers concerning limi-
tations and uncertainty of models and prevents turning models into black boxes (Gilbert et
al., 2018). Due to a broader range of backgrounds of people involved in the process, all these
factors seem to be more pronounced in socio-environmental than in purely environmental
contexts (see Kline et al. (2017) for their experience in a project investigating forest wildfires,
Squazzoni et al. (2020) for the importance of interdisciplinary research on the coronavirus
pandemic).

When the involved parties are not familiar with one another in advance, project partners need
to be aware that creating trust between collaborators needs time, which has to be included
in planning the process (see also Briggs (2006) for the difficulties of integrating science and
policy on natural resources in general). The establishment of mutual reliance in the project
team was often, but not always, related to a specific ‘eye-opener’ or breakthrough moment
which advanced the shared understanding of different stakeholder groups, led to bonding
between them, and created strong confidence in the project’s usefulness. In our case studies,
methods that induced breakthrough moments included the use of graphical representations,
games and simulation runs based on past conditions showing that the model was able to rep-
resent the recent past correctly (Atlantis-SE). During workshops in the FarmNet-BVD project,
it proved helpful to explore contradictions in the assumptions of decision-makers to open up
the debate about alternatives. Conventional methods of trust-building are equally important
in successful projects; these can consist in benchmarking with existing models, or having an
independent peer review of project-related documents and models (Atlantis-SE, BEEHAVE).
In the case of BEEHAVE, such a peer review of the formerly used model of the EFSA (Euro-
pean Food Safety Authority) and the BEEHAVE model assured the quality of the model and
finally led to the replacement of the original model with BEEHAVE. The establishment of
such instances of quality control may also foster the acceptance of models in policy-making
and management support. These can range from simple model code review (e.g. as offered
by CoMSES Net) to the examination of complete modelling assessments (e.g. as done by the
Regulatory Scrutiny Board of the European Commission).

It is not essential that decision-makers are experienced with modelling in advance. How-
ever, openness for such an approach and knowledge of similar methods such as statistical
models simplifies communication and collaboration. In general, standard economic models
appear to be more broadly accepted in policy and management support than SES models,
which is partly a matter of traditions that have been established for longer, but also of many
policymakers having a background in economics rather than the interdisciplinary training
that is often helpful for SES analysis. We generally observe that the acceptance and use of
SES modelling has actually been steadily spreading, from research to industry and on to pub-
lic authorities—but it takes time. Mixed institutions that involve industry, researchers and
policymakers might facilitate this process.

Recommendations: First, with respect to collaboration, we highly encourage all parties in-
volved to make their expectations explicit at the beginning, especially concerning the out-
comes of the policy-making process. To achieve successful exchange, we furthermore under-
line that finding a common language is crucial to combine expertise from a wide range of
disciplines.

Second, to foster the understanding of models and facilitate trust in them, we encourage
modellers to promote the emergence of ‘eye-opener’ moments using various tools of visuali-
sation. Additionally, modellers can contribute to confidence in model results through bench-
marking, independent peer review or by including quality control in the project structure
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(Houweling et al., 2015). Transparent handling of model code through open-source devel-
opment and sharing of models on public repositories (GitHub, CoMSES Net, etc.) helps to
foster this.

Third, as in the quote famously attributed to Henry Ford that states that if one had asked
people what they wanted, they would have said faster horses but not cars, decision-makers
may simply not be aware of the benefits and feasibility of state-of-the-art modelling ap-
proaches. To reach acceptance of models, modellers should therefore disseminate informa-
tion to decision-makers, promote exchange betweenmodellers and decision-makers, be ready
to teach modelling skills, and engage in the organisation of workshops that attract both sides.
Large institutions and authorities can contribute to this exchange by employing modelling
experts for consulting, evaluation and assistance.

6.5.4 Products: Decision process

Research objects in SES models tend to be more contested than those mapped by purely
environmental models since they touch the interests of a broader set of stakeholders whomay
have diverging opinions. In contrast, resource management decisions such as in the FYFAM
model—frogs versus salmon—are often less politically debated. Favouring one species over
the other cannot easily be characterised as ‘progressive’ or ‘conservative’ political positions,
for instance. Gotts et al. (2019) accordingly speak of SES as ‘contested systems’. Furthermore,
a chain of institutions with diverging time horizons are involved in the policy cycle. To
ensure that an SES model can have true impact, it is hence important (and at the same time
challenging) to include those decision-makers who actually have the power and legitimacy
to implement model findings. In the FarmNet-BVD model, for example, having both the
ministry and farmers on board facilitated the uptake of model outcomes in new legislation
in Ireland as the two implementing forces were able to discuss details during the model
development phase. In ALUAM-AB, one of the key researchers later on became an influential
person in the policy sector. On the other hand, for Atlantis-SE, it was reported that the
absence of a competent ‘policy champion’ that modellers could turn to slowed down the
policy-making process.

In general, only if model assumptions and rules are well-grounded and fitting to purpose
and context, their outcomes will be able to support wise policy-making and management
and should be included in the decision-making process. This can be especially harmful when
models are not properly adapted to a context different to the one they were originally devel-
oped for (Squazzoni et al., 2020) or when they are still widely used in consultancy but not up-
dated to standard practices (Railsback, 2016). One of the rare documented examples of neg-
ative impact of models can be found in the context of the 2001 outbreak of foot-and-mouth
disease in the United Kingdom where misguided interpretation of mathematical model re-
sults led to the slaughtering of a large number of animals, which was later considered to have
been unnecessary (Kitching et al., 2006). The modelling endeavour may, moreover, be cap-
tured by decision-makers to one-sidedly support their previously held convictions and shut
down rather than open up discussions of policy or management alternatives (Squazzoni et
al., 2020). Modellers thereby inevitably have to take on the role of translators for the model
results, as only this allows a sound understanding by decision-makers which needs to be the
basis to use the model in any decision process (Gilbert et al., 2018). Explicitly communicating
assumptions in the model conceptualisation and uncertainties in the model output is partic-
ularly important for an effective incorporation of the results in the decision-making process
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(Brugnach et al., 2007; Gregr & Chan, 2015; Davis et al., 2018). But even if the coopera-
tion process is carefully framed, modellers need to be aware that policy advice is simply not
always desired (Squazzoni et al., 2020) as for some problems there is only a small ‘window
of opportunity’ (Kingdon, 1984) where policymakers are open to tackle a problem and need
advice that could then be provided by models.

Recommendations: We underline that model users (including from the decision-makers’ side)
should have a profound understanding of the model and only apply it in cases where model
assumptions are suitable. In the end, the consequences of decisions may reach well beyond
the original scope of any single research question and model. In this regard, due to higher
complexity, modellers are even more obliged to apply good modelling practices (Schmolke et
al., 2010; Schulze et al., 2017) to SES models. Furthermore, policymakers are highly encour-
aged to provide a ‘policy champion’ or ‘knowledge broker’ as interface person to modellers.
Ideally, this should be someone open to modelling approaches and at an influential position
in the decision-making process who is able to mediate between both parties.

6.6 Conclusion

By evaluating seven good practice examples, we show that leverage points for increasing the
impact of socio-environmental models in policy-making or management are manifold. While
our paper focuses on the transfer of knowledge generated by models to the actual decision-
making process and therefore mainly refers to the community of modellers and to decision-
makers, many of the aspects we highlight, especially those referring to model development,
will also apply to situations where a broader range of stakeholders is involved, such as during
participatory modelling (Castella et al., 2014; Reid et al., 2016).

We conclude that the main reason currently inhibiting a wider use of socio-environmental
models in policy-making or management is their higher complexity compared to purely en-
vironmental models that arises from explicitly incorporating the human dimension. Adding
levels of behaviour results in more difficult models. These additional aspects also impede
simple solutions for policy-making and management. This is reinforced by the fact that ad-
dressing both the social and the environmental dimension adequately in models requires in-
volvement of people from different backgrounds. Their potentially contested positions make
consensus building and thus decision-making for policies more challenging. In contrast to
other problems, where decision-makers rely on the judgement of experts to assess the impor-
tance of influencing factors that should be integrated into models, human behaviour is more
tangible for many of the actors involved so that more concrete expectations are placed on
the representation of processes in models. This can easily threaten the acceptance of models
when not all of the desired factors can be addressed. Furthermore, data accessibility, a crucial
aspect of impactful modelling projects, is more difficult due to privacy issues.

All these factors pinpoint the importance of using models for SES problems on the one hand
to provide a common ground for exchange and on the other hand to allow disentangling cause
and effect of human and environmental processes. The same factors, however, urge to respect
fundamental aspects of science–practice interactions, such as clear communication of expec-
tations and results or building trust. Even though any model can depict only a part of reality,
this issue is, more than in other disciplines, pertinent to the inclusion of human behaviour,
as some patterns will never be reproducible in model rules due to the inherent complexity of
decision-making. Nevertheless, modellers and decision-makers should continue to embark
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on common projects and learn from successful examples to increasingly unfold the full po-
tential that socio-environmental modelling bears. We have synthesised recommendations for
dealing with common difficulties that may arise during the process of modelling for policy
or management support, which are addressed to modellers, decision-makers or both. If all
parties involved in the modelling and decision-making process take into account our sug-
gestions during their collaboration, socio-environmental modelling will hopefully no longer
be largely limited to contributions to the scientific debate, but will be able to be effectively
integrated into supporting decisions for policy-making and management.
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7 Synthesis, discussion and outlook

7.1 Summary of main results: Effects of formal and informal risk
management on the resilience of low-income households

The aim of the first part of this thesis was to contribute to the understanding of the im-
pact of risk management with formal and informal instruments on the resilience of low-
income households in developing countries (research objective R1.i). A main focus was on
potential unintended social side effects of microinsurance as novel policy instruments when
households additionally help each other in informal risk-sharing networks in times of need.
These objectives were addressed using socio-environmental modelling in two studies that
were based on the same agent-based modelling framework, but differed in certain aspects
(see Table 7.1 for a summary of the differences between the studies). As the degree of realism
was gradually increased between the studies, it was possible to gain a generic understanding
of the system behaviour before explaining outcomes from more complex interactions of the
components (Schlüter et al., 2019). Deliberately omitting income and network heterogeneity
in the first study (Chapter 3) provided the opportunity to uncover and understand possible
side effects of the introduction of formal insurance in general. The specific effects on par-
ticularly poor households could then be examined separately in the second study (Chapter
4).

In Chapter 3, it was shown that the introduction of formal insurance in communities with
existing informal risk-sharing arrangements can have crucial impacts on household welfare.
On the one hand, insurance in the model provided full protection against income losses for
households that signed an insurance contract and thus made an important contribution to the
resilience of these households. On the other hand, when insured households in the model
became unwilling to help households without insurance and withdrew their contribution
to informal transfers, this largely reduced the ability of uninsured households to cope with
income losses. In the model, uninsured households alone could not provide the assistance
which households in need required from their network. Even more critical, however, was the
finding that even if insured households remained willing to help their uninsured neighbours,
these were less effectively protected against income losses with some of their potential donors
being insured. This was largely driven by the fact that insured households had less money
available to support others after paying the regular insurance premium. Especially in the
years following the introduction of formal insurance instruments, this had a large impact on
the volume of informal transfers in traditional risk-sharing networks. However, when shock
events such as droughts or floods affected many households simultaneously, formal insurance
complemented informal risk-sharing in our model setting to a large extent. These model
outcomes underline the increasing importance of formal insurance instruments, especially
since weather-related extreme events are expected to occur more frequently under climate
change (Sheffield & Wood, 2008; Dai, 2013; Thornton et al., 2014; Tabari, 2020).

In the case of heterogeneity in income and network links investigated in Chapter 4, it was
shown that formal insurance can pay off not only for the insured households themselves,
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Table 7.1: Differences of the two agent-based modelling studies in this thesis regarding the network
implementation, household characteristics including income distribution and insurance uptake, and
transfer behaviour

Behavioural change (Chapter 3) Income inequality (Chapter 4)

Network Stylized small-world network
(undirected links)

Empirical network of a village on
the Philippines and stylized
random networks based on
characteristics of the Philippine
network (directed links)

Income
distribution

Homogeneous Heterogeneous, based on
empirical data

Insurance
uptake

Random Based on available financial
resources

Transfer
behaviour

“Solidarity” shown by all
households vs. “Solidarity”
shown by uninsured households
and “No solidarity” shown by
insured households

“Solidarity” shown by all
households

but also for poor households that may benefit from many of their peers being insured. In
the model, this effect was found to be particularly strong for severe shocks where uninsured
households had fewer resources to share. Similar to what was observed in Chapter 3, the pos-
itive impact of insurance for uninsured households turned out to be especially pronounced
for shocks that affected many households simultaneously. However, it must be taken into
account that these results only cover cases with insured households showing solidarity with
their uninsured peers. Since, in the case of a heterogeneous income distribution, a large share
of informal transfers was contributed by wealthy households who could afford insurance, the
withdrawal of solidarity from insured households would likely have a particularly strong im-
pact on the resilience of uninsured households (Anderberg &Morsink, 2020; Lenel & Steiner,
2020). It was also shown that in addition to the individual budget, the disposable income of
potential donors and the number of neighbours that can be asked for help must be taken
into account to derive insights into how well a household can cope with income losses. How
many households might ask the household for help also played a role, as household may need
the money they distribute to others in years without shocks in subsequent years themselves.
These results highlight the importance of considering both individual household character-
istics and network position to identify vulnerable households that can neither afford formal
insurance nor are effectively protected in informal risk-sharing networks. The resulting re-
gression model can be seen as a decision support tool, as it aggregates all effects relevant
to the resilience of households and allows the same conclusions to be drawn based on the
specified attributes as with the full simulation model.

The results obtained in the two modelling studies offer new perspectives on the interplay of
formal and informal risk-coping instruments that complement existing empirical research.
They uncover potential long-term implications and feedbacks that need to be considered to
design insurance products in an effective way such that they provide a good basis for achiev-
ing the goal of eradicating poverty worldwide in a sustainable manner (UN, 2015). While it
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was shown that formal insurance is often a valuable complement to informal risk-sharing, it
was also revealed that, under certain conditions, insurance can have negative consequences
for households that do not have sufficient financial resources to insure (Chapter 4) or choose
not to purchase insurance due to other reasons (Chapter 3). To strengthen the resilience of
the entire population, it is therefore necessary to develop insurance products in close align-
ment with existing risk-coping arrangements. This might help to maintain these important
structures and use their benefits effectively.

Several aspects that have been found to positively affect insurance uptake can be addressed
by actively involving the existing social network. Among others, economic factors regarding
the affordability of insurance and social factors including trust in the product have a crucial
influence on the decision to insure (Patt et al., 2009; Eling et al., 2014; Dror et al., 2016; Plat-
teau et al., 2017). When insurance is offered to groups rather than to individuals, the network
could pay the premium as a whole which would allow internal agreements on financial con-
tributions making insurance affordable also to the poorest of the population (Dercon et al.,
2006; Trærup, 2012; Sibiko et al., 2018). Similar approaches have been taken with respect to
savings (Karlan et al., 2017) and microfinance (Banerjee et al., 2013). However, if households
are facing different risks (Barrett et al., 2001), group-level insurance might in turn trigger
inequalities, when some in the group benefit more from payouts than others. Here, price
differentiations with every household providing a fair share to a formal contract according
to its available resources and risk exposure could help to insure a larger part of the popula-
tion while at the same time avoiding conflicts. Additionally, losses from idiosyncratic shocks
that can be well covered by the informal network could be excluded from formal insurance.
Explicitly involving the informal network as part of the risk management could reduce insur-
ance costs, which would allow more households to participate and decrease social inequality
(Mahul & Stutley, 2010; Ahmed et al., 2016; Fisher et al., 2019). Furthermore, the network
could also play a significant role in increasing trust in insurance products and the institution
that sells and manages them (Trærup, 2012; Sibiko et al., 2018). It was shown that people are
more likely to purchase insurance when advised by a trusted farmer or village leader (Giné
et al., 2008). Involving the social network in the insurance decision could therefore help to
establish confidence in the product.

7.2 Methodological reflections

7.2.1 Value of an agent-based modelling framework with integrated social
network

The literature review on agent-based modelling and social network analysis presented in
Chapter 2 highlighted how essential the explicit inclusion of network structures and house-
hold properties is for understanding coupled human–natural systems (R2.i). This potential
was addressed in the two agent-based modelling studies of this thesis to understand the im-
pact of formal insurance and informal risk-sharing on the resilience of smallholders. In this
regard, the concepts identified through the literature review provided a basis for addressing
various content-related research questions. At the same time, the wide range of possibilities
for integrating social networks in agent-based models and analysing the combined approach
identified in the review also shows where there is room for further model-based studies that
address formal and informal risk-coping instruments. In order to highlight how the concepts
from the review have been implemented in the modelling studies and what advantage each
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Table 7.2: Classification of how the aspects for social networks in agent-based models defined in
Chapter 2 were used in the two modelling studies (Chapters 3 and 4) of this thesis

Levels

Purpose Diffusion: Links as channels for
monetary transfers between
households

Social integration: Network
providing social capital through
risk-sharing

Network
integration

Endogenous: Not
considered within this
thesis

Exogenous:
Small-world network
(Chapter 3),
empirical network
and empirical-based
random network
(Chapter 4)

Co-evolutionary:
Not considered within
this thesis

Types of
analysis

Agent-centric:
Variation of
economic needs of
households and
external influences
through different
characteristics of
extreme events
(Chapter 3)

Network-centric:
Variation of rewiring
probability and
number of
neighbours in
small-world network
(Chapter 3)

Structurally
explicit: Functional
relationship between
resilience and
income situation as
well as network
position (Chapter 4)

approach has brought for the understanding of the effectiveness of different insurance in-
struments, the classification of the two studies according to three main aspects covered in
the review (purpose, network integration, type of analysis) is discussed hereafter (see Table
7.2 for a summary of this overview).

The primary purpose of the network in both studies was ‘diffusion’ as the links in the network
served as channels for monetary transfers between households with the capacity to help and
those in need. ‘Social integration’ with the network position providing social capital was
implicitly also considered as the main focus of both studies was to assess consequence of
solidarity for risk management.

With respect to the network integration, the focus of both studies was on an exogenous net-
work, i.e. the network topology was defined at the beginning of the simulation and kept
fixed during the model run. The network topologies differed between the two studies with
a stylized approach in Chapter 3 (small-world network) and an empirically-based approach
in Chapter 4 where a network of a village on the Philippines built the basis for the analysis.
Networks that evolve during the simulation based on individual decisions of agents and fur-
ther impacts through the environment (endogenous networks) or feedback loops between
the states of agents and the topology of the network (co-evolutionary networks) were not
considered within this thesis.

From a methodological point of view, the main difference between the two modelling studies
was with respect to their type of analysis, i.e. the way in which the social network in the
agent-based model was evaluated. In the first model study (Chapter 3), agent-centric aspects
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were addressed by considering the effect of the economic needs of households (i.e. their level
of living costs) and external influences through different characteristics of extreme events (i.e.
frequency, intensity and type of shock). A network-centric analysis was included in Chap-
ter 3 by varying the properties of the stylized small-world network in which the households
were connected. Specifically, the effect of different numbers of neighbours and the rewiring
probability indicating the randomness of the network were systematically analysed. A struc-
turally explicit analysis was applied in the second model study (Chapter 4) with the aim to
uncover the functional dependence of the simulated resilience of households without access
to formal insurance on both network characteristics such as the number of potential donors
(outdegree) and the number of households that might ask for support (indegree), as well as
household attributes such as the income of each household and the disposable income of its
neighbours.

The two modelling studies underlined how important the integration of social networks in
agent-based models is when addressing effects of formal and informal insurance. First, it al-
lowed to explicitly consider the transfer behaviour between the individual households. The
underlying network provided a way to map potential unintended side effects of introduc-
ing formal insurance on uninsured households. Without the explicit consideration of net-
work links, it would still be possible to test the interplay of formal and informal insurance
assuming a common risk-sharing pool (see e.g. Santos et al., 2021), however, the limited
range of interaction with particular other households as described in several empirical stud-
ies (Fafchamps & Lund, 2003; De Weerdt & Dercon, 2006; Kinnan & Townsend, 2012) is only
possible when considering an underlying network structure. Second, by explicitly represent-
ing the network structure, it was possible to address and systematically test the effects of
different household and network characteristics separately. Analysing system responses to
the resilience of households revealed detailed insights into the effectiveness of formal and
informal risk-coping mechanisms under different external conditions (e.g. shock frequency
and intensity) and support characteristics (e.g. the number of neighbours). Third, the com-
bination of the two methods provided the basis to test, especially in Chapter 4, the relative
importance of household attributes and network characteristics for the effectiveness of differ-
ent risk-coping instruments. If these two main sources of influence had not been explicitly
considered in the agent-basedmodel, a generalization of these factors whichmakes it possible
to detect vulnerable households could not have been realized.

Further insights into the effectiveness of formal and informal risk-coping instruments could
be gained if the entire range of the review framework outlined in Chapter 2 was exhausted.
This is particularly applicable to the network integration, which was assumed to be static
(exogenous) in both modelling studies. However, connections might change over time and
in response to external circumstances, so it would be worth considering a co-evolutionary
approach (for an example in this direction, see Bramoullé & Kranton, 2007). This could in-
clude, for example, agents abandoning connections to households when they realize that an
exchange is not reciprocal as the other household is not willing or wealthy enough to make
a transfer. In addition, when shock frequency increases or more covariate shocks occur, con-
nections to insured households are particularly helpful. This might be reflected in network
dynamics through newly emerging links.

