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Abstract: The deployment of onshore wind power involves spatial sustainability trade-offs, e.g., 

between the minimization of energy system costs, the mitigation of impacts on humans and 

biodiversity, and equity concerns. We analyze challenges arising for decision-making if wind power 

generation capacity has to be allocated spatially in the presence of such trade-offs. The analysis is 

based on a game developed for and played by stakeholders in Germany. The results of the game 

illustrate that there is no unanimously agreed ranking of sustainability criteria among the participating 

stakeholders. They disagreed not only on the weights of different criteria but also their definition and 

measurement. Group discussions further revealed that equity concerns mattered for spatial allocation. 

Yet, stakeholders used quite different concepts of equity. The results support the importance of 

transparent, multi-level and participatory approaches to take decisions on the spatial allocation of 

wind power generation capacity. 
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1 Introduction 

Onshore wind power is one of the key renewable energy sources that needs to be developed at large 

scale to decarbonize the energy sector (Rogelj et al., 2018). An important question discussed by 

scientists and policy-makers is where to site wind power generation capacity. Answering this question 

is non-trivial due to sustainability trade-offs. A sustainability trade-off implies that one sustainability 

criterion or objective can only be attained at the cost of impairing the achievement of another. For 

example, installing wind turbines at sites with the highest wind yields to minimize generation costs is 

often in conflict with a spatial allocation minimizing other energy system costs (e.g., related to the 

extension of networks and storage) (Agora Energiewende, 2013; Bucksteeg, 2019; Drechsler et al., 

2017; Eriksen et al., 2017; Fürsch et al., 2013; Hagspiel et al., 2014; Schaber et al., 2012a; Schaber et 

al., 2012b; Schlachtberger et al., 2017; Schmid and Knopf, 2015). Similarly, spatial sustainability trade-

offs may arise with respect to minimizing adverse impacts on humans and ecosystems (Drechsler et 

al., 2011; Eichhorn et al., 2019; Eichhorn et al., 2017; Gauglitz et al., 2019; Latinopolous and Kechagia, 

2015) or concerns of spatial equity (BMWi, 2017c; Drechsler et al., 2017; Sasse and Trutnevyte, 2019).  

Which spatial allocation of wind power generation capacity is considered as sustainable (or optimal) 

therefore crucially hinges on which criteria are considered and how they are weighted. Against this 

background, we analyze the differing arguments and associated challenges that arise for practical 

decision-making if wind power generation capacity has to be allocated in space in the presence of 

sustainability trade-offs. We aim to understand whether there is a generally accepted definition and 

ranking of sustainability criteria that are used to derive an optimal spatial allocation of wind power 

generation capacity. In this respect, we are also interested in the relative importance of arguments of 

efficiency (minimization of aggregate costs or impacts) and equity (distribution of costs or impacts).  

Traditional economic analyses optimizing the spatial allocation of wind power generation capacity 

solve the problem of weighting different sustainability criteria by monetization. Yet, such analyses are 

typically restricted to optimizing across different categories of energy system costs, for which 

monetary market values exist (BMWi, 2017a, b, d; Bruninx et al., 2015; Eriksen et al., 2017; Fürsch et 

al., 2013; Hagspiel et al., 2014; Jägemann, 2014; Klein et al., 2017; Knopf et al., 2015; Kopiske and 

Gerhard, 2018; Nelson et al., 2012; Neuhoff et al., 2008; Rohrig et al., 2013; Schaber et al., 2012a; 

Schaber et al., 2012b; Schlachtberger et al., 2017). Negative impacts of wind power deployment on 

humans and ecosystems or equity concerns, which are hard to monetize, are beyond the scope of 

these studies (exceptions include Drechsler et al., 2017; Drechsler et al., 2011). 

These restrictions are partly overcome by multi-criteria decision analyses (MCDA), which do not 

necessarily rely on monetization. Instead, MCDA typically build on physical measures of impacts of 
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deploying wind power (e.g., distances to settlements or habitats), and thus allow for a broader variety 

of sustainability criteria to be included. The Achilles heel of these studies are the weights attached to 

the different criteria. MCDA results typically respond very sensitively to changes in weights (Baban and 

Parry, 2001; Gorsevski et al., 2013; Sánchez-Lozano et al., 2016; Tegou et al., 2010). Despite this insight, 

existing MCDA studies often make quite strong assumptions regarding weights. In a pragmatic 

approach, some analyses attach the same weights to all criteria (Baban and Parry, 2001; Egli et al., 

2017; Eichhorn et al., 2019; Eichhorn et al., 2017; Huber et al., 2017; Kienast et al., 2017; Latinopolous 

and Kechagia, 2015; Sánchez-Lozano et al., 2016; Tegou et al., 2010; Watson and Hudson, 2015). If 

differentiated weights are used, these are often chosen explicitly or implicitly by the authors 

themselves (Atici et al., 2015; Baban and Parry, 2001; Baseer et al., 2017; Hanssen et al., 2018; Jahangiri 

et al., 2016; Janke, 2010; Rodman and Meentemeyer, 2006; Tegou et al., 2010; van Haaren and 

