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Abstract: 42 

As global environmental change continues to accelerate and intensify, science and society are 43 

turning to transdisciplinary approaches to facilitate transitions to sustainability. Modeling is 44 

increasingly used as a technological tool to improve our understanding of social-ecological systems 45 

(SES), encourage collaboration and learning, and facilitate decision-making. This study improves 46 

our understanding of how SES models are designed and applied to address the rising challenges of 47 

global environmental change, using mountains as a representative system. We analyzed 74 peer-48 

reviewed papers describing dynamic models of mountain SES, evaluating them according to 49 

characteristics such as the model purpose, data and model type, level of stakeholder involvement, 50 

and spatial extent/resolution. Slightly more than half the models in our analysis were participatory, 51 

yet only 21.6% of papers demonstrated any direct outreach to decision makers. We found that SES 52 

models tend to under-represent social datasets, with ethnographic data rarely incorporated.  53 

Modeling efforts in conditions of higher stakeholder diversity tend to have higher rates of decision 54 
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support compared to situations where stakeholder diversity is absent or  not addressed. We discuss 55 

our results through the lens of appropriate technology, drawing on the concepts of boundary 56 

objects and scalar devices from Science and Technology Studies. We propose four guiding 57 

principles to facilitate the development of SES models as appropriate technology for 58 

transdisciplinary applications: (1) increase diversity of stakeholders in SES model design and 59 

application for improved collaboration; (2) balance power dynamics among stakeholders by 60 

incorporating diverse knowledge and data types; (3) promote flexibility in model design; and (4) 61 

bridge gaps in decision support, learning, and communication. Creating SES models that are 62 

appropriate technology for transdisciplinary applications will require advanced planning, increased 63 

funding for and attention to the role of diverse data and knowledge, and stronger partnerships 64 

across disciplinary divides. Highly contextualized participatory modeling that embraces diversity in 65 

both data and actors appears poised to make strong contributions to the world’s most pressing 66 

environmental challenges.    67 

Keywords:  Dynamic modeling; knowledge co-production; mountain social-ecological systems; 68 

mutual learning; transdisciplinarity; science and technology studies   69 
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1. Introduction 70 

Social-ecological systems (SES) are facing unprecedented challenges from global environmental 71 

change (Turner et al. 2007). Responding to these changes is a central challenge for the management 72 

of sustainable ecosystems, with far-reaching consequences for human well-being (Lambin et al. 73 

2001; Carpenter et al. 2009; DeFries et al. 2012). SES are characterized by complex processes with 74 

nonlinear dynamics, indirect effects and feedbacks, emergent properties, and heterogeneous links 75 

that extend across spatial and temporal scales (Liu et al. 2007). These characteristics can cause 76 

unanticipated outcomes that make environmental management difficult, particularly as decisions 77 

are often made in the context of limited data and high uncertainty (Polasky et al. 2011). Due to the 78 

complexity of SES, understanding global environmental change is critical for developing effective 79 

responses (Ostrom 2007, Turner et al. 2007, Lambin & Meyfroidt 2010).  80 

As global environmental change continues to accelerate and intensify, science and society are 81 

turning to transdisciplinary approaches to facilitate transitions to sustainability (Lang et al. 2012; 82 

Brandt et al. 2013). Transdisciplinarity is a reflexive approach that brings together actors from 83 

diverse academic fields and sectors of society to engage in co-production and mutual learning, with 84 

the intent to collaboratively produce solutions to social-ecological problems (Cundill et al. 2015; 85 

Lemos et al. 2018; Wyborn et al. 2019; Norström et al. 2020). Such collaboration enables problems 86 

to be understood from multiple perspectives, and can expand the scope of potential solutions 87 

(Tengö et al. 2014; Hoffman et al. 2017; Chakraborty et al. 2019; Steger et al. 2020). This diversity 88 

also contributes to the perceived credibility, salience, and legitimacy of results (Cash et al. 2003; 89 

Cundill et al. 2015), empowering participants to take ownership of products and apply new 90 

knowledge to sustainability challenges on the ground (Lang et al. 2012; Balvanera et al. 2017). 91 
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Modeling is increasingly used by academics and development experts to encourage collaboration 92 

and learning among diverse groups to facilitate decision-making (Bousquet and Le Page 2004; 93 

Barnaud et al. 2008; Verburg et al. 2016; Voinov et al. 2018; Schlüter et al. 2019). While modeling 94 

may refer to any kind of qualitative or quantitative system representation used to identify and 95 

understand patterns or processes, in this study we explicitly focus on dynamic models showing 96 

change over time. Designing models that capture the complexity of SES while yielding useful 97 

information at relevant scales for management remains conceptually and methodologically 98 

challenging (Elsawah et al. 2019). SES modeling is often criticized for failing to address broader 99 

contexts: operating at too large a scale (O’Sullivan 2004; Mahony 2014), not representing or 100 

arbitrarily reducing complex processes to abstract quantities (Taylor 2005; Hulme 2011; Dempsey 101 

2016; O’Lear 2016), or overlooking end-users’ interests and capabilities (Rayner et al. 2005; Nost 102 

2019). These critiques highlight the need for more widespread integration of transdisciplinary and 103 

co-production processes into SES modeling. Researchers have begun to formulate conceptual 104 

guides for transdisciplinary applications of SES models (Schlüter et al. 2019), though gaps remain in 105 

the development of theoretical and practical recommendations.  106 

The purpose of this study is to understand how SES models are being designed and applied to the 107 

challenges of global environmental change and to develop guiding principles for transdisciplinary 108 

SES modeling. To limit the scope of the review, we analyzed 74 peer-reviewed papers describing 109 

applications of SES models in mountain areas. Mountains are a representative system for modeling 110 

dynamic processes in complex SES as they have high spatial and temporal heterogeneity and attract 111 

diverse actors with often conflicting worldviews and agendas (Klein et al. 2019; Thorn et al. 2020).   112 

To analyze the design and application of SES models, we turn to Science and Technology Studies 113 

(STS) to conceptualize models as scientific artifacts (Latour 1986). The field of STS has long 114 

advanced the social study of science, illustrating how material devices (Latour 1986), embodied 115 



5 

practices (Haraway 1988), and infrastructures (Bowker and Star 1999) shape knowledge 116 

production. Here, we focus on models as knowledge infrastructures, which Edwards et al. (2013) 117 

define as “robust networks of people, artifacts, and institutions that generate, share, and maintain 118 

specific knowledge about the human and natural worlds” (p. 23). We draw on three concepts 119 

related to knowledge infrastructures to analyze the design and application of SES models: 120 

appropriate technology (Fortun 2004), boundary objects (Star and Griesemer 1989), and scalar 121 

devices (Ribes 2014). We use these concepts to explore how SES models influence collaboration 122 

around environmental problems (Taylor 2005; Sundberg 2010; Landström et al. 2011), shaping the 123 

production of new knowledge, relationships, and decisions.  124 

1.1 Conceptual framework: SES models as appropriate technology for transdisciplinary 125 

applications  126 

Scholars are calling for a more reflexive consideration of models’ embeddedness in socio-cultural 127 

contexts and relevance for particular places and problems (Taylor 2005; Crane 2010). The concept 128 

of appropriate technology broadens our view beyond the technical correctness of models, towards 129 

this more societal focus. Appropriate technology emerged from alternative technology movements 130 

of the mid-twentieth century, and refers to tools, techniques, and machinery used to address 131 

livelihood and development problems in ways that are sensitive to place-based needs, as opposed 132 

to one-size-fits-all solutions. STS researchers have applied the concept to other contexts, such as 133 

questioning how scientists acquire "the right tools for the job" (Clarke and Fujimura 1992; de Laet 134 

and Mol 2000). Following Fortun (2004), an SES tool such as simulation modeling could be 135 

considered appropriate technology when it is “designed in a way attuned to the material, political, 136 

and technological realities with which it works, and to the social actors who will be its users” (p.54). 137 

For example, Fortun (2004) describes the development of a publicly-available pollution database 138 

and website in the early 2000s, which allowed the public to search for toxic releases by company 139 
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name and to learn about subsequent risks to human and environmental health. This website was 140 

appropriate technology for the time given that key aspects to US environmentalism were open 141 

source technologies, corporate transparency, and complexity science.  142 

In this paper, we examine whether SES models are appropriately designed for contemporary 143 

transdisciplinary applications that aim to understand and overcome the challenges presented by 144 

global environmental change. These challenges demand societally-relevant integration of data and 145 

stakeholder perspectives across spatial and temporal scales, yet this is difficult to accomplish due 146 

to: (1) diverse and sometimes contradictory stakeholder objectives and worldviews (Etienne et al. 147 

2011; Etienne 2013; Lade et al. 2017), including epistemological rifts between the socio-cultural 148 

and computational sciences that prevent detailed representations of social processes in SES models 149 

(Taylor 2005; Crane 2010; Verburg et al. 2016; Voinov et al. 2018); and (2) mismatching scales of 150 

social and ecological processes and associated data (Zimmerer and Basset 2003; Cumming et al. 151 

2006; Bakker and Cohen 2014; Rammer and Seidl 2015; Lippe et al. 2019). By employing the 152 

conceptual framework of models as “appropriate technology,” our evaluation focuses on how SES 153 

models span social boundaries and spatial scales. We use the concepts of “boundary objects” and 154 

“scalar devices” to explore how SES models bring together diverse groups of people with the aim of 155 

improving understanding and management of SES (boundary objects, section 1.1.1), and how SES 156 

models can help understand cross-scale and cross-level dynamics (scalar devices, section 1.1.2). We 157 

propose that SES models that achieve these dual objectives can best function as appropriate 158 

technology (Figure 1).  159 
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 160 

Figure 1. Conceptual relationship between boundary objects and scalar devices, indicating that SES 161 

models may function as appropriate technology for transdisciplinary applications when they 162 

simultaneously span social boundaries and spatial scales (green area).  163 

1.1.1 Models as boundary objects 164 

Traditionally, model design has been the purview of scientific research communities. However, 165 

recent attempts to incorporate more diverse stakeholder perspectives have led to the co-design of 166 

SES models, allowing for different understandings, values, and worldviews to be elicited, visualized, 167 

and negotiated in the pursuit of a shared “boundary object” or system representation (Zellner 168 

2008; Etienne et al. 2011; Etienne 2013; Edmonds et al. 2019). Boundary objects are conceptual or 169 

material items that emerge through collaboration, remaining both adaptable to local needs yet 170 

“robust enough to maintain a common identity” across different groups (Star and Griesemer 1989, 171 

pg. 393). Stakeholders can hold different, sometimes conflicting, ideas about boundary objects yet  172 

still collaborate through them. One example, described by Star and Griesemer (1989), includes a 173 
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bird in a natural history museum: the specimen carried different value and meaning to amateur 174 

bird watchers, professional biologists, and taxidermists, who worked together using the boundary 175 

object while maintaining different epistemic perspectives. In this way, boundary objects enable 176 

people to work together across knowledge systems despite syntactic and semantic differences in 177 

understanding (Carlile 2002), illustrating how collaboration can occur without requiring 178 

consensus.  179 

The boundary object concept has been widely applied outside STS given its utility in understanding 180 

the process of collaboration in inter- and trans-disciplinary settings (Clark et al. 2011; Steger et al. 181 