7.2.2 Using models to address socio-environmental challenges

For the research questions addressed in this thesis, the use of an agent-based model had sev-
eral advantages which can also be beneficially to solve other socio-environmental challenges.
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First, the modelling approach provided a detailed system understanding which helped to
disentangle how the effectiveness of different risk-coping instruments depends on household
characteristics and the surrounding network structure. Second, the approach was not limited
to time and space constraints that many empirical approaches face. For the specific case ad-
dressed in this thesis, this advantage was exploited to combine empirical knowledge obtained
in laboratory settings (Lin et al., 2014) and at field sites in Cambodia (Lenel & Steiner, 2020),
the Philippines (Landmann et al., 2012), and Ethiopia (Anderberg & Morsink, 2020). Using
the stylized modelling approach, it was possible to draw overarching conclusions on the ef-
fectiveness of formal insurance and informal risk-sharing when insured households change
their transfer behaviour (Chapter 3) or some households do not have enough financial re-
sources to insure (Chapter 4). In addition, agent-based models can simulate long-term effects
of new policies or altered climatic conditions on a time scale beyond what can be detected
with empirical observations. In this thesis, the modelling approach allowed to identify risk
areas that might potentially emerge in the future due to rising living costs or climate change
resulting in an increased frequency or intensity of extreme weather events.

To exploit the full potential of socio-environmental modelling, it should be used in combi-
nation with several other methodological approaches. While this is true for several contexts
(Janssen et al., 2006; Robinson et al., 2007; Bruch & Atwell, 2015), in this thesis, the partic-
ular advantage of a synthesis of several methods was highlighted with respect to insurance
design under climate change (R1.ii). In Chapter 5, it was envisioned that experimental games,
household surveys, process-based crop models, and agent-based models could be effectively
combined to contribute to better insights into insurance. Such an improved understanding
is needed to effectively address the challenge of strengthening the resilience of the most vul-
nerable, especially under climate change.

As every theoretical simulation model, also the model framework used in this thesis involves
a number of simplifying assumptions that need to be taken into account when interpreting
the results and evaluating an appropriate insurance design. While the stylized modelling
approach of the two studies has the potential to reveal qualitative trends, it cannot provide
quantitative predictions. By clearly communicating the model purpose (in this case ‘theoret-
ical exposition’ following the classification in Edmonds et al. (2019) or ‘demonstration’ fol-
lowing the classification in Grimm et al. (2020)), such models can nevertheless be helpful for
decision support (Schlüter et al., 2019; Grimm et al., 2020). In Chapter 6, it was outlined how
socio-environmental modelling can be effectively integrated into policy-making and man-
agement (R2.ii). It was argued that models are a powerful tool to address the complexity
added to a system by the human dimension when used as a discussion tool to bring different
perspectives of stakeholders together. Furthermore, the importance of data availability and
accessibility for a successful use of models for policy-making was highlighted. With respect
to the partnership between modellers and decision-makers, three elements were found to
be essential for an impactful modelling endeavour: (i) the collaborative process including
frequent exchange, (ii) building trust in model outcomes by including quality control in the
project structure, and (iii) increasing the acceptance of models by promoting the exchange
between modellers and decision-makers. While the modelling framework used in this study
was not created with the intention of directly guiding policy and therefore does not meet
some of the key aspects raised in Chapter 6, it has in general the potential to be used for
exchange with policymakers. The model allows clearly structured conclusions that highlight
fundamental problem areas, point to possible side effects and call for caution. The broad
range of different scenarios, for example with regard to shock frequency and intensity, but
also to household and network characteristics, allows policymakers to understand the impact
of policy measures under different assumptions. While the model remained stylized within
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the scope of this thesis, it could be extended to incorporate empirical data in a more con-
crete way. For example, specific shock events or economic conditions could be included such
that the results could be targeted to local insurance products which could then be directly
improved.

7.3 Final conclusion and outlook

In order to achieve the target to eradicate poverty by 2030 set by the United Nations within
the Sustainable Development Goals (UN, 2015), protection of the most vulnerable against ex-
treme climate-related events and other economic, social and ecological shocks and disasters
is a key component (GIZ, 2015). This work contributes to addressing these sustainability and
development challenges in two ways. First, insurance products that are seen as an effective
tool to strengthen the resilience of low-income households to unforeseen losses are investi-
gated in three studies (Chapters 3, 4 and 5) to improve the effectiveness of these risk-coping
instruments (R1). Second, the advancement of socio-environmental modelling (R2) – an ap-
proach that is particularly helpful to tackle coupled human–natural challenges – is addressed
in two studies with a focus on adequately representing the dynamics of human interaction in
agent-based models (Chapter 2) and successful modelling for policy and management sup-
port (Chapter 6).

Beyond the results shown in this thesis, socio-environmental models have further potential to
provide insights into the effectiveness of insurance products and reveal potential side effects.
The focus of the two modelling studies in this thesis was strongly on social aspects. How-
ever, it has been shown that a potentially harmful impact of insurance on the environment
should also be considered, for example, when insurance uptake leads to a change in land use
strategies (Bhattacharya & Osgood, 2014; Bulte & Haagsma, 2021). Models have already been
used to study the long-term effects of these change processes (Müller et al., 2011; John et al.,
2019). By combining the model developed in this thesis with these models, a comprehensive
picture of potential side effects of insurance and a holistic view on the human–environment
system could be obtained. This could provide further helpful knowledge for the design of
effective and sustainable insurance products. In addition, to increase the impact of the find-
ings of this thesis, a more intensive exchange with policymakers is desirable. Discussing
potential implications of the introduction of insurance observed in the model could broaden
policymakers’ awareness of potential side effects that need to be considered when designing
insurance products. On the other hand, researchers would also benefit from increased col-
laboration with decision-makers to gain a deeper understanding of current challenges with
respect to insurance products. When these further insights are incorporated into the mod-
elling framework, it would provide a more holistic view on the system. Overall, this mutual
exchange would help to ensure that insurance products serve their purpose and contribute
to strengthening the resilience of the poorest.
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A Appendix of Chapter 2

A.1 Selection criteria for review articles

We conducted a Web of Science Topic Search (TS) using the search term TS = (“agent based
model*” OR “agent based simulation” OR “multi-agent model*” OR “multi-agent simula-
tion”) AND “social network*”. We restricted our search to publications published until the
end of 2018 in English which yielded 518 results. We are aware that especially in the area
of network research there are other terminologies (e.g. network model or game-theoretic
model) that refer to similar concepts and do not fall under our search restrictions. However,
we believe that agent-based modelling is a reasonable umbrella term for all these approaches
and that most results are transferable.

Due to the broad range of agent-based models coupled with social networks we did not aim to
provide a systematic comparison of all publications in the field. We narrowed the focus to two
main aspects: awareness and recentness. We thus pre-selected the most-cited publications
(publications with 30 or more citations (66), 4 January 2019) and the newest articles (those
published in 2018 (70)). Of course, this selection is not intended to be exhaustive but it
provides an overview of the diverse ways of integrating and evaluating social networks in
agent-based models.

From this redefined data set, we selected 54 publications to be included in the review (23 with
30 or more citations and 31 published in 2018) in the following way: We excluded articles if
the methods used did not fit with the focus of our examination. This was the case if no agent-
based model was presented in the paper, or if no social network was explicitly integrated in
the model, or if the agent-based model has not been used to study social networks or the net-
work did not play a significant role in the model description or evaluation. Additionally, we
excluded models without an explicit connection between the agents (covering e.g. location
based networks where the agents move around and visit the same spaces but do not directly
link to each other) and models relying only on lattice networks or fully connected graphs as
these structures limit the range of methods for evaluation that we suggest as being advanta-
geous for agent-based models with integrated social networks. We furthermore focused on
social networks where the connections are set up between human beings and thus removed
articles targeting at ecology and animal related questions. As we concentrate on applications
of agent-based models, we also did not include reviews.

A.2 Classification of the reviewed models

The following table provides the classification of the reviewed agent-based models. It is
structured according to the three main areas of application: Epidemiology/public health (6
publications), marketing (25 publications) and social dynamics (23 publications). The de-
scription of the studies includes a summary of the research interest and key findings as well
as a characterization of the main aspects concerning agent behaviour and network properties.
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In particular, this covers information on the decision making of the agents, the interaction
topology (exogenously imposed, endogenously emerging or co-evolutionary), the relevance of
the network to the model (network effect) and aspects considered in the analysis of the model
(agent-centric, network-centric or structurally explicit for exogenous or co-evolutionary net-
works and evaluation quantity for endogenous network formation). Furthermore, models
where the purpose of the network is social integration are marked (in section research focus);
all other models deal with diffusion processes. We do not provide information on network
properties such as link reciprocity and link weight as this information is not clearly stated in
all reviewed studies.
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Epidemiology/Public Health

Reference Research focus Agent decision-making Interaction topology Network effect Model analysis Key findings

Davey et al.
(2008)

Examine interventions
and strategy combinations
for pandemic influenza
mitigation.

The spread of influenza in
a person-to-person
transmission event should
be reduced by network-
and case-based
interventions. Agents
cannot actively make
decisions.

Exogenous network:
Groups of given sizes
within which individuals
of specified ages (kids,
teens, adults, seniors)
interact and average
number of individuals
with which a person has
contact within the group
is specified; basis for fully
connected, random or ring
networks for each group;
contact network exhibits
“small-world” character
and multiply-overlapping
quality of structured
community; demographics
of the population within
this model conform to the
2000 U.S. Census Detail

Person-to-person
transmission event within
contact network;
simulation instigated with
10 adults chosen at
random

Agent-centric: Effect of
network-based (school
closure, child and teen
social distancing, adult
and senior social
distancing) and case-based
(quarantine, antiviral
treatment, household
antiviral prophylaxis,
extended contact
prophylaxis) interventions
on percentage of
population infected,
average adult days at
home and population
antiviral coverage

Best strategy combines
network-based and
case-based interventions
and is robust to a wide
range of uncertainty.

Fetta et al.
(2018)

Explore the effect of
individual friendship
selection decisions and the
impact they may have on
the overall evolution of a
social network. Compare
the resulting network with
existing data from a
smoking cessation
program in secondary
schools.

Agents decide whether to
form links based on six
different approaches:
random, Adamic/Adar,
Katz, Stochastic Actor
Based, PageRank and a
newly developed
algorithm PageRank-Max
(based on the optimisation
of an individuals’
eigencentrality).

Endogenous network
formation

Agents iterate through the
links changes offered by
the selected link
prediction method finding
their maximum personal
objective function.

Evaluation quantity:
Precision of network
formation algorithms to
replicate existing school
network data

The proposed
PageRank-Max methods is
the most successful in
predicting the evolution of
adolescent friendships, in
terms of both precision
and network structure.
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Fu et al. (2011) Explore the roles of
individual imitation
behaviour and population
structure in vaccination.

Agents decide whether to
change their vaccination
uptake strategy depending
on their own current
payoff and that of one
randomly chosen other
agent.

Exogenous networks:
Lattice (von Neumann),
random, scale-free

Spread of disease (SIR
Model) and vaccination
behaviour (probability for
adoption given by Fermi
function)

Agent-centric/Network-
centric: Effect of
population structure
(structured vs. well-mixed
case) on vaccination level
and final epidemic size
Parameter variation: Cost
of vaccination, sensitivity
to observed payoffs

Vaccination uptake
depends on agent’s
sensitivity to observed
payoffs and costs. As
agents become more adept
at imitating successful
strategies, the equilibrium
level of vaccination falls
below the rational
individual optimum. In
structured populations,
vaccination is widespread
over a range of low
vaccination costs, but
coverage plummets after
cost exceeds a critical
threshold.

Hornbeck et al.
(2012)

Determine the impact of
hand hygiene
noncompliance among
peripatetic healthcare
works compared with
less-connected workers.

Agents are assigned a level
of hand hygiene
noncompliance which
influences the spread of
pathogens.

Exogenous network:
Empirical data recording
contacts among healthcare
workers and patients

Infection is passed with
fixed probability in case of
contact between infected
and uninfected individual,
additional infection by
environment possible.

Agent-centric: Parameter
variation: Probability of
transmission, hand
hygiene baseline
compliance, hand hygiene
efficacy, environmental
contamination
transmission rate
Scenarios: Impact of hand
hygiene compliance based
on connectedness of
healthcare workers

The average number of
infected patients is higher
when the most connected
healthcare worker not
practice hand hygiene and
lower when the least
connected healthcare
workers are noncompliant.

Moradianzadeh
et al. (2018)

Optimize the palliative
care system where agents
search the networks to
find a proper team of care
provider agents to fulfil
their missing capabilities
with the lowest overall
cost.

Patients need help to fulfil
their goal and send
requests to care providers
which can also spread this
request to other care
providers in their own
network. Patients choose
the team with minimal
operational and
geographical distance
costs.

Co-evolutionary network:
Initial network structure
generated by an algorithm
that is following the
power-law distribution;
links are added between
care provider and patient
if care provider forwards
request to its network and
patient makes use of the
offer it is not linked to so
far

Care provider linked to
patients in the network
offer their help to support
them in achieving their
goals.

Agent-centric: Comparison
of synthetic networks with
various distributions of
patients and care
providers against
simulations with Brute
Force model (patients can
search among all care
providers) and random
selection model (patient
request is sent to a set of
care provider agents
which are chosen
randomly)

The proposed approach is
capable of finding the
proper team of care
providers with the highest
satisfaction rates in a
shorter time (compared to
other models taken into
account).
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Perlroth et al.
(2010)

Evaluate health outcomes,
costs and
cost-effectiveness of
antiviral and social
distancing strategies
(combinations of adult
social distancing, child
social distancing, school
closure, household
quarantine, antiviral
treatment and antiviral
household prophylaxis)
during an influenza
pandemic.

The spread of influenza in
a person-to-person
transmission event should
be reduced by network-
and case-based
interventions. Agents
cannot actively make
decisions.

Exogenous network: Same
network structure as in
Davey et al. (2008)

Same transmission as in
Davey et al. (2008)

Agent-centric: Effect of
mitigation strategies on
health outcomes and costs
and cost-effectiveness
Parameter variation:
Infectivity, case fatality
rate, level of population
compliance and antiviral
effectiveness

Preferred mitigation
response to a pandemic
depends on its severity.
Influenza pandemic with
moderate severity, the
most cost-effective
strategy involves a
combination of adult and
child social distancing,
school closure and
antiviral treatment and
prophylaxis, if available.
For mild pandemics, a
multi-layered strategy of
adult and child social
distancing and antiviral
treatment and prophylaxis
is effective and
cost-effective but that the
addition of school closure
is relatively expensive.
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Amini et al.
(2012)

Compare the impact of
three supply chain
production-sales policies
and negative
word-of-mouth on the
supply restricted diffusion
process of a new generic
product and the net
product value of profit
generated by this product.

The probability that
agents adopt a new
product depends on
positive word-of-mouth,
advertising, and/or
negative word-of-mouth.

Exogenous network:
Random

Adoption of new product
with probabilities based
on number of
satisfied/dissatisfied
adopters, rejecters and lost
consumers

Agent-centric: Performance
characteristics of three
production-sales policies
based on the net present
value of profit generated
over the diffusion process

Build-up policy with
delayed marketing is the
preferred policy. It is
critical to consider the
impact of negative
word-of-mouth in
choosing production-sales
policies.

Baggio & Hillis
(2018)

Examine the simultaneous
diffusion of ecological
disturbances and
management strategies
across a multiplex,
social-ecological network.
Address the relationship
between learning,
social-ecological
structural properties and
the adoption of treatment
strategies that counter
ecological disturbances.

Each social agent is able to
exclusively manage one
patch. Agents are able to
adopt a treatment at a
specific cost. Agents make
their adoption based on
their payoff, the type of
learning they employ
(individual or social), the
feedback from the
ecological path they are
managing, and the
information they acquire
from their social network.
Feedbacks between the
social and ecological
systems occur in form of
general utility that a social
agent receives from the
ecological path they are
managing.

Exogenous networks:
Ecological: Spatial; Social:
Spatial (matching
ecological network),
random, small-world with
rewiring probability 0.2
and 0.3, scale-free with
low or high preferential
attachment

When agents employ
social learning, they are
either conformists (adopt
strategy adopted by the
majority of their social
neighbours) or
success-biased imitators
(adopt strategy of the
individual neighbour that
is doing best).

Agent-centric/Network-
centric: Effect of learning
types and network
structural properties on
the expected disturbance

Managers who imitate
other successful managers
and have access to
accurate information are
most effective at
controlling disturbances.
The structural properties
of the social-ecological
network also play an
important role: An
increase in inter-layer
assortativity and average
multiplex degree reduce
the expected disturbance
prevalence, while an
increase in local clustering
increases it.
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Beretta et al.
(2018)

Investigate the effect of
cultural dissimilarity of
the adopters and their
degree of assortativity on
technology diffusion using
the example of the
diffusion of fertilizers in
five Ethiopian villages.

Households decide to
adopt the technology if
their randomly chosen
level of adoption exceeds a
threshold. The threshold
depends on their cultural
group status and the
number of neighbours and
adopters per group.

Exogenous networks:
Small-world (low and high
clustering), scale-free (low
and high clustering)

Threshold value depends
on the cumulative
group-wise counts of
neighbours who have
adopted (minority,
majority), the number of
neighbours per group and
an assortativity factor.

Network-centric/
Structurally explicit: Effect
of network type, seeding
strategy and assortativity
levels for majority and
minority on technology
adoption
Comparison of model
results with observed data
from Ethiopian villages

Diffusion evolves the
fastest in small-world
settings. Scenarios with
first adopters in a
marginal network position
and, in general, the
scale-free network with
low clustering displays a
slower pace of adoption.
For the scale-free network
with high clustering,
betweenness and
eigenvector seeding differ
only marginally and
display almost congruent
shapes for the other
network structures. To
minimize the differences
between the observed and
simulated data, similar
social network structures
but a different position of
the first adopter in the
network and different
levels off the average
assortativity are
suggested.

Bohlmann et al.
(2010)

Examine the effects of
various network
structures (network
topology and the strength
of communication links
between innovator and
follower market segments)
and relational
heterogeneity on
innovation diffusion
within market networks.

Agents decide on adoption
based on the behaviour of
their neighbours
(probabilistic threshold).

Exogenous networks:
Lattice, random,
small-world with rewiring
probability 0,1 and 0,2,
scale-free

Agents decide on adoption
based on the behaviour of
their neighbours
(probabilistic threshold);
link weight implicitly
included in two-segment
model where agents weigh
interaction in their own
segment more heavily
than those in the other
segment

Agent-centric/Network-
centric: Parameter
variation: Level of
adoption threshold,
segment sizes
Comparison of network
structures

Network structure can
impact diffusion in terms
of peak adoption and the
likelihood of saturated
diffusion. Individual
locations within a network
and communication
influences for new product
diffusion are important.

109



A
A
p
p
e
n
d
ix
o
f
C
h
a
p
te
r
2

Reference Research focus Agent decision-making Interaction topology Network effect Model analysis Key findings

Chareunsy
(2018)

Simulate the diffusion of
three development
initiatives (encourage
school attendance,
introduce safe water
handling practices, feeder
road to facilitate
engagement with markets)
that differ in their
approaches to reaching
targeted groups in a
southern Lao community.

The decision to adopt a
change in behaviour is
based on the relative
influence of adopters and
non-adopters within a
household’s network.
Agent will choose to adopt
a practice if the window of
influence of adoption
(determined by the
weighted sum of agents
across common network
activities) is greater that
the window of influence
for non-adoption. At the
beginning, an outsider
recruits selected agents to
change their behaviour.

Exogenous network:
Connection to all agents
with common activities

Agents’ decision to adopt
is based on relative
influence of adoptees vs.
non-adoptees in the
network.

Agent-centric: Comparison
of the dynamics of the
three development
initiatives for a synthetic
population of 58 agents
equipped with properties
from household survey
data

The Water initiative is the
most successful both for
the community as a whole
and in reaching the lowest
tier of society. The
Education initiative fails
to transmit a behaviour
change, such that
ultimately even the
educators (the chosen
agents) give up. The
Market initiative succeeds
in reaching all community
members but the gains
accrue disproportionately
to the well-off who are
best positioned to absorb
the initial impetus.

Chen et al.
(2012)

Examine the influence
between network
structure (size, degree,
weight) and energy-saving
behaviour.

Agents decide whether to
increase or decrease their
energy consumption based
on the norm imposed by
the energy use of their
peers.

Exogenous networks:
Random (varying number
of nodes, degree and link
weight)

Agents change their
energy consumption
behaviour based on the
behaviour of their
network neighbours.

Network-centric:
Comparison of network
structure

Network energy
consumption does not
decrease or increase with
the expansion of the
random network, if newly
added vertices have a
similar level of energy
consumption. Connection
degree and strength of the
relationship between
residents each has a
positive impact on
residents’ energy saving.
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Erdlenbruch &
Bonte (2018)

Simulate the adoption of
individual adaptation
measures to floods and
evaluate the efficiency of
different communication
policies in a model
parameterized with data
from a survey conducted
in France.