Fthenakis, 2011; Villacreses et al., 2017) or by small groups of experts (sometimes only one) (Asakereh 

et al., 2017; Gigović et al., 2017; Gorsevski et al., 2013; Höfer et al., 2017; Jangid et al., 2016; Sánchez-

Lozano et al., 2014; Sánchez-Lozano et al., 2016; Watson and Hudson, 2015). If multiple experts are 

interviewed, the average or jointly agreed ranking is used. Overall, these studies seem to assume that 

an unequivocal ranking of sustainability criteria can be identified to optimize the spatial allocation of 

wind power deployment.1  

Our study challenges this assumption. We aim to understand potential difficulties and disagreement 

regarding the ranking of sustainability criteria. To analyze these challenges for decision-making, we 

developed a transdisciplinary game and played it with German stakeholders from administration, 

industry, civil society, science, and intermediary organizations who were frequently confronted with 

questions of the spatial allocation of wind energy. Participants were asked to allocate wind power 

generation capacity across German States to attain a pre-defined generation target. When taking their 

decision, they were provided with State-specific, spatial information on land availability, wind yield, 

electricity demand, and nature conservation risks. In addition, we asked participants to discuss 

potential spatial equity concerns. Both the course of discussion in different groups as well as the 

respective quantitative outcomes were evaluated with respect to similarities and differences in the 

ranking of the different sustainability criteria.  

The remainder of the paper is organized as follows: Section 2 introduces the methodological approach 

in more detail. Section 3 presents the quantitative and qualitative results of our game. Section 4 

discusses implications of our game for identifying optimal allocations of wind power deployment. 

Section 5 concludes with implications for future research and policy-making. 

                                                           
1 To be fair, many MCDA studies rather aim to develop methodology. The empirical applications in these studies 
– including weights – are often primarily used for illustrative purposes. 
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2 Method 

2.1 Function of the game and setting 

To understand the challenges arising for the spatial allocation of wind power generation capacity 

across regions in the presence of sustainability trade-offs, we decided to involve stakeholders in our 

research. The involvement of stakeholders aimed at including different types of knowledge about 

challenges in practical decision-making and how to solve them (Cash et al., 2006).  

We used a game to involve stakeholders. Games provide a multitude of benefits to further our 

understanding. According to Bassi et al. (2015) games help to engage stakeholders by facilitating the 

closing of the gap between different forms of knowledge. Bots and van Daalen (2007) highlight that 

games support the analysis of a policy issue when it is not possible to study the real system and hence 

when it is not possible to study alternative solutions. In our case, we used the game as a design studio 

to understand how wind turbines may be spatially allocated if sustainability trade-offs (and synergies) 

arise. We chose a game because it has advantages over simple brainstorming, i.e., providing wild and 

unexpected answers in large quantity, and other selection techniques, e.g., rankings (for an application 

to the energy transition in general, see Joas et al., 2016). In particular, the game allows going beyond 

listings to ‘capture and integrate both the technical-physical and the social-political complexities of 

policy problems’ (Mayer, 2009, p. 825). In doing so, games provide a space for problem-solving (Brynen 

and Milante, 2012). We assumed that playing the game, i.e. deep-diving into the complexities, made 

participants become more aware of relevant trade-offs and search for solutions which have fewer side 

effects according to their perception (Bots and van Daalen, 2007). Thereby, the game offers 

participants the opportunity to enter in-depth discussions and reveal their respective rankings of 

different sustainability criteria as well as clarify arguments behind different points of views 

(Gandziarowska-Ziołecka and Stasiak, 2017). Consequently, the eventually revealed rankings of 

sustainability criteria may be more reliable (e.g., Bots and van Daalen, 2007; Mayer, 2009). 

To understand different arguments and perspectives, we decided to invite a broad range of 

stakeholders from Germany, which were knowledgeable about the problem of spatially allocating wind 

power generation capacity. Stakeholders were invited from administration, industry (associations), 

civil society, science, and intermediary organizations to cover a range of different values and 

perspectives. 27 stakeholders agreed to play the game with us during a joint workshop. Apart from 

civil society, where none of the invited representatives followed our invitation, we had a rather good 

coverage of the different sectors. Stakeholders also represented different levels of decision-making, 

from local and regional level planning to national level policy-making.  
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We chose a realistic representation of a physical system, i.e., we asked the invited stakeholders to 

discuss how wind power generation capacity should be allocated to States on a map representing 

Germany, taking into consideration different sustainability criteria (see Figure 1 and below). We invited 

the stakeholders to play the game in five small groups of 4 to 6 participants. Groups were composed 

of stakeholders from different stakeholder groups to incorporate different types of expertise and 

perspectives, to facilitate reflection and creativity, and to foster mutual learning (Douven et al., 2014). 

Reflection and learning was further encouraged in a round of discussions after the game was finished, 

when the players were asked to review their experience concerning the trade-offs they encountered 

during the game.  