2018). Here, we examine how SES models can function as boundary objects for transdisciplinary 182 

work, exploring how a model can span multiple social worlds beyond one system or knowledge 183 

type (Clarke and Star 2008).  184 

1.1.2 Models as scalar devices 185 

A core challenge of modeling SESs is the scalar mismatch (Zimmerer and Bassett 2003) occurring 186 

between social and ecological processes and the data that represent them (Walker et al. 2004; 187 

Cumming 2006; Rammer and Seidl 2015). For example, models that forecast regional climate 188 

change may not have adequate spatial resolution to incorporate local level human drivers like land 189 

use change, yet it is the combination of these multi-scalar drivers that could pose the highest risk 190 

and uncertainty for the system (Altaweel et al. 2009). Efforts to address these scalar issues are 191 

limited by computing power, data availability, and the ability to make inferences from highly 192 

complex or complicated models (Kelly et al. 2013; Verburg et al. 2016; Lippe et al. 2019). Here, we 193 

examine how models are used as “scalar devices” to conceptually shift between temporal or spatial 194 

scales, thus aiding users in overcoming this scalar mismatch. 195 
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 Ribes (2014) proposed the ethnography of scaling as a methodological approach for studying long-196 

term scientific enterprises, where scalar devices are the tools and practices researchers use to 197 

represent, understand, and manage large-scale objects or systems that cross multiple levels of 198 

organization (Ribes and Finholt 2008). For example, Ribes examines how scientists used agendas, 199 

slides, and notes as scalar devices to summarize current and future disciplinary needs across 200 

multiple scales when creating the geosciences network known as GEON. These tools condensed 201 

months of work across disparate groups of scientists into concrete objects and representations that 202 

could be examined and questioned within the same room at the same time, thus translating a large 203 

and complex system into a more approachable format. Scalar devices can also refer to social 204 

activities such as all-hands meetings that bring together networks of people to deliberate and 205 

communicate about large-scale spatial and temporal dynamics. In this paper, we conceptualize SES 206 

models as scalar devices to understand how they are used to isolate certain components and 207 

feedbacks in SES so that these systems might be more clearly understood, predicted, and managed 208 

across scales.  209 

Below, we describe patterns in how SES models are designed and used to address cross-210 

disciplinary and cross-scalar processes. We draw on these results to re-examine our conceptual 211 

framework (Figure 1) that places appropriate technology for SES modeling at the intersection of the 212 

boundary object and scalar devices concepts. In light of these results, we propose a set of guiding 213 

principles to facilitate the development of SES models as appropriate technology for 214 

transdisciplinary applications.  215 

 2. Materials and Methods 216 

2.1 Search strategy 217 



10 

We reviewed literature employing dynamic social-ecological models in mountain systems, 218 

searching combinations of keywords in the search engine Google Scholar (model*; ‘coupled human 219 

natural systems’ or ‘coupled natural human systems’; ‘social-ecological systems’ or ‘socio-ecological 220 

systems’; ‘change’; ‘management’; ‘mount*’ or ‘highland’ or ‘alpine’). Keywords were compiled 221 

during meetings with experts from the Mountain Sentinels Collaborative Network 222 

(mountainsentinels.org), a group of researchers and other stakeholders working towards mountain 223 

sustainability worldwide. We expanded this search by following references included in these 224 

papers to other studies and via consultations with experts. All papers published in English prior to 225 

August 2017 were considered for inclusion if they contained one overarching modeling effort, 226 

which in some cases consisted of multiple modeling approaches either integrated or presented 227 

alongside one another. To be included, models needed to be dynamic (showing change over time) 228 

and include both social and ecological components. Although this search was not systematic, the 74 229 

papers we reviewed represent a significant proportion of the literature available.  230 

2.2 Data collection 231 

Each of the 74 papers (Appendix A) was coded independently by two team members according to a 232 

codebook developed and tested on five papers. Differences were discussed and resolved by a third 233 

reviewer as needed. We operationalize the concept of appropriate technology by assessing 234 

characteristics of SES model design and application, including the model purpose, stakeholder 235 

involvement, and spatial extent/resolution (Table 1). We use these codes as “sensitizing concepts” 236 

(Blumer 1954) to guide our exploratory analysis and to conceptually bridge between measurable 237 

SES modeling characteristics and the relative ambiguity of the STS concepts we described above.   238 

Design 
codes 

Description Measurement Appropriate 
Technology 
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Model 
purpose 
(intended) 

System understanding; prediction 
and forecasting;  decision support;  
and communication/learning 
(Kelly et al. 2013) 

Not addressed / secondary 
purpose / primary purpose 

Scalar devices 

Boundary 
objects 

Model 
specificity 

Level of context-specificity and 
level of generalizability 

None/low/medium/high Scalar devices 

Model 
orientation 

Level of scientific orientation  and 
level of societal orientation  

None/low/medium/high Boundary 
objects 

Model types Agent-based, integrated 
simulation, systems dynamics, 
Bayesian Network, cellular 
automata, mathematical, 
statistical, or GIS 

Present or absent Scalar devices 

Boundary 
objects 

Data types Biophysical (e.g. climatic, 
ecological, hydrological, 
geologic/topographic) 

Social (e.g. economic, political, 
demographic, ethnographic) 

Social-Ecological (e.g. land use or 
livelihoods) 

Present or absent Boundary 
objects 

Scalar devices 

Model extent Social 

 

 

The broadest 
organizational level 
addressed: individual, 
household, community, 

Scalar devices 
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Spatial region, nation, multi-
nation, or global 

The size of the study area 
(e.g., km2) where available 

Model 
resolution 

Social 

 

 

 

Spatial 

The narrowest 
organizational level 
addressed: individual, 
household, community, 
region, nation, multi-
nation, or global 

The size of the smallest 
pixel or modeling unit (e.g., 
km2) where available 

Scalar devices 

Public 
participation 

Whether or not non-researchers 
were involved in modeling 

Present or absent Boundary 
objects 

Stakeholder 
diversity 

What level of stakeholder diversity 
was present in the system being 
modeled 

Not 
mentioned/none/low/high 

Boundary 
objects 

Application 
codes 

     

Model 
purpose 
(achieved) 

System understanding; prediction 
and forecasting;  decision support;  
and communication/learning 
(Kelly et al. 2013) 

Not addressed / secondary 
purpose / primary purpose 

Scalar devices 

Boundary 
objects 

Policy or 
planning 
outreach 

Whether or not modeling results 
were communicated to 

Present or absent Boundary 
objects 
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decisionmakers (e.g., policy 
makers, planners, managers) 

Table 1. Codebook organization. 239 

 240 

Design codes focused on the methods used to build the models. Model types included eight non-241 

mutually exclusive categories each study could include: agent-based, integrated simulation, systems 242 

dynamics, Bayesian network, cellular automata, mathematical, statistical, and GIS. We also noted 243 

whether toy models or role-play games were used to engage participants. Data types were coded 244 

into: “biophysical”, “social”, or “social-ecological” categories, which were further specified into sub-245 

categories (Table 1). We drew on the data types used to understand how models act as boundary 246 

objects by integrating diverse perspectives through data, and what kinds of data are most 247 

frequently applied to model cross-scale dynamics. See Appendix B for detailed definitions of data 248 

and model types. 249 

Coders identified information on the social and spatial scale of the models, which we used to assess 250 

how models function as scalar devices. We divided these data into extent (broadest level) and 251 

resolution (narrowest level). We classified social scale according to the organizational or 252 

administrative levels addressed in the model (Gibson et al. 2000; Cash et al. 2006; Preston et al. 253 

2015), organizing them into seven qualitative and hierarchical categories: individual, household, 254 

community, region, nation, multi-nation, or global. We determined whether a model considered 255 

cross-scale processes by calculating the number of social levels crossed between the extent and 256 

resolution of the model. For example, a model that crossed two scales might go from a regional-257 

level extent to a household-level resolution. We also recorded the quantitative size of the study area 258 

(extent) and the size of the smallest pixel or unit of the model (resolution), when available.  259 

https://docs.google.com/document/d/1cupTVoQuLzbFd81ZsR0Gc7D-iAYZkfuu1oYCR-BWZdk/edit
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The level of model specificity was assessed via two questions regarding the degree of a) contextual 260 

understanding and b) general, transferable understanding emphasized in the model development 261 

and application. Contextual and general understanding were ranked independently of one another 262 

(Table 1; none/low/medium/high), contributing to our understanding of how SES models act as 263 

scalar devices. A highly contextual model presented a detailed description of the study site and 264 

clarified how this context influenced model design and application, while a highly generalizable 265 

model explicitly and repeatedly emphasized how their modeling effort was relevant to other 266 

systems. Similarly, the theoretical orientation of the model was assessed via two questions (ranked 267 

independently) regarding the advancement of a) theoretical/scientific knowledge and b) societal 268 

goals/processes. According to our rubric, a highly scientifically-oriented model clearly advanced 269 

some research field or theory, while a highly societally-oriented model supported a social objective 270 

or laid the foundation for locally-relevant decision-making (e.g., policy making, management action, 271 

planning processes, educational tools). Thus the orientation of the model sheds light on how these 272 

models function as boundary objects. These four questions allow us to determine which models 273 

were both highly contextual and also highly generalizable to other systems, or which models 274 

managed to achieve high scientific as well as high societal relevance. 275 

Coders extracted all textual references to public participation, which included the involvement of 276 

any  non-researcher stakeholder group. These data were categorized into a binary participatory or 277 

non-participatory variable. Any level of engagement with the public - from model 278 

conceptualization, design, development, or implementation - was considered participatory. 279 

Stakeholder diversity was another variable that was either not mentioned in the paper, or coded as 280 

none, low, or high levels of diversity. Together these variables clarify the diversity of people 281 

involved in the modeling activity, an important criteria for functioning as a boundary object.  282 
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Model purpose refers to the goals of the modeling work and were adapted from Kelly et al. (2013) 283 

to include: system understanding, prediction/forecasting, decision support, and 284 

learning/communication (see Appendix B). We define the learning/communication purpose as a 285 

contribution towards “the capacity of a social network to communicate, learn from past behaviour, 286 

and perform collective action” (Kelly et al. 2013, pg. 161), which distinguishes it from more general 287 

system understanding. Models designed for decision support include a wide variety of decision 288 

contexts, including multi-criteria analyses, trade-offs in decision-making, land use planning, and 289 

management actions. Coders recorded the intended model purpose and classified whether each 290 

intention and outcome was addressed as a primary or secondary purpose of the project. We used 291 

quotations from the text to resolve any differences between coder ranking. Due to this potential 292 

subjectivity, and sometimes small sample sizes, we treated the model purpose variables as binary 293 