The decision model of the
agents is based on the
psychological protection
motivation theory (PMT)
that decomposes the
individual adaptation
motivation into variables
relating to threat appraisal
and coping appraisal. A
logistic regression of an
individual’s intention to
implement
non-permanent
adaptation measures on
the household’s attributes
is run.

Exogenous networks:
Spatial, small-world
(spatially explicit),
random (varying degree)

The higher the proportion
of neighbours in the
household’s network who
have adapted, the higher
its attribute level for the
social network variable.

Agent-centric/Network-
centric: Comparison of
adaptation levels with and
without network influence
Comparison of network
structures

Policies which contain
information on both the
risk of flooding and how
to cope with it perform
better than policies which
only deal with risk. People
centred policies on risk
and coping perform the
best in all scenarios. The
absence of the small-world
network decreases the
absolute value of
adaptation levels. The
network types and degrees
have no impact on the
simulation results.

Goldenberg et al.
(2007)

Understand how the
interplay between positive
and negative information,
as well as weak and strong
ties, affects the growth of
new products and the
consequent economic
results.

The probability that
agents adopt a new
product depends on
positive word-of-mouth,
advertising, and/or
negative word-of-mouth.

Exogenous network with
dynamic properties:
“dynamic small-world”
with strong-tie structure
inside each social system
being fixed and weak-tie
structure randomly
reassigned in each period

Spread of information on
new product with
probabilities based on
number of
satisfied/dissatisfied
adopters and rejecters

Network-centric: Linear
regression with dependent
variable of Net Present
Value to analyse the effects
of dissatisfaction, strength
of the weak ties,
advertising and
interaction effects (level of
weak and strong ties)

The effect of negative
word-of-mouth on the Net
Present Value of the firm
is substantial. Weak ties
help to spread harmful
information through
networks and can become
a negative force for the
product’s spread.

Haenlein & Libai
(2013)

Compare the effectiveness
of revenue leader seeding
with opinion leader
seeding and random
seeding on the spread of a
new product.

The probability that
agents adopt a new
product depends on
positive word-of-mouth,
advertising, and/or
negative word-of-mouth.

Exogenous network:
Algorithm reproducing
link formation in actual
social networks (relatively
small average distance
between pairs of nodes,
clustering coefficient
larger than in random
networks, approximately
scale-free degree
distribution)

Adoption of new product
with probabilities based
on number of
satisfied/dissatisfied
adopters, rejecters and lost
consumers

Network-centric/
Structurally explicit:
Parameter variation:
Network clustering
coefficient, standard
deviation of the customer
lifetime value, customer
lifetime value assortativity
and seed size

Both revenue leader
seeding and opinion
leader seeding can create
greater value compared
with random customer
seeding. The distribution
of customer lifetime value
in the population and the
seed size play a major role
in determining which
seeding approach is
preferable.
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Heinrich (2018) Apply a catastrophe
theory model to the
problem of network
industries. Compare the
equation-based
implementation to an
agent-based model with a
simple decision heuristic
for several network
structures.

Every agent is either an
adopter of the new
technology or not. Agents
decide whether or not to
adopt based on their
expected utility from
using the better
technology.

Exogenous networks: Fully
connected, ring, scale-free,
scale-free with triadic
closure

The adoption of the new
technology by current
non-adopters and the
disbandment of the newer
technology by current
adopters follow a
probabilistic function
which is a cubic function
of the number of adopters
in the agent’s network.

Network-centric: Effect of
number of initial adopters
Comparison of network
structures
Comparison of
equation-based and
agent-based model

The general behaviour of
the findings of the
equation-based model is
preserved in the
agent-based model. The
behaviour of the model
changes locally depending
on the network structure,
especially if networks
with features that
resemble social networks
(low diameter, high
clustering, and power law
distributed node degree)
are considered.

Hu et al. (2018) Examine promotional
strategies for new product
diffusion based on
different target
(influential, susceptibles,
or unsusceptibles), size
and intensity of the
seeding incentive.

Consumers decide
whether to adopt the
product using a threshold
model where each agent
has a unique threshold to
map the heterogeneity
between the agents. If the
peer effect, which is
determined by the fraction
of adopted peers in the
local network of the
consumer, exceeds this
threshold, the consumer
adopts.

Exogenous network:
Small-world (spatially
explicit in social space)

The proportion of adopted
peers in the local network
determines the peer effect
which has to exceed the
individual threshold of
the consumer to induce
adoption.

Agent-centric/Structurally
explicit: Effect of target
types (influential,
susceptibles,
unsusceptibles, and
random), target sizes and
promotion intensity on
product diffusion

Where a budget is limited,
the best approach is to
target as many
susceptibles as possible
with a weak promotion.
Targeting unsusceptibles
with free products should
be the first choice, where
the budget is large. In
other cases, the best
approach is to target as
many influential as
possible with a moderate
promotion.
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Huétink et al.
(2010)

Study the development of
the market for hydrogen
vehicles taking into
account different
strategies for hydrogen
infrastructure
development and user
behaviour.

Consumers: The decision
of the consumers to adopt
a hydrogen vehicle
depends on their level of
innovativeness, their
reservation price and on
the perceived attributes of
hydrogen vehicle
technology determined by
technological learning,
social learning processes
and fuel availability.
Refuelling station: The
refuelling station
considers the percentage
of consumers within its
customer base that have
adopted a hydrogen
vehicle. When this
percentage of adopters
exceeds a threshold value,
the station adds hydrogen
to its product range.

Exogenous networks: Fully
connected, lattice (Moore),
small-world

Consumers evaluate the
fraction of adopters in
their network and adopt
the innovation if the
adoption rate exceeds
their personal threshold
determined by the adopter
group they are assigned to.

Network-centric: Effect of
infrastructure strategies
(station placement, size of
initial fuel infrastructure)
on number of adopters
Parameter variation:
Number of initial adopters
Comparison of network
structures

Maximum geographical
coverage with initial
stations is more effective
as a deployment strategy
than focusing on densely
populated areas. The
structure of the social
network among
consumers does influence
the resulting diffusion
patterns; a small world
social network is most
favourable to fast
diffusion.

Janssen & Jager
(2001)

Explore the dynamics of
markets where artificial
consumers have to choose
each period between
similar products from a
psychological perspective.
Explore the consequences
of changing preferences
and the size of social
networks.

Depending on uncertainty
and satisfaction of social
needs, agents apply
different mechanisms to
choose a product:
Repetition, deliberation,
imitation or social
comparison (“consumat”
approach).

Exogenous networks:
Small-world with rewiring
probability 0, 0.01 and 0.1

For imitation and social
comparison, agents
evaluate the product
which is consumed the
most in its social network.

Agent-centric/Network-
centric: Effect of minimum
level of need satisfaction
and uncertainty tolerance
on market share of
products
Comparison of network
topology and size

Behavioural rules that
dominate the artificial
consumer’s decision
making determine the
resulting market
dynamics. Psychological
variables like social
networks, preferences and
the need for identity are
important to explain the
dynamics of markets. If
social processes dominate
a market, an increase in
the size of the network
causes the market to be
dominated by a few
products.
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Janssen & Jager
(2003)

Investigate the effects of
different network
structures on market
dynamics.

Depending on uncertainty
and satisfaction of social
needs, agents apply
different mechanisms to
choose a product:
Repetition, deliberation,
imitation or social
comparison (“consumat”
approach).

Exogenous networks:
Small-world with rewiring
probability 0, 0.1 and 1,
scale-free, scale-free with
1% inactive links

For imitation and social
comparison, agents
evaluate the product
which is consumed the
most in its social network.

Agent-centric/Network-
centric: Extension of
Janssen & Jager (2001)
Comparison of network
topology and network
parameters

Market dynamics is a
self-organized property
depending on the
interaction between the
agents’ decision-making
process, the product
characteristics, and the
structure of interactions
between agents (size of
network and hubs in a
social network).

Kaufmann et al.
(2009)

Study the diffusion of
organic practices through
farming populations in
Latvia and Estonia and
evaluate the effectiveness
of policies (effect of social
influence, introduction of
a higher subsidy,
increased support by
organic farm advisors) to
promote them.

Based on Theory of
Planned Behaviour, farm
agents exchange opinions,
update subjective norm
estimates, and adopt
organic farming practices
if intention exceeds an
empirically derived
threshold.

Exogenous network:
Small-world and
scale-free properties
(network parameter
derived from survey)

Subjective norm as one
factor characterizing
intention towards
adoption is influenced by
one selected neighbour
using the relative
agreement model.

Agent-centric/Network-
centric: Effects of social
influence, introduction of
a higher subsidy and of
increased support by
organic farm advisors on
the diffusion of organic
farming practices
Parameter variation:
Network density,
preferential attachment
and small-world property,
type of agents on the hubs
(not shown)

Social influence alone
makes little difference;
introduction of a subsidy
is more influential. The
combined adoption rate
from social and economic
influences is higher than
the sum of the proportion
of adopters resulting from
just social influence and
from just subsidies.
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Libai et al.
(2013)

Explore how acceleration
and market expansion
combine to generate value
in a word-of-mouth
seeding program for two
competing products.

The probability that
agents adopt one of the
competing products
depends on external and
internal factors.

Exogenous networks: 12
empirical networks

Adoption of new product
with probabilities based
on number of consumers
in network who have
already adopted

Structurally explicit:
Comparison of social
value of word-of-mouth
programs for different
seeding strategies affected
by competition, program
targeting, profit decline,
and retention

Market expansion
dominates the social value
of word-of-mouth
programs. Relative to
random programs,
acceleration drives a
greater proportion of
influential programs’
social value. The stronger
a brand is relative to its
competitor, the more
acceleration drives its
seeding program’s social
value, and the lower the
program’s social value is
overall. The lower the
future value of customers,
the higher the acceleration
ratio and the higher the
relative social value of a
program. A shorter
horizon of analysis on the
program’s effect leads to a
higher overestimation bias
of the seeding program’s
social value. The higher
the disadoption rate, the
lower the acceleration
ratio.

Moglia et al.
(2018)

Describe the uptake of low
carbon and energy
efficient technologies and
practices by households
and under different
interventions
(non-financial and social
network).

Households decide
whether to buy a new
product if the old product
has reached the end of its
life or the agent has been
approached by a sales
agent. The decision which
product to buy depends
on the level of needs
satisfaction and
uncertainty and results in
repetition, imitation or
optimisation or inquiry
(based on the “consumat”
approach).

Exogenous networks:
Small-world, scale-free,
spatial, random

For imitation, agents copy
the behaviour of a
satisfied household in
their social network.

Agent-centric/Network-
centric: Comparison of
interventions on adoption
rates
Comparison of network
structures

Focus of the model on
questions whether it is
more effective to
incentivise sales agents to
promote energy efficient
technologies, whether it is
more effective to provide a
subsidy directly to
households, or whether it
is better to work with
plumbers so that they can
promote these systems.
Effect of social networks
on adoption is only
marginally discussed.115
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Negahban &
Smith (2018)

Evaluate the optimal
combination of seeding
and inventory build-up
policies for new products.

Consumers adopt or reject
with probabilities
depending on number of
satisfied consumers or
dissatisfied adopters,
rejecters and lost
customers that did not
receive the product due to
supply shortages,
respectively.

Exogenous networks:
Lattice (26 neighbours),
random, small-world
(based on lattice network),
scale-free

Adoption of new product
with probabilities based
on number of satisfied and
dissatisfied adopters,
rejecters and lost
customers (customers that
did not receive the
product due to supply
shortages)

Agent-centric/Network-
centric/Structurally explicit:
Effect of seeding strategy
(number of neighbours,
number of nodes
reachable within two
steps, shortest average
path length, lowest
clustering coefficient,
random), seeding fraction
and build-up period (time
before product is
launched) on product
adoption
Comparison of network
structures

The seeding strategy that
maximizes the adoption
rate is not necessarily
optimal in the presence of
supply constraints.
Random seeding can
maximize the expected net
product value of profit for
a scale-free network.
However, random seeding
increases the uncertainty
in the diffusion dynamics.
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Niamir et al.
(2018)

Track impacts of
behavioural changes in
individual energy use
behaviour concerning (1)
investments to save or
produce energy, (2)
conservation of energy by
changing consumption
patterns and habits, and
(3) switching to another
energy source.

Based on Norm Activation
Theory, households assess
a four step procedure to
pursue an economic
decision: (1) If households
feel guilty as their
awareness (based on
survey data) exceeds a
threshold they (2) check
their personal and
subjective norms to
calculate their motivation
for each of the three
actions. For those actions
for which the motivation
exceeds a threshold, the
households feel
responsible and go into (3)
the consideration step
where their perceived
behavioural control is
assessed to measure their
intention. If a household
has high intentions to
undertake any of the three
actions for making an
energy decision, its
expected utility based on
its current energy sources
and its budget constraints
is calculated. To maximize
their utility and make
their energy decisions,
households analyse their
utility expectations and
compare it with their
current utility.

Exogenous network: Spatial Households compare
values of their own
behavioural factors
(awareness and
motivation) with those of
their 8 closest neighbours
and adjust their value to
become the mean of the 9
compared values.

Agent-centric: Effect of
social learning in
knowledge activation or in
knowledge activation and
motivation on the
behavioural changes in
individual energy use

Exchange in knowledge
about energy and climate
leads to a significantly
higher total count of the
three types of household
actions, while there is
more intentions for
investments that for the
two other actions.
Introducing additionally
opinion dynamics
regarding household
motivation to act leads to
a further increase in the
diffusion of all three
actions.
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Pearce & Slade
(2018)

Simulate the adoption of
small-scale solar
photovoltaic systems (PV)
in Great Britain by
considering
decision-making of
individual households
based on household
income, social network,
total capital cost of the PV
system, and the payback
period of the investment.

Agents calculate the total
utility of adoption and
adapt if the utility exceeds
a threshold. The total
utility is made up of a
weighted sum of partial
utilities depending on
household income, the
social environment of the
agent, economic
attractiveness of the
investment, and the
capital cost of the
investment.

Exogenous network:
Random

Social utility of an agent
depends on the number of
adopters and agent is
connected to and increases
if an agent they are
connected to adopts.

Network-centric: Effect of
number of links to
adopters on social utility
(Social influence is not
analysed in more detail)

Focus of the model is on
the effect of feed-in tariffs.
Effect of social networks
on adoption is only
marginally discussed.

Phan & Godes
(2018)

Analyse the dynamics of
the diffusion of several
ideas for two types of
individuals (independents
with exogenous
information and imitators)
with endogenous link
formation.

Independents are
influenced with a fixed
probability. Imitators
adopt if the proportion of
neighbours who have
adopted exceeds a
threshold. Between the
diffusion of two ideas,
agents may drop and add
links while maintaining
the same in-degree.
Communication can be
influenced by noise and
time discounting.

Co-evolutionary network:
Initially random; links
deleted based on adoption
status, new links formed
randomly

Agents adopt if the
proportion of neighbours
who have adopted exceeds
a threshold.

Agent-centric/Network-
centric: Effect of
penetration rate for
variation in network
density, probability that
independents receive
information, probability
that independents listen
to others in a period and
probability that
independent listen to
other independents in a
period for fixed network
density on diffusion of
ideas
Scenarios with and
without noise and with
and without time
discounting

In the baseline study (no
noise, no time
discounting) penetration
is increasing with network
density. Independents
with good exogenous
information have fewer
followers than the average
imitator. When
independents listen to
other agents, they gain
more influence by
producing access to better
information. Less noise
allows agents to be further
away from the original
source.
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Rasoulkhani
et al. (2018)

Identify the effects of
demographic and
household characteristics,
social network influence,
and external factors such
as water price and rebate
policy on residential water
conservation technology
adoption.

Households are in one of
the three states:
non-adopter, potential
adopter or adopter of the
technology. The transition
between non-adopter and
potential adopter and
between potential adopter
and adopter is reached if
the adoption utility and
the affordability index
exceed a utility and
affordability threshold,
respectively. If the utility
threshold for the
transition between
non-adopter and potential
adopter status is not
reached, an agent can
additionally be positively
influenced by the network
which also induces a
transition.

Exogenous networks:
Random, ring,
small-world, scale-free

Given a user-defined
likelihood of influence, if
the non-adopter agent is
connected to an adopter
agent, there is a chance
that the non-adopter will
transition into the
potential adopter state.

Agent-centric/Network-
centric: Effect of water
price and rebate scenarios
on technology adoption
Comparison of network
structures

The adoption percentage
fluctuates across all five
social networking schemes
under each scenario of
water price and rebate
status. The distance based
network reached
equilibrium in a shorter
period. The peer effect
through neighbouring
social connections can
speed up technology
adoption potential more
than other social
networks.

Talebian &
Mishra (2018)

Forecast long-term
adoption of connected
autonomous vehicles
(CAVs) and show the
applicability of the
approach is using survey
data.

Individuals decide to
adopt when (1) there is a
need for a new vehicle, (2)
their willingness-to-pay
(WTP) is greater than the
CAV price, and (3) their
overall impression about
CAVs reaches a cut-off
value. Agents update their
perception about CAVs
based on advertisement
and peer-to-peer
communication.

Exogenous network:
8-dimensional distance
minimization in social
space

The influence depends on
the number of binary
interaction between the
two agents and the weight
of the social tie.
Depending of the
opponent being satisfied
or dissatisfied the
influence is positive or
negative. Similarly, the
WTP is updated.

Agent-centric: Effect of
annual rate of CAV price
reduction,
(pre-introduction)
advertisement,
peer-to-peer
communication on WTP
and probability of
becoming a dissatisfied
adopter on CAV adoption

The automobile fleet will
be near homogeneous in
about 2050 only if CAV
prices decrease at an
annual rate of 15% or
20%. A 6-month
pre-introduction
marketing campaign may
have no significant impact
on adoption trend.
Marketing will ignite CAV
diffusion but its effect is
capped. CAV market share
grows with the effect of
peer-to-peer
communication of WTP.
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Wang et al.
(2018)

Assess households’
decision-making process
towards the adoption of
residential photovoltaic
(PV) under different
scenarios about policies
that concern both the
economic benefits and the
information diffusion on
social networks.

Agents are either adopters
or non-adopters of
residential photovoltaic
and have a positive or
negative attitude towards
the technology. The
decision to adopt
residential PV is made at
each time-step if the
utility to the household
outweighs the adoption
barriers. The utility is a
combination of economic
factors, social effect and
personal preference.
Before the
decision-making process
agents assess the revenue
and quality information of
PV and can change their
attitude accordingly.

Exogenous network:
Scale-free

The social effect is the
average of the attitude of
the adjacent nodes.
Revenue information
includes the expected
revenue according to the
experience of their
friends. Quality
information includes the
risk probability according
to the performance of
friends’ residential PV.

Agent-centric: Effect of
policy scenarios (with
parameter variation) on
adoption of residential PV

Providing free insurance
for damage of residential
PV to adopters can
improve the adoption rate.
The intervention of
information campaigns is
effective and necessary to
promote the diffusion of
residential PV.
Information screening
intervention which blocks
rumours and deliberately
discrediting for residential
PV can only work when
the policy strength is high
enough. The enhancement
in communications
(increase of social
networks’ mean degree)
can become new barriers
to the residential PV
adoption.

Zhang & Nuttall
(2011)

Study the impact of policy
options on the dynamics
of smart metering
diffusion in retail
electricity markets and
suggest policy
implications.

Based on Theory of
Planned Behaviour,
consumer agents exchange
opinions with other
consumers and electric
supplier agent and adopt
the energy supplier
towards which their
intention is maximal.

Exogenous network:
Small-world (based on
lattice network (parameter
defining radius of
interaction))

Subjective norm towards
choosing an option is
calculated as the sum of
weighted influences from
residential electricity
consumer agents in the
neighbourhood.

Agent-centric: Effect of
different policy options on
the patterns of diffusion

“S-curve” pattern of
technology adoption is
reproduced for all policy
scenarios. The most
successful scenario is the
government financed
competitive roll-out. A
stable market share of
electricity supplier agents
appears. Residential
electricity consumer
agents switch electricity
supplier agents
dynamically.
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Biondo et al.
(2018)

Study the impact of news
media and public surveys
on the electoral campaigns
for political competitions.

Agents favour one of two
political parties (or are
undecided). Their
preference is influenced
by a randomly chosen
opinion of one of their
neighbours. Additionally,
their opinion is influenced
by survey results.

Exogenous network:
Small-world (based on
lattice network (von
Neumann))

Agent’s opinion is
influenced by one
randomly chosen agent in
their network. The value,
corresponding to the party
the chosen neighbour
favours, is changed by a
given amount.

Agent-centric: Effects of
survey on electoral
campaigns

Surveys accentuate the
spontaneous clustering of
voting intentions
emerging among people
due to the opinions
dynamics. Surveys can
change the final electoral
result and let the party,
that otherwise would lose,
to win the electoral
competition.

Bravo et al.
(2012)

Investigate the importance
of the endogenous
selection of partners for
trust and cooperation in
market exchange
situations, where there is
information asymmetry
between investors and
trustees.
(social integration)

Agents decide on the
amount to invest and
return based on the
amounts invested and
received in the previous
period and coefficients
estimated from
experimental data.

Exogenous and
co-evolutionary networks
Exogenous networks:
Experimental data as
input with variation of
characteristics: Random
coupling with one and two
way interaction, fixed
couples (maintaining
initial couples), fully
connected, small-world,
scale-free
Co-evolutionary networks:
Initially random coupling,
fully connected network
or regular network;
unsatisfied agents can
break the link, new links
are included either for
both of the formerly
linked agents or only for
isolated agents

Agents exchange money
being either in the role of
the investor or the role of
the trustee.