2.2 Rules of the game 

For each group, the goal of the game was the same: Allocate as much wind power generation capacity 

(in GW) across German States as it takes to generate 200 TWh per year. This figure roughly corresponds 

to the wind power generation deemed necessary for 2030 to attain Germany’s long-term renewable 

energy targets (see, e.g., Agora Energiewende, 2013). Groups were asked to take a greenfield 

approach, assuming that the generation capacity installed in each State was zero at the start of the 

game. The conversion of generation capacity into power generation was assisted by an Excel tool, 

considering the average wind yield in each State.  

To take their decisions, all groups got the same information, as displayed in Figure 1 (the “game 

board”). The pieces of information illustrated on the game board were extensively explained before 

the game by experts in the respective areas. When allocating generation capacity spatially, groups first 

of all had to respect the potential for wind power generation capacity in each State as an allocation 

constraint (see Appendix 1 for details on data). In addition, they were asked to consider information 

on four types of variables representing four different sustainability criteria (see also Appendix 1 for 

further details on data): (1) wind yield, (2) load proximity, (3) nature and landscape conflicts as well as 

(4) equity. Regarding the latter, no specific measure was proposed. Instead, groups were asked to 

specify equity, if they considered this criterion as important. All groups had 30 minutes to discuss and 

agree on one spatial allocation of generation capacity. Installed capacity in each State was marked by 

pins on the game board, which allowed for constant readjustments throughout the time of discussion. 

We also asked each group to document and explain the definition and ranking of sustainability criteria 

they relied on for their decision, once they had realized that there were trade-offs between the criteria. 

After this group discussion, a participant of each group presented the results to the other groups. 

Subsequently, we organized a second round of group discussions, where members of different groups 

where brought together to reflect on (a) the trade-offs that showed up in the game, (b) the different 
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arguments and corresponding difficulties and opportunities to identify priority areas for future wind 

power deployment, and (c) resulting policy implications. 

2.3 Data, documentation and analysis  

During the game, we were thus able to collect three types of material:  

• quantitative data on the spatial allocation of wind power generation capacity chosen by each 

group 

• the documentation by the groups themselves summarizing definitions, the discussion process, 

and explicit rankings of the sustainability criteria, as well as the documentation of the second, 

reflexive group discussion 

• recordings of the group discussions, capturing details not included in the groups documentations 

All data were entered either in Excel tables or Word documents to make them accessible for further 

analysis. Based on the available quantitative data, we computed a correlation coefficient 𝑟𝑟𝑥𝑥𝑖𝑖
𝑔𝑔,𝑦𝑦𝑖𝑖

𝑣𝑣 which 

measures the strength of the relationship between the amount of wind power generation capacity 

𝑥𝑥𝑖𝑖
𝑔𝑔allocated by each group 𝑔𝑔 to State 𝑖𝑖 and the respective State values 𝑦𝑦𝑖𝑖𝑣𝑣 of the variables 𝑣𝑣 

representing different sustainability criteria (wind yield, load proximity, nature and landscape 

conflicts) as well as the State potentials of wind power generation capacity: 

 𝑟𝑟𝑥𝑥𝑖𝑖
𝑔𝑔,𝑦𝑦𝑖𝑖

𝑣𝑣 =
∑ �𝑥𝑥𝑖𝑖

𝑔𝑔 − 𝑥𝑥𝑔𝑔�(𝑦𝑦𝑖𝑖𝑣𝑣 − 𝑦𝑦�𝑣𝑣)𝑛𝑛
𝑖𝑖=1

�∑ �𝑥𝑥𝑖𝑖
𝑔𝑔 − 𝑥𝑥𝑔𝑔�2𝑛𝑛

𝑖𝑖=1 �∑ �𝑦𝑦𝑖𝑖𝑣𝑣 − 𝑦𝑦�𝑣𝑣�2𝑛𝑛
𝑖𝑖=1

 
̅

̅

We complemented the quantitative analysis by qualitative evidence. For this purpose, we transcribed 

the recordings of the group discussions. The transcriptions were analyzed to cross-check whether they 

support, specify, or qualify the definitions and rankings of sustainability criteria obtained from the 

quantitative analysis and the self-reported documentation. We outline in the following section to what 

extent the results derived from these different types of material were consistent or contradictory. 
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Figure 1: Information provided to groups on the maximum generation capacity potential per State as well as on the sustainability criteria (the “game board”, see Appendix 1 for further details on 
data sources). Source: Own figure. 
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3 Results 

3.1 Spatial allocation of wind power generation capacity chosen by groups 

Figure 2 illustrates the wind power generation capacity allocated by the five groups to each German 

State (sorted from North to South). It highlights some similarities across groups. All groups allocated 

at least 3 GW to each State. The State of Lower Saxony/Bremen received the highest amount of 

capacity in all groups. Except for group 4, the spatial allocations of all groups exhibited at least a slight 

north-south divide.  

Apart from these few similarities, differences in group results were substantial. In absolute terms, 

capacity allocations to individual States varied between groups by 2 to 7 GW (recall that 2 GW 

correspond to roughly 500 modern wind turbines). For some States, this range amounts to up to 30 

percent of the respective States’ potential for wind generation capacity (in the States of Schleswig-

Holstein/Hamburg and North Rhine-Westphalia). Differences in the spatial allocation between groups 

also explain the variation in overall amounts of generation capacity needed to satisfy the national 200 

TWh generation target (last column of the data table in Figure 2). Groups allocating more capacity to 

windier States in the North of Germany (e.g., group 1) needed to install less capacity to attain the 200 

TWh target. 