Yes (primary or secondary purpose) or No (not addressed) in most of our analyses. Finally, coders 294 

extracted all references to policy and planning outreach, which we translated into a binary code 295 

indicating whether or not the model or study results were directly communicated to decision 296 

makers.    297 

 2.3 Analysis 298 

We present summary statistics that describe trends in SES modeling design and application. We use 299 

chi-square or Fisher’s exact tests and t-tests as relevant to look for associations between model 300 

purpose outcomes and the various design codes described above. For all tests, we consider p<0.05 301 

to be statistically significant.  302 

3. Results 303 

3.1 Model purpose: Intention vs. outcome 304 

https://docs.google.com/document/d/1cupTVoQuLzbFd81ZsR0Gc7D-iAYZkfuu1oYCR-BWZdk/edit
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Many studies successfully achieved the outcome they intended (Figure 2). Almost three-quarters 305 

(73%) of the papers intended system understanding to be a primary purpose of the model (n=54), 306 

yet only 57% (n=42) achieved it as a primary outcome. Instead, most of these papers achieved 307 

secondary system understanding outcomes. Prediction/forecasting was not a frequent primary 308 

model purpose (n=21, 28%), but was commonly considered a secondary model purpose (n=35, 309 

47%). There was  little difference between intentions and outcomes for the prediction/forecasting 310 

purpose, indicating these SES models generally achieved their intended purpose. These model 311 

purposes require integrating information about the world across different geographic levels and 312 

multiple time horizons, thus aligning with the scalar devices concept.      313 

There was considerably greater difference between intentions and outcomes for both decision 314 

support and learning/communication model purposes (Figure 2), indicating that SES models may 315 

face barriers when created for these purposes. Decision support was commonly intended as a 316 

primary model purpose (n=35, 47%). However, almost half of the papers that intended decision 317 

support as a primary purpose instead achieved it as a secondary purpose (n=16), and 44% of the 318 

papers that intended it as a secondary purpose failed to report any successful decision support 319 

outcomes (n=11). Most papers we reviewed did not consider learning/communication to be an 320 

intended model purpose (n=46, 62%). Nevertheless, 39% of the papers that intended it as a 321 

secondary purpose failed to report any learning/communication outcomes (n=7), while the same 322 

number of papers discovered unexpected learning outcomes despite having no intention of it. 323 

These results point to gaps in the ability of SES models to contribute to decision support outcomes, 324 

and a general inattention to learning/communication model purposes. These model purposes are 325 

aligned with the boundary object concept as they typically rely on significant stakeholder 326 

engagement. The fact that their intended use fell short of their realized use suggests critical gaps in 327 

the role of SES models as boundary objects.  328 
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 329 

Figure 2.  Number of papers per model purpose, for both intentions and outcomes. 330 

3.2  Model specificity and orientation 331 

Most models (n = 47, 63.5%) had a highly context-specific focus, while only 10.8% (n=8) were 332 

considered highly generalizable, illustrating a preference for SES models to focus on particular 333 

places and their relevant scales of operation rather than generic systems or processes. Most models 334 

(n=40, 54%) were also classified as having medium scientific orientation. While scientific or 335 

theoretical advancement was a common goal of SES modeling efforts, there was less consistency for 336 

societal goals, as models were roughly evenly distributed across low, medium, and high levels of 337 
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societal orientation. These results again highlight potential gaps in how SES models are used as 338 

boundary objects. When analyzing the relationship between model specificity and orientation, our 339 

results indicated that SES models used to advance societal goals also tended to be highly context 340 

specific (p<0.01; Figure 3a), while scientific goals appeared to be advanced even at low or 341 

nonexistent levels of system-specific context (p=0.02; Figure 3b). This points to potential synergies 342 

between the STS concepts, where SES models are more likely to function as boundary objects (i.e., 343 

by advancing societal goals) when they are created at scales relevant to a particular context.  344 

 345 

Figure 3. Percent of papers per level of context-specificity, according to a) societal orientation and 346 

b) scientific orientation. 347 
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We found significant associations between learning/communication outcomes and context-348 

specificity (p < 0.00), where most models with learning outcomes were also highly context-specific 349 

(n=24, 89%; Figure 4a). This indicates that context specificity is an important characteristic of SES 350 

models that function as boundary objects, perhaps by enabling stakeholders to recognize and relate 351 

to the system represented. Learning outcomes also occurred with more regularity across medium 352 

to high levels of societal orientation (p < 0.00; Figure 4b), supporting the idea that societally-353 

oriented models are more likely to function as boundary objects. Decision support outcomes were 354 

highest at low to medium levels of generalizability (p = 0.04; Figure 4c) and almost non-existent 355 

when the models lacked societal orientation (p < 0.00; Figure 4d). This suggests there was some 356 

flexibility in achieving decision support outcomes; if modeling efforts included a modest degree of 357 

generalizability and societal focus, decision support outcomes tended to occur. However, both 358 

learning and decision support outcomes were most common at medium to high levels of societal 359 

orientation, indicating that the pursuit of these model purposes may promote the use of SES models 360 

as boundary objects.   361 

 362 
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Figure 4. Model purpose outcomes were significantly associated with the context-specificity, 363 

generalizability, and societal-orientation of the models.  364 

3.3 Model types 365 

Of the eight model types, agent-based models (ABM) were the most frequently used (n = 48, 366 

64.8%), followed closely by cellular automata models (n = 46, 62.1%). In fact, ABM and cellular 367 

automata models were used together in almost half the studies (n = 36, 48.6%), though decision 368 

support outcomes were more common when cellular automata models were absent (p = 0.02). 369 

Mathematical models were also relatively common (n=34, 45.9%). Learning outcomes were 370 

significantly higher when toy models or role-play games were used (p < 0.01), indicating that 371 

models built with stakeholder involvement in mind tended to function as boundary objects. No 372 

other model types were associated with higher model purpose outcomes.  373 

Studies used one modeling approach (n =11, 14.8%), or combined two (n=30, 40.5%), three (n=21, 374 

28.3%), or four (n=12, 16.2%) modeling approaches to represent and scale the system in different 375 

ways. When only one modeling approach was used, system dynamics and mathematical models 376 

were most frequent. When multiple approaches were used, ABM and cellular automata models 377 

were most frequent. We did not find any associations between model purpose outcomes and the 378 

number of modeling approaches used.  379 

We did not find significant associations between model type and scientific orientation, though 380 

mathematical models and system dynamics models do have significant associations with societal 381 

orientation. Specifically, mathematical models were more likely than non-mathematical models to 382 

have intermediate (low or medium) levels of societal orientation (p<0.00). We also observed a 383 

higher proportion of system dynamics models with high societal orientation (71%), compared to 384 

only 18% of non-system dynamics models (p=0.01). This suggests that system dynamics and 385 
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mathematical models tend to be used as boundary objects. We did not find any associations 386 

between model type and model specificity, indicating that the type of modeling approach is 387 

unrelated to the context-specificity or generalizability of the model. Together, these results 388 

demonstrate that the question of model type is related more to the role of the model as a boundary 389 

object rather than as a scalar device.   390 

3.4 Data types 391 

We found that SES models tend to under-represent social datasets, and are more likely to rely on 392 

pre-existing datasets. Models used significantly higher numbers of biophysical (μ = 5.0, SE± 1.2, p < 393 

0.00) and social-ecological (μ = 4.3, SE± 0.9, p = 0.04) datasets compared to social datasets (μ = 3.4, 394 

SE± 0.8). The similar number of biophysical and social-ecological datasets suggests these data types 395 

are roughly equally valued for representing dynamic SES. However, the relative lack of social 396 

datasets may point to gaps in how SES models span multiple social worlds. For all data types, 397 

secondary datasets (e.g., from the literature or published data) were significantly more common 398 

than primary datasets collected from the study site. The most common datasets were ecological 399 

(median = 2), followed by land use (median = 1.5) and demographic, economic, climatic, 400 

geologic/topographic, and SES livelihood datasets (median = 1). Meanwhile political, ethnographic, 401 

and hydrologic datasets were infrequently included in models (median = 0).  402 

Our results point to potential tradeoffs between the number of biophysical datasets used and model 403 

purpose outcomes related to system understanding and learning/communication. Models with 404 

system understanding outcomes used significantly higher numbers of biophysical datasets (u = 5.1) 405 

than those without understanding outcomes (u = 2.8, p < 0.02). However, models with learning 406 

outcomes used significantly fewer biophysical datasets (u = 3.7) compared to those without 407 

learning outcomes (u = 5.7, p < 0.00). 408 
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3.5 Extent and resolution 409 

Most models had social extent at the regional and community levels and social resolution at either 410 

the household or individual level (Figure 5). No models had coarser than a regional resolution. We 411 

grouped models according to small or large social extent as well as fine or coarse social resolution, 412 

and found no association with model purpose outcomes. We examined patterns between social and 413 

spatial scale, finding that regional-level extent corresponded to an average study area of 10,815 414 

km2 (SE± 4,855 km2) and community-level extent had an average study area of 385 km2  (SE± 348 415 

km2). We also found the average resolution was 0.54 km2 (SE± 0.31 km2) for household-level 416 

models, and 0.22 km2 (SE± 0.09 km2) for individual-level models. However, quantitative 417 

information was only provided by 69 papers (93%) for spatial extent and 56 papers (76%) for 418 

spatial resolution.  These results shed light on how SES models act as scalar devices by integrating 419 

information across different geographic scales into more compressed representations of the 420 

system.  421 
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 422 

Figure 5. The number and percentage of models at each extent and resolution level.  423 

 424 

Only seven models in our review focused on a single scale (i.e., had the same extent and resolution), 425 

and these were found across all model types except toy models (Figure 6). Models crossed either 426 

one (n=17, 23.0%), two (n=31, 41.9%), three (n=13, 17.6%), four (n=2, 2.7%), or five (n=2, 2.7%) 427 

scales. Bayesian networks tended to maintain the same extent and resolution (i.e., were not cross-428 

scalar), and system dynamics models were most likely to cross just a single scale. Of all the model 429 

types, only ABMs, ISMs, and mathematical models were observed to cross five spatial scales 430 

between their extent and resolution. We examined whether the number of scales crossed between 431 

extent and resolution impacted model outcomes, but found no significant associations. These 432 
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results indicate that certain model types may be more useful than others for representing highly 433 

cross-scalar dynamics. However, the number of scales crossed is not by itself an adequate measure 434 

of what constitutes a scalar device, because a higher number of scales crossed does not appear to 435 

support higher model purpose outcomes.  436 

 437 

Figure 6. The proportion of each model type according to the number of scales crossed.  438 

 439 

3.6 Public participation, stakeholder diversity, and policy or planning outreach 440 
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Roughly half the models in our analysis were participatory (n = 38, 51.4%). However, only 21.6% (n 441 

= 16) demonstrated any direct outreach to decision makers (e.g., through a presentation of results 442 

or workshop). We found higher learning outcomes in participatory models (p < 0.00) and models 443 

with policy or planning outreach (p < 0.00). While not significant, decision support outcomes were 444 

also more likely with participatory models (n=30, 79%) compared to non-participatory models 445 