Network-centric:
Comparison of network
structures (especially
distinguishing exogenous
and co-evolutionary
networks)

Dynamic networks lead to
more cooperation when
agents can create more
links and reduce
exploitation opportunities
by free riders. The
endogenous network
formation is more
important for cooperation
than the type of network.
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Chica et al.
(2018)

Investigate the dynamics
of the N-player
evolutionary trust game
consisting of three types
of players: (1) an investor,
(2) a trustee who is
trustworthy, and (3) a
trustee who is
untrustworthy.

Each player makes the
decision (1) whether or not
to be trustworthy and (2)
whether to be an investor
or a trustee. An investor
pays to the trustee.
Trustworthy trustees
return the received fund
multiplied by a factor.
Untrustworthy trustees
return nothing but keep
for themselves the
received funds multiplied
by a factor. Agents decide
on which strategies to
choose based on the
wealth of a randomly
chosen neighbour.

Exogenous networks:
Scale-free (varying
density), lattice (von
Neumann), random

An agent decides whether
to imitate or not a
randomly chosen direct
neighbour’s strategy based
on the payoff of its
strategy. If the wealth of
the opponent in the
previous time step is
higher than that of the
agent if will adopt the
strategy of its opponent
with a probability that
depends on the difference
between their payoffs.

Agent-centric/Network-
centric: Parameter
variation: Temptation
defect ratio,
trustworthiness
Comparison of network
structures

Trust can be promoted
with the model for low
and medium temptation
to defect, for high level of
temptation to defect trust
is only promoted when no
untrustworthy players are
present in the initial
population. Without a
network structure, even
one untrustworthy player
can fully eliminate
investors and lead to zero
global net wealth.
Network densities have
high importance for
promoting trust and
global net wealth.
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Flache & Macy
(2011)

Show the effects of
positive and negative
valences of interaction
and short- and long-range
ties on polarization or
consensus in disconnected
and connected networks.

All agents execute
influence based on the
weighted difference
between positions.

Exogenous networks:
Disconnected/connected
caveman graph with short-
and long-range ties added
at different time points of
the simulation

Agents are influenced by
aggregated opinions of all
neighbours in network.

Network-centric: Effect of
cave size, number of
cultural issues, negative
valence of interaction and
additional short- and
long-range ties on
polarization

With only positive
influence and selection,
long-range ties promote
greater cultural
integration and
assimilation. When both
positive and negative
valences of interaction are
assumed, long range ties
become conduits for the
spread of locally
developed polarization
and the effect is reversed.
In connected networks,
when only positive
influence and selection are
assumed, consensus is the
inevitable outcome.
Neither long-range nor
short-range ties have an
effect on the level of
consensus. When both
positive and negative
influence and selection are
allowed, long-range ties
increase polarization
sharply, but short-range
ties do not.
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Frank et al.
(2018)

Attend how an external
agent’s message
(policy-aligned or
balanced) interacts with
intra-organizational
network dynamics to
affect the distribution of
practices and network
structure within an
organization.

If actors receive new
information from their
network connections,
actors adjust their
behaviours based on
information and norm.
Actors decide whether to
maintain current network
connections and if actors
decide to dissolve a
current connection, they
from new connections.

Co-evolutionary network:
Initially random network
with higher connection
probability within the two
subgroups than between;
links deleted based on
how many consecutive
times an actor is exposed
to redundant information
from the network
connection, links formed
based on utility to connect
with every other actor in
the organization while
keeping the out-degree
constant

Each member of an actor’s
network randomly
provides one piece of
information in their
possession to the actor. If
the information is new to
the actor, the actor will
add this piece of
information to its own
information list. Actors
choose their behaviour
according to their
previous behaviour, new
information they receive
and the mean behaviour of
their network members.
Depending on the
strength of organizational
identification, more or less
weight is given to the
influence of the network
or on own information.
Another parameter
determines the strength of
normative influence
relative to that of
selection.

Agent-centric: Parameter
variation: Organizational
identification for two
levels of influence
Comparison of
policy-aligned and
balanced messages with
baseline case (no external
message)

When organizational
identification is high,
those predisposed to a
policy-aligned message
will engage the message
and one another,
becoming more extreme in
their behaviours. Others
not predisposed to the
message will divert away
from the message. This
produces a divergence of
behaviour based on
predisposition and little
overall change.
Divergence does not occur
even when organizational
identification is high for a
balanced message, which
provides opportunities for
actors to integrate. The
trade-off is that the
balanced message does not
generate as large changes
in average behaviour as
does the policy-aligned
message when
organizational
identification is low. Thus,
when organizational
identification is low, a
balanced message may be
a missed opportunity to
shape behaviour.
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Fu & Hao (2018) Explain migration
perpetuation and social
network structural
changes in China.
Investigate the effects of
the endogenous social
network on the
accelerating migrant stock
during the 1995-2000
period.

Agents are classified in
three migratory
propensity groups
according to their
demographic attributes.
The migratory propensity
updates according to the
migration-promoting
influence and the
influence of arable land.
Migration-promoting
influence varies with the
level of impact of the
network in different stages
of the model (no network,
implicit social network
using the migration
prevalence of the origin,
explicit social network
structure). If the
migratory propensity is
greater that the migratory
threshold the agent
decides to migrate out of
the origin.

Co-evolutionary network:
Four layered network: (1)
fully connected network
for observed family ties
from the 2000 census
micro data, probability for
connecting to other
families (2) within village,
(3) between villages and
(4) between migrants in
the same destination with
probability for adding
further ties to create
complete graph for
selected connection
Social network co-evolves
with migration decision.

In the case of network
impact, the
migration-promoting
influence depends on the
geodesic distance from a
migrant of the same origin
in the agent’s network.

Network-centric:
Comparison of outcomes
of different levels of
network impact and
aggregate data from the
census
Effect of social network
structure on migration
acceleration

Network structural
changes are essential for
explaining migration
acceleration observed in
China during the
1995-2000 period.
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Garcia et al.
(2018)

Explore how the
interactions between
psychological attributes
and built and social
environments may lead to
the emergence and
evolution of leisure-time
physical activity (LTPA)
patterns among adults.
(social integration)

Agents decide whether
they will practice LTPA
during the current week,
based on the level of
intention and conditional
to the perceived built
environment. Persons and
LTPA-places are placed
randomly over patches of
a grid. Person’s intention
to practice LTPA depends
on the behaviour of those
in the proximal network
and perceived community,
the person’s behaviour in
the previous week, current
level of intention and the
highest perceived utility
amongst the LTPA sites in
the person’s perception
radius.

Exogenous networks:
Proximal network:
Spatial, each link can be
randomly exchanged for a
link with any other person
outside the initial
proximal network
Perceived community:
Spatial (perception radius)

Person’s intention is
increased or reduced due
to the average behaviour
of all agents in the
proximal
network/perceived
community times a
function of the conditional
likelihood that people in
the proximal
network/perceived
community will practice
LTPA if it is the best
option.

Agent-centric: Parameter
variation: Level of
intention
Individual and global
sensitivity analysis

Time trends of LTPA
practice and population
distribution of levels of
intention are similar those
reported in literature.
Influence of the person’s
behaviour in the previous
week over his current
intention, the size of the
person’s perception
radius, and the proportion
of patches in the grid that
are LTPA sites
significantly influence the
temporal trends in the
model.

Gore et al. (2018) Forecast changes in
religiosity and existential
security among a
collective of individuals
over time.
(social integration)

Agents update their
religiosity based on social
network interactions.
Additionally, agents
interact with the
environment by checking
if their value for
existential insecurity is
below the existential
security value of the
environment.

Exogenous network:
Algorithm reproducing
social networks observed
in the wild

The extent to which the
variable is influenced is
determined by a
time-dependent weighed
average.

Agent-centric: Comparison
of the accuracy of
predictions from
competing approaches
(baseline based entirely on
historical data, Linear
Regression, ABM) for
countries on which models
where trained/not trained

For a given country and a
given time period, the
ABM provides a more
accurate forecast of
changes in the existential
security and the religiosity
than the two alternative
approaches for a specific
time period for specific
country.
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Growiec et al.
(2018)

Identify the key
mechanism allowing the
social network structure to
affect individuals’ social
trust, willingness to
cooperate, economic
performance and social
utility, and trace how
these individual-level
outcomes aggregate up to
the society level.
(social integration)

Agents are matched in
pairs and engage in
economic interaction. The
matching is random but
the probability of a match
depends on the degree of
mutual trust between the
two agents, implying that
agents who are generally
more trustful are also
relatively more likely to
engage in economic
interaction.

Exogenous network:
Small-world (varying
density)

Probability that agent will
choose to cooperate is
negatively related to the
distance to the opposing
agent in the social network
and positively related to
the decision maker’s
bridging social capital.

Network-centric: Effect of
network density, inverted
probability of local
cliques, and the inverted
share of local cliques that
are family-based on
average economic
performance in the society

Societies that are better
connected, exhibit a lower
frequency of local cliques,
or have a smaller share of
family-based cliques,
record relatively better
aggregate economic
performance. As long as
family ties are sufficiently
valuable, there is a
trade-off between
aggregate social utility
and economic
performance, and small
world networks are then
socially optimal. In dense
networks and trustful
societies, there is a
trade-off between
individual social utility
and economic
performance; otherwise
both outcomes are
positively correlated in the
cross section.
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Hadzibeganovic
et al. (2018)

Study the effects of
phenotypic diversity,
network structure, and
rewards on cooperative
behaviour in a population
of reproducing artificial
decision makers playing
tag-mediated evolutionary
games.
(social integration)

Depending upon the tag
colour of the neighbouring
opponents, agents decide
whether to cooperate or
defect in Prisoner’s
Dilemma-like pairwise
interactions. Ethnocentric
agents will cooperate only
with neighbours who
share the same tag colour,
cosmopolitans will
provide help only to
others displaying a
different tag colour,
altruists will always
cooperate, and egoists will
always defect. Each
cooperation act is related
to a reduction of the
reproductive potential of
the donator and an
increase of the
reproductive potential of
the receiver.

Co-evolutionary networks:
Lattice (von Neumann),
small-world (based on
lattice network)
Networks change due to
reproduction and death

Agents chose one of their
neighbours to play
pairwise Prisoner’s
Dilemma and decide
whether to cooperate and
defect based on their
attitude which influences
the reproduction rate of
the receiver and
themselves.

Agent-centric/Network-
centric: Parameter
variation: Number of tag
colours, length of reward
frame
Comparison of
behavioural strategies
Comparison of network
structures

Small reward frames
promote unconditional
cooperation in
populations with both low
and high diversity. When
the reward frame is large,
there is a strong difference
between the frequencies of
conditional co-operators
populating rewired versus
non-rewired networks. In
a less diverse population,
the total number of
defections is comparable
across different network
topologies; in more
diverse environments
defections become more
frequent in a regularly
structured than in a
rewired, small-world
network of contacts.

Ke et al. (2008) Simulate language change
as a process of innovation
diffusion. Examine the
effect of four different
network types, different
types of learners and the
network size on the
diffusion.

Agents decide which
language (unchanged or
innovative) to use based
on the frequencies of users
of the two variants in their
network and the
functional values of the
languages.

Exogenous networks: Ring,
random, small-world,
scale-free

Agents evaluate the
frequencies of users of the
two variants of the
language in their
networks.

Agent-centric/Network-
centric: Effect of different
types of learners and
network size on the
diffusion
Comparison of network
structures

Innovations always diffuse
to the whole population as
long as the advantage of
the innovation over the
unchanged form is high
enough. The success rates
and the speed of the
diffusion vary across the
different network
structures. The presence
of statistical learners who
can learn and use both
linguistic variants
increases the probability
for linguistic innovations.
Population size has an
influence on the diffusion
only in regular networks.
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Keijzer et al.
(2018)

Analyse the implications
of one-to-many
communication (as
present e.g. in online
social networks) on the
population using
Axelrod’s model of
cultural dissemination as
an example.

The social influence
component of Axelrod’s
model of cultural
dissemination is adapted
to a one-to-many
communication:
Randomly selected agents
from the population
communicate one of their
features on which they
differ with at least one
neighbour.

Exogenous networks:
Lattice (Moore), spatial,
ring (rewired following an
algorithm which decreases
network transitivity while
preserving the degree
distribution)

Neighbours adopt the
feature with a probability
equal to the proportion of
traits that they share with
the communicating agent.

Network-centric:
Comparison of the
one-to-one and the
one-to-many
communication regime for
different scenarios in
different network
structures

One-to-many
communication fosters the
isolation in bigger
populations. Network
transitivity fosters the
emergence of isolated
individuals and cultural
clusters. These findings
hold for network
topologies that mimic the
structure of real social
networks.

Laifa et al.
(2018)

Study the consequences of
different trust dynamics
with forgiving and
unforgiving strategies
after an offence.
(social integration)

Offences occur between
two connected agents.
Agents can react on these
offences with two different
strategies: Either the
network is updated by
deleting the affected
relationships considering
neither relationships
characteristics nor
forgiveness or the trust
value is reduced.

Co-evolutionary network:

Initially random (size 102

and 103 and connection
probability 0.05 and 0.1);
links are weighted by trust
which is influenced by
offences that occur in the
network, links are deleted
if trust value falls below a
threshold

Between connected agents
a specific number of
randomly assigned
offences occur. Agents
react on these defences
and thereby modify the
network structure.

Agent-centric/Network-
centric: Effects of network
structure on average
degree, average
betweenness centrality
and density of the
networks after revaluating
trust with both forgiving
and unforgiving strategies

The average degree
decreases for all the
networks and with both
strategies. When the
number of links in a
network decreases, the
density of the network
declines as well. The
network density lessens
more for the first strategy,
where networks became
very sparse, compared to
the resulting networks
from the second strategy
in which they were
relatively dense. For
betweenness centrality,
oscillating curves can be
observed for all the
networks and with both
strategies.
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Lou-Magnuson
& Onnis (2018)

Simulate how human
languages may change
over time across a social
network of speakers.

Speakers select a signal
from their active
repertoire and present it
to their partner (hearer).
The Partners use their
passive repertoire to see if
they know that signal or
search the passive
repertoire for a
significantly close signal
of the same meaning. If a
signal in an agent’s passive
repertoire can be found
such that the signal being
shared with it is
intelligible, the agent adds
it to the passive repertoire
if not already present. If a
signal cannot be found in
the passive repertoire, the
speaker will try and repair
the communication by
using any other active
signals it possesses with
the same meaning. After a
set number of
communication events,
each agent undergoes a
replacement process that
simulates
intergenerational transfer.

Exogenous networks: Fully
connected, random
(different connection
probabilities),
hierarchical, scale-free

Agents exchange linguistic
signals in agent-agent
communication.

Network-centric: Effect of
transitivity (different
connection probabilities in
random networks) and
network topology
(complete, hierarchical,
scale-free, random
network) and network size
on linguistic reanalysis

Transitivity is critical for
the evolution of
compositional structure.
The hierarchical
patterning of scale-free
distributions is inhibitory.
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Lozano et al.
(2018)

Simulate Prisoner’s
Dilemma (PD) games
where reputation can be
faked and compare the
results to experimental
work. Simulate much
larger population sizes
over longer times and test
other model parameters to
see whether the observed
behaviour generalizes in
those conditions that
cannot easily be
conducted in experiments.

Agents receive a random
sequence of past actions to
determine their initial
cooperation index. Agents
receive information on the
cooperation index of their
current neighbours and
select cooperation or
defection as action for all
PD games with their
neighbours with
probability proportional
to the average cooperation
index of their neighbours.
In selected simulation
runs, cheater are
introduced that defect
with fixed probability.

Co-evolutionary network:
Random regular graph;
links deleted based on
how many times the agent
cooperated, new link
created randomly

Agents play PD games
with all their neighbours
and select cooperation or
defection based on the
average cooperation index
of their neighbours.

Agent-centric: Comparison
of simulated and
empirical results for real
and faked reputation
Parameter variation:
Number of participants,
time frame

Comparison between
numerical simulation
results and laboratory
experiment leads to good
qualitative fit. Larger
populations essentially
behave in the same
qualitative manner as the
small one, except that all
results have smaller
fluctuations.

Lu et al. (2009) Study how the community
structure of the
underlying graphs affects
the emergence of
meta-stable or long-living
opinion clusters.
Investigate how choosing
committing agents and
external influence
facilitate convergence to
global consensus.

Speakers transmit a word
from their lists to listeners
who add it to their list if
they do not know the
transmitted word or both
players delete all other
words and agree on
transmitted word if
listeners know it.

Exogenous networks:
Empirical data
(high-school friendship
network), small-world
with same number of
nodes, average degree and
clustering coefficient

Speaker transmit words to
randomly chosen listeners
from network.

Agent-centric/Network-
centric: Effect of different
selection methods for
committed agents and
strength of external
influence on community
structure
Comparison of network
structures

Networks with strong
community structure
hinder the system from
reaching global
agreement; the evolution
of the Naming Game in
these networks maintains
clusters of coexisting
opinions indefinitely.
Small number of
committing agents is
sufficient to facilitate an
exponential decay toward
global consensus of the
selected opinion. Global
external influence leads to
an increasing rate of
convergence.
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Neal & Neal
(2014)

Explore whether in
network formation respect
for diversity and sense of
community can both be
achieved following the
principles of homophily
and proximity.

Agents form links with
each other based on a
logistic selection function
depending on their
similarity and physical
distance weighted by the
direction and strength of
the tendency towards
homophily and proximity.

Endogenous network
formation

Agents establish links
based on their similarity
and physical distance and
their tendency towards
homophily and proximity.

Evaluation quantity:
Relationship between
diversity and sense of
community depending on
the weight given to the
direction and strength of
the tendency towards
homophily and proximity

It is not possible to
simultaneously promote
respect for diversity and
sense of community in a
world where relationship
formation is driven by
homophily and proximity.

Piedrahita et al.
(2018)

Analyse the contagion
dynamics that emerge in
networks when repeated
action is allowed, that is,
when actors can engage
recurrently in a collective
effort. Investigate how the
structure of
interdependence, the
variance in individual
propensities to activate
and the strength of social
influence affect contagion
and the emergence of
large-scale coordination.

Agents’ propensity to
participate in collective
events depends on their
intrinsic motivation (how
quickly they reach the
activation limit (and on
their social influence
(strength of signals
received from other
agents). When nodes
activate, they shift the
state of their neighbours
and reset their own state
back to the beginning
phase. If an actor is
activated, connected
actors’ activation increases
by a fixed amount.

Exogenous networks:
Random, ring,
small-world, scale-free

Agents influence their
neighbours when
activated towards a higher
level of activation.

Agent-centric: Effect of
intrinsic motivation and
social influence for
homogeneous and
heterogeneous
distribution of the
intrinsic motivation on
time to coordinate

Homogeneous networks
(degree distribution not
significantly skewed) are
more conducive to
coordination. There is a
critical value for social
influence for all topologies
and levels of intrinsic
motivation below which
actors do not achieve
coordination.
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Schlaile et al.
(2018)

Illuminate the influence of
particular social network
characteristics on the ALS
Ice Bucket Challenge’s
(IBC) diffusion.

The simulation is initially
seeded by five randomly
chosen initiators who
already performed the
IBC. Each agent who
accepted the challenge
nominates three of its
neighbours who have not
previously accepted the
IBC. Agents are resistant
against the challenge with
a factor drawn from a
random distribution in a
fixed interval. Each time
an agent is nominated, its
resistance value is reduced
by another value,
determined as the effect of
nomination. If an agent’s
resistance is reduced to
zero or lower, the agent
will accept the challenge.

Exogenous networks:
Scale-free, small-world,
random

Agents nominate three
neighbours from their
network to participate at
the challenge. The
nomination reduces their
resistance against the
challenge.

Agent-centric/Network-
centric: Parameter
variation: Mean resistance
against the challenge
Comparison of network
structures
Effect of average degree
and celebrities

The model can
qualitatively reproduce
central elements of the
empirically observed IBC’s
diffusion pattern. The IBC
has to reach a critical mass
of carriers in order to stall
prematurely. Networks
with a high average
clustering coefficient as
well as a moderate average
degree are beneficial for
the IBC meme’s diffusion
performance. The
assumption that hubs
have a higher influence on
others leads to a faster and
more wide-ranging
diffusion of the IBC in
networks exhibiting a
highly skewed degree
distribution.

Simão & Todd
(2002)

Study mate choice in
monogamous mating
systems and evaluate
performance and
robustness of different
agent strategies.

Agents decide on whether
to initiate relationship or
switch partner based on
(1) the age and quality of
the potential and current
partner and the focal
agent and (2) their
aspiration level.

Co-evolutionary network:
Pairs of male and female
meet at certain stochastic
rate, agents switch
between single and
courting state based on
the quality of the partner
and their aspiration level

Agents try to find optimal
partner based on the
properties of the other
agents and their aspiration
level.

Agent-centric: Comparison
of the efficiency of the
different mating strategies
Comparison of the
predictions of the model
with theories from social
sciences

Being able to switch
partners during a
courtship period is
superior to courtship
without partner switching.
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Son & Rojas
(2011)

Understand how team
networks evolve over time
and affect performance.
(social integration)

Agents participate in
social interactions with a
probability determined by
their familiarity towards
the other agent. Agents
choose whether to
cooperate or to defect
from a newly met agent
based on comparison of
the current payoff that
they are attaining from a
combination of existing
partners and the potential
payoff that they could
achieve by forming a new
relationship with the
candidate partners and
severing the least efficient
relationships.