 

 

 

 

 

 

 

 

Figure 2: Wind power generation capacity (in GW) allocated to States by groups. States are sorted from North (left) to South 
(right). Grey bars indicate the range of results. Source: Own Figure. 

 SH-HH MV NI-HB BB-BE ST NW SN TH HE RP-SL BY BW Total 

Group 1 10 9 12 8 8 7 5 3 4 6 3 4 79 

Group 2 6 7 12 6 5 10 5 3 8 6 8 8 84 

Group 3 8 7 14 9 8 8 3 3 6 5 6 4 81 

Group 4 5 7 10 8 7 8 5 5 6 6 10 10 87 

Group 5 9 6 13 9 6 10 4 4 4 4 7 5 81 

Mean 7,6 7,2 12,2 8 6,8 8,6 4,4 3,6 5,6 5,4 6,8 6,2  

Range 5 3 4 3 3 3 2 2 4 2 7 6  
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3.2 Ranking of sustainability criteria 

In this section, we explore whether the observed variation in the spatial allocation of wind power 

generation capacity across groups may be due to structural differences in the ranking of sustainability 

criteria. We summarize the recorded line of argument in each group. This is subsequently related to 

the self-reported ranking of sustainability criteria (Table 1) and the correlation coefficient of each 

group’s spatial allocation with the different indicators discussed (Table 2). During the discussion, 

groups 4 and 5 mentioned the criteria of grid expansion and current allocation of wind turbines, which 

they considered as relevant in addition to those explicitly introduced for the game.  

 Group 1 Group 2 Group 3 Group 4 Group 5 
Rank 1 • Wind yield • Load 

proximity 
• Load 

proximity 
• Equity 

• Load 
proximity 

• Grid 
expansion 

• Equity 

• Current 
wind power 
generation 
capacity 

Rank 2 • Load 
proximity 

• Nature and 
landscape 
conflicts 

• Wind yield 
• Potential of 

wind power 
generation 
capacity 

• Nature and 
landscape 
conflicts 

 

 • Wind yield 
 

Rank 3 • Equity • Nature and 
landscape 
conflicts 

Wind yield  • Nature and 
landscape 
conflicts 

Rank 4     • Grid 
expansion 

Rank 5     • Equity 
Table 1: Self-reported ranking of sustainability criteria of each group (in some cases, multiple criteria were attached to the 
same rank). 

 Group 1 Group 2 Group 3 Group 4 Group 5 
Wind yield 0,80 0,10 0,54 -0,32 0,53 
Load proximity -0,10 0,67 0,18 0,55 0,42 
Nature and landscape conflicts -0,79 0,10 -0,52 0,19 -0,49 
Potential of wind power generation capacity 0,05 0,06 0,17 0,51 0,06 

Table 2: Correlation coefficient 𝑟𝑟𝑥𝑥𝑖𝑖𝑔𝑔,𝑦𝑦𝑖𝑖
𝑣𝑣  between the spatial allocation of wind power generation capacity chosen by each group 

and the spatial distribution of values for each sustainability criterion as well as of the potential of wind power generation 
capacity. 

3.2.1 Group 1 

Group 1 first allocated capacity to the Northern States arguing that these exhibited high wind yield, a 

high potential of wind power generation capacity as well as relatively low nature and landscape 

conflicts. Subsequently, additionally necessary capacity was spread across the remaining States from 

North to South. For this purpose, the group equally considered load proximity, wind yield, and nature 

and landscape conflicts. Moreover, the group accounted for equity concerns as it made sure that at 
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least a minimum amount of capacity was installed in every State. Therefore, the final spatial allocation 

chosen by group 1 exhibits a strong positive correlation with wind yield. This is consistent with the self-

reported ranking of criteria. As a consequence, group 1 installed the least capacity (79 GW) among all 

groups to achieve the 200 TWh generation target.  

3.2.2 Group 2 

Group 2 started off allocating capacity proportionally to load proximity. Load proximity was in fact 

understood as a measure of equity: The group argued that those States consuming more power should 

also contribute more to producing wind power. Subsequently, the group readjusted the spatial 

allocation for wind yield and the potential of wind power generation capacity. The group argued that 

this step reflected another dimension of equity: States with a higher potential should contribute more 

to producing wind power. Nature and landscape conflicts were hardly considered. The group discussed 

that those conflicts were already properly accounted for when the potential of wind power generation 

capacity was determined (see Appendix for details). This ranking of sustainability criteria was also self-

reported by the group. It explains that the spatial correlation chosen by group 2 is primarily correlated 

with load proximity. 

3.2.3 Group 3 

As a first step, group 3 allocated capacity based on load proximity. As group 2, load proximity was 

understood as an indicator of an equitable allocation. As a second step, additionally necessary capacity 

was installed in States with high wind yield and high potential of wind power generation capacity. 