(n=21, 58%). Perhaps unsurprisingly, we found a strong association between decision support 446 

outcomes and models with policy or planning outreach (p < 0.00). Finally, we found a significant 447 

association between outcomes of decision support and levels of stakeholder diversity, indicating 448 

that modeling efforts where stakeholder diversity is present tend to have higher rates of decision 449 

support compared to situations where stakeholder diversity is not present or not addressed.  450 

Together, these results support our characterization of SES models as boundary objects that invite 451 

successful collaboration (i.e., learning or decision support) between diverse actors who may not 452 

otherwise agree.  453 

4. Discussion 454 

This study improves our understanding of how SES models are designed and applied to address the 455 

rising challenges of global environmental change, using mountains as a representative system. In 456 

this section, we discuss the results outlined above by drawing on the concepts of boundary objects 457 

and scalar devices to understand how SES models operate as appropriate technology (Table 1, 458 

Figure 1). While we initially proposed that appropriate technology for SES modeling would sit at 459 

the intersection of boundary objects and scalar devices, our results stress the importance of SES 460 

models functioning as boundary objects for effective transdisciplinary work to occur. Meanwhile, 461 

crossing multiple temporal and spatial scales was less critical for appropriate SES modeling, and we 462 

encourage modelers to instead remain flexible and sensitive to end user needs and contexts when 463 

designing models. We propose four guiding principles to facilitate the development of SES models 464 
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as appropriate technology for transdisciplinary applications: (1) increase diversity of stakeholders 465 

in SES model design and application for improved collaboration, (2) balance power dynamics 466 

among stakeholders by incorporating diverse knowledge and data types, (3) promote flexibility in 467 

model design, and (4) bridge gaps in decision support, learning, and communication.  468 

4.1 Increase diversity in SES model design and application for improved collaboration 469 

We found that models incorporating diverse stakeholders through public participation and policy 470 

outreach act as transdisciplinary boundary objects by supporting higher learning and decision 471 

support outcomes. For example, Anselme et al. (2010) used an agent-based model to better 472 

understand and manage high biodiversity habitats threatened by shrub encroachment in the 473 

French Alps. Through this collaborative process, a forest manager came to appreciate the need for 474 

genetic diversity in the forest stands he was managing, leading him to support the development of a 475 

“genetic quality index” to better enable managers and scientists to work together. Despite strong 476 

learning outcomes, stakeholders in this process remained skeptical about their ability to influence 477 

policy formation at higher levels. Smajgl and Bohensky (2013) took a more targeted approach to 478 

influencing policy in their spatial modeling of poverty in East Kalimantan, Indonesia. They worked 479 

directly with government decision-makers to determine the optimal level for petrol prices that 480 

would enable more citizens to engage in high-income, petrol-dependent livelihoods like fishing and 481 

honey collection. While both of these participatory examples had high outcomes of both decision 482 

support and learning/communication, they differed in the degree to which they targeted specific 483 

policy decisions - indicating that policy outcomes are not necessary for SES models to function as 484 

boundary objects.   485 

Models used in conditions of high stakeholder diversity tended to yield higher decision support 486 

outcomes compared to models where stakeholder diversity was not present or not addressed.  487 

While it might be expected that situations bringing together people from diverse backgrounds and 488 
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perspectives would be a source of conflict, examining these results through the lens of boundary 489 

objects highlights how SES models can work across scientific and social worlds to promote 490 

collaboration without requiring consensus. For example, Barnaud et al. (2013) examined an agent-491 

based model in the context of conflicting ecological, economic, and social interests among 492 

stakeholders involved in land management in Northern Thailand. The collaborative modeling 493 

process encouraged stakeholders to reframe their approach to the conflict and “move from a 494 

distributive to an integrative model of negotiation” (pg. 156) by setting aside the question of park 495 

boundaries for a time and instead focusing on a more integrated understanding of the system as 496 

represented through the model. This enabled them to find potential synergies rather than focusing 497 

on the conflicting interests of the different groups, suggesting the process of creating and using 498 

models as boundary objects can encourage diverse stakeholders to move past underlying 499 

disagreements and develop workable solutions.   500 

Overall, participatory models were strongly represented in our review, indicating that these 501 

approaches are no longer on the periphery of SES modeling practice in mountains. We find similar 502 

patterns throughout the literature (Voinov and Bousquet 2010; Gray et al. 2017; Jordan et al. 2019), 503 

indicating that the field of participatory modeling is maturing rapidly in non-mountain systems as 504 

well. Whether by design or not, some SES models have functioned as boundary objects by enabling 505 

the integration of diverse perspectives without sublimating them. Diverse perspectives are at the 506 

core of transdisciplinary work, as multiple viewpoints, epistemologies, and values are needed to 507 

holistically understand complex SES problems and devise solutions with high relevance (Bernstein 508 

2015; Hoffman et al. 2017; Norström et al. 2020). Diversity has also been shown to increase the 509 

likelihood of innovation in collaborative processes (Paulus and Nijstad 2003). As SES modeling 510 

continues to gain traction as a tool for promoting transdisciplinary co-production processes, we 511 

urge modelers not to lose sight of the need for diverse perspectives in the design, evaluation, and 512 
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application of the model so that they can act as boundary objects, and thereby enable broader 513 

participation and understanding.  514 

4.2 Balance power dynamics by incorporating diverse knowledge and data types 515 

While models with diverse participants were more likely to facilitate learning and cooperation, this 516 

did not necessarily translate to more diverse types of knowledge populating the models themselves. 517 

The knowledge infrastructure that supports SES modeling currently favors quantitative data and 518 

modeling approaches over qualitative forms (Elsawah et al. 2019). In fact, there are pervasive 519 

epistemological gaps regarding what is even considered “data” across the natural and social 520 

sciences, much less how to analyze or validate them (Verburg et al. 2016; Chakraborty et al. 2019). 521 

Our results confirm this gap by showing that scientists frequently try to understand SES through 522 

the use of pre-existing datasets, the majority of which are biophysical rather than social. By not 523 

integrating social data, these models are less likely to reach across multiple social worlds and thus 524 

less likely to function as boundary objects. One reason for this might be the perception that 525 

qualitative data are exorbitantly expensive in terms of the time and cost of data collection and 526 

processing (Alexander et al. 2019; Elsawah et al. 2019). This may reflect a broader SES modeling 527 

epistemology that seeks to predict and generalize to other systems rather than engage in expensive 528 

and time-consuming processes at local scales that lack transferability to other sites or systems 529 

(O’Sullivan et al. 2016). Another reason may be that quantitative data are easier to incorporate into 530 

computer-based models. Indeed, we find that quantitative demographic and economic data are the 531 

most commonly used social datasets in SES models, while ethnographic, descriptively rich data are 532 

incorporated into very few studies. However, it is possible that modelers may be using qualitative 533 

data without reporting it in their papers - for example, to conceptualize (rather than parameterize) 534 

the model.  535 
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There is clear evidence that qualitative data can help place modeling results in a broader context, 536 

thus enhancing a models’ ability to function as a scalar device. For example, Altaweel et al. (2009) 537 

demonstrated that Arctic peoples’ decisions about where to source their water impacted their 538 

perceptions of system-wide ecological change, which could in turn support or restrict their ability 539 

to adapt to climate change in a timely manner. Including qualitative data can also help overcome 540 

widely acknowledged shortcomings of SES models, such as the lack of adequate complexity in 541 

representing individual decision-making and behavior (Müller et al. 2013; Brown et al. 2013; 542 

Preston et al. 2015; Schlüter et al. 2017; Groeneveld et al. 2017) and the ways in which subjective 543 

processes associated with human agency and intentionality (i.e., culture and politics) drive the 544 

evolution of social rules and positions (Manuel-Navarrete 2015). There is some evidence from our 545 

analysis to support this. For example, Rogers et al. (2012) used ethnographic understanding of 546 

Mongolian pastoral kinship affinities to demonstrate that weather impacts (both snowstorms and 547 

drought) nearly double in severity due to strained social relationships under conditions of 548 

restricted movement. Without this detailed understanding of social networks and pressures, their 549 

model likely would have underestimated the impact of extreme weather events on the well-being of 550 

pastoral communities. Ethnographic and narrative studies of life trajectories can thus help clarify 551 

how humans construct their identities and social positions over time, encouraging SES models to 552 

move away from purely structural or static rule-based interactions among model agents (Manuel-553 

Navarrete 2015). Qualitative descriptions can also aid in the communication of SES model results, 554 

as narratives have been shown to foster greater appreciation of simulation models by non-555 

modelers when compared to aggregated, statistical summaries (Millington et al. 2012).   556 

We also found that models using higher numbers of biophysical datasets were associated with 557 

higher system understanding outcomes but lower learning/communication outcomes. For example, 558 

Briner et al. (2013) found that biological interdependencies were the most influential factor causing 559 

trade-offs between ecosystem services in the Swiss Alps, acknowledging that economic and 560 
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technological interdependencies were under-represented in their analysis and would benefit from 561 

further exploration. They articulated how this improved system understanding could theoretically 562 

benefit management and policy, but fell short of describing any clear learning outcomes 563 

experienced by practitioners on the ground.  564 

Still, our analysis shows that biophysical datasets are a common and useful tool for understanding 565 

cross-scale processes in SES models. Yet, as Callon and Latour (1981) note, scale is not just about 566 

moving across space and time - it is also about translation and power. Our review of SES models 567 

then raises the question - whose system understanding is being (re)produced by SES models with 568 

high biophysical focus? And who is benefitting? An example from Alaska (not included in our model 569 

review) illustrates that while participants in a modeling workshop collaborated through 570 

engagement with a largely biophysical model, there was a lack of formal avenues for incorporating 571 

different observations or data types deemed valuable by local and Indigenous residents into the 572 

model (Inman et al. in review). While public participation in the modeling process may have 573 

encouraged learning about scientific concepts and collaboration through the model as a boundary 574 

object, this would be a unidirectional form of learning as scientists were less likely to incorporate 575 

other types of data or knowledge into the model. This unidirectional learning is problematic given 576 

the historical tendency for scientists to attempt to validate other forms of knowledge without 577 

respecting their unique epistemologies (Agrawal 1995; Nadasdy 1999; Latulippe 2015; 578 

Chakraborty et al. 2019). Therefore, SES models that bring diverse people together while still 579 

representing only a narrow fraction of the knowledge types involved are not functioning as 580 

appropriate technology.  581 

Local ecological knowledge can provide highly detailed understanding to overcome barriers in 582 

understanding and representing social processes in SES models. Local knowledge may be 583 

particularly useful in data-poor regions around the world, including mountains (Ritzema et al. 584 
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2010). For example, Lippe et al. (2011) used qualitative expert knowledge to parameterize a land 585 

use model in Northwest Vietnam, enabling a more accurate portrayal of farmers’ cropping choices. 586 