Co-evolutionary network:
Social interactions with
probability depending on
familiarity, links created
and deleted based on
expected payoff,
maximum number of
connections limited

Agents get payoff from
relationships with other
agents which they try to
maximize. Agents’
behavioural dynamics and
overall network dynamics
co-evolve during
interaction. When two
agents meet, their
familiarity with one
another increases.

Agent-centric: Effects of
costs for relationships
with other agents from
same or different group
and for familiarity

The fewer individuals are
familiar with others in the
network, the more time it
takes for networks to
reach stable states. The
tendency of cohesion
increased as the effort to
form relationships with
outside partners rose. The
more effort needed to from
relationships with those
from other organizations,
the less efficient the
networks were.

Weng et al.
(2012)

Study whether
competition among ideas
may affect the popularity
of different memes, the
diversity of information
we are exposed to, and the
fading of our collective
interests for specific
topics.

Agents spread information
with fixed probability. The
information is either
chosen from the memory
of the agents (records
posted memes) or from
the screen (records
received memes).

Exogenous networks:
Random, sampled graph
from Twitter follower
network, empirical data
with only retweets

Spread of information
between connected agents
with probabilities
depending on the source
of the information

Network-centric: Effect of
network structures and
meme competition (length
of time window until
meme is removed) on
meme lifetime, meme
popularity, user activity
and breadth of user
attention

The massive heterogeneity
in the popularity and
persistence of memes can
be explained as deriving
from a combination of the
competition for our
limited attention and the
structure of the social
network, without the need
to assume different
intrinsic values among
ideas.

Zhuge et al.
(2018)

Generate both close and
somewhat close social
networks separately for a
synthetic population
containing individuals
and their attributes and
locations and compare the
networks to survey data
from Beijing, China.

Agents built and resolve
friendships based on a
utility function which
incorporates the similarity
between a pairs of agents
and the spatial closeness
of their residential
locations and workplaces.

Endogenous network
formation

A social network is
generated by fitting the
degree distribution and
the transitivity
distribution considering a
utility function of the
similarity between the
agents.

Evaluation quantity:
Generation of close and
somewhat close social
networks

Close and somewhat close
social networks generated
for Beijing exhibit a good
ability to match target and
generated distributions of
network degree and
transitivity.
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B Appendix of Chapter 3

B.1 Model documentation

In the following, we describe the main processes of the simulation model in a structured
form based on the ODD+D protocol (Müller et al., 2013). A conceptual diagram of the model
entities and their relationships is shown in Figure B.1.

I Overview
I.i Purpose
I.i.a What is the purpose of the study?

The purpose of the study is to assess the impact of microinsurance and informal safety
nets on the resilience of smallholders. We systematically compare the effectiveness of
formal insurance and informal risk-sharing to buffer income shocks given different eco-
nomic needs and characteristics of extreme events. We explicitly distinguish two types
of behavior of insured households with regard to private monetary transfers.

I.i.b For whom is the model designed?

Due to the stylized character of the model, it is primarily designed for the scientific
community to understand impacts of the combination of formal and informal insur-
ance. However, with adaptation to specific regions, it could be also valuable to increase
understanding of political decision-makers and insurance providers.

I.ii Entities, state variables, and scales
I.ii.a What kinds of entities are in the model?

There is a single type of agents representing smallholder households. Each household
is linked to other households in an undirected small-world network (Watts & Strogatz,
1998) with given number of neighbors and rewiring probability.

I.ii.b By what attributes (i.e. state variables and parameters) are these entities character-
ized?

• Budget: Current budget of a household determined by its initial budget, regular earn-
ings, regular expenses, budget loss due to shocks, insurance premium payment, insur-
ance payout in case of a shock and private monetary transfers to or from other house-
holds

• Insurance: Status of a household whether insured or not

• Shock affection: Status of a household whether affected income shocks or not

• Donation willingness: Status of household whether willing to transfer or not (see
III.iv.a for details)

• Transfer-behavior: Type of behavior that the household follows when asked for trans-
fers (see III.iv.a for details)
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Informal safety nets

Private monetary transfer

Regular earnings and expenditures

request

decision

transfer 

decision

+

-

-

-

triggers

+ -

Insurance

Income
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Household 

budget

+

Living costs

Shock event

Figure B.1: Conceptual diagram of the model showing the household budget, its main drivers and
their relationships. Long-dashed relations are only important for insured households, short-dashed
relations only for uninsured households.

• Links: Households are connected to other households via undirected links

I.ii.c What are the exogenous factors/drivers of the model?

Households are exposed to income shocks whose occurrence is determined stochasti-
cally.

I.ii.d If applicable, how is space included in the model?

Space is not explicitly included in the model. However, the small-world network al-
gorithm allows to create networks with varying levels of heterogeneity which can be
seen as roughly representing different spatial clustering in villages. Low rewiring prob-
abilities lead to highly clustered regular networks whereas high rewiring probabilities
create poorly clustered random networks.

I.ii.e What are the temporal and spatial resolutions and extents of the model?

The model uses discrete time steps. One time step (tick) represents one year. The time
horizon of the model is 50 years. Space is not explicitly included.

I.iii Process overview and scheduling
I.iii.a What entity does what, and in what order?

1. Initialization: Set up of households (initial budget, insurance status, donation willing-
ness) and small-world network

2. In every tick:

• All households (synchronous):

– Budget increases by income and decreases by annual living costs

– Insured households: Pay insurance premium

– Shock affected households: Budget decreases by shock intensity

– Insured households affected by shock: Receive payout

• All households (random order):
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– Households in need request transfers from randomly chosen households they
are connected to in the network

– Requested households transfer money to requesting households according to
transfer behavior

• Check for surviving households: If household’s budget is below zero, household
has to leave the system.

II Design Concepts
II.i Theoretical and Empirical Background
II.i.a Which general concepts, theories or hypotheses are underlying the model’s design
at the system level or at the level(s) of the submodel(s) (apart from the decision model)?
What is the link to complexity and the purpose of the model?

• We assume that households have access to formal insurance and traditional informal
safety nets to secure themselves against income shocks. These shocks can be idiosyn-
cratic shocks, hitting the households independently (such as health shocks), or covariate
shocks, affecting many households at the same time (such as drought shocks).

• Complexity results from the feedback between the dynamics of the budget of individual
households and monetary transfers between households in networks.

• By explicitly including two types of behavior of insured households with regard to pri-
vate monetary transfers, the model contributes to the debate of unintended side effects
of formal insurance schemes and helps to identify long-term effects and structural pe-
culiarities that influence the outcome.

II.i.b On what assumptions is/are the agents’ decision model(s) based?

The decision models for transfer provision are based on observations from case studies
and reflect behavior with and without solidarity of insured households.

II.i.c Why is a/are certain decision model(s) chosen?

Empirical observations show mixed results with respect to the transfer behavior of in-
sured households. Therefore, we have chosen two strategies of transfer decisions which
reflect behavior with and without solidarity towards uninsured households. In one sim-
ulation run, all households decide on their transfers according to the same strategy. For
the first strategy, all households show solidarity, i.e. they transfer whenever they can af-
ford it. In a second strategy, we assume that only uninsured households show solidarity
and contribute to informal risk-sharing whenever they can afford it; insured households
do not transfer at all. We have implemented the two decision rules to compare the ef-
fects of both behaviors on the resilience of smallholders.

II.i.d If the model/a submodel (e.g. the decision model) is based on empirical data, where
does the data come from?

Most parts of the model are not directly based on empirical data. The values of house-
hold characteristics are chosen in a range derived from literature on microinsurance
and informal transfer networks in different countries (for specific references see III.iv.b).
Furthermore, the combined parameter space for income, living costs, shock probability
and shock intensity is reduced based on economic constraints (for details see III.iv.c).

II.i.e At which level of aggregation were the data available?

Not applicable.
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II.ii Individual Decision-Making
II.ii.a What are the subjects and objects of decision-making? On which level of aggrega-
tion is decision-making modeled? Are multiple levels of decision-making included?

There is one level of decision-making, the household level. Households are the sub-
ject of decision-making. The monetary transfer provision from wealthy households to
households in need in the network is the object.

II.ii.b What is the basic rationality behind agents’ decision-making in the model? Do
agents pursue an explicit objective or have other success criteria?

• Transfer request: Each household’s objective is to maintain prosperity with a budget
above or equal to zero. Households with a budget below zero request help from other
agents with a budget above zero in their network.

• Transfer provision:

– Solidarity: Households transfer whenever they can afford it (i.e. have a budget
above zero). This implies that households may assume that the requesting house-
hold will return the transfer in the future if they need support themselves. Since,
in the simulated scenarios, insurance covers all losses, this will only occur for unin-
sured households.

– No solidarity: Only uninsured households show solidarity and contribute to in-
formal risk-sharing whenever they can afford it (i.e. have a budget above zero);
insured households do not transfer at all. This implicitly includes that they are
(1) not dependent on reciprocal behavior of other households because shocks are
fully covered by the insurance and (2) not willing to transfer as they have more
costs due to the insurance that uninsured households avoided.

II.ii.c How do agents make their decisions?

Agents’ decision rules are implemented as if-then rules.

• Transfer request: Households in need randomly pick one of the households in
their network with budget above zero. If the request cannot be fulfilled by one sin-
gle agent, households continue requesting the missing amount from other agents
in their network.

• Transfer provision: Households that have been requested for a transfer decide
how much to transfer based on one of two decision rules:

– Solidarity: The transfer amount is determined by the request and their own
budget. The minimum budget of a donating household after the transfer is
zero.

– No solidarity: Insured households do not transfer at all; uninsured house-
holds show solidarity. In this case, the transfer amount is determined accord-
ing to the same rules as for solidarity.

II.ii.d Do the agents adapt their behavior to changing endogenous and exogenous state
variables? And if yes, how?
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Yes. Households adapt the transfer amount to the requested amount and their own
budget. It is incorporated that donors do not put themselves at financial risk through
transfers. Therefore, the minimum budget of a donor after a transfer is zero. On the
other hand, the household in need should not get too rich through the help of others.
The maximum budget that can be achieved through transfers is thus also zero.

II.ii.e Do social norms or cultural values play a role in the decision-making process?

Transfer behavior with solidarity is implicitly based on expected reciprocity.

II.ii.f Do spatial aspects play a role in the decision process?

No, space is not explicitly included in the model.

II.ii.g Do temporal aspects play a role in the decision process?

Households make decisions based only on the current state of the system.

II.ii.h To which extent and how is uncertainty included in the agents’ decision rules?

Uncertainty is not included in the decision-making.

II.iii Learning
II.iii.a Is individual learning included in the decision process? Howdo individuals change
their decision rules over time as consequence of their experience?

No, learning is not included.

II.iii.b Is collective learning implemented in the model?

No.

II.iv Individual Sensing
II.iv.a What endogenous and exogenous state variables are individuals assumed to sense
and consider in their decisions? Is the sensing process erroneous?

Households adapt their decision-making to variables of households they are linked to
in the network (see II.iv.b).

II.iv.b What state variables of which other individuals can an individual perceive? Is the
sensing process erroneous?

Requested households sense the amount asked for by the household in need. The sens-
ing is not erroneous, i.e. the households always perceive the true requested amount.
Households in need do not know the insurance status of their neighbors.

II.iv.c What is the spatial scale of sensing?

Not applicable directly as space is not explicitly included in the model. Concerning
sensing in the network, households include their direct neighbors in the network only.

II.iv.d Are the mechanisms by which agents obtain information modeled explicitly, or are
individuals simply assumed to know these variables?

Agents are assumed to know the values of the sensed variables.

II.iv.e Are costs for cognition and costs for gathering information included in the model?

No.
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II.v Individual Prediction
II.v.a Which data uses the agent to predict future conditions?

Households do not predict future conditions.

II.v.b What internal models are agents assumed to use to estimate future conditions or
consequences of their decisions?

Not applicable.

II.v.c Might agents be erroneous in the prediction process, and how is it implemented?

Not applicable.

II.vi Interaction
II.vi.a Are interactions among agents and entities assumed as direct or indirect?

Interactions between households are direct. Households in need request money from
households they are linked to in the network which then decide how much to transfer.

II.vi.b On what do the interactions depend?

Interactions depend on the budget of the household in need and the requested house-
hold as well as the transfer decision and insurance status of the requested household.

II.vi.c If the interactions involve communication, how are such communications repre-
sented?

Communication is represented by transfer request and provision. The transferred
amount is reduced from the budget of the giving household and added to the budget of
the household in need.

II.vi.d If a coordination network exists, how does it affect the agent behavior? Is the struc-
ture of the network imposed or emergent?

The network does not directly influence the behavior, but requests for transfers are only
possible between directly linked households. The network structure is imposed during
the initialization of the model and is kept constant (i.e. static) for a simulation run.

II.vii Collectives
II.vii.a Do the individuals form or belong to aggregations that affect, and are affected by,
the individuals? Are these aggregations imposed by themodeler or do they emerge during
the simulation?

Households are connected in a network that influences their interaction range for mon-
etary transfers. The network is imposed during the initialization of the model and is
kept constant (i.e. static) during the simulation run. The network is based on a stylized
small-world network.

II.vii.b How are collectives represented?

Collectives are represented as a network.

II.viii Heterogeneity
II.viii.a Are the agents heterogeneous? If yes, which state variables and/or processes differ
between the agents?
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All agents have the same set of state variables and processes. A fixed proportion of the
households is insured, the rest is uninsured. The population is homogeneous with all
households having the same initial budget, income level and annual living costs.

II.viii.b Are the agents heterogeneous in their decision-making? If yes, which decision
models or decision objects differ between the agents?

Households take the same decisions on whom to ask for transfers and how much to
transfer. However, based on their insurance status, households’ choices on transfer pro-
vision can be heterogeneous (see II.ii.b or III.iv.a).

II.ix Stochasticity
II.ix.a What processes (including initialization) are modeled by assuming they are ran-
dom or partly random?

• Insurance status is assigned randomly.

• Income shocks occur randomly (different for idiosyncratic and covariate shocks, see
III.iv.a).

• Households in need request transfers from households randomly chosen among the
households they are linked to in the network.

II.x Observation
II.x.a What data are collected from the ABM for testing, understanding, and analyzing it,
and how and when are they collected?

For parameter variations conducted with the R-package nlrx (Salecker et al., 2019), we
collect for every time step the states of (NetLogo variable names are given in brackets):

• Resilience: Fraction of surviving households (fraction–active) and surviving unin-
sured households (fraction–active–uninsured)

• Budget: Total budget of all (total–budget), insured (total–budget–insured) and
uninsured households (total–budget–uninsured) and mean budget of all (mean–
budget), insured (mean–budget–insured) and uninsured households (mean–budget–
uninsured)

• Transfer requests: Number of households that need help per time step (requesting–
households), the amount of money they need per time step (total–money–needed)
and the total amount of money needed up to that time step (cum–money–needed)

• Transfer provision: Total transfer given up to that time step by all (total–trans-
fer), active (total–transfer–active), insured (total–transfer–given–insured), uninsured
(total–transfer–given–uninsured) and uninsured active households (total–transfer–
given–uninsured–active) and transfer received by uninsured active households (to-
tal–transfer–received–uninsured–active)

• Inequality: GINI coefficient of all (get–gini), insured (get–gini–insured) and unin-
sured households (get–gini–uninsured)

For each household, we collect for every time step:

• Budget: The total budget of a household (budget) and if a households’ budget is
above or equal to zero (active)
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• Transfer: If a household is willing to provide transfers (donation–willingness),
the total amount of money received by (received) and transferred to (given) other
households, the total number of transfers (total–donates) and transfers per time
step (current–donates) and the total number of requests (total–requests) and requests
per time step (current–requests)

• Shock: Whether a household is affected by a shock in that time step (shock–affected)
and how often a household was affected by a shock (shock–affected–sum)

For each link, we collect for every time step:

• Transfer: The total amount of money (total–flow) and the amount per time step
(current–flow) transferred between the two households in the direction of the link
and the number of transfers on that link (number–flows)

• Resilience: If a link is active, i.e. if both connected households have a budget
above zero (active–link)

In the graphical user interface, we plot the values of the following variables for each
time step:

• Resilience: Fraction of surviving households (fraction–active) and surviving unin-
sured households (fraction–active–uninsured)

• Budget: Mean budget of all (mean–budget), insured (mean–budget–insured) and
uninsured households (mean–budget–uninsured)

• Transfer provision: Current transfer per time step given by all, insured and unin-
sured households

• Inequality: GINI coefficient of all (get–gini), insured (get–gini–insured) and unin-
sured households (get–gini–uninsured)

II.x.b What key results, outputs or characteristics of the model are emerging from the
individuals? (Emergence)

We can observe the effectiveness of formal and informal insurance given different eco-
nomic needs (income, living costs), characteristics of extreme events (shock probability,
shock intensity, type of shock), transfer behavior (solidarity, no solidarity) and network
properties (average degree, rewiring probability) on the resilience of the households,
i.e. the fraction of surviving households, and their budget.

III Details
III.i Implementation Details
III.i.a How has the model been implemented?

The model has been implemented in NetLogo 6.1.1.

III.i.b Is the model accessible and if so where?

The model is available at CoMSES Net (Will et al., 2021c).

III.ii Initialization
III.ii.a What is the initial state of the model world, i.e. at time t = 0 of a simulation run?

At the beginning of each simulation, households are initialized with initial budget and
insurance status. Shock type and households’ transfer behavior is defined according to
the chosen scenarios (see III.iv).
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III.ii.b Is initialization always the same, or is it allowed to vary among simulations?

Initialization varies between different scenarios (for details of the implementation of
the scenarios see III.iv.a).

III.ii.c Are the initial values chosen arbitrarily or based on data?

Initial values are arbitrarily chosen.

III.iii Input Data
III.iii.a Does the model use input from external sources such as data files or other models
to represent processes that change over time?

The model does not use input data to represent time-varying processes.

III.iv Submodels
III.iv.a What, in detail, are the submodels that represent the processes listed in ‘Process
overview and scheduling’?

1. Setup processes
Function name: setup

a) Household setup
Function name: setup–households
NH households are created and initialized with an initial budget Y 0. Initial budget
and income level is the same for all households. A shock series is determined
for the simulated time span T . The calculation of the shock series is different for
idiosyncratic shocks hitting the households independently and covariate shocks
affecting many households at the same time:

• Idiosyncratic shocks: For each household, the shock series is determined in-
dividually. Shocks occur with probability ps.

• Covariate shocks: A shock series is determined for the whole village. Shocks
occur with probability pV = ps/pH. In time steps where the village is affected
by a shock, individual households are affected with probability pH. This re-
sults in an overall shock probability ps = pV × pH for an individual house-
hold. We distinguish between cases in which all households without excep-
tion are affected by the shock (pH = 1) and cases in which some households
are exempted (pH = 0.8), for example by a more favorable geographical loca-
tion in case of floods or an agricultural management strategy more adapted to
drought risks.

To make the strategies comparable, in one repetition the shock series of one spe-
cific household is the same for every risk-coping instrument.

b) Network setup
Function name: create–small–world–network
A small-world network is generated using the generate–watts–strogatz primitive
in the NetLogo Nw Extension which is based on theWatts-Strogatz model (Watts &
Strogatz, 1998). Essentially, the algorithm creates a ring of households with each
node connected to NN nodes on either side. Each link is rewired with rewiring
probability pr. To allow for the control of the transfers in both directions of a
link separately, the algorithm is slightly modified so that directed links to NN/2
households are created on one side of the agent. After rewiring, a link in the
opposite direction is established for each existing link. This leads to an undirected
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small-world network with average degree NN. Based on data from Ethiopia, a
household is on average willing to transfer to 3.8 households (Takahashi et al.,
2018). Therefore, we have chosen an average neighborhood size of NN = 4. To
consider the effects of more or less neighbors, we additionally present the results
for NN = 8 and NN = 2. We compare two types of spatial clustering with low
(pr = 0.2) and high (pr = 0.8) rewiring probability.

c) Insurance targeting
Function name: insurance–take–up
An insurance take-up rate γ is given. Among all households γ×NH (rounded down
if necessary) are randomly selected to be insured. Insured households insure their
complete income.

d) Donation willingness
Function name: set–donation–willingness
If transfers between households are considered, households’ willingness to pro-
vide transfers is set to 1 for uninsured households and insured households show-
ing solidarity and 0 for insured household not showing solidarity. For the refer-
ence case where no transfers are considered, households’ willingness to provide
transfers is set to 0 for all households.

2. Processes in every time step
Function name: go
Every time step is divided into two phases. In the first phase, households execute pro-
cesses without interaction in the network. The processes run sequentially and in the
following order: regular earning, regular expenses, insurance premium payment, bud-
get loss due to shocks, and insurance payout. In the second phase, after all households
have completed the first one, households are selected in random order to execute trans-
fer requests if necessary. Since the insurance covers all losses, only uninsured house-
holds may get into the situation of having to request transfers from the neighbors with
whom they have social ties. Budgets of households in need and households providing
transfers are updated after each transfer according to the amount received and pro-
vided. At the end of each time step, households whose budget is less than zero have to
leave the system.