During this step, the group also pursued a second equity objective: They made sure that at least some 

capacity was installed in every State. As a third and final step, some capacity was reallocated from 

South to North to mitigate nature and landscape conflicts. The importance of load proximity for spatial 

choice is confirmed by the self-reported ranking of criteria. However, this ranking is not in line with the 

quantitative data, which shows the strongest correlation with wind yield and nature and conservation 

risks. Possibly, the readjustments of capacity undertaken in steps two and three eventually overruled 

the initial allocation of capacity following load proximity. 

3.2.4 Group 4 

Group 4 started with a perfectly equal allocation of capacity: each State initially received 5 GW. 

Subsequently, this allocation was adjusted to better consider load proximity. In this context, the group 

also discussed potential grid expansion requirements. Nature and landscape conflicts were ignored 

when capacity was allocated. The group argued that an aggregate consideration of this criterion at the 

State level is not meaningful, inter alia, because there is significant intra-state variation of nature and 

landscape conflicts. Instead, this criterion should only be accounted for when specific siting decisions 
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are taken at the local level. This ranking of criteria was also self-reported by the group after the game. 

It explains why the eventually chosen spatial allocation is strongly correlated with load proximity. 

Interestingly, group 4 was the only group for which wind yield did not play any role. In fact, their 

eventual spatial allocation was negatively correlated with wind yield and did not exhibit the North-

South divide of the other groups. Consequently, this group installed the most capacity (87 GW) of all 

groups to attain the 200 TWh generation target. Table 2 also illustrates that the allocation chosen by 

group 4 exhibits the strongest correlation with the potential of wind power generation capacity. 

Presumably, this criterion at least implicitly guided the group’s decisions, even though it was not 

explicitly reported as relevant. 

3.2.5 Group 5 

Notably, stakeholders in group 5 were well informed about the existing allocation of wind power 

generation capacity in Germany. Consequently, they allocated capacity to each State based on existing 

capacity plus an add-on. The add-on depended on the respective level of wind yield and load proximity. 

The group started with States exhibiting high load (Northrhine-Westfalia, Baden-Württemberg, 

Bavaria) and continued with States further North and East. Equity and nature and landscape conflicts 

only played a minor role for allocation decisions in the discussion. This procedure is partly reflected in 

the self-reported ranking. Even though load proximity did not show up in the ranking, it may be 

represented by the criterion of grid expansion. In any case, the group’s allocation is most strongly 

correlated with wind yield, load proximity and nature and landscape conflicts. The correlation with 

wind yield may have also occurred because the group’s decisions were based on existing capacity – 

which has been strongly correlated with wind yield in Germany in the past (e.g., Lauf et al., 2020). 

4. Discussion 

4.1 Disagreement between groups on the ranking of sustainability criteria  

The rankings of sustainability criteria exhibit some similarities across the groups. Wind yield and load 

proximity were the most important criteria in most groups. Similarly, equity concerns mattered in all 

groups (see below). In contrast, nature and landscape conflicts were of lower importance for group 

outcomes. These observations notwithstanding, our results indicate that the variation in the spatial 

allocation of wind power chosen by the groups can be explained by differences in the weighting of 

sustainability criteria. 

Two alternative general lines of arguments can be observed. One set of groups favored a spatial 

allocation based primarily on wind yield (groups 1, 3 and 5). These groups allocated most capacity to 

Northern and Eastern States. The analysis of the group recordings suggested that the underlying 
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intention was to reduce the overall amount of capacity necessary to attain the generation target of 

200 TWh. The spatial allocation chosen by these groups also exhibited a strong negative correlation 

with nature and landscape conflicts. At first glance, this result could suggest that these groups paid a 

lot of attention to avoiding nature and landscape conflicts. An alternative interpretation stems from 

the fact that wind yield and nature and landscape conflicts were strongly negatively correlated in our 

game set-up. In other words, strong synergies existed between minimizing generation costs and nature 

and landscape conflicts.  

The other set of groups attached more priority to load proximity (groups 2 and 4). Consequently, 

relatively more generation capacity was allocated to Western and Southern States. One motivation 

behind this ranking was to reduce energy system costs other than generation costs, like grid expansion 

and balancing costs. In addition, these groups also understood load proximity as an indicator of an 

equitable spatial allocation (see next section).  

Interestingly, differing rankings of wind yield and load proximity mirror the inconclusive results of 

quantitative studies for Germany. A study by Agora Energiewende (2013) finds that spatial 

optimizations of wind power generation capacity based on wind yield and load proximity lead to similar 

total energy system costs. Bucksteeg’s (2019) results indicate that the spatially optimal allocation of 

capacity in terms of total energy system costs is close to the one that minimizes generation costs. In 

contrast, Drechsler et al. (2017) show that considering grid expansion costs shifts optimal wind power 

deployment to the South.  