Moreover, local knowledge itself can act as a scalar device, as knowledge that is transmitted across 587 

generations can enhance system understanding across temporal scales (Moller et al. 2004; Gagnon 588 

and Berteaux 2009). Though not a modeling study, Klein et al. (2014) found that Tibetan 589 

pastoralists who travel further from their home base to higher elevations while herding showed 590 

more consensus around climate change and added valuable spatial data beyond what was available 591 

from the scant meteorological stations in the region.  592 

It is not yet clear whether more balanced inclusion of social data and local knowledge could resolve 593 

the apparent trade-off between system understanding and learning/communication, or whether 594 

learning is more dependent on the modeling process regardless of the datasets and knowledge 595 

types used. It is also not yet clear how to integrate different knowledge types into models without 596 

privileging certain ways of knowing. We encourage future research into these questions, and urge 597 

modelers to remain cognizant of biases towards disciplinary datasets and of power imbalances in 598 

the types of knowledge used and how these might impact participant learning. Studies that examine 599 

the kinds of learning experienced by participants are needed to ensure that learning occurs as a 600 

mutual and reflexive process among the diverse groups of people involved (Keen et al. 2005; Reed 601 

et al. 2010; Fernández-Giménez et al. 2019). Qualitative social science approaches play a powerful 602 

role in understanding not just what people want or what they value, but who they are (Callon and 603 

Latour 1981), and should therefore be granted a more central role in transdisciplinary SES 604 

modeling design and application. 605 

4.3 Promote flexibility in model design 606 

Modelers make a distinction between “complicatedness” and “complexity” in SES models (Sun et al. 607 

2016). When model structures have large numbers of variables or when processes are represented 608 
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by highly detailed rules and/or equations, these models are said to have high complicatedness (Sun 609 

et al. 2016). Meanwhile, model complexity refers to the simulated behaviors that emerge at the 610 

system level through application of the model, which can occur even from quite simple models 611 

(Conway 1970; Schelling 1971). The aim is for all SES models to mimic some degree of real-world 612 

complexity (Balbi and Guipponi 2010). However, modelers still debate how complicated a model 613 

needs to be in order to facilitate this emergent complexity and support decision-making outcomes.  614 

Typically, modelers seek the benefits of highly stylized models for testing theories and yielding 615 

generalizable results, while highly detailed models are praised for their utility in supporting 616 

decision making in complex, real-world situations (Smajgl et al. 2011). Parker et al. (2003) 617 

distinguishes between highly stylized simple “Picasso” models and highly detailed empirical 618 

“photograph” models, while others describe them as the “KISS: Keep it Simple, Stupid” (Axelrod 619 

1997) versus the “KIDS: Keep it Descriptive, Stupid” approaches (Edmonds and Moss 2004). Some 620 

modelers and decision-makers prefer ensemble modeling, integrating multiple diverse models, 621 

algorithms, and datasets to produce a single set of recommendations (Elder 2018). In short, there 622 

are modelers who believe the more complicated a model is, the better it can be used for decision 623 

support and stakeholder learning (Barthel et al. 2008). 624 

Yet, our results do not support these distinctions in disparate benefits from different levels of 625 

model complicatedness, and challenge the idea that a model needs to be highly complicated in 626 

order to advance societal objectives. Fine-scale SES models in our review were not more likely than 627 

coarse-scale models to report greater model purpose outcomes. Furthermore, we found that 628 

models that represent processes occurring across multiple scales were not more likely to support 629 

higher outcomes than those focusing on processes operating at a single scale. We found no evidence 630 

of improved or diminished decision support when higher numbers of modeling approaches were 631 

used concurrently in the same study (as in ensemble modeling), or when more datasets were used.   632 
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These results further support our assertion that in order to function as appropriate technology in 633 

transdisciplinary applications, SES models ought to be designed as boundary objects to address a 634 

specific information need presented by a societal problem. We recommend that modelers 635 

repeatedly reflect on the needs of their system and diverse end users when considering the scale 636 

and choice of modeling approach, rather than assuming finer-scale or highly complicated models 637 

will necessarily yield superior results. Viewing these results through the lens of scalar devices, we 638 

encourage SES modelers to remain flexible in the ways they represent cross-scalar processes in 639 

their models, and to consider in advance how their choice of scale might enable or constrain 640 

collaboration among participants - that is, how scale itself functions as a boundary object.  641 

Researchers are still in the early stages of empirically measuring how the design and application of 642 

modelling and data visualization tools relate to non-technical stakeholders’ capacity to contribute 643 

meaningfully to collaborative planning processes (Zellner et al. 2012; Radinsky et al. 2017). There 644 

is some indication that models and tools that encourage active, energetic dialogue without 645 

overwhelming participants with information (Pelzer et al. 2015) are best suited for these 646 

applications. Recent research has shown that participatory modelers often use the modeling 647 

approaches they are most familiar with, rather than objectively selecting “the best tools for the job” 648 

(Voinov et al. 2018). Our results seem to confirm this, as we do not see any evidence of a particular 649 

modeling type or scale yielding higher model purpose outcomes.  For example, our analysis 650 

demonstrates systems dynamics models usually have high societal orientation, but not necessarily 651 

the high learning and decision support outcomes proposed by other reviews (Schlüter et al. 2019). 652 

Our finding that decision support outcomes are higher when cellular automata models are not used 653 

aligns with previous insights into the limited utility of these approaches for certain contexts (NRC 654 

2014). Yet, nearly half the models in our review were a combination of agent-based models and 655 

cellular automata models, highlighting the popularity and flexibility of these particular model types 656 

for representing complex SES - something anticipated nearly two decades ago (Parker et al. 2003; 657 
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Verburg et al. 2004). Additional empirical studies are needed in the context of SES models for 658 

transdisciplinary applications to clarify whether particular modeling approaches or scales can best 659 

function as boundary objects. 660 

These findings contribute to ongoing debates about the level of complicatedness needed for SES 661 

models to support learning and decision making. Multiple modeling paradigms have emphasized 662 

the benefits that emerge from achieving an intermediate level of model complicatedness. Grimm et 663 

al. (2005) present this as the “Medawar zone,” describing that models are most useful when design 664 

is guided by multiple patterns observed at different scales and hierarchical levels. Meanwhile, 665 

members of the Companion Modeling network have articulated a “KILT: Keep It a Learning Tool” 666 

approach that advocates for slightly less complicated models than the Medawar zone in order to 667 

allow diverse stakeholders to connect with the system on their own terms (Le Page and Perrotton 668 

2018). O’Sullivan et al. (2016) have similarly argued that mid-range complicatedness is often the 669 

optimal or appropriate level. Yet, our results do not necessarily support these hypotheses in all 670 

circumstances. For example, we find that highly context-specific models lead to higher learning 671 

outcomes, but this does not necessarily mean finer-scale data or model resolution are required. 672 

Meanwhile, decision support seems to be best supported at intermediate (not low or high) levels of 673 

generalizability. We encourage more explicit attention to the assessment of participant learning and 674 

decision support in future modeling efforts to help resolve these debates and advance our 675 

understanding of the role of scale in SES models functioning as appropriate technology.  676 

4.4 Bridge institutional gaps for decision support, learning, and communication  677 

For SES models to act as appropriate technology for transdisciplinary work, they must support 678 

decision-making processes and learning for real-world applications. This can be accomplished by 679 

ensuring that models act as transdisciplinary boundary objects and facilitate cross-scalar learning 680 

as scalar devices. Our review revealed considerable gaps between the intentions and outcomes of 681 
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SES models for these purposes. The gap in decision support stemmed from failing to achieve or 682 

report outcomes that matched the intended model purpose, while learning/communication 683 

outcomes were rarely even intended by most models in our review. While interviews with 684 

modelers themselves may help us better understand these gaps, integrating societal goals into 685 

model design and application could be one approach to improving transdisciplinary applications of 686 

SES models. Yet, this may be difficult for modelers to achieve due to the current knowledge 687 

infrastructure surrounding the modeling process. One issue is the stigma sometimes attributed to 688 

“applied” research, or the false dichotomy between “applied” and “basic” research that seems to 689 

resist simultaneous advances in theoretical and pragmatic fronts (Stokes 1997). Indeed, we did not 690 

find any models in our review that supported high scientific as well as high societal orientation - 691 

although Brunner et al. (2016a) and Smajgl and Bohensky (2013) came close to achieving this. Both 692 

modeling efforts incorporated and explored specific policy interventions while advancing theory 693 

and methodologies in the field of SES modeling, indicating a path forward for joint basic and applied 694 

research in SES modeling.   695 

Another infrastructural barrier is that some modelers do not appreciate the value of investing time 696 

and money in knowledge co-production processes, particularly if their funding mechanisms and 697 

career advancement do not reward this kind of engagement with stakeholders. There is some 698 

evidence that this is changing, as large-scale funding initiatives such as the Global Challenges 699 

Research Fund, the Belmont Forum, and Future Earth require close partnerships between 700 

researchers and decision or policy-makers (Mauser et al. 2013; Suni et al. 2016). Researchers also 701 

typically operate on slower time scales than societal problems, which may be a source of frustration 702 

for communities experiencing severe economic and ecological consequences from global 703 

environmental change. These barriers require institutional changes to facilitate and reward 704 

modelers’ engagement with societal challenges, and we encourage modelers to begin making 705 

incremental changes towards this goal within their own projects and institutions.  706 
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5. Conclusions 707 

This study improves our understanding of how SES models can be more appropriately designed 708 

and applied to fit transdisciplinary approaches, both in mountains and other SES. First, we found 709 

that diversity among the participants involved in modeling can lead to improved collaboration and 710 

cooperation for real-world problem solving. As global environmental change increases the need to 711 

collaborate across diverse groups for sustainable outcomes in SES, we encourage modelers to take 712 

the time to build stronger relationships across academic disciplines and social worlds. Second, we 713 

found that diverse participation does not necessarily translate into diverse knowledge and data 714 

being incorporated into the model. This suggests that modelers must pay closer attention to issues 715 

of power when using SES models as boundary objects, and specifically how diverse perspectives are 716 

translated and incorporated into the final model product, or excluded from it. Third, we find that 717 

flexibility in model design is a key element for employing SES models as scalar devices in 718 

transdisciplinary applications, as the context of the modeling effort is of greater consequence than 719 

the technical complicatedness of the model. As STS scholars continue to develop the scalar devices 720 

concept into an analytical tool, we encourage more explicit engagement with questions of 721 

knowledge translation and power. Finally, we highlight some institutional barriers that may be 722 

inhibiting SES modelers from long-term, place-based engagement in societal issues. Creating SES 723 

models that are appropriate technology for transdisciplinary applications will require advanced 724 

planning, increased funding and attention to the role of diverse data and knowledge, and stronger 725 

partnerships across disciplinary divides. Highly contextualized participatory modeling that 726 

embraces diversity in both data and actors appears poised to make strong contributions to the 727 

world’s most pressing environmental challenges.    728 

  729 



37 

References 730 
 731 
Agrawal, A. 1995. Dismantling the divide between indigenous and scientific 732 

knowledge. Development and Change 26(3):413-439. https://doi.org/10.1111/j.1467-733 
7660.1995.tb00560.x  734 