Phase I:

a) Regular earnings
Function name: annual–income
Households add a fixed amount I to their budget as annual income.

b) Regular expenses
Function name: annual–consumption
Households consume a fixed amount C of their budget to cover their annual living
costs.

c) Budget loss due to shocks
Function name: shock–loss
Shocks occur with intensity S . If according to its individual shock series a house-
hold is affected by a shock, the budget of that household is reduced by this amount.

d) Insurance premium and payout
Insured households insure their complete income.
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• Payout
Function name: insurance–payout
The insurance covers the actual losses a household suffers from. The payout α
in case of a shock is α = S .

• Premium
Function name: insurance–premium
The insurance is actuarially fair. Insured households have to pay a yearly pre-
mium β equal to the expected payout: β = ps × S .

Phase II: Informal monetary transfers
Function name: informal–transfers

a) Transfer request
Function name: transfer–request
Households request monetary transfers from households they are linked to in the
network if their budget is below zero. A requesting household i requests a transfer
amount Ti,req that covers its debts Yi : Ti,req = |Yi |. A household in need can ask
households in its network for help which have a budget above zero. The household
randomly picks one of the possible households. The budgets are updated after
every transfer. Households continue to ask until they obtain the requested amount
or until no more households are able to support them.

b) Transfer provision
Function name: transfer–money, transfer–amount
Households are potential donors if their budget Yj is above zero. Depending on
the scenario, all households show solidarity or only uninsured households show
solidarity and insured households do not transfer. Households in need do not
know the insurance status of their neighbors.

• Solidarity: All potential donors are willing to transfer if requested. If the
requested amount is smaller than their own budget, the amount transferred
Ti,j equals the requested amount Ti,req, otherwise they transfer their complete
budget Yj : Ti,j =min{Yj ;Ti,req}

• No solidarity: Potential donors that are uninsured behave as in the solidarity
case. Insured households do not transfer.

c) Household budget equation
All processes sum up to the following equation for the budget Yi(t) of household i

at time step t:

Yi(t) =























Yi(t − 1) + I −C − β − Si +αi +
∑

j∈Ni

Tij (t) for insured HH

Yi(t − 1) + I −C − Si +
∑

j∈Ni

Tij (t) for uninsured HH

with income I , annual living costs C and premium β. The shock intensity Si equals
S if a household is affected by a shock and is zero otherwise. The same holds true
for the insurance payout αi . For t = 1 the budget of the previous time step t − 1 is
given by the initial budget Y 0.
Ni denotes all households that share a link with household i and Ti,j (t) is the trans-
fer between households i and j at time step t. Transfers can be positive, negative
or zero for uninsured households (receiving and providing transfers) and negative
or zero for insured households (only providing transfers).
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d) Check for surviving households
If a household’s budget is below zero at the end of a time step, the household has
to leave the system.

III.iv.b What are the model parameters, their dimensions and reference values?

Parameter Description NetLogo
name

Unit Standard
value/
range

Reference

T Number of ticks that
the model runs

timesteps Years 50 –

NH Number of households
in the system

number–
households

Unitless 50 –

NN Neighborhood size
(small-world network)

neighbor-
hood–
size

Unitless 2, 4, 8 Takahashi
et al. (2018)

pr Rewiring probability
(small-world network)

rewire–prob Unitless
(rate)

0.2, 0.8 –

I Annual household
income

income–lvl Norma-
lized to
1

1 –

Y 0 Initial budget budget–init Unitless,
related
to I

0 –

γ Insurance take-up rate insurance–
take–up–
rate

Unitless
(rate)

0, 0.3, 0.6 Takahashi
et al. (2018)

C Annual living costs consump-
tion–
lvl

Unitless,
related
to I

0.7 – 0.9 Takahashi
et al. (2016)
and
Matsuda
et al. (2019)

ps Probability for shock
occurrence

shock–prob Unitless
(rate)

0.1 – 0.3 Geng et al.
(2018) and
Anderberg
& Morsink
(2020)

pV Probability for shock
occurrence at village
level (covariate shock)

covariate–
shock–prob–
vlg

Unitless
(rate)

pV = ps/pH –

pH Probability that
individual households
are affected by a shock
if the village is affected
(covariate shock)

covariate–
shock–prob–
hh

Unitless
(rate)

0.8, 1 –

S Shock intensity, i.e.
budget loss due to
shock

shock–
intensity

Unitless,
related
to I

0.2 – 1 –
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III.iv.c How were submodels designed or chosen, and how were they parameterized and
then tested?

The different decision submodels were chosen to build a “virtual lab” to test how trans-
fer decisions influence overall welfare of the population and if different behavioral mod-
els lead to different outcomes. The parameter range for the network model has been
adapted to literature values (see III.iv.b). The combined parameter ranges for income I ,
living costs C, shock probability ps and shock intensity S need to meet two constraints:
(1) Shock intensity must be high enough to make financial protection necessary and (2)
formal insurance must be affordable. The resulting reduced parameter space has been
adapted to economic constraints from literature values (for resulting parameter ranges
see III.iv.b).

B.2 Parameter selection

To assess the impact of formal and informal insurance on the resilience of smallholders, the
model should depict conditions in which both instruments are important and can be used
effectively. This implies (1) that the shock intensity should be high enough to make financial
protection necessary and (2) that formal insurance should be affordable. To select parameter
combinations for living costs C, shock probability ps and shock intensity S that fulfill these
constraints, we calculate the budget change of a household per time step depending on its
insurance state and the occurrence of a shock (see Table B.1). Based on the probability ps
with which each of these cases occur, the expected value of budget change without informal
transfers equals E[∆Y ] = I − C − β for an insured household and E[∆Y ] = I − C − ps × S for
an uninsured households. As the insurance is assumed to be fair (β = ps × S), the expected
value E[∆Y ] is the same for insured and uninsured households. Based on the expected value
we can select cases that are suitable for the analysis. We exclude parameter combinations
with E[∆Y ] < 0, as in this situations insured households lose money in every time step which
would contradict the intention of insurance to protect household from monetary losses. We
furthermore exclude combinations for which uninsured households do not have a negative
budget change in case of a loss, i.e. we exclude cases with E[∆Y ] > 0 and I − C − S > 0.
In these cases, risk-coping instruments are not needed. Figure B.2 graphically shows the
resulting parameter space. For the simulation, we use values with spacing of 0.1 for the three
dimensions living costs C, shock probability ps and shock intensity S .

Table B.1: Budget change of a household per time step depending on its insurance state and the
occurrence of a shock. Budget change is calculated based on the annual income I , living costs C,
shock intensity S , premium β and payout α.

Shock No shock

Insured I −C − S +α − β I −C − β

Not insured I −C − S I −C

Additionally to the mathematical restrictions, we constrain the parameters with respect to
ecological and economic observations. We assume subsistence farmers that need consume
a large proportion of their income to cover their living costs. Studies for livestock farmers
in Ethiopia show, for example, that households consume between 69% (322 Ethiopian Birr
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Shock probability ps = 0.1 Shock probability ps = 0.2 Shock probability ps = 0.3
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Figure B.2: Representation of the parameter space that results from assumptions for reasonable bud-
get changes of a household per time step. White lines connect parameter combinations with equal
expected value of budget change E[∆Y ]. The parameter space is divided in three main zones: For
parameter combinations below the dotted line E[∆Y ] > 0 and I − C − S > 0 applies; for parameter
combinations above the dashed line E[∆Y ] < 0 applies. Parameter combinations in between those two
zones are suitable for the analysis. Dots represent parameter combinations that fulfill the additional
ecological and economic constraints (0.1 ≤ ps ≤ 0.3,0.7 ≤ C < 1). These parameter combinations are
selected for the simulation.

mean monthly per capita consumption with 467 Ethiopian Birr mean monthly per capita
income (Takahashi et al., 2016)) and 81% (mean annual household consumption 21,482
Ethiopian Birr with annual household income 26,631 Ethiopian Birr (Matsuda et al., 2019))
of their income. We therefore restrict the parameter for living costs to 0.7 ≤ C < 1. We fur-
thermore assume shock probabilities in a range of 0.1 ≤ ps ≤ 0.3 which relate to empirically
observed income losses. According to a study in Ethiopia, for example, the probability to
lose 25-50% of the crop yield was on average 21% (Anderberg & Morsink, 2020). The rate
of health shocks is similarly high. In a survey conducted in Kenya, households denoted to
experience a health shock in 26.6% of the weeks in one year (Geng et al., 2018). We do
not include any further restrictions for shock intensity S to cover a broad range of possible
outcomes. Based on suitable expected values, values for shock probabilities ps and levels of
annual living costs C, shock intensity S is within 0.2 ≤ S ≤ 1. We divide all parameter ranges
in equidistant steps of 0.1, which results in 52 reasonable parameter combinations that meet
the constraints.

B.3 Additional results for idiosyncratic shocks (selected
parameter combination)

We present additional results for idiosyncratic shocks, i.e. shocks that occur for all house-
holds independently with shock probability ps. Tomake the different risk-coping instruments
comparable, for each household the order of shocks is determined at the beginning of each
simulation run. This individual shock series is equal for the same parameter combination
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and random seed independent of the network characteristics and risk-coping instruments
that are analyzed. We present simulation runs over 50 years for one specific parameter com-
bination of income I , living costs C, shock probability ps and shock intensity S (I = 1, C = 0.8,
ps = 0.3, S = 0.6). All results show the mean over 100 repetitions. The outcomes can be com-
pared to the observations shown in the main text where results for a small-world network
with rewiring probability pr = 0.2 and an average number of four neighbors (NN = 4) are
shown. Here, we analyze the fraction of surviving households (Figure B.3), the fraction of
surviving uninsured households (Figure B.4), the total transfer (Figure B.5) and the budget
per surviving household (Figure B.6) for (a) higher rewiring probability, (b) smaller and (c)
larger average degrees.

B.3.1 Fraction of surviving households

We observe that rewiring probability (Figure B.3A) has almost no effect on the survival rates
n. Only when all households show solidarity and 60% of the households are insured slightly
more households survive than for a low rewiring probability. In the 60% insurance scenario,
the survival rate is slightly lower when only uninsured households show solidarity. As even
with higher rewiring probability, the average number of neighbors remains at NN = 4, the
similar survival rates show that, in most cases, households can rely on the same number of
helping households. Only if a large number of households is insured, some households ben-
efit from a higher number of neighbors, which can result from a high rewiring probability.
With a higher number of neighbors, the small contributions of insured households can more
easily sum up to effective contributions. This suggests that the average number of neigh-
bors could play an important role. We have therefore investigated which effects a smaller
(Figure B.3B) and larger (Figure B.3C) average degree than that presented in the main text
(NN = 4) has on the survival rate. As expected, a low number of neighbors (NN = 2) clearly
lowers the number of households that manage to stay in the system whereas a larger number
of neighbors (NN = 8) helps more households to survive. This is reasonable, since when a
household in need is connected to more households, the chance that enough neighbors can
and are willing to help is higher. Furthermore, the chance that even small contributions sum
up to helpful transfers increases with more neighbors.

B.3.2 Fraction of surviving uninsured households

When focusing the analysis on the fraction of surviving uninsured households among the
20 households that are uninsured in every scenario, we again observe that a higher rewiring
probability (Figure B.4A) has only small effects. When changing the average degree (Figure
B.4B, Figure B.4C), we observe that this influences, on the one hand, the fraction of surviving
uninsured households as already observable for the fraction of surviving households and,
on the other hand, the effect of solidarity from insured households. The higher the average
number of neighbors, the larger is the difference between uninsured households surviving
with solidarity of insured households and without. This is due to the fact that when a house-
hold in need is connected to more other households, contributions of insured households that
are potentially smaller than those of uninsured households more easily sum up to effective
contributions.
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Figure B.3: Fraction of surviving households for different risk-coping instruments and insurance rates
(γ = 0%, γ = 30%, γ = 60%) with (A) high rewiring probability (NN = 4, pr = 0.8), (B) small average
degree (NN = 2, pr = 0.2) and (C) large average degree (NN = 8, pr = 0.2).
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Figure B.4: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for different risk-coping instruments with insurance rates γ and (A) high rewiring
probability (NN = 4, pr = 0.8), (B) small average degree (NN = 2, pr = 0.2) and (C) large average degree
(NN = 8, pr = 0.2).

B.3.3 Total transfer

The total transfer received and given by the 20 households that are uninsured in every sce-
nario per time step underlines the observations for the survival rates of uninsured households
for different network conditions. The transfers in a network with high rewiring probability
(Figure B.5A) are, as expected from the similar survival rates, in the same range than those
provided in a network with small rewiring probability. For a smaller average degree (Figure
B.5B) than that presented in the main text, we observe less transfers given and received by
uninsured households, for a larger average degree (Figure B.5C) correspondingly more. The
trends that were observed for the baseline case presented in the main text hold, however, true
for all additional network scenarios. The fact that households have to provide lower transfers
when insured households show solidarity is even more pronounced with many neighbors.
This is due to the fact that in this case the transfers tend to be spread over several shoulders
and even small contributions can be effective.

B.3.4 Budget per surviving household

The observations for the total transfer that uninsured households receive and give for the dif-
ferent scenarios are directly related to the budget per surviving household. We compare the
budget based on the 20 households that are uninsured in every scenario and the 15 house-
holds that are insured in every scenarios (except γ = 0%). The straight line shows the max-
imum budget that an insured household can receive as reference value. As the case with no
informal transfers is independent of the network characteristics, the budget per surviving
household is in this case not affected by changes of rewiring probability or neighborhood
size. As in all other output measures, budget as well is not affected by a larger rewiring prob-
ability (Figure B.6A). However, smaller (Figure B.6B) and larger (Figure B.6C) neighborhood
sizes have effects on the budgets of uninsured and insured households. We observe that the
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Figure B.5: Total transfer received and given by all 20 households that are uninsured in every scenario
per time step. Results show (A) high rewiring probability (NN = 4, pr = 0.8), (B) small average degree
(NN = 2, pr = 0.2) and (C) large average degree (NN = 8, pr = 0.2).
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budget level of uninsured households increases with fewer number of neighbors. However,
as for the case without informal transfers this only shows that some households suffer shocks
in an order which makes it possible to accumulate a large budget. Since in this case only a
few uninsured households survive, this still has an overall negative impact on resilience of
uninsured households. Furthermore, we observed in the scenario presented in the main text
withNN = 4 that the budget of uninsured households is only slightly affected by the solidarity
of insured households. More neighbors lead to an increased budget of uninsured households
in the case of solidarity compared to the case where insured households do not contribute. A
larger risk-sharing group has therefore positive effects not only on the survival rate of unin-
sured households but also helps them to secure their financial resources. However, as this
effect is largely dominated by the contributions of insured households this comes at the cost
of lower budget in this subgroup. As transfers are not paid back, insured households will
end up with budgets far lower than that of uninsured households which might affect their
willingness to contribute to informal risk-sharing arrangements.

B.4 Additional results for idiosyncratic shocks (all parameter
combinations)

To investigate the transferability of these observations to different external conditions, i.e.
other levels of living costs and increased or decreased shock probability and intensity, we
evaluated the status of the system for all 52 parameter combinations that were found to be
economically feasible. We compared the effects of 50 years of informal transfers (γ = 0%) on
the survival rate of uninsured households to the situation 50 years after the introduction of
insurance with low (γ = 30%) and high (γ = 60%) insurance rates, respectively. In the main
text, we presented the results for a fixed income (I = 1) level of living costs (C = 0.8). Here, we
show the results for lower (Figure B.7) and higher (Figure B.9) annual expenses. Additionally,
we present the survival rates of uninsured households for a higher rewiring probability and a
smaller or larger average network degree for low (Figure B.7), medium (Figure B.8) and high
(Figure B.9) level of living costs. To allow the best possible comparison between the different
risk-coping instruments and insurance rates, we have again limited the analysis to the 20
households that are uninsured in the scenarios with highest insurance rate. If a panel is left
blank, the parameter combination is not included in this set and therefore not selected for the
analysis. Results show the mean over 100 repetitions of the number of surviving uninsured
households at the last simulation step (t = 50).

The trends which we observed in the analysis for the selected parameter combination re-
mains. A higher rewiring probability has also for other parameter combinations only slight
effects on the survival rates of uninsured households. A smaller number of neighbors leads
to lower survival rates of uninsured households, with a larger number of neighbors more
uninsured households survive.

B.5 Additional results for covariate shocks

We present additional results for covariate shocks, i.e. shock events that affect many house-
holds in a village. To make the different risk-coping instruments comparable, the order of
shocks is determined at the beginning of each simulation run. Therefore, a shock series with
shock probability pV = ps/pH is created for the whole village. In time steps where the village
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Figure B.6: Budget per surviving household calculated based on the 20 households that are uninsured
in every scenario and the 15 households that are insured in every investigated scenario (except γ =
0%). The straight line shows the maximum budget that an insured household can receive as reference
value. Results show (A) high rewiring probability (NN = 4, pr = 0.8), (B) small average degree (NN = 2,
pr = 0.2) and (C) large average degree (NN = 8, pr = 0.2).
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Figure B.7: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for idiosyncratic shocks and low level of living costs (C = 0.7) for (A) average degree
and rewiring probability as in main text (NN = 4, pr = 0.2), (B) high rewiring probability (NN = 4,
pr = 0.8), (C) small average degree (NN = 2, pr = 0.2) and (D) large average degree (NN = 8, pr = 0.2).
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Figure B.8: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for idiosyncratic shocks and medium level of living costs (C = 0.8) for (A) high
rewiring probability (NN = 4, pr = 0.8), (B) small average degree (NN = 2, pr = 0.2) and (C) large
average degree (NN = 8, pr = 0.2).
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Figure B.9: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for idiosyncratic shocks and high level of living costs (C = 0.9) for (A) average degree
and rewiring probability as in main text (NN = 4, pr = 0.2), (B) high rewiring probability (NN = 4,
pr = 0.8), (C) small average degree (NN = 2, pr = 0.2) and (D) large average degree (NN = 8, pr = 0.2).
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is affected by a shock, individual households are affected with probability pH. This individual
shock series is equal for the same parameter combination and random seed independent of
the network characteristics and risk-coping instruments that are analyzed.

In the main text, we have shown the survival rate of uninsured households for networks
with average number of neighbors NN = 4 and rewiring probability pr = 0.2. Among the 52
parameter combinations that were found to be economically feasible we selected the results
for a medium level of living costs (C = 0.8). We have presented the results for within-village
shock probability pH = 0.8. In this case an individual household is affected by a shock with
80% probability if a shock event occurs at village level. Here, we additionally include the
result for the more extreme case of pH = 1 where all households are affected simultaneously
if a shock occurs.

We present the full parameter set divided according to the level of living costs C with C = 0.7
(Figure B.10), C = 0.8 (Figure B.11) and C = 0.9 (Figure B.12). If a panel is left blank, the
parameter combination is not selected for the analysis. Results show the mean over 100
repetitions of the number of surviving uninsured households at the last simulation step (t =
50).

We observe that, as expected, a higher within-village shock probability leads to lower survival
rates of uninsured household. In this case, informal risk-coping is only possible by transfers
from insured households which is not as effective as if at least some uninsured households
can contribute, too. When all households are affected by shocks simultaneously and insured
households do not show solidarity, the fraction of insured households has obviously no in-
fluence on the survival rate of uninsured households (lower rows in panels for pH = 1).
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Figure B.10: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for covariate shocks (NN = 4, pr = 0.2) and low level of living costs (C = 0.7). Upper
rows show the results for solidarity between all households, lower rows show the results for solidarity
between uninsured households only when (A) 80% of the households (pH = 0.8) and (B) all households
are affected by a shock at village level (pH = 1).

0.91

0.95

0.99

0.91

0.92

0.96

0.8

0.88

0.95

0.78

0.84

0.91

0.72

0.78

0.87

0.66

0.75

0.84

0.57

0.7

0.8

0.56

0.66

0.77

0.91

0.91

0.91

0.91

0.8

0.8

0.78

0.78

0.72

0.72

0.66

0.66

0.57

0.57

0.56

0.56

0.91 0.91 0.8 0.78 0.72 0.66 0.57 0.56

0.82

0.9

0.98

0.76

0.81

0.9

0.6

0.71

0.82

0.53

0.6

0.72

0.37

0.48

0.6

0.29

0.36

0.47

0.13

0.18

0.28

0.82

0.82

0.76

0.76

0.6

0.6

0.53

0.53

0.37

0.37

0.29

0.29

0.13

0.13

0.82 0.76 0.6 0.53 0.37 0.29 0.13

0.68

0.82

0.96

0.58

0.64

0.74

0.26

0.42

0.58

0.17

0.19

0.24

0.68

0.68

0.58

0.58

0.26

0.26

0.17

0.17

0.68 0.58 0.26 0.17

Shock probability ps = 0.1 Shock probability ps = 0.2 Shock probability ps = 0.3

S
o
lid

a
rity

N
o
 s

o
lid

a
rity

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

30

60

0

30

60

Shock intensity

In
s
u

ra
n

c
e

 r
a

te
 (

%
)

0.00 0.25 0.50 0.75 1.00

Fraction of surviving uninsured households: 

Figure B.11: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for covariate shocks (NN = 4, pr = 0.2) and medium level of living costs (C = 0.8)
when all households are affected by a shock at village level (pH = 1).
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Figure B.12: Fraction of surviving uninsured households among the 20 households that are uninsured
in every scenario for covariate shocks (NN = 4, pr = 0.2) and high level of living costs (C = 0.9) when
(A) 80% of the households (pH = 0.8) and (B) all households are affected by a shock at village level
(pH = 1).
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C.1 Model documentation

The main processes of the simulation model described in a structured form based on the
ODD+D protocol (Müller et al., 2013) can be found in Appendix B.1. Here, we present the
differences to the model version used in Chapter 3 and outline additional processes.