More fundamentally, groups disagreed on which criteria to include at all when discussing the optimal 

spatial allocation of wind power generation capacity. This disagreement materialized, for example, 

with respect to the criterion of nature and landscape conflicts. Group 2 abstained from considering 

this criterion, arguing it was already properly accounted for when the potential of wind generation 

capacity was determined for each State. Other groups also added criteria (grid expansion, current 

allocation of generation capacity), which they considered important for choosing their spatial 

allocation. Thinking beyond the set-up of our game, similar disagreement can be expected with respect 

to other criteria not yet included in our investigation. A prime example may be the consideration of 

impacts on local residents. In order not to overload our game, we accounted for this criterion only 

when determining the potential of wind power generation capacity. In this context, legally set 

minimum distances of wind turbines to settlements constrained the availability of sites for installing 

wind turbines. Yet, it may be debatable whether this approach is sufficient to properly account for 

impacts on local residents – also in the light of mixed empirical evidence regarding the relationship 

between social acceptance of wind power and its spatial allocation (Ellis and Ferraro, 2016).  
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Importantly, the spatial scale at which the allocation decisions were taken also mattered for the 

ranking of criteria. In our game, this became obvious in group 4’s decision to ignore the criterion of 

nature and landscape conflicts. The group argued that the conflicts cannot be properly measured by 

an aggregate indicator at the State level because intra-State variation may matter as much as inter-

State variation. For them this criterion would potentially gain more importance if local allocation 

decisions were to be taken. The weighting of a sustainability criterion may therefore also hinge on how 

well its spatial heterogeneity can be accounted for at the spatial scale of the decision problem at hand. 

But apparently this was viewed differently by other stakeholders who played our game. In other words, 

there may also be disagreement on what a proper spatial scale for assessing sustainability trade-offs 

is. 

Finally, the ranking of sustainability criteria may depend on the underlying assumptions made by 

stakeholders regarding the future development of the entire energy system. In our game, this 

mattered, for example, when stakeholders assessed the importance of the criterion load proximity. 

For this purpose, assumptions needed to be made about the future use of other renewable and non-

renewable energy sources as well as on the development of grids, storage and demand. These aspects 

were not systematically considered in our game. This notwithstanding, related arguments and 

assumptions were made explicit in the group discussions and varied between groups. 

4.2 Importance of equity concerns 

We explicitly asked all groups to also consider possible equity concerns when taking the decisions on 

where to install wind power generation capacity. In principle, these concerns may be related to an 

equitable spatial allocation of both local burdens (e.g., opportunity costs and negative externalities 

arising from land-use changes at the local scale) as well as local benefits (e.g., economic development 

due to local investments) of wind power deployment. For the purpose of our game, we focused 

primarily on local burdens and suggested that there is a positive causal relationship between equity in 

the allocation of capacity and equity in the resulting local burdens.2 However, we deliberately left it to 

the groups to specify how exactly they understood equity. The group discussions revealed that equity 

considerations seemed to matter for the spatial allocation of wind power generation capacity in all 

groups. Yet, groups used different concepts of equity, sometimes even simultaneously. 

A first equity-driven approach pursued by some groups was to allocate wind power generation capacity 

proportional to the States’ potential of wind power generation capacity, i.e., the availability of land. 

                                                           
2 These were simplifications, of course. In fact, positive local impacts in terms of economic development could 
also matter. Moreover, the burden resulting from a spatial allocation is usually also driven by geographical 
patterns as well as (potentially heterogeneous) preferences and values of the affected population. 
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This concept was most pronounced in groups 2 and 3. Similar approaches to attain an equitable 

allocation of generation capacity were also implemented in previous studies carried out for Germany 

by BMWi (2017c) (regional allocation proportional to wind energy potential) and Drechsler et al. (2017) 

(regional allocation proportional to renewable energy potential weighted by a State’s population size). 

Land availability can be interpreted as an indicator of the ability of a State to bear the local burden of 

wind power deployment. The more land there is, the easier it may be to identify sites where wind 

turbines produce relatively small impacts on humans or nature. This approach exhibits similarities to 

the ability-to-pay principle known from the theory of taxation (e.g., Pigou, 1932) – or more generally 

the idea of distributive justice. Certainly, the group strategies observed in our game could only 

imperfectly mimic the concept of distributive justice, which refers to equity among individuals. Groups 

playing our game could only consider equity between States due to the set-up of our game. Depending 

on the respective allocation of wind turbines within a State, the resulting burden per individual could 

still deviate a lot from individuals’ abilities to bear the burden, both within as well as across States. 

This could be due to differences in physical (e.g., landscape profiles) and socio-economic (spatial 

allocation and size of affected population) endowments as well as heterogeneity in preferences of 

individuals (e.g., when it comes to evaluating changes in landscape aesthetics). 

A second equity-driven approach pursued also by groups 2 and 3 was to allocate wind power 

generation capacity across States proportional to States’ demand for power (i.e., load proximity in our 

game). In States with a higher power demand relatively more capacity was installed. A similar concept 

is also applied by Sasse and Trutnevyte (2019). This approach can be interpreted as an attempt to 

allocate wind power generation capacity and the resulting burden proportional to – and thus in return 

for – the benefits received from wind power generation in terms of satisfaction of electricity demand. 