Alexander, S.M., Jones, K., Bennett, N.J., Budden, A., Cox, M., Crosas, M., Game, E.T., Geary, J., Hardy, 735 
R.D., Johnson, J.T. and Karcher, S., 2019. Qualitative data sharing and synthesis for 736 
sustainability science. Nature Sustainability, pp.1-8. 737 

Altaweel, M.R., Alessa, L.N. and Kliskey, A.D., 2009. Forecasting Resilience in Arctic Societies: 738 
Creating Tools for Assessing Social–Hydrological Systems. JAWRA Journal of the American 739 
Water Resources Association, 45(6), pp.1379-1389. 740 

Anselme B, Bousquet F, Lyet A, Etienne M, Fady B, Le Page C. 2010. Modelling of spatial dynamics 741 
and biodiversity conservation on Lure mountain (France). Environmental Modelling and 742 
Software 25: 1385-1398. 743 

Axelrod, R., 1997. The complexity of cooperation: Agent-based models of competition and 744 
collaboration (Vol. 3). Princeton University Press. 745 

Balbi, S. and Giupponi, C., 2010. Agent-based modelling of socio-ecosystems: a methodology for the 746 
analysis of adaptation to climate change. International Journal of Agent Technologies and 747 
Systems (IJATS), 2(4), pp.17-38. 748 

Balvanera, P., T. M. Daw, T. A. Gardner, B. Martín-López, A. V. Norström, C. Ifejika Speranza, M. 749 
Spierenburg, E. M. Bennett, M. Farfan, M. Hamann, J. N. Kittinger, T. Luthe, M. Maass, G. D. 750 
Peterson, and G. Perez-Verdin. 2017. Key features for more successful place-based 751 
sustainability research on social-ecological systems: a Programme on Ecosystem Change 752 
and Society (PECS) perspective. Ecology and Society 22(1). 753 

Barnaud C, Bousquet F, Trebuil G. 2008. Multi-agent simulations to explore rules for rural credit in 754 
a highland farming community of northern Thailand. Ecological Economics 66: 615-627. 755 

Barnaud, C., C. Le Page, P. Dumrongrojwatthana, and G. Trébuil. 2013. Spatial representations are 756 
not neutral: Lessons from a participatory agent-based modelling process in a land-use 757 
conflict. Environmental Modelling & Software 45:150-159. 758 

Barthel R, Janisch S, Schwarz N, Trifkovic A, Nickel D, Schulz C, Mauser W. 2008. An integrated 759 
modeling framework for simulating regional-scale actor responses to global change in the 760 
water domain. Environmental Modelling and Software 23: 1095-1121. 761 

Bernstein, J. H. 2015. Transdisciplinarity: A Review of Its Origins, Development, and Current 762 
Issues:20. 763 

Edwards, P.N., Jackson, S.J., Chalmers, M.K., Bowker, Borgman, C.L., G.C., Ribes, D., Burton, M. and 764 
Calvert, S., 2013. Knowledge infrastructures: Intellectual frameworks and research 765 
challenges. Report of a workshop sponsored by the National Science Foundation and the 766 
Sloan Foundation (Ann Arbor: Deep Blue, 2013), hdl.handle.net/2027.42/97552.  767 

Blumer, H., 1954. What is wrong with social theory?. American sociological review, 19(1), pp.3-10. 768 

Bousquet, F., and C. Le Page. 2004. Multi-agent simulations and ecosystem management: a review. 769 
Ecological Modelling 176(3):313–332. 770 

Bowker, G.C. and Star, S.L., 1999. Sorting things out (Vol. 297). Cambridge, MA: MIT Press.Brandt et 771 
al. 2013 772 

https://doi.org/10.1111/j.1467-7660.1995.tb00560.x
https://doi.org/10.1111/j.1467-7660.1995.tb00560.x


38 

Briner, S. H., R; Bebi, P; Elkin, C; Schmatz, DR; and A Grêt-Regamey. 2013. Trade-Offs between 773 
Ecosystem Services in a Mountain Region. Ecology and Society 18. 774 

Brown, D.G., Verburg, P.H., Pontius Jr, R.G. and Lange, M.D., 2013. Opportunities to improve impact, 775 
integration, and evaluation of land change models. Current Opinion in Environmental 776 
Sustainability, 5(5), pp.452-457. 777 

Brunner, S.H., Huber, R. and Grêt-Regamey, A., 2016. A backcasting approach for matching regional 778 
ecosystem services supply and demand. Environmental Modelling & Software, 75, pp.439-779 
458. 780 

Callon, M., & Latour, B. 1981. Unscrewing the big Leviathan: how actors macro-structure reality and 781 
how sociologists help them to do so. Advances in social theory and methodology: Toward an 782 
integration of micro-and macro-sociologies, 1. 783 

Carlile, P.R., 2002. A pragmatic view of knowledge and boundaries: Boundary objects in new 784 
product development. Organization science, 13(4), pp.442-455. 785 

Carpenter, S. R., H. A. Mooney, J. Agard, D. Capistrano, R. S. DeFries, S. Diaz, T. Dietz, A. K. 786 
Duraiappah, A. Oteng-Yeboah, H. M. Pereira, C. Perrings, W. V. Reid, J. Sarukhan, R. J. Scholes, 787 
and A. Whyte. 2009. Science for managing ecosystem services: beyond the Millennium 788 
Ecosystem Assessment. Proceedings of the National Academy of Sciences 106(5):1305-789 
1312. https://doi.org/10.1073/pnas.0808772106  790 

Cash DW, Adger NW, Berkes F, Garden P, Lebel L, Olsson P, Pritchard L, Young O. 2006. Scale and 791 
cross-scale dynamics: governance and information in a multilevel world. Ecol Soc 11(2):8 792 

Cash, D. W., W. C. Clark, F. Alcock, N. M. Dickson, N. Eckley, D. H. Guston, J. Jäger, and R. B. Mitchell. 793 
2003. Knowledge systems for sustainable development. Proceedings of the National 794 
Academy of Sciences 100(14):8086 -8091.  https://doi.org/10.1073/pnas.1231332100  795 

Chakraborty, R., A. S. Daloz, M. Kumar, and A. P. Dimri. 2019. Does Awareness of Climate Change 796 
Lead to Worry? Exploring Community Perceptions Through Parallel Analysis in Rural 797 
Himalaya. Mountain Research and Development 39 (2). DOI: 10.1659/MRD-JOURNAL-D-19-798 
00012.1 799 

Clark, W.C., Tomich, T.P., Van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N.M., McNie, E., 800 
2011. Boundary work for sustainable development: natural resource management at the 801 
consultative group on international agricultural research (CGIAR). Proc. Natl. Acad. Sci. 802 
200900231. 803 

Clarke A and Fujimura J. 1992. The Right Tools for the Job: At Work in Twentieth-Century Life 804 
Sciences. Princeton University Press. 805 

Clarke, A.E. and Star, S.L., 2008. The social worlds framework: A theory/methods package. The 806 
handbook of science and technology studies, 3(0), pp.113-137. 807 

 808 

Cohen, A. and Bakker, K., 2014. The eco-scalar fix: Rescaling environmental governance and the 809 
politics of ecological boundaries in Alberta, Canada. Environment and Planning D: Society 810 
and Space, 32(1), pp.128-146. 811 

Conway, J., 1970. The game of life. Scientific American 223(4) 4. 812 

Crane, T. A. 2010. Of models and meanings: cultural resilience in social–ecological systems. Ecology 813 
and Society 15:19-19. 814 

https://doi.org/10.1073/pnas.0808772106
https://doi.org/10.1073/pnas.1231332100


39 

Cumming, G. S., D. H. M. Cumming, and C. L. Redman. 2006. Scale Mismatches in Social-Ecological 815 
Systems: Causes, Consequences, and Solutions. Ecology and Society 11(1). 816 

Cundill, G., D. J. Roux, and J. N. Parker. 2015. Nurturing communities of practice for transdisciplinary 817 
research. Ecology and Society 20(2):art22. 818 

de Laet M and Mol A. 2000. The Zimbabwe Bush Pump: Mechanics of a Fluid Technology Social 819 
Studies of Science 30(2): 225–263. DOI: 10.1177/030631200030002002. 820 

DeFries, R. S., E. C. Ellis, F. S. Chapin III, P. A. Matson, B. L. Turner II, A. Agrawal, P. J. Crutzen, C. Field, 821 
P. Gleick, P. M. Kareiva, E. Lambin, D. Liverman, E. Ostrom, P. A. Sanchez, and J. Syvitski. 822 
2012. Planetary opportunities: a social contract for global change science to contribute to a 823 
sustainable future. BioScience 62(6):603-606. https://doi.org/10.1525/bio.2012.62.6.11  824 

Dempsey J. 2016. Enterprising Nature: Economics, Markets, and Finance in Global Biodiversity 825 
Politics. John Wiley & Sons. 826 

Edmonds B., Moss S. 2005. From KISS to KIDS – An ‘Anti-simplistic’ Modelling Approach. In: 827 
Davidsson P., Logan B., Takadama K. (eds) Multi-Agent and Multi-Agent-Based Simulation. 828 
MABS 2004. Lecture Notes in Computer Science, vol 3415. Springer, Berlin, Heidelberg 829 

Edmonds, B., Le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., 830 
Ormerod, P., Root, H., Squazzoni, F. 2019. Different Modelling Purposes. Journal of Artificial 831 
Societies and Social Simulation 22, 6. 832 

Elder, J. 2018. The Apparent Paradox of Complexity in Ensemble Modeling. In, Nisbet, R., Miner, G., 833 
and K. Yale. Handbook of Statistical Analysis and Data Mining Applications. Academic Press. 834 
https://doi.org/10.1016/C2012-0-06451-4 835 

Elsawah, S., Filatova, T., Jakeman, A.J., Kettner, A.J., Zellner, M.L., Athanasiadis, I.N., Hamilton, S.H., 836 
Axtell, R.L., Brown, D.G., Gilligan, J.M. and Janssen, M.A., 2020. Eight grand challenges in 837 
socio-environmental systems modeling. Socio-Environmental Systems Modelling, 2, 838 
pp.16226-16226. 839 

Étienne, M. ed., 2013. Companion modelling: a participatory approach to support sustainable 840 
development. Springer Science & Business Media. 841 

Etienne, M., Du Toit, D. and Pollard, S., 2011. ARDI: a co-construction method for participatory 842 
modeling in natural resources management. Ecology and society, 16(1). 843 

Fernández-Giménez, M., D. Augustine, L. Porensky, H. Wilmer, J. Derner, D. Briske, and M. Stewart. 844 
2019. Complexity fosters learning in collaborative adaptive management. Ecology and 845 
Society 24(2). 846 

Fortun K. 2004. Environmental information systems as appropriate technology. Design Issues 20(3): 847 
54–65.Gopalakrishnan, S., and Ganeshkumar, P. 2013. Systematic reviews and meta-848 
analysis: Understanding the best evidence in primary healthcare. J Family Med Prim Care. 849 
2(1)9-14.  850 