The focus of this study is not on transfer decisions but on the effectiveness of formal and
informal risk-coping in communities with heterogeneous income distribution. Therefore, the
model only covers some aspects of empirically observed transfer behaviour (altruism and
expected reciprocity) but does not include that households might withdraw their solidarity
with uninsured households when being insured. While many aspects of the model are still
stylized, income distribution and network characteristics are based on a household survey
that was conducted in 2012 in small fishing villages in the provinces Antique and Iloilo in
the region Western Visayas on the Philippines (Lenel, 2017).

For the social network in which the households are connected, we distinguish two scenarios:
Either it is based on empirical data from the Philippines (Lenel, 2017) or on random networks
with the same number of nodes and links as in the empirical case. In both cases, directed
links (instead of undirected links in the previous model version) between the households are
created.

In the previous model, all households were endowed with the same income I per time step.
Here, we assume an income distribution based on empirically derived asset values from the
Philippines. The asset index includes variables that describe ownership of technical devices,
agricultural tools or livestock and housing characteristics such as roof materials, source of
lighting and general housing conditions. We assume that households gain a regular income
Ii equal to their asset index which is normalized to a value between 0 and 1. In the artifi-
cially created random networks, the same distribution of income as in the empirical case is
assumed. Heterogeneity between households is also reflected in the consumption. Instead
of spending a fixed amount C per time step, household use a proportion c of their income
to cover their living costs. For a fixed income as in the previous model version, both imple-
mentations lead to the same outcome. However, to avoid confusion, we state this difference
explicitly. All households have the same initial budget Y 0. All processes sum up to the fol-
lowing equation for the budget Yi(t) of household i at time step t:

Yi(t) =























Yi(t − 1) + Ii(1− c)− β − Si +αi +
∑

j∈Ni

Tij (t) for insured HH

Yi(t − 1) + Ii(1− c)− Si +
∑

j∈Ni

Tij (t) for uninsured HH

with individual income Ii of household i, the fraction c of their income that households have
to spend to cover their annual living costs and the premium β that insured households have
to pay. The shock intensity Si equals S if a household is affected by a shock and is zero
otherwise. The same holds true for the insurance payout αi . For t = 1 the budget of the
previous time step t − 1 is given by the initial budget Y 0.
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Insurance uptake was randomly distributed across the population in the previous model
version. Here, it is linked to the financial resources of a household. Only households that
have enough budget left to cover the premium after paying their living costs can decide to
insure. An insurance threshold It is calculated based on the shock characteristics (frequency
ps and intensity S) and the consumption level c, It = ps×S/(1−c). Households with an income
below this threshold cannot insure as the premium payments would on average exceed their
available budget. Among all households with I ≥ It , a fraction δ (rounded up if necessary)
of households is randomly selected to be insured. Insured households insure their complete
income.

The model is implemented in NetLogo and the source code of the model is available at CoM-
SES Net (Will et al., 2021d).

C.2 Parameter selection

To assess the impact of formal and informal insurance on the resilience of the households,
the model should depict conditions in which a reasonable fraction of the population has
access to both instruments. Households can only afford the insurance when they can cover
the premium β = ps×S as well as their regular expenses which are given as fraction c of their
income Ii , i.e. households can insure when Ii(1−c)−ps×S ≥ 0 holds. As described in the main
text, we assume a subsistence economy where households spend 80% of their endowments to
cover living costs (c = 0.8). The income distribution is empirically observed and not affected
by the parameter selection. The remaining parameters that have to be explicitly defined are
shock probability ps and shock intensity S .

We assume shock probabilities in a range of 0.1 ≤ ps ≤ 0.3 which corresponds with empiri-
cally observed values. For the empirical data from the Philippines, for example, 16 out of 65
households (24.6%) reported a serious illness/accident of a household member in the year
before the survey (Lenel, 2017). Similar frequencies were observed in other studies. In a
survey conducted in Kenya, for example, households reported experiencing a health shock
in 26.6% of the weeks in one year (Geng et al., 2018). Values for shock intensity S are not
further restricted to cover a broad range of possible outcomes.

We divide all parameter ranges in equidistant steps of 0.1 and, based on these assump-
tions, derive for all combinations of shock intensity and probability the threshold value
for It that denotes the minimum income that is needed to be able to afford insurance, i.e.
It(1− c)− ps × S = 0. As the income I is bound to 0 and 1, we exclude cases with It > 1 which
would result in no households being insured in our sample. We restrict the analysis to cases
where at least 50% of all households can afford insurance which is a reasonable fraction given
that microinsurance products are specifically designed for low-income people. To ensure this
condition, we exclude all parameter combinations that result in an income threshold It larger
than the average income Ī (Ī = 0.39 for the empirical income distribution used in the sim-
ulations, see asset wealth in Table C.2). Furthermore, as we are in particular interested in
how the availability of formal insurance affects the resilience of households that do not have
enough financial resources to insure, we assume a minimum income Imin that households
need to have to be able to insure which intentionally excludes the poorest households from
insurance. We set Imin = 0.25, which results in approximately one quartile of the households
(16 households) never having enough financial resources to insure, regardless of external
conditions.
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C.2 Parameter selection

Table C.1: Selected parameter combinations of shock intensity S and shock probability ps with re-
sulting insurance threshold It. Effective insurance rates γ and the resulting number of insured house-
holds are calculated for the empirically observed asset distribution for insurance propensities δ = 1
and δ = 0.5.

δ = 1 δ = 0.5

ps S It γ
# insured
households

γ
# insured
households

0.1 0.5 0.25 75% 49 38% 25
0.1 0.6 0.3 62% 40 31% 20
0.2 0.3 0.3 62% 40 31% 20
0.3 0.2 0.3 62% 40 31% 20
0.1 0.7 0.35 54% 35 28% 18

The five resulting parameter combinations of shock intensity S and shock probability ps with
the respective insurance threshold It are shown in Table C.1. Additionally, the resulting
number of insured households and the effective insurance rate γ (rounded to whole numbers)
are given for the empirically observed asset distribution assuming insurance propensities
δ = 1 and δ = 0.5.
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C.3 Characteristics of the empirical support network

Table C.2: Household characteristics of the village Maramig. Surveyed 65 households, covering 225
household members; hh - households; PHP - Philippine Pesos. Income from last month includes
salary, proceeds from self-employment, remittances, loans, public assistance, pensions, payouts from
savings and other income (such as gambling).

mean sd min max median count

Household size 3.46 1.71 1 8 3 65

Female head 0.35 0.48 0 1 0 65

Head has no basic education 0.28 0.45 0 1 0 65

Head completed high school 0.40 0.49 0 1 0 65

No. of family hh within village 9.46 6.51 0 25 10 65

No. of family hh outside village 3.17 2.83 0 15 3 65

% of adults working 0.57 0.35 0 1 .5 65

% of adults working outside village 0.10 0.24 0 1 0 65

Covered by social security 0.20 0.40 0 1 0 65

Fishing as main income source 0.22 0.42 0 1 0 54

Farming as main income source 0.41 0.50 0 1 0 54

Household income last month (PHP) 14,919 43,671 160 330,975 4,000 65

Asset Wealth 0.39 0.20 .0041 1 .36 65

OFW exists 0.12 0.33 0 1 0 65

Remittances recipient 0.57 0.50 0 1 1 65

Amount remittances last year (PHP) 34,388 60,007 2,000 312,000 18,000 37

Coop member 0.34 0.48 0 1 0 65

Bank account 0.05 0.21 0 1 0 65

MFI Member 0.03 0.17 0 1 0 65

Health insurance 0.62 0.49 0 1 1 65

Informal borrowing and lending 0.66 0.48 0 1 1 65

Observations 65

164



C.3 Characteristics of the empirical support network

Figure C.1: Network of the reported support links within the village Maramig. The network consists
of 65 households (nodes) and 236 directed links. On average a household is connected with 3.63 other
households with an outdegree between 0 and 10 and an indegree between 0 and 12. Of the 4160
(65 × 64) possible links 5.7% are identified as support links (network density), of these 26.3% are
reciprocated. The size of the nodes scales with the available assets.
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Figure C.2: Distribution of the indegree (A) and outdegree (B) in the empirically observed network.
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Figure C.3: Asset distribution in the village Maramig (grey) that is used in the simulations and in a
larger sample (black) that was obtained in the same survey campaign. The larger sample comprises
a subset of 14 households in 22 villages covering around 15% of each village’s population (including
14 randomly selected households of the village which was completely surveyed).
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C.4 Additional results for selected parameter combination
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Figure C.4: Fraction of surviving uninsured households with enough financial resources to insure for
three different insurance propensities δ. The scenario without informal transfer is added as reference
(yellow line). The shaded areas represent the 95% confidence interval. Results show the mean over
1000 repetitions for a selected parameter combination of shock probability ps = 0.1 and shock inten-
sity S = 0.6 and households connected on a random network that is newly created in every repetition.
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Figure C.5: Fraction of runs out of 1000 repetitions in which a household with a given income Ii sur-
vives in random networks that are newly created in every simulation run (black) and a selected ran-
dom network that is kept fixed for the 1000 repetitions where a household with a certain income has
always the same position in the network (orange). For each simulation run, shocks occur in random
order for individual households. As some households have the same income, not all dots represent
exactly one household. Results are shown for a selected parameter combination of shock probability
ps = 0.1 and shock intensity S = 0.6 (with resulting threshold below which households cannot afford
insurance at It = 0.3) and different insurance propensities δ.
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Figure C.6: Graphical representation of the goodness-of-fit between simulated and predicted survival
probabilities obtained in the empirical network for the selected parameter combination of shock prob-
ability ps = 0.1 and shock intensity S = 0.6.
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C.4 Additional results for selected parameter combination

Table C.3: Unstandardised regression coefficients for the selected parameter combination of shock
probability ps = 0.1 and shock intensity S = 0.6 as in the main text. Standard errors in parentheses,
clustered on household level.

Unstandardised

(Intercept) −2.78∗∗∗

(0.06)
income 3.34∗∗∗

(0.20)
donors’ disposable income 9.94∗∗∗

(0.23)
outdegree 0.26∗∗∗

(0.01)
indegree (unins. neighbors) −0.05∗∗∗

(0.01)
ins. propensity δ = 0.5 0.18∗∗∗

(0.05)
ins. propensity δ = 1 0.35∗∗∗

(0.06)
income × ins. propensity δ = 0.5 −0.01

(0.15)
donors’ disposable income × ins. propensity δ = 0.5 1.47∗∗∗

(0.23)
outdegree × ins. propensity δ = 0.5 −0.04∗∗∗

(0.01)
indegree (unins. neighbors) × ins. propensity δ = 0.5 −0.03∗∗

(0.01)
income × ins. propensity δ = 1 −0.16

(0.18)
donors’ disposable income × ins. propensity δ = 1 2.22∗∗∗

(0.28)
outdegree × ins. propensity δ = 1 −0.08∗∗∗

(0.01)
indegree (unins. neighbors) × ins. propensity δ = 1 −0.03∗

(0.01)

McFadden R2 0.18
AIC 84576.73
Log Likelihood −42273.37
Num. obs. 75000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.4: Regression coefficients (unstandardised and standardised) for the selected parameter com-
bination of shock probability ps = 0.1 and shock intensity S = 0.6 as in the main text with the dis-
posable income of insured neighbours and uninsured neighbours considered separately for insurance
propensity δ = 0.5. Standardised coefficients are mean-centred and scaled by 1 standard deviation
(Menard, 2011). Standardised estimates for interaction terms are derived by standardising the product
of the predictors. Standard errors in parentheses, clustered on household level.

Unstandardised Standardised

(Intercept) −2.60∗∗∗ −0.26∗∗∗

(0.05) (0.01)
income 3.33∗∗∗ 0.25∗∗∗

(0.19) (0.01)
unins. donors’ disposable income 10.76∗∗∗ 0.58∗∗∗

(0.29) (0.02)
ins. donors’ disposable income 12.07∗∗∗ 0.65∗∗∗

(0.32) (0.02)
outdegree 0.23∗∗∗ 0.42∗∗∗

(0.01) (0.02)
indegree (unins. neighbors) −0.08∗∗∗ −0.12∗∗∗

(0.01) (0.02)

McFadden R2 0.18 0.18
AIC 28110.39 28110.39
Log Likelihood −14049.20 −14049.20
Num. obs. 25000 25000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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C.5 Additional results for idiosyncratic shocks

Table C.5: Z-scores from a two-sample z-test for the change in mean fraction of surviving uninsured
households without enough financial resources to insure at the last simulated time step (t = 50) be-
tween different combinations of shock probability and shock intensity (ps1, S1 and ps2, S2) in case of
idiosyncratic shocks.

ps1 S1 ps2 S2 zδ=0 zδ=0.5 zδ=1

0.1 0.5 0.1 0.6 23.03∗∗∗ 21.80∗∗∗ 21.13∗∗∗

0.1 0.5 0.1 0.7 48.51∗∗∗ 46.90∗∗∗ 47.32∗∗∗

0.1 0.6 0.2 0.3 1.55 1.09 0.31
0.1 0.6 0.3 0.2 7.72∗∗∗ 7.79∗∗∗ 7.65∗∗∗

0.2 0.3 0.3 0.2 6.36∗∗∗ 6.87∗∗∗ 7.54∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table C.6: Z-scores from a two-sample z-test for the change in mean fraction of surviving uninsured
households without enough financial resources to insure at the last simulated time step (t = 50) be-
tween different insurance propensities δ in case of idiosyncratic shocks.

ps S zδ=0→δ=0.5 zδ=0.5→δ=1 zδ=0→δ=1

0.1 0.5 3.07∗∗∗ 3.89∗∗∗ 6.88∗∗∗

0.1 0.6 6.53∗∗∗ 5.89∗∗∗ 12.24∗∗∗

0.2 0.3 6.33∗∗∗ 5.39∗∗∗ 11.60∗∗∗

0.3 0.2 6.54∗∗∗ 5.82∗∗∗ 12.32∗∗∗

0.1 0.7 7.88∗∗∗ 6.49∗∗∗ 14.59∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table C.7: Unstandardised regression coefficients for the model described in the main text for different scenarios of external conditions for idiosyncratic
shocks denoted by the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3;
Scenario 4: ps = 0.3, S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) −2.34∗∗∗ −2.78∗∗∗ −3.43∗∗∗ −3.81∗∗∗ −3.29∗∗∗

(0.08) (0.06) (0.07) (0.07) (0.05)
income 3.35∗∗∗ 3.34∗∗∗ 4.32∗∗∗ 5.06∗∗∗ 3.40∗∗∗

(0.27) (0.20) (0.19) (0.21) (0.15)
donors’ disposable income 10.05∗∗∗ 9.94∗∗∗ 14.57∗∗∗ 17.43∗∗∗ 9.37∗∗∗

(0.38) (0.23) (0.28) (0.38) (0.24)
outdegree 0.29∗∗∗ 0.26∗∗∗ 0.27∗∗∗ 0.30∗∗∗ 0.27∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) −0.04∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
ins. propensity δ = 0.5 0.22∗∗∗ 0.18∗∗∗ 0.06 0.03 0.16∗∗∗

(0.07) (0.05) (0.05) (0.06) (0.04)
ins. propensity δ = 1 0.35∗∗∗ 0.35∗∗∗ 0.34∗∗∗ −0.04 0.27∗∗∗

(0.08) (0.06) (0.07) (0.07) (0.05)
income × ins. propensity δ = 0.5 −0.29 −0.01 0.16 0.04 0.13

(0.22) (0.15) (0.18) (0.18) (0.14)
donors’ disposable income × ins. propensity δ = 0.5 1.61∗∗∗ 1.47∗∗∗ 1.51∗∗∗ 2.36∗∗∗ 1.94∗∗∗

(0.29) (0.23) (0.24) (0.35) (0.22)
outdegree × ins. propensity δ = 0.5 −0.09∗∗∗ −0.04∗∗∗ −0.02 −0.02 −0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) × ins. propensity δ = 0.5 −0.01 −0.03∗∗ −0.02 −0.01 −0.00

(0.01) (0.01) (0.01) (0.01) (0.01)
income × ins. propensity δ = 1 −0.11 −0.16 −0.08 0.57∗ 0.16

(0.28) (0.18) (0.24) (0.25) (0.14)
donors’ disposable income × ins. propensity δ = 1 2.66∗∗∗ 2.22∗∗∗ 2.05∗∗∗ 4.83∗∗∗ 3.74∗∗∗

(0.37) (0.28) (0.36) (0.43) (0.29)
outdegree × ins. propensity δ = 1 −0.14∗∗∗ −0.08∗∗∗ −0.06∗∗∗ −0.03∗∗ −0.08∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) × ins. propensity δ = 1 −0.02 −0.03∗ −0.05∗∗ −0.05∗∗ −0.03∗∗

(0.02) (0.01) (0.02) (0.02) (0.01)

McFadden R2 0.20 0.18 0.16 0.25 0.32
AIC 53011.19 84576.73 76969.34 70927.46 93399.71
Log Likelihood −26490.59 −42273.37 −38469.67 −35448.73 −46684.85
Num. obs. 48000 75000 75000 75000 90000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.8: Standardised regression coefficients for the model described in the main text for different scenarios of external conditions for idiosyncratic
shocks denoted by the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3;
Scenario 4: ps = 0.3, S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Coefficients are mean-centred and scaled by 1 standard deviation (Menard, 2011). Standardised
estimates for interaction terms are derived by standardising the product of the predictors. Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) 0.38∗∗∗ −0.27∗∗∗ −0.23∗∗∗ −0.00 −0.96∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.01)
income 0.23∗∗∗ 0.26∗∗∗ 0.33∗∗∗ 0.39∗∗∗ 0.29∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.01)
donors’ disposable income 0.88∗∗∗ 0.75∗∗∗ 1.10∗∗∗ 1.32∗∗∗ 0.60∗∗∗

(0.03) (0.02) (0.02) (0.03) (0.02)
outdegree 0.54∗∗∗ 0.49∗∗∗ 0.50∗∗∗ 0.56∗∗∗ 0.50∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.02)
indegree (unins. neighbors) −0.08∗∗∗ −0.10∗∗∗ −0.08∗∗∗ −0.06∗∗∗ −0.12∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.01)
ins. propensity δ = 0.5 0.10∗∗∗ 0.09∗∗∗ 0.03 0.01 0.07∗∗∗

(0.03) (0.02) (0.02) (0.03) (0.02)
ins. propensity δ = 1 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ −0.02 0.13∗∗∗

(0.04) (0.03) (0.04) (0.03) (0.02)
income × ins. propensity δ = 0.5 −0.02 −0.00 0.02 0.00 0.01

(0.02) (0.01) (0.02) (0.02) (0.02)
donors’ disposable income × ins. propensity δ = 0.5 0.12∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.15∗∗∗ 0.10∗∗∗

(0.02) (0.01) (0.01) (0.02) (0.01)
outdegree × ins. propensity δ = 0.5 −0.17∗∗∗ −0.07∗∗∗ −0.03 −0.04 −0.10∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.02)
indegree (unins. neighbors) × ins. propensity δ = 0.5 −0.01 −0.04∗∗ −0.02 −0.01 −0.01

(0.02) (0.01) (0.01) (0.02) (0.01)
income × ins. propensity δ = 1 −0.01 −0.02 −0.01 0.06∗ 0.02

(0.02) (0.02) (0.02) (0.02) (0.02)
donors’ disposable income × ins. propensity δ = 1 0.20∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.30∗∗∗ 0.19∗∗∗

(0.03) (0.02) (0.02) (0.03) (0.01)
outdegree × ins. propensity δ = 1 −0.29∗∗∗ −0.15∗∗∗ −0.12∗∗∗ −0.07∗∗ −0.17∗∗∗

(0.03) (0.02) (0.03) (0.02) (0.02)
indegree (unins. neighbors) × ins. propensity δ = 1 −0.01 −0.03∗ −0.04∗∗ −0.05∗∗ −0.03∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

McFadden R2 0.20 0.18 0.16 0.25 0.32
AIC 53011.19 84576.73 76969.34 70927.46 93399.71
Log Likelihood −26490.59 −42273.37 −38469.67 −35448.73 −46684.85
Num. obs. 48000 75000 75000 75000 90000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05173
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Table C.9: Unstandardised regression coefficients for the model described in the main text with the disposable income of insured neighbours and unin-
sured neighbours considered separately for insurance propensity δ = 0.5 for different scenarios of external conditions for idiosyncratic shocks denoted by
the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario 4: ps = 0.3,
S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) −2.11∗∗∗ −2.60∗∗∗ −3.36∗∗∗ −3.78∗∗∗ −3.13∗∗∗

(0.07) (0.05) (0.07) (0.07) (0.05)
income 3.06∗∗∗ 3.33∗∗∗ 4.48∗∗∗ 5.10∗∗∗ 3.54∗∗∗

(0.27) (0.19) (0.18) (0.23) (0.19)
unins. donors’ disposable income 10.96∗∗∗ 10.76∗∗∗ 15.43∗∗∗ 19.01∗∗∗ 10.36∗∗∗

(0.48) (0.29) (0.41) (0.48) (0.31)
ins. donors’ disposable income 12.36∗∗∗ 12.07∗∗∗ 16.75∗∗∗ 20.60∗∗∗ 12.21∗∗∗

(0.43) (0.32) (0.34) (0.42) (0.31)
outdegree 0.21∗∗∗ 0.23∗∗∗ 0.25∗∗∗ 0.28∗∗∗ 0.22∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) −0.05∗∗∗ −0.08∗∗∗ −0.06∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

McFadden R2 0.20 0.18 0.16 0.26 0.31
AIC 17690.50 28110.39 25452.82 23720.96 31358.59
Log Likelihood −8839.25 −14049.20 −12720.41 −11854.48 −15673.30
Num. obs. 16000 25000 25000 25000 30000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.10: Standardised regression coefficients for the model described in the main text with the disposable income of insured neighbours and uninsured
neighbours considered separately for insurance propensity δ = 0.5 with different scenarios of external conditions for idiosyncratic shocks denoted by the
shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario 4: ps = 0.3,
S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Coefficients are mean-centred and scaled by 1 standard deviation (Menard, 2011). Standardised estimates for
interaction terms are derived by standardising the product of the predictors. Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) 0.37∗∗∗ −0.26∗∗∗ −0.22∗∗∗ 0.00 −0.94∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.01)
income 0.21∗∗∗ 0.25∗∗∗ 0.34∗∗∗ 0.39∗∗∗ 0.30∗∗∗

(0.02) (0.01) (0.01) (0.02) (0.02)
unins. donors’ disposable income 0.68∗∗∗ 0.58∗∗∗ 0.83∗∗∗ 1.02∗∗∗ 0.46∗∗∗

(0.03) (0.02) (0.02) (0.03) (0.01)
ins. donors’ disposable income 0.77∗∗∗ 0.65∗∗∗ 0.90∗∗∗ 1.11∗∗∗ 0.56∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.01)
outdegree 0.39∗∗∗ 0.42∗∗∗ 0.47∗∗∗ 0.52∗∗∗ 0.41∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.02)
indegree (unins. neighbors) −0.07∗∗∗ −0.12∗∗∗ −0.10∗∗∗ −0.06∗∗∗ −0.11∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

McFadden R2 0.20 0.18 0.16 0.26 0.31
AIC 17690.50 28110.39 25452.82 23720.96 31358.59
Log Likelihood −8839.25 −14049.20 −12720.41 −11854.48 −15673.30
Num. obs. 16000 25000 25000 25000 30000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.11: Goodness-of-fit statistics (R2, RMSE and bias) for the estimation of the survival probabilities of households without enough financial resources
to insure for different insurance propensities δ and predictors in the regression model. In addition to the dummy variables for insurance propensity, the
following predictors are included: (#4) donors’ disposable income, own income, outdegree, indegree from uninsured neighbours; (#2a) own income,
outdegree; (#2b) own income, outdegree to wealthy households; (#1) own income. Subsections show different external conditions for idiosyncratic shocks
denoted by the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario
4: ps = 0.3, S = 0.2; Scenario 5: ps = 0.1, S = 0.7).