This approach is similar to the benefit (or quid pro quo) principle known from the theory of taxation 

(Buchanan, 1949; Lindahl, 1919) – or more generally the idea of commutative justice. Again, however, 

relating an equitable allocation of capacity to State power demand is only an imperfect proxy for 

commutative justice among individuals. Reasons include, for example, heterogeneous levels of 

electricity consumption between individuals within a State.  

Finally, several groups addressed equity by equalizing the absolute amount of wind power generation 

capacity installed in every State. This was most pronounced in group 4 which initially allocated 5 GW 

to each State. But also groups 1, 3, and 5 made sure that at least some capacity was installed in each 

State. These strategies may be one explanation why, in our game, every State ended up with at least 

3 GW installed. They can be interpreted as an implementation of either of the two equity approaches 

discussed above. On the one hand, these strategies may be a simple representation of the approach 

of distributional justice – as the mere existence of a State could be understood as a fair proxy for the 
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availability of land. On the other hand, they may also implement the idea of commutative justice – if 

one assumes that each State should contribute to wind power deployment because electricity is 

demanded everywhere. 

Overall, equity concerns thus mattered in all groups when allocation decisions were taken. However, 

we observed significant differences regarding the fundamental concepts of equity applied 

(distributional vs. commutative justice).  

4.3 Methodological reflections 

The results of our game are sensitive to its design. Schafsma et al. (2018) point out numerous 

methodological stumbling blocks that need to be considered when applying deliberative methods, 

such as: 

• Sampling: We invited stakeholders from a variety of fields and backgrounds. Yet, representatives 

of civil society or affected citizens were not present. 

• Information provision: Before playing the game, we provided participants with information, e.g., 

on the sustainability criteria. During the game, it turned out that stakeholders had quite different 

levels of knowledge, e.g., regarding the current spatial allocation of wind power generation 

capacity. 

• Group effects: We equipped each group with a moderator to provide for a balanced discussion. 

Still, the eventual group decisions were most likely also determined by the role of individuals with 

strong leadership skills. 

• Topics of deliberation: We strongly framed the game and limited the remaining degrees of 

freedom in various ways. First of all, we defined an explicit target for wind power generation to be 

attained in the game (so not deploying wind power was no option). The level of ambition of the 

deployment target may be decisive for the course of discussion and the eventual outcome. If the 

level is low, it may be relatively easier to identify a spatial allocation with few trade-offs. If the 

level of ambition is high, the degrees of freedom for choosing a spatial allocation vanish. In either 

case, the actual ranking of criteria may lose importance. In addition, we pre-selected sustainability 

criteria to be considered in the game. Choosing other criteria may well lead to different rankings. 

We also asked for an allocation of capacity across States. This scale cannot fully represent the 

spatial heterogeneity of all sustainability criteria, e.g., for wind yield or nature and landscape 

conflicts. Playing the game at a smaller scale may therefore result in different outcomes. 

Thus, our results – regarding both the spatial allocation of wind power generation capacity and the 

underlying definition and ranking of sustainability criteria – cannot claim to be representative. 

However, it was not our intention to derive an “optimal” spatial allocation or a “correct” ranking of 
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sustainability criteria. Rather, we aimed to provide more general insight on whether or not there is 

disagreement among stakeholders regarding these aspects and shed light on lines of argumentations.  

5 Conclusion 

The spatial allocation of generation capacity for onshore wind power brings about trade-offs between 

different sustainability criteria, such as energy system costs or impacts on humans and ecosystems. 

Consequently, the decision how to allocate wind turbines depends on which weight a decision-maker 

attaches to the different sustainability criteria. Results of the game we played with stakeholders 

suggest that there is no generally accepted ranking of sustainability criteria on which everybody agrees 

when it comes to the spatial allocation of wind power generation capacity. Disagreement was not only 

related to the weights of sustainability criteria. It was also due to the fact that stakeholders had 

different opinions regarding the definition and measurement of some of the sustainability criteria as 

well as the underlying assumptions regarding relevant future developments of the energy system. 

Interestingly, concerns of spatial equity seemed to matter for all stakeholders. Yet, different concepts 

of spatial equity – relating to distributive or commutative justice – could be observed. Disagreement 

on the proper ranking, definition and/or measurement of sustainability criteria implies that there is no 

objectively optimal spatial allocation of wind power generation capacity. Arguably, this insight is likely 

to hold even if more sophisticated empirical and deliberative methods are used. 

Our results open up for recommendations for promising future avenues of research. Scientific studies 

investigating the optimal spatial allocation of wind power – or renewables more generally – should not 

primarily rely on aggregate monetary or multi-criteria assessments. These may conceal the sensitivity 

of results with respect to the monetary or non-monetary weights attached to different criteria – and 

this sensitivity may be decisive if there is disagreement on the ranking of criteria. Instead, more spatial 

trade-off analyses are required which compare different spatial optimizations for individual 

sustainability criteria in a consistent modelling framework. While such trade-off analyses do not derive 

an optimization across multiple criteria, they may help to identify “no-regret” sites for future wind 

power development. On “no-regret” sites, wind turbines are installed under any mono-criterion 

optimization. Moreover, it may also be promising to carry out a comparative assessment of different 