Fulton, E.A., Smith, A.D., Smith, D.C. and van Putten, I.E., 2011. Human behaviour: the key source of 851 
uncertainty in fisheries management. Fish and fisheries, 12(1), pp.2-17. 852 

Gagnon, C. A., and D. Berteaux. 2009. Integrating traditional ecological knowledge and ecological 853 
science: a question of scale. Ecology and Society 14(2):19. https://doi.org/10.5751/ES-854 
02923-140219  855 

Gibson CC, Ostrom E, Ahn TK. 2000. The concept of scale and the human dimensions of global 856 
change: a survey. Ecol Econ 32(2):217–239 857 

https://doi.org/10.1525/bio.2012.62.6.11
https://doi.org/10.1016/C2012-0-06451-4
https://doi.org/10.5751/ES-02923-140219
https://doi.org/10.5751/ES-02923-140219


40 

Gray, S., Voinov, A., Bommel, P., Le Page, C. and Scmitt-Olabisi, L., 2017. Purpose, processes, 858 
partnerships, and products: 4Ps to advance participatory socio-environmental modeling. 859 

Grimm, V. E. Revilla, U. Berger, F. Jeltsch, W.M. Mooij, S.F. Railsback, H.H. Thulke, J. Weiner, T. 860 
Wiegand, and D.L. DeAngelis. 2005. Pattern-Oriented Modeling of Agent-Based Complex 861 
Systems: Lessons from Ecology. Science 310(5750):987–991. 862 

Groeneveld, J., Müller, B., Buchmann, C.M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., 863 
John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, 864 
H., Schwarz, N. (2017) Theoretical foundations of human decision-making in agent-865 
based land use models – A review. Environmental Modelling & Software 87, 39-48. 866 

Harraway, D. 1988. Situated Knowledges: The Science Question in Feminism and the Privilege of 867 
Partial Perspective, Feminist Studies 14 (3):575-599 (1988) 868 

Hoffmann, S. C. Pohl, and J.G. Hering. 2017. Exploring transdisciplinary integration within a large 869 
research program: Empirical lessons from four thematic synthesis processes. Research 870 
Policy:15. 871 

Hulme M. 2011. Reducing the future to climate: a story of climate determinism and reductionism. 872 
Osiris 26(1): 245–266. 873 

Inman, S., Esquible, J., Jones, M., Bechtol, B, & Connors, B. In review. Exploring how local data are 874 
(and are not) tractable to the management of salmon fisheries. Ecology and Society: State of 875 
Alaska's Salmon and People Special Issue. 876 

Jahn, T., M. Bergmann, and F. Keil. 2012. Transdisciplinarity: Between mainstreaming and 877 
marginalization. Ecological Economics 79:1–10. 878 

Jordan, R., Gray, S., Zellner, M., Glynn, P.D., Voinov, A., Hedelin, B., Sterling, E.J., Leong, K., Olabisi, L.S., 879 
Hubacek, K. and Bommel, P., 2018. Twelve questions for the participatory modeling 880 
community. Earth's Future, 6(8), pp.1046-1057. 881 

Keen, M., V. A. Brown, and R. Dyball. 2005. Social learning in environmental management: towards a 882 
sustainable future. Routledge. 883 

Kelly, R.A., Jakeman, A.J., Barreteau, O., Borsuk, M.E., ElSawah, S., Hamilton, S.H., Henriksen, H.J., 884 
Kuikka, S., Maier, H.R., Rizzoli, A.E. and Van Delden, H., 2013. Selecting among five common 885 
modelling approaches for integrated environmental assessment and 886 
management. Environmental modelling & software, 47, pp.159-181. 887 

Klein, J. A., K. A. Hopping, E. T. Yeh, Y. Nyima, R. B. Boone, and K. A. Galvin. 2014. Unexpected climate 888 
impacts on the Tibetan Plateau: local and scientific knowledge in findings of delayed 889 
summer. Global Environmental Change 28:141-890 
152. https://doi.org/10.1016/j.gloenvcha.2014.03.007  891 

Klein, J.A., Tucker, C.M., Nolin, A.W., Hopping, K.A., Reid, R.S., Steger, C., Grêt‐Regamey, A., Lavorel, S., 892 
Müller, B., Yeh, E.T. Boone, R.B., Bourgeron, V., Bustic, V., Castellanos, E., Chen, X., Dong, S.K., 893 
Greenwood, G., Keiler, M., Marchant, R., Seidl, R., Spies, T., Thorn, J., Yager, K., and the 894 
Mountain Sentinels Collaborative Network.  2019. Catalyzing transformations to 895 
sustainability in the world's mountains. Earth's Future, 7(5), pp.547-557. 896 

Lade, S.J., Haider, L.J., Engström, G. and Schlüter, M., 2017. Resilience offers escape from trapped 897 
thinking on poverty alleviation. Science Advances, 3(5), p.e1603043. 898 

https://philpapers.org/rec/HARSKT
https://philpapers.org/rec/HARSKT
https://philpapers.org/asearch.pl?pub=4198
https://doi.org/10.1016/j.gloenvcha.2014.03.007


41 

Lambin, E. F., and P. Meyfroidt. 2010. Land use transitions: socio-ecological feedback versus socio-899 
economic change. Land Use Policy 27(2):108-900 
118. https://doi.org/10.1016/j.landusepol.2009.09.003 901 

Lambin, E. F., B. L. Turner, H. J. Geist, S. B. Agbola, A. Angelsen, J. W. Bruce, O. T. Coomes, R. Dirzo, G. 902 
Fischer, C. Folke, P. S. George, K. Homewood, J. Imbernon, R. Leemans, X. Li, E. F. Moran, M. 903 
Mortimore, P. S. Ramakrishnan, J. F. Richards, H. Skånes, W. Steffen, G. D. Stone, U. Svedin, T. 904 
A. Veldkamp, C. Vogel, and J. Xu. 2001. The causes of land-use and land-cover change: 905 
moving beyond the myths. Global Environmental Change 11(4):261-906 
269. https://doi.org/10.1016/S0959-3780(01)00007-3  907 

Landström C, Whatmore SJ, and SN Lane. 2011. Virtual Engineering: Computer Simulation Modelling 908 
for Flood Risk Management in England. Science Studies: 20. 909 

Lang, D. J., A. Wiek, M. Bergmann, M. Stauffacher, P. Martens, P. Moll, M. Swilling, and C. J. Thomas. 910 
2012. Transdisciplinary research in sustainability science: practice, principles, and 911 
challenges. Sustainability Science 7(S1):25–43. 912 

Latour, B.  1986. Laboratory life: The Construction of Scientific Facts. Princeton, N.J. :Princeton 913 
University Press. 914 

Latulippe, N. 2015. Situating the work: a typology of traditional knowledge literature. AlterNative: 915 
An International Journal of Indigenous Peoples 11(2):118-916 
131. https://doi.org/10.1177/117718011501100203  917 

Le Page, C., and A. Perrotton. 2018. KILT: A Modelling Approach Based on Participatory Agent-918 
Based Simulation of Stylized Socio-Ecosystems to Stimulate Social Learning with Local 919 
Stakeholders. Pages 156–169 in G. P. Dimuro and L. Antunes, editors. Multi-Agent Based 920 
Simulation XVIII. Springer International Publishing, Cham. 921 

Lemos, M.C., Arnott, J.C., Ardoin, N.M., Baja, K., Bednarek, A.T., Dewulf, A., Fieseler, C., Goodrich, K.A., 922 
Jagannathan, K., Klenk, N. and Mach, K.J. 2018. To co-produce or not to co-produce. Nature 923 
Sustainability, 1(12), pp.722-724. 924 

Letcher RA, Croke BFW, Jakemann AJ, Merritt WS. 2006a. An integral modeling toolbox for water 925 
resources assessment and management in highland catchments: Model description. 926 
Agricultural Systems 89: 106-131. 927 

Levi-Strauss, C. 1962. Totemism. Translated by Rodney Needham. Merlin Press: London.  928 

Lippe M, Min TT, Neef A, Hilger T, Hoffmann V, Lam NT, Cadisch G. 2011. Building on qualitative 929 
datasets and participatory processes to simulate land use change in a mountain watershed 930 
of Northwest Vietnam. Environmental Modelling and Software 26: 1454-1466. 931 

Lippe, M., Bithell, M., Gotts, N., Natalini, D., Barbrook-Johnson, P., Giupponi, C., Hallier, M., Hofstede, 932 
G.J., Le Page, C., B. Matthews, R., Schlüter, M., Smith, P., Teglio, A., Thellmann, K. 2019. Using 933 
agent-based modelling to simulate social-ecological systems across scales. GeoInformatica 934 
23, 269–298. 935 

Liu, J., T. Dietz, S. R. Carpenter, M. Alberti, C. Folke, E. Moran, A. N. Pell, P. Deadman, T. Kratz, and J. 936 
Lubchenco. 2007. Complexity of coupled human and natural systems. science 937 
317(5844):1513–1516. 938 

Mahony M. 2014. The predictive state: Science, territory and the future of the Indian climate. Social 939 
Studies of Science 44(1): 109–133. DOI: 10.1177/0306312713501407. 940 

https://doi.org/10.1016/j.landusepol.2009.09.003
https://doi.org/10.1016/S0959-3780(01
https://doi.org/10.1177/117718011501100203
https://doi.org/10.1177/0306312713501407
https://doi.org/10.1177/0306312713501407


42 

Mauser, W., G. Klepper, M. Rice, B. S. Schmalzbauer, H. Hackmann, R. Leemans, and H. Moore. 2013. 941 
Transdisciplinary global change research: the co-creation of knowledge for sustainability. 942 
Current Opinion in Environmental Sustainability 5(3–4):420–431. 943 

Millington, J.D., O’Sullivan, D. and Perry, G.L., 2012. Model histories: Narrative explanation in generative 944 
simulation modelling. Geoforum, 43(6), pp.1025-1034. 945 

Moller, H., F. Berkes, P. O. Lyver, and M. Kislalioglu. 2004. Combining science and traditional 946 
ecological knowledge: monitoring populations for co-management. Ecology and 947 
Society 9(3):2. https://doi.org/10.5751/ES-00675-090302  948 

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, 949 
H., Schwarz, N., 2013. Describing human decisions in agent-based models–ODD+ D, an 950 
extension of the ODD protocol. Environmental Modelling & Software 48 37-48. 951 

Nadasdy, P. 1999. The politics of TEK: power and the "integration" of knowledge. Arctic 952 
Anthropology 36(1/2):1-18.  953 

National Research Council. 2014. Advancing Land Change Modeling: Opportunities and Research 954 
Requirements. Board on Earth Sciences and Resources, National Academies Press: 955 
Washington, D.C., 152 pp. 956 

Norström, A.V., Cvitanovic, C., Löf, M.F., West, S., Wyborn, C., Balvanera, P., Bednarek, A.T., Bennett, 957 
E.M., Biggs, R., de Bremond, A. and Campbell, B.M., 2020. Principles for knowledge co-958 
production in sustainability research. Nature sustainability, pp.1-9. 959 