δ = 0 δ = 0.5 δ = 1

# R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

Scenario 1

4 0.743 0.134 0.072 0.827 0.098 0.042 0.891 0.078 0.029
2a 0.635 0.140 0.047 0.625 0.120 0.020 0.486 0.132 0.013
2b 0.598 0.142 0.025 0.593 0.124 −0.001 0.451 0.138 −0.008
1 0.075 0.238 −0.109 0.058 0.225 −0.126 0.024 0.216 −0.123

Scenario 2

4 0.806 0.150 0.098 0.878 0.113 0.070 0.906 0.089 0.045
2a 0.515 0.191 0.068 0.514 0.180 0.048 0.465 0.175 0.032
2b 0.673 0.149 0.021 0.643 0.150 −0.001 0.561 0.159 −0.015
1 0.018 0.259 −0.050 0.016 0.257 −0.070 0.010 0.247 −0.081

Scenario 3

4 0.767 0.196 0.129 0.841 0.145 0.085 0.900 0.099 0.044
2a 0.441 0.248 0.102 0.443 0.228 0.065 0.417 0.215 0.035
2b 0.624 0.192 0.046 0.609 0.185 0.005 0.564 0.185 −0.023
1 0.020 0.301 −0.032 0.017 0.299 −0.071 0.010 0.291 −0.095

Scenario 4

4 0.718 0.233 0.156 0.801 0.172 0.100 0.872 0.121 0.051
2a 0.369 0.291 0.133 0.400 0.257 0.083 0.398 0.241 0.044
2b 0.563 0.227 0.067 0.579 0.204 0.014 0.549 0.207 −0.026
1 0.016 0.323 −0.013 0.013 0.317 −0.065 0.014 0.319 −0.104

Scenario 5

4 0.848 0.128 0.086 0.923 0.104 0.076 0.936 0.092 0.062
2a 0.510 0.164 0.041 0.511 0.169 0.031 0.458 0.185 0.027
2b 0.701 0.130 0.037 0.660 0.141 0.026 0.578 0.163 0.020
1 0.007 0.229 −0.019 0.014 0.238 −0.030 0.017 0.250 −0.035
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C.6 Additional results for covariate shocks

Table C.12: Z-scores from a two-sample z-test for the change in mean fraction of surviving uninsured
households without enough financial resources to insure between idiosyncratic and covariate shocks
for the three insurance propensities δ at the last simulated time step (t = 50).

ps S zδ=0 zδ=0.5 zδ=1

0.1 0.5 14.55∗∗∗ 10.57∗∗∗ 5.03∗∗∗

0.1 0.6 10.33∗∗∗ 9.50∗∗∗ 6.67∗∗∗

0.2 0.3 16.21∗∗∗ 13.51∗∗∗ 8.84∗∗∗

0.3 0.2 19.72∗∗∗ 16.33∗∗∗ 10.48∗∗∗

0.1 0.7 5.11∗∗∗ 6.01∗∗∗ 5.55∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table C.13: Z-scores from a two-sample z-test for the change in mean fraction of surviving uninsured
households without enough financial resources to insure at the last simulated time step (t = 50) be-
tween different combinations of shock probability and shock intensity (ps1, S1 and ps2, S2) in case of
covariate shocks.

ps1 S1 ps2 S2 zδ=0 zδ=0.5 zδ=1

0.1 0.5 0.1 0.6 4.60∗∗∗ 6.65∗∗∗ 9.17∗∗∗

0.1 0.5 0.1 0.7 8.99∗∗∗ 12.78∗∗∗ 17.91∗∗∗

0.1 0.6 0.2 0.3 2.69∗∗∗ 1.62 0.79
0.1 0.6 0.3 0.2 2.24∗∗ 0.45 1.50
0.2 0.3 0.3 0.2 0.55 1.31 2.52∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table C.14: Z-scores from a two-sample z-test for the change in mean fraction of surviving unin-
sured households without enough financial resources to insure at the last simulated time step (t = 50)
between different insurance propensities δ in case of covariate shocks.

ps S zδ=0→δ=0.5 zδ=0.5→δ=1 zδ=0→δ=1

0.1 0.5 4.81∗∗∗ 6.25∗∗∗ 11.02∗∗∗

0.1 0.6 3.32∗∗∗ 4.56∗∗∗ 7.87∗∗∗

0.2 0.3 5.04∗∗∗ 6.17∗∗∗ 11.21∗∗∗

0.3 0.2 6.12∗∗∗ 7.89∗∗∗ 13.98∗∗∗

0.1 0.7 2.16∗∗ 2.81∗∗∗ 4.97∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table C.15: Unstandardised regression coefficients for the model described in the main text for different scenarios of external conditions for covariate
shocks denoted by the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3;
Scenario 4: ps = 0.3, S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) −1.66∗∗∗ −1.97∗∗∗ −2.47∗∗∗ −2.69∗∗∗ −2.31∗∗∗

(0.06) (0.06) (0.06) (0.06) (0.05)
income 1.99∗∗∗ 1.94∗∗∗ 2.47∗∗∗ 2.62∗∗∗ 2.08∗∗∗

(0.26) (0.20) (0.20) (0.21) (0.18)
donors’ disposable income 5.17∗∗∗ 5.01∗∗∗ 7.15∗∗∗ 8.70∗∗∗ 5.50∗∗∗

(0.27) (0.23) (0.19) (0.27) (0.25)
outdegree 0.04∗∗∗ 0.05∗∗∗ 0.03∗∗∗ 0.04∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) −0.00 −0.00 −0.00 0.01 −0.01

(0.01) (0.01) (0.01) (0.01) (0.01)
ins. propensity δ = 0.5 −0.03 −0.08∗ −0.08 −0.10∗ −0.13∗∗∗

(0.04) (0.04) (0.05) (0.05) (0.03)
ins. propensity δ = 1 −0.17∗∗ −0.25∗∗∗ −0.17∗∗ −0.35∗∗∗ −0.29∗∗∗

(0.06) (0.05) (0.06) (0.07) (0.04)
income × ins. propensity δ = 0.5 0.38∗ 0.25∗ 0.33∗ 0.58∗∗∗ 0.40∗∗∗

(0.16) (0.12) (0.14) (0.16) (0.09)
donors’ disposable income × ins. propensity δ = 0.5 2.10∗∗∗ 2.33∗∗∗ 2.70∗∗∗ 3.05∗∗∗ 2.36∗∗∗

(0.20) (0.15) (0.18) (0.20) (0.16)
outdegree × ins. propensity δ = 0.5 0.02∗ 0.01 0.02∗∗ 0.02∗∗ −0.00

(0.01) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) × ins. propensity δ = 0.5 −0.00 0.00 −0.00 −0.00 0.01

(0.01) (0.01) (0.01) (0.01) (0.01)
income × ins. propensity δ = 1 1.07∗∗∗ 0.81∗∗∗ 0.71∗∗∗ 1.42∗∗∗ 0.90∗∗∗

(0.22) (0.14) (0.19) (0.20) (0.14)
donors’ disposable income × ins. propensity δ = 1 5.99∗∗∗ 5.34∗∗∗ 6.64∗∗∗ 8.35∗∗∗ 5.41∗∗∗

(0.31) (0.21) (0.25) (0.29) (0.19)
outdegree × ins. propensity δ = 1 0.02 0.02∗∗ 0.03∗∗∗ 0.04∗∗∗ −0.00

(0.01) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) × ins. propensity δ = 1 −0.01 0.01 −0.01 −0.02 0.00

(0.02) (0.01) (0.01) (0.01) (0.01)

McFadden R2 0.10 0.08 0.07 0.13 0.17
AIC 58982.64 88246.51 81579.75 79350.32 94863.56
Log Likelihood −29476.32 −44108.26 −40774.87 −39660.16 −47416.78
Num. obs. 48000 75000 75000 75000 90000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.16: Standardised regression coefficients for the model described in the main text for different scenarios of external conditions for covariate shocks
denoted by the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario
4: ps = 0.3, S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Coefficients are mean-centred and scaled by 1 standard deviation (Menard, 2011). Standardised estimates
for interaction terms are derived by standardising the product of the predictors. Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) −0.23∗∗∗ −0.71∗∗∗ −0.86∗∗∗ −0.79∗∗∗ −1.16∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
income 0.14∗∗∗ 0.15∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.18∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
donors’ disposable income 0.45∗∗∗ 0.38∗∗∗ 0.54∗∗∗ 0.66∗∗∗ 0.35∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.02)
outdegree 0.08∗∗∗ 0.09∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.09∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
indegree (unins. neighbors) −0.01 −0.01 −0.01 0.02 −0.02

(0.02) (0.01) (0.02) (0.02) (0.01)
ins. propensity δ = 0.5 −0.01 −0.04∗ −0.04 −0.05∗ −0.06∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
ins. propensity δ = 1 −0.08∗∗ −0.12∗∗∗ −0.08∗∗ −0.16∗∗∗ −0.14∗∗∗

(0.03) (0.02) (0.03) (0.03) (0.02)
income × ins. propensity δ = 0.5 0.03∗ 0.03∗ 0.03∗ 0.06∗∗∗ 0.04∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.01)
donors’ disposable income × ins. propensity δ = 0.5 0.16∗∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.19∗∗∗ 0.12∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
outdegree × ins. propensity δ = 0.5 0.04∗ 0.01 0.05∗∗ 0.04∗∗ −0.00

(0.02) (0.01) (0.02) (0.01) (0.01)
indegree (unins. neighbors) × ins. propensity δ = 0.5 −0.01 0.00 −0.00 −0.00 0.01

(0.01) (0.01) (0.01) (0.01) (0.01)
income × ins. propensity δ = 1 0.09∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.14∗∗∗ 0.10∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.02)
donors’ disposable income × ins. propensity δ = 1 0.45∗∗∗ 0.33∗∗∗ 0.42∗∗∗ 0.52∗∗∗ 0.27∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.01)
outdegree × ins. propensity δ = 1 0.05 0.04∗∗ 0.06∗∗∗ 0.09∗∗∗ −0.01

(0.02) (0.02) (0.02) (0.02) (0.01)
indegree (unins. neighbors) × ins. propensity δ = 1 −0.01 0.01 −0.01 −0.01 0.00

(0.01) (0.01) (0.01) (0.01) (0.01)

McFadden R2 0.10 0.08 0.07 0.13 0.17
AIC 58982.64 88246.51 81579.75 79350.32 94863.56
Log Likelihood −29476.32 −44108.26 −40774.87 −39660.16 −47416.78
Num. obs. 48000 75000 75000 75000 90000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05179
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Table C.17: Unstandardised regression coefficients for the model described in the main text with the disposable income of insured neighbours and
uninsured neighbours considered separately for insurance propensity δ = 0.5 for different scenarios of external conditions for covariate shocks denoted by
the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario 4: ps = 0.3,
S = 0.2; Scenario 5: ps = 0.1, S = 0.7). Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) −1.70∗∗∗ −2.06∗∗∗ −2.56∗∗∗ −2.80∗∗∗ −2.46∗∗∗

(0.06) (0.05) (0.06) (0.05) (0.05)
income 2.40∗∗∗ 2.21∗∗∗ 2.84∗∗∗ 3.23∗∗∗ 2.51∗∗∗

(0.27) (0.20) (0.20) (0.23) (0.17)
unins. donors’ disposable income 5.03∗∗∗ 5.18∗∗∗ 7.32∗∗∗ 9.31∗∗∗ 5.86∗∗∗

(0.29) (0.30) (0.28) (0.36) (0.34)
ins. donors’ disposable income 9.69∗∗∗ 9.53∗∗∗ 12.50∗∗∗ 14.36∗∗∗ 9.91∗∗∗

(0.38) (0.28) (0.34) (0.33) (0.30)
outdegree 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
indegree (unins. neighbors) −0.01 −0.00 −0.01 0.01 −0.00

(0.01) (0.01) (0.01) (0.01) (0.01)

McFadden R2 0.09 0.07 0.06 0.12 0.15
AIC 19978.99 29568.24 27486.47 27025.10 31682.68
Log Likelihood −9983.50 −14778.12 −13737.24 −13506.55 −15835.34
Num. obs. 16000 25000 25000 25000 30000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.18: Standardised regression coefficients for the model described in the main text with the disposable income of insured neighbours and uninsured
neighbours considered separately for insurance propensity δ = 0.5 with different scenarios of external conditions for covariate shocks denoted by the shock
probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario 4: ps = 0.3, S = 0.2;
Scenario 5: ps = 0.1, S = 0.7). Coefficients are mean-centred and scaled by 1 standard deviation (Menard, 2011). Standardised estimates for interaction
terms are derived by standardising the product of the predictors. Standard errors in parentheses, clustered on household level.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

(Intercept) −0.27∗∗∗ −0.74∗∗∗ −0.88∗∗∗ −0.82∗∗∗ −1.17∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
income 0.17∗∗∗ 0.17∗∗∗ 0.22∗∗∗ 0.25∗∗∗ 0.21∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.01)
unins. donors’ disposable income 0.31∗∗∗ 0.28∗∗∗ 0.39∗∗∗ 0.50∗∗∗ 0.27∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.02)
ins. donors’ disposable income 0.61∗∗∗ 0.51∗∗∗ 0.68∗∗∗ 0.78∗∗∗ 0.45∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.01)
outdegree 0.11∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.09∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.01)
indegree (unins. neighbors) −0.01 −0.00 −0.01 0.01 −0.01

(0.02) (0.01) (0.02) (0.02) (0.02)

McFadden R2 0.09 0.07 0.06 0.12 0.15
AIC 19978.99 29568.24 27486.47 27025.10 31682.68
Log Likelihood −9983.50 −14778.12 −13737.24 −13506.55 −15835.34
Num. obs. 16000 25000 25000 25000 30000
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.19: Goodness-of-fit statistics (R2, RMSE and bias) for the estimation of the survival probabilities of households without enough financial resources
to insure for different insurance propensities δ and predictors in the regression model. In addition to the dummy variables for insurance propensity, the
following predictors are included: (#4) donors’ disposable income, own income, outdegree, indegree from uninsured neighbours; (#2a) own income,
outdegree; (#2b) own income, outdegree to wealthy households; (#1) own income. Subsections show different external conditions for covariate shocks
denoted by the shock probability ps and shock intensity S (Scenario 1: ps = 0.1, S = 0.5; Scenario 2: ps = 0.1, S = 0.6; Scenario 3: ps = 0.2, S = 0.3; Scenario
4: ps = 0.3, S = 0.2; Scenario 5: ps = 0.1, S = 0.7).

δ = 0 δ = 0.5 δ = 1

# R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

Scenario 1

4 0.785 0.087 0.050 0.837 0.097 0.058 0.877 0.102 0.065
2a 0.234 0.107 0.030 0.313 0.131 0.035 0.327 0.155 0.043
2b 0.311 0.110 0.029 0.430 0.124 0.031 0.449 0.141 0.035
1 0.097 0.105 −0.035 0.098 0.147 −0.054 0.078 0.182 −0.071

Scenario 2

4 0.820 0.085 0.051 0.848 0.102 0.064 0.859 0.115 0.076
2a 0.332 0.091 0.025 0.314 0.131 0.034 0.328 0.174 0.046
2b 0.540 0.078 0.016 0.536 0.109 0.019 0.529 0.145 0.022
1 0.028 0.105 −0.017 0.029 0.149 −0.027 0.030 0.203 −0.036

Scenario 3

4 0.789 0.101 0.049 0.838 0.116 0.066 0.857 0.124 0.074
2a 0.258 0.121 0.016 0.304 0.163 0.033 0.309 0.212 0.046
2b 0.470 0.105 0.007 0.527 0.137 0.016 0.524 0.175 0.018
1 0.023 0.139 −0.032 0.026 0.191 −0.039 0.023 0.249 −0.049

Scenario 4

4 0.802 0.112 0.060 0.844 0.128 0.081 0.847 0.145 0.091
2a 0.227 0.155 0.025 0.292 0.194 0.047 0.289 0.250 0.067
2b 0.446 0.132 0.014 0.509 0.162 0.027 0.498 0.206 0.029
1 0.019 0.173 −0.032 0.028 0.220 −0.035 0.026 0.283 −0.043

Scenario 5

4 0.802 0.076 0.039 0.870 0.089 0.052 0.886 0.105 0.067
2a 0.330 0.073 0.011 0.301 0.110 0.016 0.289 0.153 0.024
2b 0.599 0.060 0.015 0.630 0.083 0.022 0.599 0.117 0.030
1 0.014 0.088 −0.008 0.017 0.130 −0.011 0.022 0.177 −0.013
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D.1 Questionnaire for the semi-structured interviews

Purpose

1. Please describe the modelling endeavour and give relevant background information on
the topic, the research question(s), the method(s) used, the institutions or individu-
als involved, the source of data, why a policy decision was necessary, how urgent the
decision was etc.

2. How concrete and practically relevant was the outcome?

3. Who had the idea/was the driving factor at the beginning to use models: Practitioners
or modellers? What motivated each side to contribute to the project?

Processes and Partnerships

1. Was it already a long-lasting relationship between both sides? Did the practitioners
have any previous experience with modelling?

2. How was the modelling process organised?

a. Information on total project duration, number of meetings, number of people in-
volved at different stages, were always the same people involved?

b. Was the model developed in a participatory way or rather independently by the
modeller(s)?

3. Did the modellers come from a modelling department? How large was the group of
modellers in their department?

4. Were other types of actors such as media, local population, businesses, or other scholars
involved?

5. How many disciplines were involved?

6. How available and accessible was the data needed for the model?

7. Was there a “breakthrough moment” regarding the understanding of the models by the
practitioners?
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Products

1. What was your “recipe” that the practitioners got confidence in the model/the mod-
ellers? Did they understand the (main) functioning of the model or did they blindly
trust the modellers, since the model was too complex and it was okay for them to have
a black box?

2. Did you have the impression that the model was used to support the pre-set opinion/
target of the practitioners involved? Or in contrary: Was the opinion of the practitioners
changed?

3. Where did you encounter difficulties during the course of the project?

4. (How) was the model usable for practitioners?

General final questions

1. What were the reasons that other modelling endeavours have failed to have an impact?

2. What were the most important factors for success in your endeavour?

3. Open question at the end: Is there anything you would like to add?
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