concepts of spatial equity. Existing studies are scarce and apply quite different approaches to spatial 

equity so far (see Drechsler et al., 2017; Sasse and Trutnevyte, 2019). A prerequisite for any such 

analysis would be a more comprehensive conceptual discussion of possibly meaningful definitions of 

spatial equity with regard to deploying renewable energy sources. 
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Our results also have implications for policy debates regarding the optimal spatial allocation of wind 

power deployment. In Germany, for example, policy-makers are discussing a stronger spatial 

differentiation of the tender scheme for renewable energy support (Lehmann et al., 2019). Following 

this proposal, capacities may be tendered separately for regions, or bids from certain regions may be 

awarded bonuses. Similarly, there is an ongoing public debate on how much priority area for wind 

power development each German State should assign (Meier et al., 2019). Either decision requires a 

ranking of sustainability criteria. If society disagrees on the ranking – as indicated by our study -, several 

policy recommendations apply: A minimum requirement is that the choice and ranking of sustainability 

criteria underlying political decisions on the spatial allocation of wind power generation capacity 

should be made as explicit, transparent, and specific as possible. Second, policy-makers should 

facilitate public debate and, where possible, societal consensus regarding which criteria should be 

reviewed and how strongly they should matter for governing the spatial allocation of wind power 

deployment. A prerequisite for any such consensus may be a better communication and discussion of 

benefits and costs of wind power deployment at different spatial scales. Finally, political decisions on 

the spatial allocation of wind power deployment should involve all relevant stakeholders with possibly 

diverging views on the ranking of sustainability criteria. This strengthens the case for multi-level 

governance and participatory decision-making. It also calls for scrutinizing proposals aiming at more 

centralized decisions or shifting competencies from parliaments to executive and judiciary branches. 

In Germany, for example, such proposals are made frequently with the intention to speed up wind 

power deployment (Meier et al., 2019). 
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6 Appendix 

The following data sources were used to generate the “game board” presented in Figure 1. 

Potential for wind power generation capacity 

The potential for wind power generation capacity is taken from Masurowski (2016). He carries out a 

two-step procedure. First, he uses a GIS-based approach to identify areas suitable for wind power 

deployment. For this purpose, he considers a comprehensive set of geophysical, technical and legal 

constraints. Subsequently, he uses an algorithm optimizing energy yield per area to identify potential 

sites for a reference wind turbine (Enercon E-101) with a capacity of 3 MW. In total, this approach 

yields 191,873 potential sites for Germany. Considering the available sites for each State as well as the 

assumed wind turbine capacity of 3 MW yields the corresponding aggregated potential for wind power 

generation capacity. 

Wind yield 

Information on full-load hours is also derived from Masurowski (2016, p. 80). They are calculated 

considering both the average wind speed at the potential sites and the performance curve of the 

reference wind turbine. Full-load hours per State are calculated as the average for all respective 

potential sites. To also account for potential yield losses onsite (e.g., due to shadowing effects), we  

adjusted the values of full-load hours downwards proportionally to the German average full-load-

hours of 2300 h projected for the year 2030 (NItsch et al., 2012). 

Proximity to load centers 

Information on electricity consumption as well as power generation from other renewable energy 

sources is based on the assumptions made in Scenario B 2033 of the German grid development plan 

adopted in 2013 (50Hertz et al., 2013, p. 57).  

Nature and landscape conflicts 

Nature and landscape conflicts are measured by an ordinal conflict risk scale. The full procedure is 

provided in Gauglitz et al. (2019). The conflict risk is the result of an iterative expert discourse and 

describes the probability of conflicts between wind turbine development and nature conservation 

assets on the basis of available environmental information. A low risk level indicates an area where a 

usage is unlikely to produce significant conflicts, a high risk level indicates an unsuitable area with 

multiple possible conflicts. The risk level is the result of a nationwide comparative assessment. 

Mapping spatially differentiated risk levels on a 6-point scale for wind energy is achieved in a combined 

GIS-based and discursive process. Under consideration of the typical effects of wind turbines, potential 

conflicts are identified especially with avifauna, bats or recreational functions. Altogether all objects 
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of protection – flora and fauna, biodiversity, water, soil, air and climate, diversity, characteristic 

features and beauty as well as the recreational value of nature and the landscape – are 

operationalized. For the operationalization nationwide available data, e.g., Nature 2000 sites, are used. 

The potential conflicts represented by these datasets are rated considering impact and vulnerability of 

the objects of protection. Based on these ratings and additional information about their normative 

meaning and accuracy, the conflict risk of datasets is generated. To map a nationwide nature 

conservation conflict risk rating concerning wind turbines, the datasets for each objct of protection are 

aggregated rule-based. The result is a nationwide map rating sites according to the overall conflict risk 

that can be used as a criterion to allocate wind power plants. These results can be utilized in planning 

to avoid areas with high conflict risk. They can be used as an instrument to assess and develop wind 

energy scenarios. The assessment is carried out site-specific and was aggregated to the State level for 

the purpose of the game. The pie chart in Figure 1 illustrates the shares of the different conflict risk 

classes in the potentially available sites for wind power deployment. 
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