Nost E. 2019. Climate services for whom? The political economics of contextualizing climate data in 960 
Louisiana’s coastal Master Plan. Climatic Change. DOI: 10.1007/s10584-019-02383-z. 961 

O’Lear S. 2016. Climate science and slow violence: A view from political geography and STS on 962 
mobilizing technoscientific ontologies of climate change. Political Geography 52: 4–13. DOI: 963 
10.1016/j.polgeo.2015.01.004. 964 

O’Sullivan D. 2004. Complexity science and human geography. Transactions of the Institute of British 965 
Geographers 29(3): 282–295. 966 

O’Sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A. and Bone, C., 2016. Strategic 967 
directions for agent-based modeling: avoiding the YAAWN syndrome. Journal of land use 968 
science, 11(2), pp.177-187. 969 

Ostrom, E. 2007. A diagnostic approach for going beyond panaceas. Proceedings of the national 970 
Academy of Sciences 104(39):15181-15187. https://doi.org/10.1073/pnas.0702288104  971 

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J. and Deadman, P., 2003. Multi-agent systems 972 
for the simulation of land-use and land-cover change: a review. Annals of the association of 973 
American Geographers, 93(2), pp.314-337. 974 

Paulus, P. B., and B. A. Nijstad. 2003. Group creativity: Innovation through collaboration. Oxford 975 
University Press. 976 

Pelzer, Peter, Gustavo Arciniegas, Stan Geertman, and Sander Lenferink. 2015. “Planning Support 977 
Systems and Task-Technology Fit: A Comparative Case Study.” Applied Spatial Analysis and 978 
Policy 8 (2), 155–175. doi:10.1007/s12061-015-9135-5. 979 

Polasky, S., S. R. Carpenter, C. Folke, and B. Keeler. 2011. Decision-making under great uncertainty: 980 
environmental management in an era of global change. Trends in Ecology & Evolution 981 
26(8):398–404. 982 

https://doi.org/10.5751/ES-00675-090302
https://doi.org/10.1007/s10584-019-02383-z
https://doi.org/10.1007/s10584-019-02383-z
https://doi.org/10.1016/j.polgeo.2015.01.004
https://doi.org/10.1016/j.polgeo.2015.01.004
https://doi.org/10.1016/j.polgeo.2015.01.004
https://doi.org/10.1073/pnas.0702288104


43 

Preston, B.L., King, A.W., Ernst, K.M., Absar, S.M., Nair, S.S. and Parish, E.S., 2015. Scale and the 983 
representation of human agency in the modeling of agroecosystems. Current Opinion in 984 
Environmental Sustainability, 14, pp.239-249. 985 

Radinsky, J., Milz, D., Zellner, M., Pudlock, K., Witek, C., Hoch, C. and Lyons, L., 2017. How planners 986 
and stakeholders learn with visualization tools: using learning sciences methods to examine 987 
planning processes. Journal of Environmental Planning and Management, 60(7), pp.1296-988 
1323. 989 

Rammer, W., and R. Seidl. 2015. Coupling human and natural systems: Simulating adaptive 990 
management agents in dynamically changing forest landscapes. Global Environmental 991 
Change 35:475-485. 992 

Rayner S, Lach D and Ingram H. 2005. Weather forecasts are for wimps: why water resource 993 
managers do not use climate forecasts. Climatic Change 69(2): 197–227. 994 

Reed, M., A. C. Evely, G. Cundill, I. R. A. Fazey, J. Glass, A. Laing, J. Newig, B. Parrish, C. Prell, and C. 995 
Raymond. 2010. What is social learning? Ecology and society. 996 

Ribes, D. and Finholt, T.A. 2008. November. Representing community: knowing users in the face of 997 
changing constituencies. In Proceedings of the 2008 ACM conference on Computer supported 998 
cooperative work (pp. 107-116). 999 

Ribes, D. 2014. February. Ethnography of scaling, or, how to a fit a national research infrastructure 1000 
in the room. In Proceedings of the 17th ACM conference on Computer supported cooperative 1001 
work & social computing (pp. 158-170). 1002 

Ritzema, H., Froebrich, J., Raju, R., Sreenivas, C., Kselik, R., 2010. Using participatory modelling to 1003 
compensate for data scarcity in environmental planning: a case study from India. 1004 
Environmental Modelling and Software 25 (11), 1267e1488. 1005 

Rogers, J.D., Nichols, T., Emmerich, T.,  Latek, M., Cioffi-Revilla, C. 2012. Modeling scale and 1006 
variability in human–environmental interactions in Inner Asia. Ecological Modelling, 241, 5-1007 
14, ISSN 0304-3800, http://dx.doi.org/10.1016/j.ecolmodel.2011.11.025. 1008 

Schelling, T.C., 1971. Dynamic models of segregation†. Journal of mathematical sociology 1(2) 143-1009 
186. 1010 

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M.A., McAllister, R.R., 1011 
Müller, B., Orach, K. and Schwarz, N., 2017. A framework for mapping and comparing 1012 
behavioural theories in models of social-ecological systems. Ecological Economics, 131, 1013 
pp.21-35.  1014 

Schlüter, M., Müller, B., Frank, K. 2019. The potential of models and modeling for social-ecological 1015 
systems research: the reference frame ModSES. Ecology and Society 24. 1016 

Smajgl, A., and E. Bohensky. 2013. Behaviour and space in agent-based modelling: Poverty patterns 1017 
in East Kalimantan, Indonesia. Environmental Modelling & Software 45:8-14. 1018 

Smajgl, A., Brown, D.G., Valbuena, D. and Huigen, M.G., 2011. Empirical characterisation of agent 1019 
behaviours in socio-ecological systems. Environmental Modelling & Software, 26(7), pp.837-1020 
844. 1021 

Star, S.L., Griesemer, J.R., 1989. Institutional ecology,translations' and boundary objects: amateurs 1022 
and professionals in Berkeley's museum of vertebrate zoology, 1907–39. Soc. Stud. Sci. 19, 1023 
387–420. 1024 

http://dx.doi.org/10.1016/j.ecolmodel.2011.11.025


44 

Steger, C., Nigussie, G., Alonzo, M., Warkineh, B., Van Den Hoek, J., Fekadu, M., Evangelista, P. and 1025 
Klein, J., 2020. Knowledge coproduction improves understanding of environmental change 1026 
in the Ethiopian highlands. Ecology and Society, 25(2). 1027 

Steger, C., S. Hirsch, C. Evers, B. Branoff, M. Petrova, M. Nielsen-Pincus, C. Wardropper, and C. J. Van 1028 
Riper. 2018. Ecosystem services as boundary objects for transdisciplinary 1029 
collaboration. Ecological Economics 143:153-1030 
160. https://doi.org/10.1016/j.ecolecon.2017.07.016  1031 

Stokes, DE. 1997. Pasteur's Quadrant – Basic Science and Technological Innovation. Brookings 1032 
Institution Press. pp. 196 1033 

Sun, Z., Lorscheid, I., Millington, J.D., Lauf, S., Magliocca, N.R., Groeneveld, J., Balbi, S., Nolzen, H., 1034 
Müller, B., Schulze, J. and Buchmann, C.M., 2016. Simple or complicated agent-based 1035 
models? A complicated issue. Environmental Modelling & Software, 86, pp.56-67. 1036 

Sundberg M. (2010) Organizing Simulation Code Collectives. Science Studies: 21. 1037 

Suni, T., S. Juhola, K. Korhonen-Kurki, J. Käyhkö, K. Soini, and M. Kulmala. 2016. National Future 1038 
Earth platforms as boundary organizations contributing to solutions-oriented global change 1039 
research. Current opinion in environmental sustainability 23:63–68. 1040 

Taylor, P.J., 2005. Unruly complexity: Ecology, interpretation, engagement. University of Chicago 1041 
Press. 1042 

Tengö, M., E. S. Brondizio, T. Elmqvist, P. Malmer, and M. Spierenburg. 2014. Connecting diverse 1043 
knowledge systems for enhanced ecosystem governance: the multiple evidence base 1044 
approach. Ambio 43(5):579-591. https://doi.org/10.1007/s13280-014-0501-3  1045 

Thorn, J.P.R.,  Steger, C., Hopping, K.,  Capitani, C., Marchant, R., Tucker, C., Nolin, A., Reid, R., Seidl, R., 1046 
Chitale, and Klein, J. In review.  A systematic review of participatory scenario planning to 1047 
envision mountain social-ecological systems futures. Ecology and Society.  1048 

Turner, B. L., E. F. Lambin, and A. Reenberg. 2007. The emergence of land change science for global 1049 
environmental change and sustainability. Proceedings of the National Academy of 1050 
Sciences 104(52):20666-20671. https://doi.org/10.1073/pnas.0704119104  1051 

Verburg, P. H., J. A. Dearing, J. G. Dyke, S. van der Leeuw, S. Seitzinger, W. Steffen, and J. Syvitski. 1052 
2016. Methods and approaches to modelling the Anthropocene. Global Environmental 1053 
Change 39:328–340. 1054 

Verburg, P.H., Schot, P.P., Dijst, M.J. and Veldkamp, A., 2004. Land use change modelling: current 1055 
practice and research priorities. GeoJournal, 61(4), pp.309-324. 1056 

Voinov, A., and F. Bousquet. 2010. Modelling with stakeholders. Environmental Modelling and 1057 
Software 25:1268–1281. 1058 

Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P.D., Bommel, P., Prell, C., Zellner, M., Paolisso, M., 1059 
Jordan, R. and Sterling, E., 2018. Tools and methods in participatory modeling: Selecting the 1060 
right tool for the job. Environmental Modelling & Software, 109, pp.232-255. 1061 

Walker, B., Holling, C.S., Carpenter, S.R. and Kinzig, A., 2004. Resilience, adaptability and 1062 
transformability in social–ecological systems. Ecology and society, 9(2). 1063 

Wyborn, C., Datta, A., Montana, J., Ryan, M., Leith, P., Chaffin, B., Miller, C. and Van Kerkhoff, L., 2019. 1064 
Co-producing sustainability: Reordering the governance of science, policy, and practice. 1065 
Annual Review of Environment and Resources, 44, pp.319-346. 1066 

https://doi.org/10.1016/j.ecolecon.2017.07.016
https://doi.org/10.1007/s13280-014-0501-3
https://doi.org/10.1073/pnas.0704119104


45 

Zellner, M. L., L. B. Lyons, C. J. Hoch, J. Weizeorick, C. Kunda, and D. C. Milz. 2012. “Modeling, 1067 
Learning, and Planning Together: An Application of Participatory Agent-Based Modeling to 1068 
Environmental Planning.” URISA Journal 24 (1): 77–93. 1069 

Zellner, M.L., 2008. Embracing complexity and uncertainty: the potential of agent-based modeling 1070 
for environmental planning and policy. Planning theory & practice, 9(4), pp.437-457. 1071 

Zimmerer, K.S. and Bassett, T.J. eds., 2003. Political ecology: an integrative approach to geography 1072 
and environment-development studies. Guilford Press. 1073 

  1074 



46 

 1075 


